### **Supporting Information**

Controlling Stereochemistry in Polyketide Synthesis: 1,3- vs. 1,2-Asymmetric Induction in Methyl Ketone Aldol Additions to  $\beta$ -Super Siloxy Aldehydes

# Patrick B. Brady, Brian J. Albert, Matsujiro Akakura and Hisashi Yamamoto\*

Department of Chemistry, University of Chicago, 5735 S. Ellis Ave. Chicago, IL, 60637 USA yamamoto @uchicago.edu

| Synthetic Efficiency of Super Silyl Cascade Aldol Approach to Polyketides                      | S1   |
|------------------------------------------------------------------------------------------------|------|
| Computational Methods                                                                          | S4   |
| Computational Data for Enolborinate Addition to $\beta$ -Super Siloxy Butanal                  | S5   |
| Computational Data for Enolborinate Addition to $\alpha$ -Methyl $\beta$ -Super Siloxy Butanal | S9   |
| General Experimental Information                                                               | S33  |
| Synthetic Procedures, Stereochemical Assignment and Data for Compounds 1                       | S34  |
| Synthetic Procedures and Data for Compounds 2                                                  | S37  |
| Synthetic Procedures, Stereochemical Assignment and Data for Compounds 3                       | S38  |
| Synthetic Procedures, Stereochemical Assignment and Data for Compounds 5                       | S42  |
| Synthetic Procedures, Stereochemical Assignment and Data for Compounds 6                       | S46  |
| Synthetic Procedures, Data for Compounds 8-12                                                  | S52  |
| Stereochemical Assignment for compounds 9-14                                                   | S55  |
| Synthetic Procedures, Stereochemical Assignment and Data for Compounds 15-18                   | S57  |
| Additional Data for Equations 3 – 5                                                            | S59  |
| Synthetic Procedures and Data for Compounds 20-22                                              | S62  |
| Stereochemical Assignment for Compounds 20-22                                                  | S66  |
| Synthetic Procedures, Stereochemical Assignment and Data for Compounds 25-34                   | S69  |
| Data for Compounds SI-3, SI-5a, SI-5b                                                          | S76  |
| <sup>1</sup> H and <sup>13</sup> C NMR Spectra                                                 | S76  |
| X-Ray Diffraction Data for Compound SI-9                                                       | S174 |

### **Table of Contents**

### **Synthetic Efficiency**

The development of new, more efficient synthetic methods is an ongoing challenge in contemporary organic chemistry.<sup>1</sup> The evaluation of synthetic efficiency has been discussed at great length in the literature, and numerous metrics have been defined. In our studies, we have evaluated the synthetic efficiency of the super silyl cascade aldol approach to polyketides in comparison to alternative methods. We have chosen four metrics to evaluate synthetic efficiency: 1) chemical yield (the most elementary metric) 2) stereoselectivity 3) atom economy 4) step economy (the most important metric).

To evaluate atom economy<sup>2,3</sup> of the super silyl aldol approach to polyketides, selected examples were compared to literature preparation of similar compounds using

<sup>&</sup>lt;sup>1</sup> See refs. 1–3, 11,12,15 in main text.

<sup>&</sup>lt;sup>2</sup> Trost, B. M. Angew. Chem. Int. Ed. Engl. 1995, 34, 259–281

different strategies. To calculate atom economy for a single synthetic transformation, equation (S-1) was used, according to Eissen and coworkers.<sup>4</sup>

atom economy (
$$AE$$
) =  $\frac{b_{\text{product}} \times MW_{\text{product}}}{a_{\text{substrate 1}} \times MW_{\text{substrate 1}} + \dots + a_{\text{substrate m}} \times MW_{\text{substrate m}}}$  (eq. S-1)

Where MW is molecular weight, and a and b are coefficients relating to the stoichiometry and ratios of reagents used. To evaluate atom-economy for a multistep synthesis with n steps, equation (S-2) was used.

$$AE(1, ..., n) = \frac{b_{\text{product}} \times MW_{\text{product}}}{\frac{a_{\text{substrate 1}} \times MW_{\text{substrate 1}}}{AE(1, ..., n-1)} + \sum_{j=2}^{m} a_{\text{substrate j}} \times MW_{\text{substrate j}}} \quad (\text{eq. S-2})$$

Where substrate<sub>1</sub> is the substrate in the final step of the reaction, and n-1 is synthetic step proceeding the final step in the multistep sequence. Our calculations for this discussion include reagents involved in each reaction, adjusting for the reagent stoichiometry a or b in equations 1, 2. However, solvents, reagents used for workup and purification are not included.

Scheme S-1 shows the aldol reaction of Roche aldehyde S-1a with propanal-derived enolsilane *E*-23. Product S-2 can be isolated in good yield and high selectivity. Unlike many aldol reactions, this variation results in perfect atom economy, due extremely low catalyst loading, transfer of the silvl group to the product and absence of exogenous Lewis acids, bases, or additives. The atom economic impact of the silvl group is only realized upon deprotection (see below). As shown in Scheme 5, of the main text, 3 can be used in a one-pot acetone addition, generating product 20d.

### Scheme S-1



**Scheme S-2** Shows published methods for the synthesis of crotyl product **S-3** with equivalent stereochemistry.<sup>5,6,7</sup> As can be seen, the atom economy of this reaction is rather poor, due to the requirement of high molecular weight chiral crotyl donors required

<sup>&</sup>lt;sup>3</sup> Trost, B. M. Science **1991**, 254, 1471–1477.

<sup>&</sup>lt;sup>4</sup> Eissen, M.; Mazur, R.; Quebbemann, H.-G.; Pennemann, K.-H. Helv. Chim. Acta 2004, 87, 524–535.

<sup>&</sup>lt;sup>5</sup> Brown, H. C.; Bhat, K. S.; Randad, R. S. J. Org. Chem. **1989**, 54, 1570–1576.

<sup>&</sup>lt;sup>6</sup> Kim, H.; Ho, S.; Leighton, J. L. J. Am. Chem. Soc. **2011**, 133, 6517–6520.

<sup>&</sup>lt;sup>7</sup> Roush, W. R.; Ando, K.; Powers, D. B.; Halterman, R. L.; Palkowitz, A. D. *Tetrahedron Lett.* **1988**, *29*, 5579–5582.

for high selectivity. Furthermore, as evidenced in synthetic studies on Rutamycin B,<sup>8</sup> protection and oxidation steps are required to convert crotyl product S-3 to aldehyde S-4 (functional equivalent of S-2). The overall yield is 45% over three steps, and the calculated atom economy is 0.22.<sup>9</sup> When comparing the synthesis of S-2 and S-4, the super silyl aldol route is more efficient in terms of four metrics: chemical yield, selectivity, step economy, and atom economy.



If the less functionalized crotyl product **SI-3** is desired instead, **SI-2** could be converted to **S-3a** by a two step olefination/deprotection sequence (**Scheme S-3**). If photolysis is used to cleave the super silyl group, the atom economy for the 3-step sequence is expected to be 0.26. If TBAF is used for desilylation, the atom economy will be 0.20, both of which are comparable to crotylation methods in **S-2**. If **S-3** is desired, the super silyl approach would still be advantageous in that no expensive chiral reagent is required.

### Scheme S-3. Conversion of SI-2 to SI-3a



The 2,3,4-*syn-syn* configured dipropionate stereotriad is also found in natural products. This stereochemical configuration can be accessed by aldol addition of **Z-23** and aldehyde **SI-1**, affording benzyl protected product **SI-5a** in good dr or TBS-protected **SI-5b** in excellent dr. The synthesis of functionally equivalent compounds has been reported in the total synthesis of Tedanolide<sup>10</sup> and Discodermolide.<sup>11</sup> The use of crotylboration or Evans' aldol reaction requires a greater number of steps, is lower yielding and has poor atom economy.

<sup>&</sup>lt;sup>8</sup> White, J. D.; Hanselmann, R.; Jackson, R. W.; Porter, W. J.; Ohba, Y.; Tiller, T.; Wang, S. *J. Org. Chem.* **2001**, *66*, 5217–5231.

<sup>&</sup>lt;sup>9</sup> Due to lack of experimental data the following assumptions were made for the 3 step sequence: step 1) S-S-1a (1equiv.) crotylboronate (1.2 equiv.); step 2: TBSOTf (1.3 equiv.), Et<sub>3</sub>N (1.5 equiv.); step 3:O<sub>3</sub> (1 equiv. counted), DMS (10 equiv.)

<sup>&</sup>lt;sup>10</sup> De Lemos, E. *et al. Chem. Eur. J.* **2008**, *14*, 11092–11112.

<sup>&</sup>lt;sup>11</sup> Hassfeld, J.; Eggert, U.; Kalesse, M. Synthesis **2005**, 1183–1199.





In summary, quantitative analysis the synthetic efficiency of the super silyl aldol approach to polyketides demonstrates that it is highly efficient when compared to the state of the art in stereoselective synthesis. Although at first glance this strategy may appear to be atom-inefficient due to the use of larger than usual silyl groups, qualitative analysis demonstrates that it is actually more atom-economical than alternative methods. It is also more efficient in terms of chemical yield (the simplest efficiency metric), step economy, and is comparable in terms of stereoselectivity. **Scheme S-3** demonstrates the fact that a longer sequence of steps, even a series of high yielding steps, is detrimental to synthetic efficiency because of the number of reagents used. As a result, improved step economy will more than likely improve efficiency as evaluated by other metrics such as yield, atom economy capital cost and *E*-factor.<sup>12</sup>

Furthermore, this study only analyzes single aldol reactions, whereas the main text describes our goal of stereoselective double, triple, and even tetra-aldol reactions. While direct comparisons to polyaldol reactions are difficult, this analysis suggests that the step- and atom-economy benefits will increase with each successive aldol cascade.

### **Computational Methods**

Molecular geometries of the transition state structures of the reaction pathways were optimized using Density Functional Theory with Becke's three-parameter hybrid

<sup>&</sup>lt;sup>12</sup> Constable, D. J. C.; Curzons, A. D.; Cunningham, V. L. Green Chem. 2002, 4, 521–527.

functional<sup>13</sup> and Lee, Yang, and Parr's (LYP)<sup>14</sup> correlation functional. The 6-31+G(d) basis sets were used in this study. All geometries were optimized without any symmetry restrictions and characterized as first-order saddle points (one imaginary frequency) by calculations of harmonic vibrational frequencies. Gibbs free energies of activation ( $\Delta G^{\ddagger}$ ) were calculated as the difference of free energies of transition states. All calculations have been carried out using the Gaussian 03 and Gaussian 09 program package.<sup>15 16</sup>

#### Computational data for enolborinate addition to β-super siloxy butanal

Computational experiments were performed as described above to reveal the transition state structures of acetone 9-BBN enolborinate addition to  $\beta$ -Super Siloxy Butanal (Scheme S-5). Relative energies for transition state structures are shown in Table S-1. Structures and Newman projections are shown in Figure S-1, with full data following.



Scheme S-5: Enolborinate aldol addition to β-super siloxy butanal

<sup>&</sup>lt;sup>13</sup> Becke, A. D. J. Chem. Phys. **1993**, 98, 5648–5652.

<sup>&</sup>lt;sup>14</sup> Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785–789.

<sup>&</sup>lt;sup>15</sup>Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapp,rich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.: Ortiz, J. V.: Cui, O.: Baboul, A. G.: Clifford, S.: Cioslowski, J.: Stefanov, B. B.: Liu, G.: Liashenko, A.: Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, revision E.01; Gaussian Inc., Wallingford, CT, 2004. <sup>16</sup> Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A. Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Hevd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazvev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, A~.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J.; Gaussian 09, Revision C.01; Gaussian Inc.: Wallingford, CT, 2009.

|                                                                                            | Relative Electron Relative Free  |              |        |        |  |  |  |  |
|--------------------------------------------------------------------------------------------|----------------------------------|--------------|--------|--------|--|--|--|--|
| TS                                                                                         | (φ)                              | 1,3-syn/anti | Energy | Energy |  |  |  |  |
| Α                                                                                          | -60 <i>syn</i> 0.00 0.00         |              |        |        |  |  |  |  |
| В                                                                                          | <b>B</b> 60 <i>syn</i> 1.18 1.50 |              |        |        |  |  |  |  |
| С                                                                                          | 180                              | syn          | 4.53   | 5.90   |  |  |  |  |
| D                                                                                          | -60 <i>anti</i> 1.32 1.46        |              |        |        |  |  |  |  |
| <b>E</b> 60 <i>anti</i> 0.88 1.02                                                          |                                  |              |        |        |  |  |  |  |
| $\phi$ = non-optimized C(1)-C(2)-C(3)-C(4) dihedral angle. Optimized dihedral angels shown |                                  |              |        |        |  |  |  |  |
| in figure S1.                                                                              |                                  |              |        |        |  |  |  |  |

**Table S-1.** Relative energies of the optimized transition state structures of the reaction using  $\beta$ -super siloxy butanal in kcal mol<sup>-1</sup>. Relative to A (TS-H-syn(-60)).







**Figure S1.** B3LYP optimized transition state structures and representative Newman projections of the enolborinate addition to  $\beta$ -super siloxy butanal. Mulliken electron population is in parenthesis.

### Computational Data for Enolborinate Addition to α-Methyl β-Super Siloxy Butanal

Computational experiments were performed as described above to reveal the transition state structures of acetone 9-BBN enolborinate addition to  $\alpha$ -Methyl  $\beta$ -Super Siloxy Butanal (Scheme S-6). Relative energies for transition state structures are shown in Table S-2. Structures and Newman projections are shown in Figure S-2, with full data following.



Scheme S-2: Enolborinate Addition to α-Methyl β-Super Siloxy Butanal

| Table S-2: Calculated Transition | State Energies for Enolborinate Addition to $\alpha$ -methyl |
|----------------------------------|--------------------------------------------------------------|
| β-super Siloxy Butanal           |                                                              |

|                                                                                     |               |              | Relative Electron | Relative Free |  |
|-------------------------------------------------------------------------------------|---------------|--------------|-------------------|---------------|--|
| TS                                                                                  | ( <b>\$</b> ) | 1,3-syn/anti | Energy            | Energy        |  |
| F                                                                                   | 60            | syn          | 0.45              | 0.00          |  |
| G                                                                                   | 180           | syn          | 5.07              | 7.78          |  |
| Н                                                                                   | -60           | syn          | 0.00              | 0.19          |  |
| Ι                                                                                   | 60            | anti         | 0.09              | 0.40          |  |
| J                                                                                   | -60           | anti         | 0.92              | 1.57          |  |
| $\phi$ = non-optimized dihedral angel. Optimized dihedral angel given in figure S2. |               |              |                   |               |  |







**Figure S-2** Calculated Transition State Structures and Representative Newman Projections for Enolborinate Addition to *anti*- $\alpha$ -methyl  $\beta$ -super Siloxy Butanal

#### TS A

 $1,3-syn(\phi = -60)$ Method: B3LYP/6-31+G(d) SCF Done: E(RB+HF-LYP) = -2355.18566238A.U. after 9 cycles Imaginary frequencies: 1(-214) Zero-point correction= 0.736204 (Hartree/Particle) Thermal correction to Energy= 0.782167 Thermal correction to Enthalpy= 0.783111 Thermal correction to Gibbs Free Energy= 0.655294 Sum of electronic and zero-point Energies= -2354.449458 Sum of electronic and thermal Energies= -2354.403495 Sum of electronic and thermal Enthalpies= -2354.402551 Sum of electronic and thermal Free Energies= -2354.530369

|                  |                  | Standard o     | orientation: |                   |              |
|------------------|------------------|----------------|--------------|-------------------|--------------|
| Center<br>Number | Atomic<br>Number | Atomic<br>Type | Coord<br>X   | inates (Ang:<br>Y | stroms)<br>Z |
| 1                | <br>6            | 0              | 2.852159     | 2.530246          | -1.554204    |

| ~          | <i>c</i> | â | 0 005 01 0 | 0 - 0 - 0 - 0 - 0 |           |
|------------|----------|---|------------|-------------------|-----------|
| 2          | 6        | 0 | 3.295613   | 2.581218          | -0.244930 |
| 3          | 8        | 0 | 3.8/4131   | 1.589201          | 0.386450  |
| 4          | 6        | 0 | 3.011501   | 3.763121          | 0.646137  |
| 5          | 5        | 0 | 3.993316   | 0.156743          | -0.093043 |
| 6          | 6        | 0 | 4.080495   | -0.833226         | 1.176435  |
| 7          | 6        | 0 | 5.288097   | -0.115676         | -1.024051 |
| 8          | 6        | 0 | 5.253293   | -1.585566         | -1.513860 |
| 9          | 6        | 0 | 6.549885   | 0.257787          | -0.202096 |
| 10         | 6        | 0 | 4.063829   | -2.303308         | 0.685646  |
| 11         | 6        | 0 | 5.341138   | -0.447544         | 1.993097  |
| 12         | 6        | 0 | 5.108027   | -2.649797         | -0.402054 |
| 13         | 6        | 0 | 6.661254   | -0.414580         | 1.186697  |
| 14         | 8        | 0 | 2.710215   | -0.121490         | -0.961031 |
| 15         | 6        | 0 | 1.680057   | 0.632877          | -0.942760 |
| 16         | 6        | 0 | 0.639235   | 0.470133          | -2.012857 |
| 17         | 6        | 0 | -0.493337  | -0.509489         | -1.604625 |
| 18         | 6        | 0 | -0.012516  | -1.944578         | -1.389611 |
| 19         | 8        | 0 | -1.109188  | 0.014798          | -0.434029 |
| 20         | 14       | 0 | -2.745322  | -0.074432         | 0.073762  |
| 21         | 14       | 0 | -3.167988  | 2.166068          | 0.780271  |
| 22         | 14       | 0 | -2.860653  | -1.597454         | 1.912293  |
| 23         | 14       | 0 | -4.238076  | -0.710856         | -1.690043 |
| 24         | 6        | 0 | -2.557955  | 3.365051          | -0.566163 |
| 25         | 6        | 0 | -5.018056  | 2.489123          | 1.091820  |
| 26         | 6        | 0 | -2.213894  | 2.556887          | 2.380504  |
| 27         | 6        | 0 | -3.751448  | -2.342169         | -2.545549 |
| 2.8        | 6        | 0 | -5.966386  | -0.958801         | -0.928642 |
| 29         | 6        | 0 | -4.372725  | 0.628278          | -3.038179 |
| 30         | e<br>e   | 0 | -1 310878  | -1 384252         | 2 990949  |
| 31         | e<br>e   | 0 | -4 405304  | -1 238694         | 2 968845  |
| 32         | e<br>e   | 0 | -2 952338  | -3 419934         | 1 364916  |
| 33         | 1        | 0 | 2 339488   | 3 399264          | -1 956295 |
| 34         | 1        | 0 | 3 278538   | 1 845231          | -2 274531 |
| 35         | 1        | 0 | 2 403667   | 3 456245          | 1 506544  |
| 36         | 1        | 0 | 2 502144   | 4 567623          | 0 109587  |
| 37         | 1        | 0 | 3 957170   | 1 1/8891          | 1 0/5881  |
| 38         | 1        | 0 | 3 211535   | -0 702040         | 1 8//212  |
| 30         | 1        | 0 | 5 206233   | 0.521349          | _1 023860 |
| 10         | 1        | 0 | 6 156822   | -1 810699         | -2 103142 |
| 40<br>// 1 | ±<br>1   | 0 | 1 106951   | -1.697041         | -2.103142 |
| 41         | 1        | 0 | 7 460165   | -1.007041         | -2.200290 |
| 42         | 1        | 0 | 7.40010J   | 1 2/0220          | -0.780123 |
| 43         | 1        | 0 | 0.544645   | 1.340220          | -0.001427 |
| 44         | 1        | 0 | 4.190349   | -2.990910         | 1.330437  |
| 45         | 1        | 0 | 3.061456   | -2.512650         | 0.283659  |
| 40         | 1        | 0 | 5.464913   | -1.130/91         | 2.848697  |
| 4 /        | 1        | 0 | 5.16/6/3   | 0.549056          | 2.422150  |
| 48         | 1        | 0 | 4.835507   | -3.610562         | -0.862869 |
| 49         | 1        | U | 6.081438   | -2.821596         | 0.068503  |
| 50         | 1        | U | 1.423325   | U.115560          | 1.//6262  |
| 51         | 1        | Û | /.044550   | -1.433/34         | 1.070226  |
| 52         | 1        | 0 | 1.364269   | 1.077789          | 0.001855  |
| 53         | 1        | 0 | 0.175709   | 1.441583          | -2.209389 |
| 54         | 1        | 0 | 1.118637   | 0.115136          | -2.931446 |
| 55         | 1        | 0 | -1.213463  | -0.500923         | -2.437473 |

| 56 | 1 | 0 | -0.864651 | -2.603528 | -1.192171 |
|----|---|---|-----------|-----------|-----------|
| 57 | 1 | 0 | 0.677955  | -2.006970 | -0.542959 |
| 58 | 1 | 0 | 0.505778  | -2.319164 | -2.280547 |
| 59 | 1 | 0 | -1.485419 | 3.234395  | -0.753795 |
| 60 | 1 | 0 | -2.717075 | 4.405820  | -0.252670 |
| 61 | 1 | 0 | -3.083205 | 3.220409  | -1.517823 |
| 62 | 1 | 0 | -5.160094 | 3.506322  | 1.481430  |
| 63 | 1 | 0 | -5.441377 | 1.793913  | 1.826711  |
| 64 | 1 | 0 | -5.610706 | 2.404902  | 0.172609  |
| 65 | 1 | 0 | -2.582959 | 1.975287  | 3.233947  |
| 66 | 1 | 0 | -1.143087 | 2.345667  | 2.272908  |
| 67 | 1 | 0 | -2.320217 | 3.620261  | 2.635501  |
| 68 | 1 | 0 | -2.809656 | -2.259563 | -3.100790 |
| 69 | 1 | 0 | -4.532026 | -2.624539 | -3.265460 |
| 70 | 1 | 0 | -3.645629 | -3.168107 | -1.832697 |
| 71 | 1 | 0 | -6.692704 | -1.173087 | -1.724491 |
| 72 | 1 | 0 | -6.320172 | -0.071936 | -0.389875 |
| 73 | 1 | 0 | -5.987813 | -1.804352 | -0.230268 |
| 74 | 1 | 0 | -4.754785 | 1.574706  | -2.637230 |
| 75 | 1 | 0 | -3.406503 | 0.836384  | -3.514314 |
| 76 | 1 | 0 | -5.064431 | 0.300094  | -3.826109 |
| 77 | 1 | 0 | -0.396925 | -1.594550 | 2.423168  |
| 78 | 1 | 0 | -1.341400 | -2.075161 | 3.844315  |
| 79 | 1 | 0 | -1.225841 | -0.365869 | 3.387710  |
| 80 | 1 | 0 | -4.463563 | -1.957531 | 3.797519  |
| 81 | 1 | 0 | -5.334012 | -1.328234 | 2.392049  |
| 82 | 1 | 0 | -4.382048 | -0.234514 | 3.409211  |
| 83 | 1 | 0 | -3.857673 | -3.633900 | 0.783457  |
| 84 | 1 | 0 | -2.086674 | -3.714404 | 0.759495  |
| 85 | 1 | 0 | -2.968741 | -4.071619 | 2.249355  |
|    |   |   |           |           |           |

#### TS-B

1,3*-syn*( $\phi$ =60) Method: B3LYP/6-31+G(d)SCF Done: E(RB+HF-LYP) = -2355.18377975 A.U. after 8 cycles Imaginary frequencies: 1(-245) Zero-point correction= 0.736074 (Hartree/Particle) Thermal correction to Energy= 0.781948 Thermal correction to Enthalpy= 0.782892 Thermal correction to Gibbs Free Energy= 0.655800 Sum of electronic and zero-point Energies= -2354.447706 Sum of electronic and thermal Energies= -2354.401832 Sum of electronic and thermal Enthalpies= -2354.400888 Sum of electronic and thermal Free Energies= -2354.527980

| NumberTypeXYZ160 $-2.191355$ $2.307505$ $0.439954$ 260 $-3.501775$ $2.585054$ $0.089092$ 380 $-4.418161$ $1.677141$ $-0.132888$ 460 $-3.962917$ $3.984360$ $-0.227463$ 550 $-4.204195$ $0.180645$ $-0.263572$ 660 $-5.316525$ $-0.437490$ $-1.252448$ 760 $-4.287595$ $-0.615304$ $1.140738$ 860 $-3.982986$ $-2.114106$ $0.890040$ 960 $-5.686563$ $-0.343970$ $1.756284$ 1060 $-5.010210$ $-1.938126$ $-1.493558$ 1160 $-6.887584$ $-0.643054$ $0.828388$ 1480 $-2.756047$ $-0.006183$ $-0.850334$ 1560 $-0.654366$ $0.789304$ $-1.745595$ 1660 $-0.044068$ $-1.630304$ $-1.208983$ 1980 $1.540021$ $0.218979$ $-1.062041$ 20140 $2.901348$ $-0.047376$ $-0.569393$ 21140 $3.956119$ $-2.149267$ $-0.524752$ 23140 $2.35807$ $0.136220$ $2.270838$ 2460 $3.277357$ $3.353776$ $-0.816453$ 2560 $5.794713$ $2.008291$ $0.371719$ <          | Center | Atomic | Atomic | Coord     | dinates (Ang | stroms)   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|-----------|--------------|-----------|
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Number | Number | Туре   | X         | Y            | Ζ         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |        |        |           |              |           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1      | 6      | 0      | -2.191355 | 2.307505     | 0.439954  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2      | 6      | 0      | -3.501775 | 2.585054     | 0.089092  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3      | 8      | 0      | -4.418161 | 1.677141     | -0.132888 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4      | 6      | 0      | -3.962917 | 3.984360     | -0.227463 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5      | 5      | 0      | -4.204195 | 0.180645     | -0.263572 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6      | 6      | 0      | -5.316525 | -0.437490    | -1.252448 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7      | 6      | 0      | -4.287595 | -0.615304    | 1.140738  |
| 960 $-5.686563$ $-0.343970$ $1.756284$ 1060 $-5.010210$ $-1.938126$ $-1.493558$ 1160 $-6.711192$ $-0.161744$ $-0.630921$ 1260 $-4.831866$ $-2.787390$ $-0.213351$ 1360 $-6.887584$ $-0.643054$ $0.828388$ 1480 $-2.756047$ $-0.006183$ $-0.850334$ 1560 $-2.109916$ $0.944242$ $-1.407285$ 1660 $-0.654366$ $0.789304$ $-1.745595$ 1760 $0.178444$ $-0.158097$ $-0.863701$ 1860 $-0.044068$ $-1.630304$ $-1.208983$ 1980 $1.540021$ $0.218979$ $-1.062041$ 20140 $2.901348$ $-0.047376$ $-0.524752$ 23140 $2.358007$ $0.136220$ $2.270838$ 2460 $3.277357$ $3.353776$ $-0.816453$ 2560 $4.940249$ $1.424964$ $-2.537765$ 2760 $3.935804$ $-0.187342$ $3.287720$ 2960 $1.717764$ $1.877947$ $2.698718$                                                                                                                                        | 8      | 6      | 0      | -3.982986 | -2.114106    | 0.890040  |
| 1060 $-5.010210$ $-1.938126$ $-1.493558$ $11$ 60 $-6.711192$ $-0.161744$ $-0.630921$ $12$ 60 $-4.831866$ $-2.787390$ $-0.213351$ $13$ 60 $-6.887584$ $-0.643054$ $0.828388$ $14$ 80 $-2.756047$ $-0.006183$ $-0.850334$ $15$ 60 $-2.109916$ $0.944242$ $-1.407285$ $16$ 60 $-0.654366$ $0.789304$ $-1.745595$ $17$ 60 $0.178444$ $-0.158097$ $-0.863701$ $18$ 60 $-0.044068$ $-1.630304$ $-1.208983$ $19$ 80 $1.540021$ $0.218979$ $-1.062041$ $20$ 140 $2.901348$ $-0.047376$ $-0.056939$ $21$ 140 $4.297445$ $1.748780$ $-0.775913$ $22$ 140 $3.956119$ $-2.149267$ $-0.524752$ $23$ 140 $2.358007$ $0.136220$ $2.270838$ $24$ 60 $3.277357$ $3.353776$ $-0.816453$ $25$ 60 $4.940249$ $1.424964$ $-2.537765$ $27$ 60 $1.049259$ $-1.125419$ $2.839875$ $28$ 60 $3.935804$ $-0.187342$ $3.287720$ $29$ 60 $1.717764$ $1.877947$ $2.698718$ | 9      | 6      | 0      | -5.686563 | -0.343970    | 1.756284  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10     | 6      | 0      | -5.010210 | -1.938126    | -1.493558 |
| 1260 $-4.831866$ $-2.787390$ $-0.213351$ $13$ 60 $-6.887584$ $-0.643054$ $0.828388$ $14$ 80 $-2.756047$ $-0.006183$ $-0.850334$ $15$ 60 $-2.109916$ $0.944242$ $-1.407285$ $16$ 60 $-0.654366$ $0.789304$ $-1.745595$ $17$ 60 $0.178444$ $-0.158097$ $-0.863701$ $18$ 60 $-0.044068$ $-1.630304$ $-1.208983$ $19$ 80 $1.540021$ $0.218979$ $-1.062041$ $20$ 140 $2.901348$ $-0.047376$ $-0.56939$ $21$ 140 $3.956119$ $-2.149267$ $-0.524752$ $23$ 140 $2.358007$ $0.136220$ $2.270838$ $24$ 60 $3.277357$ $3.353776$ $-0.816453$ $25$ 60 $4.940249$ $1.424964$ $-2.537765$ $27$ 60 $3.935804$ $-0.187342$ $3.287720$ $29$ 60 $1.717764$ $1.877947$ $2.698718$                                                                                                                                                                               | 11     | 6      | 0      | -6.711192 | -0.161744    | -0.630921 |
| 1360 $-6.887584$ $-0.643054$ $0.828388$ 1480 $-2.756047$ $-0.006183$ $-0.850334$ 1560 $-2.109916$ $0.944242$ $-1.407285$ 1660 $-0.654366$ $0.789304$ $-1.745595$ 1760 $0.178444$ $-0.158097$ $-0.863701$ 1860 $-0.044068$ $-1.630304$ $-1.208983$ 1980 $1.540021$ $0.218979$ $-1.062041$ 20140 $2.901348$ $-0.047376$ $-0.056939$ 21140 $3.956119$ $-2.149267$ $-0.524752$ 23140 $2.358007$ $0.136220$ $2.270838$ 2460 $3.277357$ $3.353776$ $-0.816453$ 2560 $4.940249$ $1.424964$ $-2.537765$ 2760 $3.935804$ $-0.187342$ $3.287720$ 2960 $1.717764$ $1.877947$ $2.698718$                                                                                                                                                                                                                                                                 | 12     | 6      | 0      | -4.831866 | -2.787390    | -0.213351 |
| 1480 $-2.756047$ $-0.006183$ $-0.850334$ $15$ 60 $-2.109916$ $0.944242$ $-1.407285$ $16$ 60 $-0.654366$ $0.789304$ $-1.745595$ $17$ 60 $0.178444$ $-0.158097$ $-0.863701$ $18$ 60 $-0.044068$ $-1.630304$ $-1.208983$ $19$ 80 $1.540021$ $0.218979$ $-1.062041$ $20$ 140 $2.901348$ $-0.047376$ $-0.056939$ $21$ 140 $3.956119$ $-2.149267$ $-0.524752$ $23$ 140 $2.358007$ $0.136220$ $2.270838$ $24$ 60 $3.277357$ $3.353776$ $-0.816453$ $25$ 60 $4.940249$ $1.424964$ $-2.537765$ $27$ 60 $3.935804$ $-0.187342$ $3.287720$ $29$ 60 $1.717764$ $1.877947$ $2.698718$                                                                                                                                                                                                                                                                     | 13     | 6      | 0      | -6.887584 | -0.643054    | 0.828388  |
| 1560 $-2.109916$ $0.944242$ $-1.407285$ $16$ 60 $-0.654366$ $0.789304$ $-1.745595$ $17$ 60 $0.178444$ $-0.158097$ $-0.863701$ $18$ 60 $-0.044068$ $-1.630304$ $-1.208983$ $19$ 80 $1.540021$ $0.218979$ $-1.062041$ $20$ 140 $2.901348$ $-0.047376$ $-0.056939$ $21$ 140 $4.297445$ $1.748780$ $-0.775913$ $22$ 140 $3.956119$ $-2.149267$ $-0.524752$ $23$ 140 $2.358007$ $0.136220$ $2.270838$ $24$ 60 $3.277357$ $3.353776$ $-0.816453$ $25$ 60 $4.940249$ $1.424964$ $-2.537765$ $27$ 60 $1.049259$ $-1.125419$ $2.839875$ $28$ 60 $3.935804$ $-0.187342$ $3.287720$ $29$ 60 $1.717764$ $1.877947$ $2.698718$                                                                                                                                                                                                                            | 14     | 8      | 0      | -2.756047 | -0.006183    | -0.850334 |
| 16 $6$ $0$ $-0.654366$ $0.789304$ $-1.745595$ $17$ $6$ $0$ $0.178444$ $-0.158097$ $-0.863701$ $18$ $6$ $0$ $-0.044068$ $-1.630304$ $-1.208983$ $19$ $8$ $0$ $1.540021$ $0.218979$ $-1.062041$ $20$ $14$ $0$ $2.901348$ $-0.047376$ $-0.056939$ $21$ $14$ $0$ $4.297445$ $1.748780$ $-0.775913$ $22$ $14$ $0$ $3.956119$ $-2.149267$ $-0.524752$ $23$ $14$ $0$ $2.358007$ $0.136220$ $2.270838$ $24$ $6$ $0$ $3.277357$ $3.353776$ $-0.816453$ $25$ $6$ $0$ $4.940249$ $1.424964$ $-2.537765$ $27$ $6$ $0$ $1.049259$ $-1.125419$ $2.839875$ $28$ $6$ $0$ $3.935804$ $-0.187342$ $3.287720$ $29$ $6$ $0$ $1.717764$ $1.877947$ $2.698718$                                                                                                                                                                                                     | 15     | 6      | 0      | -2.109916 | 0.944242     | -1.407285 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16     | 6      | 0      | -0.654366 | 0.789304     | -1.745595 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17     | 6      | 0      | 0.178444  | -0.158097    | -0.863701 |
| 19801.5400210.218979-1.062041201402.901348-0.047376-0.056939211404.2974451.748780-0.775913221403.956119-2.149267-0.524752231402.3580070.1362202.27083824603.2773573.353776-0.81645325604.9402491.424964-2.53776527601.049259-1.1254192.83987528603.935804-0.1873423.28772029601.7177641.8779472.698718                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 18     | 6      | 0      | -0.044068 | -1.630304    | -1.208983 |
| 201402.901348-0.047376-0.056939211404.2974451.748780-0.775913221403.956119-2.149267-0.524752231402.3580070.1362202.27083824603.2773573.353776-0.81645325605.7947132.0082910.37171926601.049259-1.1254192.83987528603.935804-0.1873423.28772029601.7177641.8779472.698718                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 19     | 8      | 0      | 1.540021  | 0.218979     | -1.062041 |
| 211404.2974451.748780-0.775913221403.956119-2.149267-0.524752231402.3580070.1362202.27083824603.2773573.353776-0.81645325605.7947132.0082910.37171926604.9402491.424964-2.53776527601.049259-1.1254192.83987528603.935804-0.1873423.28772029601.7177641.8779472.698718                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20     | 14     | 0      | 2.901348  | -0.047376    | -0.056939 |
| 221403.956119-2.149267-0.524752231402.3580070.1362202.27083824603.2773573.353776-0.81645325605.7947132.0082910.37171926604.9402491.424964-2.53776527601.049259-1.1254192.83987528603.935804-0.1873423.28772029601.7177641.8779472.698718                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21     | 14     | 0      | 4.297445  | 1.748780     | -0.775913 |
| 231402.3580070.1362202.27083824603.2773573.353776-0.81645325605.7947132.0082910.37171926604.9402491.424964-2.53776527601.049259-1.1254192.83987528603.935804-0.1873423.28772029601.7177641.8779472.698718                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22     | 14     | 0      | 3.956119  | -2.149267    | -0.524752 |
| 24 6 0 3.277357 3.353776 -0.816453   25 6 0 5.794713 2.008291 0.371719   26 6 0 4.940249 1.424964 -2.537765   27 6 0 1.049259 -1.125419 2.839875   28 6 0 3.935804 -0.187342 3.287720   29 6 0 1.717764 1.877947 2.698718                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 23     | 14     | 0      | 2.358007  | 0.136220     | 2.270838  |
| 25605.7947132.0082910.37171926604.9402491.424964-2.53776527601.049259-1.1254192.83987528603.935804-0.1873423.28772029601.7177641.8779472.698718                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24     | 6      | 0      | 3.277357  | 3.353776     | -0.816453 |
| 26 6 0 4.940249 1.424964 -2.537765   27 6 0 1.049259 -1.125419 2.839875   28 6 0 3.935804 -0.187342 3.287720   29 6 0 1.717764 1.877947 2.698718                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25     | 6      | 0      | 5.794713  | 2.008291     | 0.371719  |
| 27 6 0 1.049259 -1.125419 2.839875   28 6 0 3.935804 -0.187342 3.287720   29 6 0 1.717764 1.877947 2.698718                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 26     | 6      | 0      | 4.940249  | 1.424964     | -2.537765 |
| 28   6   0   3.935804   -0.187342   3.287720     29   6   0   1.717764   1.877947   2.698718                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 27     | 6      | 0      | 1.049259  | -1.125419    | 2.839875  |
| 29   6   0   1.717764   1.877947   2.698718                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 28     | 6      | 0      | 3.935804  | -0.187342    | 3.287720  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 29     | 6      | 0      | 1.717764  | 1.877947     | 2.698718  |
| 30 6 0 $3.818697$ $-2.557949$ $-2.377458$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30     | 6      | 0      | 3.818697  | -2.557949    | -2.377458 |
| 31 6 0 5 802173 -2 037616 -0 061126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 31     | 6      | 0      | 5 802173  | -2 037616    | -0.061126 |
| 32 6 0 <u>3 229046</u> -3 608761 0 461696                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 32     | 6      | 0      | 3 229046  | -3 608761    | 0 461696  |
| 33 1 0 -1 502374 3 140062 0 548902                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 33     | 1      | 0      | -1 502374 | 3 140062     | 0 548902  |
| 34 1 0 -1 928226 1 393492 0 954859                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 34     | ±<br>1 | 0      | -1 928226 | 1 393492     | 0 954859  |
| 35 1 0 -4 309805 4 047127 -1 266682                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 35     | ±<br>1 | 0      | -4 309805 | 4 047127     | -1 266682 |

| 0.0 | -      | ^ | 0 1 5 / 2 5 5        |           | 0 0 0 1 1 0 - |
|-----|--------|---|----------------------|-----------|---------------|
| 36  | 1      | 0 | -3.174663            | 4.722994  | -0.061635     |
| 37  | 1      | 0 | -4.820399            | 4.233581  | 0.409155      |
| 38  | 1      | 0 | -5.297242            | 0.062026  | -2.236694     |
| 39  | 1      | 0 | -3.543764            | -0.253405 | 1.870034      |
| 40  | 1      | 0 | -4.099527            | -2.685666 | 1.824808      |
| 41  | 1      | 0 | -2.921544            | -2.201137 | 0.616793      |
| 42  | 1      | 0 | -5.807069            | -0.917882 | 2.688943      |
| 43  | 1      | 0 | -5.724306            | 0.715875  | 2.046214      |
| 44  | 1      | 0 | -5.798375            | -2.393514 | -2.114207     |
| 45  | 1      | 0 | -4.085838            | -2.002434 | -2.086604     |
| 46  | 1      | 0 | -7.500859            | -0.614582 | -1.251704     |
| 47  | 1      | 0 | -6.882234            | 0.923130  | -0.665305     |
| 48  | 1      | 0 | -4.365826            | -3.746059 | -0.484094     |
| 49  | 1      | 0 | -5.814686            | -3.049001 | 0.191485      |
| 50  | 1      | 0 | -7.786480            | -0.170829 | 1.250566      |
| 51  | 1      | 0 | -7.096527            | -1.717719 | 0.836076      |
| 52  | 1      | 0 | -2.663664            | 1.668259  | -2.011750     |
| 53  | 1      | 0 | -0.609240            | 0.444289  | -2.792963     |
| 54  | 1      | 0 | -0.193173            | 1.781890  | -1.740092     |
| 55  | 1      | 0 | -0.098499            | 0.011884  | 0.186785      |
| 56  | 1      | 0 | 0.543941             | -2.276427 | -0.548963     |
| 57  | 1      | 0 | 0.265408             | -1.823162 | -2.243259     |
| 58  | 1      | 0 | -1.098550            | -1.899856 | -1.099058     |
| 59  | 1      | 0 | 2.400655             | 3.242562  | -1.465548     |
| 60  | 1      | 0 | 3.882789             | 4.182449  | -1.208312     |
| 61  | 1      | 0 | 2.921307             | 3.642549  | 0.179661      |
| 62  | 1      | 0 | 6.432948             | 2.810206  | -0.023771     |
| 63  | 1      | 0 | 6.414475             | 1.107892  | 0.459365      |
| 64  | 1      | 0 | 5.489398             | 2.302417  | 1.383417      |
| 65  | - 1    | 0 | 5,604171             | 0.553241  | -2.579613     |
| 66  | - 1    | 0 | 4.115510             | 1.250996  | -3.239497     |
| 67  | - 1    | 0 | 5.509602             | 2.291926  | -2.900076     |
| 68  | - 1    | 0 | 0.080919             | -0.982221 | 2.346387      |
| 69  | - 1    | 0 | 0 883451             | -1 021329 | 3 921137      |
| 70  | - 1    | 0 | 1 365912             | -2 158350 | 2 653576      |
| 71  | - 1    | 0 | 3 716917             | -0 070075 | 4 357856      |
| 72  | - 1    | 0 | 4 746230             | 0 507657  | 3 039018      |
| 73  | 1      | 0 | 4 313778             | -1 206580 | 3 141352      |
| 74  | 1      | 0 | 2 475569             | 2 647017  | 2 506910      |
| 75  | 1      | 0 | 0 824234             | 2 141843  | 2 119887      |
| 76  | 1      | 0 | 1 450479             | 1 933775  | 3 762826      |
| 70  | 1      | 0 | 2 772945             | -2 663649 | -2 688823     |
| 78  | 1      | 0 | 4 330536             | -3 505102 | -2 595860     |
| 79  | 1      | 0 | 4.000000             | -1 779946 | -3 002571     |
| 80  | 1      | 0 | 6 283391             | -3 013258 | -0 213963     |
| 81  | 1      | 0 | 5 947442             | -1 761809 | 0.213503      |
| 82  | ⊥<br>1 | 0 | 6 3/1750             | -1 306370 | -0 67/967     |
| 83  | ±<br>1 | 0 | 3 310910             | -3 466690 | 1 5/35/0      |
| 87  | ⊥<br>1 | 0 | J.J4U94Z<br>2 16/327 | -3.400090 | 1.343349      |
| 85  | ±<br>1 | 0 | 3 757011             | -4 53/91/ | 0.20000       |
|     | ۔<br>  |   |                      | ч.JJ4914  |               |
|     |        |   |                      |           |               |

#### TS-C

| 15 6                                    |         |                |          |
|-----------------------------------------|---------|----------------|----------|
| $1,3-syn(\phi=180)$                     |         |                |          |
| Method: B3LYP/6-31+G(d)                 |         |                |          |
| SCF Done: $E(RB+HF-LYP) = -2355.1$      | 7844557 | A.U. after     | 9 cycles |
| Imaginary frequencies: 1(-192)          |         |                |          |
| Zero-point correction=                  | 0.73611 | 7 (Hartree/Par | ticle)   |
| Thermal correction to Energy=           | 0.78    | 1821           |          |
| Thermal correction to Enthalpy=         | 0.78    | 32766          |          |
| Thermal correction to Gibbs Free Energy | gy=     | 0.657490       |          |
| Sum of electronic and zero-point Energ  | ies=    | -2354.44232    | 9        |
| Sum of electronic and thermal Energies  | =       | -2354.396624   | ŀ        |
| Sum of electronic and thermal Enthalpi  | es=     | -2354.39568    | 0        |
| Sum of electronic and thermal Free Ene  | ergies= | -2354.5209     | 55       |

| Center Atomic Atomic |        |      | Coordinates (Angstroms) |           |           |
|----------------------|--------|------|-------------------------|-----------|-----------|
| Number               | Number | Туре | Х                       | Y         | Ζ         |
| 1                    | 6      | 0    | 1.363738                | -2.615229 | -0.671728 |
| 2                    | 6      | 0    | 2.641866                | -2.548994 | -0.173006 |
| 3                    | 8      | 0    | 3.041932                | -1.516464 | 0.547542  |
| 4                    | 6      | 0    | 3.680117                | -3.604262 | -0.460046 |
| 5                    | 5      | 0    | 3.371945                | -0.145667 | -0.053762 |
| 6                    | 6      | 0    | 4.770155                | -0.087671 | -0.866453 |
| 7                    | 6      | 0    | 3.396415                | 0.992732  | 1.070994  |
| 8                    | 6      | 0    | 3.525287                | 2.376438  | 0.383706  |
| 9                    | 6      | 0    | 4.538264                | 0.662639  | 2.067153  |
| 10                   | 6      | 0    | 4.903094                | 1.302764  | -1.544610 |
| 11                   | 6      | 0    | 5.913060                | -0.411870 | 0.134443  |
| 12                   | 6      | 0    | 4.704850                | 2.516325  | -0.606374 |
| 13                   | 6      | 0    | 5.927454                | 0.443285  | 1.423545  |
| 14                   | 8      | 0    | 2.128611                | 0.094609  | -0.998655 |
| 15                   | 6      | 0    | 1.853098                | -0.708376 | -1.942194 |
| 16                   | 6      | 0    | 0.590769                | -0.530531 | -2.741802 |
| 17                   | 6      | 0    | -0.545660               | 0.288164  | -2.110367 |
| 18                   | 6      | 0    | -1.577575               | 0.634223  | -3.188389 |
| 19                   | 8      | 0    | -1.118302               | -0.461139 | -1.041657 |
| 20                   | 14     | 0    | -2.349702               | 0.035249  | 0.057586  |
| 21                   | 14     | 0    | -1.862733               | -1.207235 | 2.047503  |
| 22                   | 14     | 0    | -4.476515               | -0.664726 | -0.809296 |
| 23                   | 14     | 0    | -2.329502               | 2.388527  | 0.530562  |
| 24                   | 6      | 0    | -0.107371               | -0.859927 | 2.677920  |
| 25                   | 6      | 0    | -3.064872               | -0.744069 | 3.451879  |
| 26                   | 6      | 0    | -2.039510               | -3.073883 | 1.715109  |
| 27                   | 6      | 0    | -2.436369               | 3.497562  | -1.016673 |
| 28                   | 6      | 0    | -3.863936               | 2.771715  | 1.595182  |
| 29                   | 6      | 0    | -0.782937               | 2.912652  | 1.502217  |
| 30                   | 6      | 0    | -4.255450               | -2.297542 | -1.762477 |
| 31                   | 6      | 0    | -5.708798               | -0.973766 | 0.611237  |
| 32                   | 6      | 0    | -5.302673               | 0.593367  | -1.979955 |

| 33         | 1      | 0 | 1.066749  | -3.469380  | -1.274953 |
|------------|--------|---|-----------|------------|-----------|
| 34         | 1      | 0 | 0.573386  | -1.971289  | -0.307976 |
| 35         | 1      | 0 | 4.538900  | -3.168954  | -0.984798 |
| 36         | 1      | 0 | 3.275354  | -4.432510  | -1.049025 |
| 37         | 1      | 0 | 4.058417  | -3.999844  | 0.490632  |
| 38         | 1      | 0 | 4.843325  | -0.838636  | -1.674297 |
| 39         | 1      | 0 | 2.457554  | 1.000640   | 1.646676  |
| 40         | 1      | 0 | 3,600098  | 3.175885   | 1.138218  |
| 41         | 1      | 0 | 2.589220  | 2.567161   | -0.162769 |
| 42         | 1      | 0 | 4.622719  | 1.451732   | 2.831675  |
| 4.3        | 1      | 0 | 4.253278  | -0.252646  | 2.604541  |
| 44         | 1      | 0 | 5.882145  | 1.393648   | -2.042009 |
| 4.5        | 1      | 0 | 4.154596  | 1.362864   | -2.350259 |
| 46         | 1      | 0 | 6 891808  | -0 320804  | -0 363679 |
| 47         | 1      | 0 | 5 816263  | -1 467692  | 0 423338  |
| 48         | 1      | 0 | 4 551956  | 3 416835   | -1 219137 |
| 49         | 1      | 0 | 5 629587  | 2 700515   | -0 050569 |
| 50         | 1      | 0 | 6 587089  | -0 041019  | 2 158187  |
| 51         | 1      | 0 | 6 393392  | 1 411819   | 1 214048  |
| 52         | 1      | 0 | 2 669180  | -1 236664  | -2 441898 |
| 53         | 1      | 0 | 0 914650  | -0 013563  | -3 661016 |
| 54         | 1      | 0 | 0 218407  | -1 509701  | -3 063830 |
| 55         | 1      | 0 | -0 117805 | 1 217407   | -1 708144 |
| 56         | 1      | 0 | -2 395436 | 1 224919   | -2 768865 |
| 57         | 1      | 0 | -1 999572 | -0 277344  | -3 628278 |
| 58         | 1      | 0 | -1 120890 | 1 227315   | -3 990314 |
| 59         | 1      | 0 | 0 670200  | -1 066853  | 1 936111  |
| 60         | 1      | 0 | 0.070200  | -1 488990  | 3 555597  |
| 61         | 1      | 0 | 0.007215  | 0 184895   | 2 989178  |
| 62         | 1      | 0 | -2 852655 | -1 372022  | 4 328204  |
| 63         | 1      | 0 | -4 117361 | -0 893854  | 3 186892  |
| 64         | 1      | 0 | -2 942540 | 0.299948   | 3 764807  |
| 65         | 1      | 0 | -3 067606 | -3 348489  | 1 448810  |
| 65         | 1      | 0 | -1 381604 | -3 408412  | 0 904538  |
| 67         | 1      | 0 | -1 768870 | -3 640905  | 2 616382  |
| 68         | 1      | 0 | -1 547896 | 3 414573   | -1 653731 |
| 69         | 1      | 0 | -2 512805 | 4 546901   | -0 699466 |
| 70         | 1      | 0 | -3 315656 | 3 276318   | -1 633271 |
| 70         | 1      | 0 | -3 856852 | 3 832679   | 1 880444  |
| 72         | 1      | 0 | -3 891226 | 2 183842   | 2 519916  |
| 72         | 1      | 0 | -4 799853 | 2 584843   | 1 054480  |
| 73         | 1      | 0 | -0 746259 | 2 444438   | 2 492753  |
| 75         | 1      | 0 | 0 145267  | 2 650872   | 0 981207  |
| 76         | 1      | 0 | -0 785648 | 4 001206   | 1 651309  |
| 70         | 1      | 0 | -3 579083 | -2 181587  | -2 617509 |
| 78         | 1      | 0 | -5 222785 | -2 648787  | -2 146909 |
| 70         | 1      | 0 | -3 842963 | -3 086479  | -1 122355 |
| 2 ,<br>2 N | ±<br>1 | 0 | -6 688233 | -1 248155  | 0 196213  |
| Q1         | ±<br>1 | 0 | -5 251923 |            | 1 228206  |
| 82<br>82   | ±<br>1 | 0 | -5 387085 | -1 794000  | 1 263587  |
| 02<br>Q 2  | ⊥<br>1 | 0 | -5 505601 | 1 5/2102   | _1 ⊿70651 |
| о 5<br>    | ⊥<br>1 | 0 | -4 608121 | T . 240133 | -2 860562 |
| 04<br>Q5   | ⊥<br>1 | 0 | -6 266220 | 0.003432   | -2 325630 |
|            | ±      |   |           |            |           |
|            |        |   |           | ·          |           |

### TS D

1,3*-anti*(\$=-60) Method: B3LYP/6-31+G(d)SCF Done: E(RB+HF-LYP) = -2355.18355023 A.U. after 8 cycles Imaginary frequencies: 1(-255) Zero-point correction= 0.736194 (Hartree/Particle) Thermal correction to Energy= 0.782089 Thermal correction to Enthalpy= 0.783034 Thermal correction to Gibbs Free Energy= 0.655510 Sum of electronic and zero-point Energies= -2354.447356 Sum of electronic and thermal Energies= -2354.401461 Sum of electronic and thermal Enthalpies= -2354.400517 Sum of electronic and thermal Free Energies= -2354.528040

| Center Atomic Atomic |        |      | Coord     | dinates (Ang | stroms)   |
|----------------------|--------|------|-----------|--------------|-----------|
| Number               | Number | Туре | Х         | Y            | Z         |
| 1                    | 6      | 0    | -2.740914 | 2.735081     | -1.179013 |
| 2                    | 6      | 0    | -3.199035 | 2.591690     | 0.122208  |
| 3                    | 8      | 0    | -3.809993 | 1.531330     | 0.580443  |
| 4                    | 6      | 0    | -2.884614 | 3.605642     | 1.192333  |
| 5                    | 5      | 0    | -3.950582 | 0.187293     | -0.117870 |
| 6                    | 6      | 0    | -5.297424 | 0.058102     | -1.002299 |
| 7                    | 6      | 0    | -3.966175 | -0.992705    | 0.982998  |
| 8                    | 6      | 0    | -3.971016 | -2.362350    | 0.255817  |
| 9                    | 6      | 0    | -5.178604 | -0.762933    | 1.920732  |
| 10                   | 6      | 0    | -5.284427 | -1.310647    | -1.729681 |
| 11                   | 6      | 0    | -6.512564 | 0.272925     | -0.060124 |
| 12                   | 6      | 0    | -5.072167 | -2.540309    | -0.815872 |
| 13                   | 6      | 0    | -6.541084 | -0.619086    | 1.203145  |
| 14                   | 8      | 0    | -2.716242 | 0.048585     | -1.061198 |
| 15                   | 6      | 0    | -1.650416 | 0.741368     | -0.915181 |
| 16                   | 6      | 0    | -0.611225 | 0.644712     | -2.004424 |
| 17                   | 6      | 0    | 0.786759  | 1.153178     | -1.614760 |
| 18                   | 6      | 0    | 0.873852  | 2.669902     | -1.428311 |
| 19                   | 8      | 0    | 1.169300  | 0.475616     | -0.421551 |
| 20                   | 14     | 0    | 2.692301  | -0.148333    | 0.064376  |
| 21                   | 14     | 0    | 2.107593  | -2.299620    | 0.921374  |
| 22                   | 14     | 0    | 3.535671  | 1.272168     | 1.791042  |
| 23                   | 14     | 0    | 4.246671  | -0.327402    | -1.751333 |
| 24                   | 6      | 0    | 0.962416  | -3.166672    | -0.323752 |
| 25                   | 6      | 0    | 3.640456  | -3.392060    | 1.212162  |
| 26                   | 6      | 0    | 1.168912  | -2.134893    | 2.567615  |
| 27                   | 6      | 0    | 4.544984  | 1.326204     | -2.650488 |
| 28                   | 6      | 0    | 5.915879  | -0.893563    | -1.030041 |
| 29                   | 6      | 0    | 3.691948  | -1.602790    | -3.051868 |
| 30                   | 6      | 0    | 2.076436  | 1.889167     | 2.843319  |
| 31                   | 6      | 0    | 4.744248  | 0.315405     | 2.909553  |
| 32                   | 6      | 0    | 4.459690  | 2.798777     | 1.122048  |
| 33                   | 1      | 0    | -3.200251 | 2.202958     | -2.001323 |
| 34                   | 1      | 0    | -2.209577 | 3.647368     | -1.433371 |
| 35                   | 1      | 0    | -2.278007 | 3.148931     | 1.984644  |

| 36   | 1 | 0 | -3.819212 | 3.938916  | 1.659283  |
|------|---|---|-----------|-----------|-----------|
| 37   | 1 | 0 | -2.361718 | 4.477352  | 0.790762  |
| 38   | 1 | 0 | -5.357000 | 0.836671  | -1.781025 |
| 39   | 1 | 0 | -3.059573 | -0.961342 | 1.612197  |
| 40   | 1 | 0 | -4.053568 | -3.181915 | 0.987961  |
| 41   | 1 | 0 | -2.991768 | -2.489000 | -0.228603 |
| 42   | 1 | 0 | -5.250300 | -1.578370 | 2.658472  |
| 43   | 1 | 0 | -4.987035 | 0.153123  | 2.496746  |
| 44   | 1 | 0 | -6.218665 | -1.448171 | -2.297560 |
| 45   | 1 | 0 | -4.477560 | -1.286123 | -2.475982 |
| 46   | 1 | 0 | -7.453003 | 0.129489  | -0.616203 |
| 47   | 1 | 0 | -6.506469 | 1.326024  | 0.256249  |
| 48   | 1 | 0 | -4.820162 | -3.408681 | -1.441967 |
| 49   | 1 | 0 | -6.017473 | -2.800590 | -0.328795 |
| 50   | 1 | 0 | -7.273380 | -0.205411 | 1.911722  |
| 51   | 1 | 0 | -6.922303 | -1.611307 | 0.940741  |
| 52   | 1 | 0 | -1.316748 | 0.991290  | 0.092697  |
| 53   | 1 | 0 | -0.534482 | -0.424256 | -2.247796 |
| 54   | 1 | 0 | -0.967217 | 1.141907  | -2.914328 |
| 55   | 1 | 0 | 1.460881  | 0.870331  | -2.437234 |
| 56   | 1 | 0 | 1.910148  | 2.969656  | -1.238892 |
| 57   | 1 | 0 | 0.262833  | 2.997546  | -0.581529 |
| 58   | 1 | 0 | 0.529130  | 3.194538  | -2.327974 |
| 59   | 1 | 0 | 0.044259  | -2.589871 | -0.485255 |
| 60   | 1 | 0 | 0.668607  | -4.156094 | 0.052059  |
| 61   | 1 | 0 | 1.443742  | -3.310992 | -1.298261 |
| 62   | 1 | 0 | 3.335606  | -4.348406 | 1.658447  |
| 63   | 1 | 0 | 4.359814  | -2.925616 | 1.896217  |
| 64   | 1 | 0 | 4.167791  | -3.621630 | 0.278111  |
| 65   | 1 | 0 | 1.798336  | -1.721053 | 3.364824  |
| 66   | 1 | 0 | 0.287961  | -1.489855 | 2.465921  |
| 67   | 1 | 0 | 0.818323  | -3.120758 | 2.902102  |
| 68   | 1 | 0 | 3.647758  | 1.693960  | -3.162494 |
| 69   | 1 | 0 | 5.325821  | 1.195125  | -3.412339 |
| 70   | 1 | 0 | 4.882045  | 2.111424  | -1.963853 |
| 71   | 1 | 0 | 6.643190  | -1.030826 | -1.841750 |
| 72   | 1 | 0 | 5.837508  | -1.845950 | -0.493101 |
| 73   | 1 | 0 | 6.334803  | -0.153737 | -0.337018 |
| 74   | 1 | 0 | 3.580680  | -2.605456 | -2.622229 |
| 75   | 1 | 0 | 2.733664  | -1.332898 | -3.512938 |
| 76   | 1 | 0 | 4.437267  | -1.668343 | -3.856382 |
| 77   | 1 | 0 | 1.362789  | 2.457106  | 2.234400  |
| 78   | 1 | 0 | 2.432514  | 2.549150  | 3.646038  |
| 79   | 1 | 0 | 1.527862  | 1.062117  | 3.309166  |
| 80   | 1 | 0 | 5.121622  | 0.973551  | 3.703975  |
| 81   | 1 | 0 | 5.612903  | -0.060387 | 2.354940  |
| 82   | 1 | 0 | 4.262585  | -0.542060 | 3.394358  |
| 83   | 1 | 0 | 5.363630  | 2.522325  | 0.565608  |
| 84   | 1 | 0 | 3.831628  | 3.405609  | 0.458477  |
| 85   | 1 | 0 | 4.771367  | 3.441688  | 1.956773  |
| <br> |   |   |           |           |           |

### TS-E

1,3*-anti*(\$=60) Method: B3LYP/6-31+G(d)SCF Done: E(RB+HF-LYP) = -2355.18425994 A.U. after 13 cycles Imaginary frequencies: 1(-220) 0.735999 (Hartree/Particle) Zero-point correction= Thermal correction to Energy= 0.781976 Thermal correction to Enthalpy= 0.782920 Thermal correction to Gibbs Free Energy= 0.655514 Sum of electronic and zero-point Energies= -2354.448261 Sum of electronic and thermal Energies= -2354.402284 Sum of electronic and thermal Enthalpies= -2354.401340 Sum of electronic and thermal Free Energies= -2354.528746

| Center Atomic Atomic |        |      | Coord     | Coordinates (Angstroms) |           |  |  |
|----------------------|--------|------|-----------|-------------------------|-----------|--|--|
| Number               | Number | Туре | Х         | Y                       | Z         |  |  |
| 1                    | 6      | 0    | 2.332153  | -1.598124               | -1.154350 |  |  |
| 2                    | 6      | 0    | 3.375085  | -2.183629               | -0.453463 |  |  |
| 3                    | 8      | 0    | 4.408704  | -1.540163               | 0.023684  |  |  |
| 4                    | 6      | 0    | 3.337811  | -3.632593               | -0.038107 |  |  |
| 5                    | 5      | 0    | 4.604278  | -0.035217               | 0.095229  |  |  |
| 6                    | 6      | 0    | 5.323495  | 0.588672                | -1.210466 |  |  |
| 7                    | 6      | 0    | 5.505014  | 0.330776                | 1.381883  |  |  |
| 8                    | 6      | 0    | 5.578559  | 1.872681                | 1.529188  |  |  |
| 9                    | 6      | 0    | 6.881727  | -0.362484               | 1.215702  |  |  |
| 10                   | 6      | 0    | 5.382244  | 2.129872                | -1.054335 |  |  |
| 11                   | 6      | 0    | 6.707410  | -0.095492               | -1.366593 |  |  |
| 12                   | 6      | 0    | 6.020284  | 2.638566                | 0.259553  |  |  |
| 13                   | 6      | 0    | 7.612142  | -0.056774               | -0.112795 |  |  |
| 14                   | 8      | 0    | 3.171582  | 0.586075                | 0.213352  |  |  |
| 15                   | 6      | 0    | 2.158344  | -0.090983               | 0.592706  |  |  |
| 16                   | 6      | 0    | 0.806229  | 0.550196                | 0.485513  |  |  |
| 17                   | 6      | 0    | -0.422436 | -0.370982               | 0.566013  |  |  |
| 18                   | 6      | 0    | -0.453558 | -1.223556               | 1.836347  |  |  |
| 19                   | 8      | 0    | -1.548685 | 0.496966                | 0.501427  |  |  |
| 20                   | 14     | 0    | -3.164168 | 0.179475                | 0.023117  |  |  |
| 21                   | 14     | 0    | -3.749980 | 2.272788                | -0.957911 |  |  |
| 22                   | 14     | 0    | -4.500027 | -0.274437               | 1.957209  |  |  |
| 23                   | 14     | 0    | -3.327103 | -1.610211               | -1.561310 |  |  |
| 24                   | 6      | 0    | -2.379527 | 2.781959                | -2.173447 |  |  |
| 25                   | 6      | 0    | -5.406187 | 2.191838                | -1.893828 |  |  |
| 26                   | 6      | 0    | -3.873899 | 3.620793                | 0.379078  |  |  |
| 27                   | 6      | 0    | -2.576905 | -3.242285               | -0.922171 |  |  |
| 28                   | 6      | 0    | -5.173276 | -1.926460               | -1.907427 |  |  |
| 29                   | 6      | 0    | -2.473431 | -1.184026               | -3.209394 |  |  |
| 30                   | 6      | 0    | -3.861629 | 0.760260                | 3.419481  |  |  |
| 31                   | 6      | 0    | -6.314932 | 0.198776                | 1.618983  |  |  |
| 32                   | 6      | 0    | -4.491903 | -2.107599               | 2.480237  |  |  |
| 33                   | 1      | 0    | 2.465362  | -0.679970               | -1.710721 |  |  |
| 34                   | 1      | 0    | 1.513877  | -2.238400               | -1.470468 |  |  |

| 35 | 1 | 0 | 3.360415  | -3.717858 | 1.055672  |
|----|---|---|-----------|-----------|-----------|
| 36 | 1 | 0 | 4.235390  | -4.137941 | -0.414354 |
| 37 | 1 | 0 | 2.455431  | -4.148456 | -0.425162 |
| 38 | 1 | 0 | 4.758845  | 0.379837  | -2.134252 |
| 39 | 1 | 0 | 5.054623  | -0.064086 | 2.309563  |
| 40 | 1 | 0 | 6.251008  | 2.144214  | 2.358712  |
| 41 | 1 | 0 | 4.580468  | 2.230845  | 1.821549  |
| 42 | 1 | 0 | 7.545114  | -0.098975 | 2.055092  |
| 43 | 1 | 0 | 6.719613  | -1.447235 | 1.284432  |
| 44 | 1 | 0 | 5.920881  | 2.576851  | -1.905291 |
| 45 | 1 | 0 | 4.353299  | 2.512057  | -1.114148 |
| 46 | 1 | 0 | 7.255378  | 0.347223  | -2.213750 |
| 47 | 1 | 0 | 6.530965  | -1.146667 | -1.636773 |
| 48 | 1 | 0 | 5.774158  | 3.703101  | 0.384087  |
| 49 | 1 | 0 | 7.111042  | 2.603147  | 0.173353  |
| 50 | 1 | 0 | 8.428497  | -0.781976 | -0.243145 |
| 51 | 1 | 0 | 8.102267  | 0.919950  | -0.045106 |
| 52 | 1 | 0 | 2.309896  | -0.876487 | 1.336374  |
| 53 | 1 | 0 | 0.738627  | 1.264315  | 1.323661  |
| 54 | 1 | 0 | 0.764833  | 1.147367  | -0.430626 |
| 55 | 1 | 0 | -0.418201 | -1.035448 | -0.309827 |
| 56 | 1 | 0 | -1.370279 | -1.820540 | 1.873713  |
| 57 | 1 | 0 | -0.421625 | -0.587016 | 2.728703  |
| 58 | 1 | 0 | 0.390975  | -1.921899 | 1.874031  |
| 59 | 1 | 0 | -1.407511 | 2.831904  | -1.668779 |
| 60 | 1 | 0 | -2.589704 | 3.774905  | -2.593655 |
| 61 | 1 | 0 | -2.285492 | 2.079904  | -3.010217 |
| 62 | 1 | 0 | -5.663088 | 3.186055  | -2.283970 |
| 63 | 1 | 0 | -6.233161 | 1.867861  | -1.250470 |
| 64 | 1 | 0 | -5.360590 | 1.507101  | -2.749779 |
| 65 | 1 | 0 | -4.703918 | 3.442078  | 1.073357  |
| 66 | 1 | 0 | -2.951230 | 3.683837  | 0.968469  |
| 67 | 1 | 0 | -4.038423 | 4.601845  | -0.087231 |
| 68 | 1 | 0 | -1.495362 | -3.167830 | -0.758203 |
| 69 | 1 | 0 | -2.742900 | -4.038917 | -1.660472 |
| 70 | 1 | 0 | -3.034791 | -3.564919 | 0.020327  |
| 71 | 1 | 0 | -5.280968 | -2.707312 | -2.672543 |
| 72 | 1 | 0 | -5.687255 | -1.030940 | -2.276078 |
| 73 | 1 | 0 | -5.705180 | -2.270340 | -1.011861 |
| 74 | 1 | 0 | -2.949840 | -0.329883 | -3.705538 |
| 75 | 1 | 0 | -1.413536 | -0.936398 | -3.073403 |
| 76 | 1 | 0 | -2.528790 | -2.038518 | -3.897673 |
| 77 | 1 | 0 | -2.818120 | 0.519693  | 3.654621  |
| 78 | 1 | 0 | -4.462051 | 0.565972  | 4.318583  |
| 79 | 1 | 0 | -3.911680 | 1.835092  | 3.208836  |
| 80 | 1 | 0 | -6.933273 | -0.049587 | 2.492321  |
| 81 | 1 | 0 | -6.731640 | -0.339661 | 0.758790  |
| 82 | 1 | 0 | -6.432153 | 1.272458  | 1.429199  |
| 83 | 1 | 0 | -4.886516 | -2.761118 | 1.692731  |
| 84 | 1 | 0 | -3.489568 | -2.467666 | 2.741584  |
| 85 | 1 | 0 | -5.127333 | -2.241520 | 3.366576  |
|    |   |   |           |           |           |

#### TS-F

1,3-*syn*( $\phi = -60$ ) Method: B3LYP/6-31+G(d)SCF Done: E(RB+HF-LYP) = -2394.49743653 A.U. after 7 cycles Imaginary frequencies: 1(-242) Zero-point correction= 0.764680 (Hartree/Particle) Thermal correction to Energy= 0.811936 Thermal correction to Enthalpy= 0.812880 Thermal correction to Gibbs Free Energy= 0.683448 Sum of electronic and zero-point Energies= -2393.732757 Sum of electronic and thermal Energies= -2393.685500 Sum of electronic and thermal Enthalpies= -2393.684556 Sum of electronic and thermal Free Energies= -2393.813988

| Center Atomic Atomic |        |      | Coordinates (Angstroms) |           |           |
|----------------------|--------|------|-------------------------|-----------|-----------|
| Number               | Number | Type | X                       | Y         | Z         |
|                      |        |      |                         |           |           |
| 1                    | 6      | 0    | -3.188097               | -2.882003 | -0.953782 |
| 2                    | 6      | 0    | -3.635895               | -2.589510 | 0.326578  |
| 3                    | 8      | 0    | -3.997588               | -1.401023 | 0.728239  |
| 4                    | 6      | 0    | -3.596006               | -3.608199 | 1.436448  |
| 5                    | 5      | 0    | -3.817855               | -0.097751 | -0.032586 |
| 6                    | 6      | 0    | -3.682740               | 1.114043  | 1.023503  |
| 7                    | 6      | 0    | -5.047886               | 0.248289  | -1.025436 |
| 8                    | 6      | 0    | -4.716629               | 1.557140  | -1.786793 |
| 9                    | 6      | 0    | -6.346709               | 0.307488  | -0.179404 |
| 10                   | 6      | 0    | -3.381469               | 2.432442  | 0.268016  |
| 11                   | 6      | 0    | -4.981571               | 1.151859  | 1.870671  |
| 12                   | 6      | 0    | -4.345070               | 2.765064  | -0.896153 |
| 13                   | 6      | 0    | -6.293956               | 1.237664  | 1.055612  |
| 14                   | 8      | 0    | -2.527194               | -0.276161 | -0.901877 |
| 15                   | 6      | 0    | -1.669576               | -1.209617 | -0.713516 |
| 16                   | 6      | 0    | -0.613221               | -1.455679 | -1.766938 |
| 17                   | 6      | 0    | 0.469573                | -0.325616 | -1.733798 |
| 18                   | 6      | 0    | 0.051764                | -2.830735 | -1.607876 |
| 19                   | 6      | 0    | -0.045260               | 1.038172  | -2.191182 |
| 20                   | 8      | 0    | 1.012436                | -0.267973 | -0.416570 |
| 21                   | 14     | 0    | 2.599744                | 0.137473  | 0.088888  |
| 22                   | 14     | 0    | 2.487841                | -0.494988 | 2.386751  |
| 23                   | 14     | 0    | 3.080251                | 2.480299  | -0.104653 |
| 24                   | 14     | 0    | 4.262220                | -1.148694 | -1.069501 |
| 25                   | 6      | 0    | 1.651627                | -2.198208 | 2.525432  |
| 26                   | 6      | 0    | 4.214758                | -0.606653 | 3.181154  |
| 27                   | 6      | 0    | 1.450721                | 0.752901  | 3.378459  |
| 28                   | 6      | 0    | 4.122122                | -1.040628 | -2.968207 |
| 29                   | 6      | 0    | 5.984632                | -0.490600 | -0.588543 |
| 30                   | 6      | 0    | 4.188066                | -2.991185 | -0.594169 |
| 31                   | 6      | 0    | 1.582544                | 3.537256  | 0.400535  |
| 32                   | 6      | 0    | 4.522910                | 2.902819  | 1.068010  |
| 33                   | 6      | 0    | 3.617072                | 2.994611  | -1.859850 |
| 34                   | 1      | 0    | -2.886569               | -3.904663 | -1.158040 |
| 35                   | 1      | 0    | -3.496424               | -2.294133 | -1.807970 |

| 36   | 1 | 0 | -2.942230 | -3.263813 | 2.247408  |
|------|---|---|-----------|-----------|-----------|
| 37   | 1 | 0 | -3.255206 | -4.585127 | 1.084552  |
| 38   | 1 | 0 | -4.601052 | -3.716808 | 1.861859  |
| 39   | 1 | 0 | -2.846528 | 0.941517  | 1.722772  |
| 40   | 1 | 0 | -5.201053 | -0.533850 | -1.787360 |
| 41   | 1 | 0 | -5.560201 | 1.842453  | -2.435858 |
| 42   | 1 | 0 | -3.874154 | 1.346748  | -2.460984 |
| 43   | 1 | 0 | -7.198678 | 0.605389  | -0.811647 |
| 44   | 1 | 0 | -6.567923 | -0.713717 | 0.163022  |
| 45   | 1 | 0 | -3.369014 | 3.280563  | 0.971299  |
| 46   | 1 | 0 | -2.360328 | 2.363971  | -0.133573 |
| 47   | 1 | 0 | -4.948930 | 1.994850  | 2.579542  |
| 48   | 1 | 0 | -5.007816 | 0.240161  | 2.483384  |
| 49   | 1 | 0 | -3.887606 | 3.542856  | -1.525047 |
| 50   | 1 | 0 | -5.257973 | 3.218114  | -0.496396 |
| 51   | 1 | 0 | -7.138780 | 0.996141  | 1.716861  |
| 52   | 1 | 0 | -6.461061 | 2.273006  | 0.740698  |
| 53   | 1 | 0 | -1.418903 | -1.492076 | 0.311636  |
| 54   | 1 | 0 | -1.098709 | -1.389258 | -2.748686 |
| 55   | 1 | 0 | 1.248572  | -0.650653 | -2.440285 |
| 56   | 1 | 0 | 0.864329  | -2.942618 | -2.334687 |
| 57   | 1 | 0 | -0.660369 | -3.642779 | -1.774404 |
| 58   | 1 | 0 | 0.479738  | -2.947966 | -0.606747 |
| 59   | 1 | 0 | 0.783173  | 1.751127  | -2.248849 |
| 60   | 1 | 0 | -0.797173 | 1.431835  | -1.504047 |
| 61   | 1 | 0 | -0.495034 | 0.965663  | -3.188808 |
| 62   | 1 | 0 | 0.650928  | -2.182824 | 2.077915  |
| 63   | 1 | 0 | 1.542196  | -2.484639 | 3.580293  |
| 64   | 1 | 0 | 2.229974  | -2.983888 | 2.024823  |
| 65   | 1 | 0 | 4.117644  | -0.863159 | 4.244937  |
| 66   | 1 | 0 | 4.764495  | 0.340351  | 3.122507  |
| 67   | 1 | 0 | 4.834305  | -1.381920 | 2.713839  |
| 68   | 1 | 0 | 1.927212  | 1.739715  | 3.421993  |
| 69   | 1 | 0 | 0.452234  | 0.883213  | 2.944487  |
| 70   | 1 | 0 | 1.322135  | 0.402774  | 4.411788  |
| 71   | 1 | 0 | 3.223489  | -1.542617 | -3.346522 |
| 72   | 1 | 0 | 4.989277  | -1.533713 | -3.429321 |
| 73   | 1 | 0 | 4.102413  | -0.004848 | -3.327370 |
| 74   | 1 | 0 | 6.761085  | -1.124292 | -1.038731 |
| 75   | 1 | 0 | 6.145415  | -0.494456 | 0.496035  |
| 76   | 1 | 0 | 6.149748  | 0.532863  | -0.946658 |
| 77   | 1 | 0 | 4.397055  | -3.145302 | 0.471247  |
| 78   | 1 | 0 | 3.207572  | -3.433521 | -0.807045 |
| 79   | 1 | 0 | 4.938398  | -3.557177 | -1.163143 |
| 80   | 1 | 0 | 0.720066  | 3.376381  | -0.255775 |
| 81   | 1 | 0 | 1.843759  | 4.603346  | 0.351099  |
| 82   | 1 | 0 | 1.259685  | 3.320856  | 1.425535  |
| 83   | 1 | 0 | 4.796680  | 3.960193  | 0.950272  |
| 84   | 1 | 0 | 5.419268  | 2.306136  | 0.861258  |
| 85   | 1 | 0 | 4.255353  | 2.749837  | 2.120458  |
| 86   | 1 | 0 | 4.540529  | 2.489885  | -2.169170 |
| 87   | 1 | 0 | 2.852453  | 2.779937  | -2.615698 |
| 88   | 1 | 0 | 3.809574  | 4.075990  | -1.887533 |
| <br> |   |   |           |           |           |

### TS G

1,3-*syn*( $\phi = 60$ ) Method: B3LYP/6-31+G(d)SCF Done: E(RB+HF-LYP) = -2394.49672589 A.U. after 9 cycles Imaginary frequencies: 1(-246) Zero-point correction= 0.764422 (Hartree/Particle) Thermal correction to Energy= 0.811772 Thermal correction to Enthalpy= 0.812716 Thermal correction to Gibbs Free Energy= 0.682435 Sum of electronic and zero-point Energies= -2393.732304 Sum of electronic and thermal Energies= -2393.684954 Sum of electronic and thermal Enthalpies= -2393.684010 Sum of electronic and thermal Free Energies= -2393.814291

| Center Atomic Atomic |        |       | Coordinates (Angstroms) |           |           |  |
|----------------------|--------|-------|-------------------------|-----------|-----------|--|
| Number               | Number | Туре  | Х                       | Y         | Z         |  |
| 1                    | 6      | <br>0 | -2.137059               | 2.249457  | 0.619387  |  |
| 2                    | 6      | 0     | -3.451207               | 2.555894  | 0.303577  |  |
| 3                    | 8      | 0     | -4.378584               | 1.667047  | 0.057721  |  |
| 4                    | 6      | 0     | -3.901479               | 3.971902  | 0.052651  |  |
| 5                    | 5      | 0     | -4.177190               | 0.173744  | -0.140831 |  |
| 6                    | 6      | 0     | -5.303738               | -0.390577 | -1.145933 |  |
| 7                    | 6      | 0     | -4.264157               | -0.674450 | 1.232232  |  |
| 8                    | 6      | 0     | -3.979510               | -2.166217 | 0.922990  |  |
| 9                    | 6      | 0     | -5.656510               | -0.410049 | 1.865580  |  |
| 10                   | 6      | 0     | -5.017668               | -1.884691 | -1.445829 |  |
| 11                   | 6      | 0     | -6.691450               | -0.121134 | -0.506924 |  |
| 12                   | 6      | 0     | -4.843153               | -2.785124 | -0.200517 |  |
| 13                   | 6      | 0     | -6.866586               | -0.656474 | 0.933703  |  |
| 14                   | 8      | 0     | -2.738280               | 0.000774  | -0.746455 |  |
| 15                   | 6      | 0     | -2.095531               | 0.974779  | -1.270599 |  |
| 16                   | 6      | 0     | -0.647656               | 0.828952  | -1.669887 |  |
| 17                   | 6      | 0     | 0.178197                | -0.148036 | -0.797848 |  |
| 18                   | 6      | 0     | -0.587947               | 0.515655  | -3.184768 |  |
| 19                   | 6      | 0     | -0.030343               | -1.628839 | -1.116231 |  |
| 20                   | 8      | 0     | 1.543681                | 0.226621  | -0.986385 |  |
| 21                   | 14     | 0     | 2.905893                | -0.062495 | 0.007405  |  |
| 22                   | 14     | 0     | 4.176865                | 1.914591  | -0.406414 |  |
| 23                   | 14     | 0     | 4.098027                | -2.002144 | -0.735664 |  |
| 24                   | 14     | 0     | 2.372486                | -0.253608 | 2.336034  |  |
| 25                   | 6      | 0     | 3.003475                | 3.411238  | -0.348042 |  |
| 26                   | 6      | 0     | 5.556499                | 2.177408  | 0.879807  |  |
| 27                   | 6      | 0     | 4.971942                | 1.869845  | -2.135891 |  |
| 28                   | 6      | 0     | 1.079087                | -1.600200 | 2.707978  |  |
| 29                   | 6      | 0     | 3.969989                | -0.726738 | 3.261377  |  |
| 30                   | 6      | 0     | 1.738588                | 1.389163  | 3.061522  |  |
| 31                   | 6      | 0     | 3.992819                | -2.137157 | -2.630064 |  |
| 32                   | 6      | 0     | 5.929193                | -1.838889 | -0.233189 |  |
| 33                   | 6      | 0     | 3.451916                | -3.634846 | 0.004357  |  |
| 34                   | 1      | 0     | -1.437530               | 3.070164  | 0.749693  |  |
| 35                   | 1      | 0     | -1.878501               | 1.316074  | 1.100885  |  |

| 3 | 36 | 1 | 0 | -4.260232 | 4.082239  | -0.978567 |
|---|----|---|---|-----------|-----------|-----------|
| Э | 37 | 1 | 0 | -3.103598 | 4.694964  | 0.239684  |
| 3 | 38 | 1 | 0 | -4.748494 | 4.202149  | 0.710066  |
| 3 | 39 | 1 | 0 | -5.282831 | 0.145656  | -2.110646 |
| 4 | 10 | 1 | 0 | -3.512155 | -0.349342 | 1.970606  |
| 4 | 11 | 1 | 0 | -4.098531 | -2.772024 | 1.835634  |
| 4 | 12 | 1 | 0 | -2.920810 | -2.255802 | 0.640269  |
| 4 | 13 | 1 | 0 | -5.779802 | -1.019109 | 2.775317  |
| 4 | 14 | 1 | 0 | -5.678971 | 0.637770  | 2.197518  |
| 4 | 15 | 1 | 0 | -5.814853 | -2.306021 | -2.078963 |
| 4 | 16 | 1 | 0 | -4.097329 | -1.937437 | -2.046241 |
| 4 | 17 | 1 | 0 | -7.490269 | -0.539129 | -1.140374 |
| 4 | 18 | 1 | 0 | -6.848445 | 0.966347  | -0.498069 |
| 4 | 19 | 1 | 0 | -4.391542 | -3.738581 | -0.511288 |
| 5 | 50 | 1 | 0 | -5.827215 | -3.049306 | 0.199493  |
| 5 | 51 | 1 | 0 | -7.756587 | -0.188867 | 1.379246  |
| 5 | 52 | 1 | 0 | -7.090204 | -1.727720 | 0.901132  |
| 5 | 53 | 1 | 0 | -2.660392 | 1.721115  | -1.837860 |
| 5 | 54 | 1 | 0 | -0.189220 | 1.815153  | -1.531786 |
| 5 | 55 | 1 | 0 | -0.102115 | 0.029446  | 0.250595  |
| 5 | 56 | 1 | 0 | 0.458543  | 0.426600  | -3.492684 |
| 5 | 57 | 1 | 0 | -1.045035 | 1.323325  | -3.768107 |
| 5 | 58 | 1 | 0 | -1.107055 | -0.415887 | -3.432042 |
| 5 | 59 | 1 | 0 | 0.521993  | -2.247296 | -0.400767 |
| 6 | 50 | 1 | 0 | 0.337127  | -1.864777 | -2.120317 |
| 6 | 51 | 1 | 0 | -1.088389 | -1.898845 | -1.051499 |
| e | 52 | 1 | 0 | 2.207749  | 3.312736  | -1.096001 |
| e | 53 | 1 | 0 | 3.552553  | 4.338542  | -0.561074 |
| e | 54 | 1 | 0 | 2.527366  | 3.523061  | 0.633432  |
| e | 65 | 1 | 0 | 6.137584  | 3.074713  | 0.626671  |
| e | 56 | 1 | 0 | 6.256502  | 1.334193  | 0.920430  |
| e | 57 | 1 | 0 | 5.151557  | 2.324200  | 1.888672  |
| e | 58 | 1 | 0 | 5.736420  | 1.087892  | -2.219982 |
| e | 59 | 1 | 0 | 4.223197  | 1.690829  | -2.917116 |
| 7 | 70 | 1 | 0 | 5.457557  | 2.830769  | -2.354830 |
| 7 | 71 | 1 | 0 | 0.095848  | -1.368035 | 2.282848  |
| 7 | 72 | 1 | 0 | 0.950617  | -1.698558 | 3.794795  |
| 7 | 73 | 1 | 0 | 1.384297  | -2.580030 | 2.322173  |
| 7 | 74 | 1 | 0 | 3.775813  | -0.752573 | 4.342380  |
| 7 | 75 | 1 | 0 | 4.782464  | -0.010994 | 3.089718  |
| 7 | 76 | 1 | 0 | 4.333204  | -1.720302 | 2.971643  |
| 7 | 77 | 1 | 0 | 2.487979  | 2.185721  | 2.979252  |
| 7 | 78 | 1 | 0 | 0.826977  | 1.737957  | 2.561244  |
| 7 | 79 | 1 | 0 | 1.503053  | 1.265309  | 4.127393  |
| 8 | 30 | 1 | 0 | 2.956114  | -2.265727 | -2.963055 |
| 8 | 31 | 1 | 0 | 4.567668  | -3.003760 | -2.984119 |
| 8 | 32 | 1 | 0 | 4.391761  | -1.244983 | -3.126851 |
| 8 | 33 | 1 | 0 | 6.481819  | -2.740899 | -0.529352 |
| 8 | 34 | 1 | 0 | 6.050433  | -1.720805 | 0.850594  |
| 8 | 35 | 1 | 0 | 6.413477  | -0.983036 | -0.718610 |
| 8 | 36 | 1 | 0 | 3.522185  | -3.650090 | 1.098868  |
| 8 | 37 | 1 | 0 | 2.407463  | -3.830042 | -0.266477 |
| 8 | 38 | 1 | 0 | 4.050138  | -4.475248 | -0.374151 |
|   |    |   |   |           |           |           |
|   |    |   |   |           |           |           |

### TS H

1,3-*syn* ( $\phi = 180$ ) Method: B3LYP/6-31+G(d)SCF Done: E(RB+HF-LYP) = -2394.48935655 A.U. after 8 cycles Imaginary frequencies: 1(-202) Zero-point correction= 0.764742 (Hartree/Particle) Thermal correction to Energy= 0.810884 Thermal correction to Enthalpy= 0.811829 Thermal correction to Gibbs Free Energy= 0.687466 Sum of electronic and zero-point Energies= -2393.724615 Sum of electronic and thermal Energies= -2393.678472 Sum of electronic and thermal Enthalpies= -2393.677528 Sum of electronic and thermal Free Energies= -2393.801890

|        |        |      | Coordinates (Angstroms) |           |           |  |
|--------|--------|------|-------------------------|-----------|-----------|--|
| Number | Number | Туре | X                       | Y         | Z         |  |
| 1      | 6      | 0    | 1.268734                | 2.375413  | 1.130420  |  |
| 2      | 6      | 0    | 2.537020                | 2.474760  | 0.609992  |  |
| 3      | 8      | 0    | 2.964109                | 1.644777  | -0.323133 |  |
| 4      | 6      | 0    | 3.541455                | 3.484329  | 1.105999  |  |
| 5      | 5      | 0    | 3.300709                | 0.168691  | -0.068962 |  |
| 6      | 6      | 0    | 4.712047                | -0.055707 | 0.692555  |  |
| 7      | 6      | 0    | 3.331252                | -0.665472 | -1.434972 |  |
| 8      | 6      | 0    | 3.490404                | -2.171091 | -1.100642 |  |
| 9      | 6      | 0    | 4.455569                | -0.084626 | -2.331663 |  |
| 10     | 6      | 0    | 4.879476                | -1.565322 | 1.014515  |  |
| 11     | 6      | 0    | 5.835447                | 0.523526  | -0.209406 |  |
| 12     | 6      | 0    | 4.686306                | -2.521834 | -0.185400 |  |
| 13     | 6      | 0    | 5.849249                | 0.002837  | -1.666287 |  |
| 14     | 8      | 0    | 2.079705                | -0.307446 | 0.805047  |  |
| 15     | 6      | 0    | 1.815437                | 0.254432  | 1.913766  |  |
| 16     | 6      | 0    | 0.604701                | -0.164283 | 2.721440  |  |
| 17     | 6      | 0    | -0.529492               | -0.818477 | 1.896551  |  |
| 18     | 6      | 0    | 1.151002                | -1.101531 | 3.831699  |  |
| 19     | 6      | 0    | -1.609198               | -1.407258 | 2.810295  |  |
| 20     | 8      | 0    | -1.072455               | 0.169003  | 1.019843  |  |
| 21     | 14     | 0    | -2.336949               | -0.006627 | -0.137123 |  |
| 22     | 14     | 0    | -1.886977               | 1.681173  | -1.778981 |  |
| 23     | 14     | 0    | -4.438066               | 0.492781  | 0.920139  |  |
| 24     | 14     | 0    | -2.383648               | -2.160608 | -1.198077 |  |
| 25     | 6      | 0    | -0.152752               | 1.516061  | -2.530832 |  |
| 26     | 6      | 0    | -3.133963               | 1.542564  | -3.212895 |  |
| 27     | 6      | 0    | -2.054539               | 3.418305  | -1.016702 |  |
| 28     | 6      | 0    | -2.420480               | -3.629660 | 0.016944  |  |
| 29     | 6      | 0    | -3.977147               | -2.264032 | -2.238776 |  |
| 30     | 6      | 0    | -0.899615               | -2.417439 | -2.358176 |  |
| 31     | 6      | 0    | -4.162174               | 1.820838  | 2.256105  |  |
| 32     | 6      | 0    | -5.688835               | 1.184805  | -0.340801 |  |
| 33     | 6      | 0    | -5.289765               | -1.002286 | 1.742684  |  |
| 34     | 1      | 0    | 0.955977                | 3.062352  | 1.912776  |  |

| 35       | 1      | 0 | 0.493019  | 1.800235  | 0.643039  |
|----------|--------|---|-----------|-----------|-----------|
| 36       | 1      | 0 | 4.423411  | 2.978764  | 1.517924  |
| 37       | 1      | 0 | 3.118143  | 4.152244  | 1.861856  |
| 38       | 1      | 0 | 3.890573  | 4.087117  | 0.258604  |
| 39       | 1      | 0 | 4.779505  | 0.481323  | 1.656600  |
| 40       | 1      | 0 | 2.386353  | -0.553489 | -1.989865 |
| 41       | 1      | 0 | 3.566444  | -2.765075 | -2.025633 |
| 42       | 1      | 0 | 2.564693  | -2.503545 | -0.606673 |
| 43       | 1      | 0 | 4.543690  | -0.667229 | -3.262835 |
| 44       | 1      | 0 | 4.147978  | 0.926372  | -2.633081 |
| 45       | 1      | 0 | 5.868420  | -1.752835 | 1.463176  |
| 46       | 1      | 0 | 4.146270  | -1.831934 | 1.791613  |
| 47       | 1      | 0 | 6.822172  | 0.337018  | 0.244651  |
| 48       | 1      | 0 | 5.714464  | 1.615381  | -0.235982 |
| 49       | 1      | 0 | 4.557222  | -3.545860 | 0.194985  |
| 50       | 1      | 0 | 5.605279  | -2.549679 | -0.779409 |
| 51       | 1      | 0 | 6.490463  | 0.662390  | -2.268894 |
| 52       | 1      | 0 | 6.334481  | -0.978212 | -1.698852 |
| 53       | 1      | 0 | 2.638509  | 0.680404  | 2.492604  |
| 54       | 1      | 0 | 0.198943  | 0.731969  | 3.207339  |
| 55       | 1      | 0 | -0.088183 | -1.625344 | 1.293184  |
| 56       | 1      | 0 | 0.399170  | -1.266905 | 4.607734  |
| 57       | 1      | 0 | 2.029559  | -0.662626 | 4.318060  |
| 58       | 1      | 0 | 1.447384  | -2.073268 | 3.419912  |
| 59       | 1      | 0 | -2.439696 | -1.794239 | 2.215701  |
| 60       | 1      | 0 | -2.002831 | -0.644326 | 3.493113  |
| 61       | 1      | 0 | -1.224834 | -2.242964 | 3.403618  |
| 62       | 1      | 0 | 0.649437  | 1.577238  | -1.788865 |
| 63       | 1      | 0 | 0.006020  | 2.325569  | -3.257354 |
| 64       | 1      | 0 | -0.032254 | 0.567103  | -3.066097 |
| 65       | 1      | 0 | -2.966790 | 2.370177  | -3.915895 |
| 66       | 1      | 0 | -4.176946 | 1.595162  | -2.882941 |
| 67       | 1      | 0 | -3.006068 | 0.609671  | -3.775054 |
| 68       | 1      | 0 | -3.061544 | 3.604997  | -0.624267 |
| 69       | 1      | 0 | -1.340577 | 3.572370  | -0.199047 |
| 70       | 1      | 0 | -1.850603 | 4.181053  | -1.780785 |
| 71       | 1      | 0 | -1.508328 | -3.698843 | 0.621248  |
| 72       | 1      | 0 | -2.504545 | -4.564154 | -0.555134 |
| 73       | 1      | 0 | -3.276167 | -3.585867 | 0.701043  |
| 74       | 1      | 0 | -3.998336 | -3.219115 | -2.781394 |
| 75       | 1      | 0 | -4.045620 | -1.462284 | -2.983045 |
| 76       | 1      | 0 | -4.880199 | -2.220726 | -1.617682 |
| 77       | 1      | 0 | -0.913192 | -1.711420 | -3.196837 |
| 78       | 1      | 0 | 0.059957  | -2.296771 | -1.841916 |
| 79       | 1      | 0 | -0.926056 | -3.431590 | -2.780100 |
| 80       | 1      | 0 | -3.475351 | 1.475061  | 3.037400  |
| 81       | 1      | 0 | -5.114849 | 2.079664  | 2.738112  |
| 82       | 1      | 0 | -3.740719 | 2.739771  | 1.831335  |
| 83       | 1      | U | -6.645940 | 1.3/3898  | 0.164459  |
| 84<br>85 | 1      | U | -5.885900 | 0.486890  | -1.163653 |
| 85       | 1      | U | -5.356/16 | 2.133258  | -0.//861/ |
| 00<br>07 | ⊥<br>1 | 0 | -3.4/9/84 | -1.011684 | 1.UZ/364  |
| 0/       | ⊥<br>1 | 0 | -4./09/56 | -1.419641 | 2.3/3550  |
| 00       | Ť      | U | -0.202033 | -0.089146 | ∠.⊥4//80  |

\_\_\_\_\_

### TS I

| $1,3-anti(\phi = -60)$                  |         |                |          |
|-----------------------------------------|---------|----------------|----------|
| Method: B3LYP/6-31+G(d)                 |         |                |          |
| SCF Done: $E(RB+HF-LYP) = -2394.4$      | 9597828 | A.U. after     | 8 cycles |
| Imaginary frequencies: 1(-263)          |         |                |          |
| Zero-point correction=                  | 0.76481 | 2 (Hartree/Par | ticle)   |
| Thermal correction to Energy=           | 0.81    | 1995           |          |
| Thermal correction to Enthalpy=         | 0.81    | 2939           |          |
| Thermal correction to Gibbs Free Energy | gy=     | 0.684192       |          |
| Sum of electronic and zero-point Energ  | ies=    | -2393.73116    | 6        |
| Sum of electronic and thermal Energies  | ;=      | -2393.683983   | 3        |
| Sum of electronic and thermal Enthalpi  | es=     | -2393.68303    | 9        |
| Sum of electronic and thermal Free Ene  | ergies= | -2393.8117     | 86       |

| Center Atomic Atomic |        |      | Coord     | Coordinates (Angstroms) |           |  |
|----------------------|--------|------|-----------|-------------------------|-----------|--|
| Number               | Number | Туре | Х         | Y                       | Ζ         |  |
| 1                    | 6      | 0    | -2.685681 | 2.484877                | -1.463728 |  |
| 2                    | 6      | 0    | -3.128991 | 2.558096                | -0.149689 |  |
| 3                    | 8      | 0    | -3.778742 | 1.605169                | 0.460808  |  |
| 4                    | 6      | 0    | -2.745536 | 3.697611                | 0.758934  |  |
| 5                    | 5      | 0    | -3.990554 | 0.186900                | -0.052646 |  |
| 6                    | 6      | 0    | -5.342656 | 0.015498                | -0.924653 |  |
| 7                    | 6      | 0    | -4.081952 | -0.825131               | 1.201190  |  |
| 8                    | 6      | 0    | -4.169005 | -2.280543               | 0.675036  |  |
| 9                    | 6      | 0    | -5.280968 | -0.390680               | 2.082957  |  |
| 10                   | 6      | 0    | -5.414425 | -1.441637               | -1.448282 |  |
| 11                   | 6      | 0    | -6.543554 | 0.438227                | -0.038631 |  |
| 12                   | 6      | 0    | -5.281376 | -2.539529               | -0.367795 |  |
| 13                   | 6      | 0    | -6.631477 | -0.260377               | 1.339011  |  |
| 14                   | 8      | 0    | -2.770927 | -0.138471               | -0.963686 |  |
| 15                   | 6      | 0    | -1.677418 | 0.531742                | -0.946921 |  |
| 16                   | 6      | 0    | -0.658068 | 0.247429                | -2.039312 |  |
| 17                   | 6      | 0    | 0.739357  | 0.826010                | -1.709495 |  |
| 18                   | 6      | 0    | -0.582959 | -1.272697               | -2.301770 |  |
| 19                   | 6      | 0    | 0.802246  | 2.355261                | -1.718928 |  |
| 20                   | 8      | 0    | 1.146876  | 0.310389                | -0.442085 |  |
| 21                   | 14     | 0    | 2.714172  | -0.105975               | 0.115073  |  |
| 22                   | 14     | 0    | 2.182705  | -1.346039               | 2.085069  |  |
| 23                   | 14     | 0    | 4.022096  | 1.825833                | 0.681788  |  |
| 24                   | 14     | 0    | 3.904785  | -1.467190               | -1.462494 |  |
| 25                   | 6      | 0    | 0.775321  | -2.564816               | 1.708341  |  |
| 26                   | 6      | 0    | 3.691132  | -2.326185               | 2.708180  |  |
| 27                   | 6      | 0    | 1.605226  | -0.187206               | 3.480277  |  |
| 28                   | 6      | 0    | 4.045333  | -0.677825               | -3.192738 |  |
| 29                   | 6      | 0    | 5.678567  | -1.720059               | -0.814070 |  |
| 30                   | 6      | 0    | 3.104751  | -3.181025               | -1.675204 |  |
| 31                   | 6      | 0    | 2.942915  | 3.157168                | 1.509318  |  |
| 32                   | 6      | 0    | 5.380276  | 1.315570                | 1.917370  |  |
| 33                   | 6      | 0    | 4.894985  | 2.610067                | -0.820594 |  |

| 34         | 1      | 0 | -3.197337            | 1.872963                     | -2.194381            |
|------------|--------|---|----------------------|------------------------------|----------------------|
| 35         | 1      | 0 | -2.118433            | 3.323982                     | -1.854638            |
| 36         | 1      | 0 | -2.132690            | 3.330760                     | 1.592170             |
| 37         | 1      | 0 | -3.652784            | 4.130065                     | 1.197447             |
| 38         | 1      | 0 | -2.202637            | 4.482724                     | 0.226638             |
| 39         | 1      | 0 | -5.352090            | 0.674545                     | -1.808901            |
| 40         | 1      | 0 | -3.177736            | -0.760938                    | 1.831114             |
| 41         | 1      | 0 | -4.299504            | -2.982242                    | 1.514547             |
| 42         | 1      | 0 | -3.199835            | -2.531998                    | 0.220113             |
| 43         | 1      | 0 | -5.406945            | -1.089089                    | 2.925949             |
| 44         | 1      | 0 | -5.031734            | 0.582340                     | 2.528662             |
| 45         | 1      | 0 | -6.354355            | -1.600431                    | -2.001083            |
| 46         | 1      | 0 | -4.606538            | -1.573636                    | -2.182434            |
| 47         | 1      | 0 | -7.489877            | 0.275502                     | -0.579304            |
| 48         | 1      | 0 | -6.471624            | 1.523226                     | 0.124777             |
| 49         | 1      | 0 | -5.087684            | -3.502657                    | -0.862385            |
| 50         | 1      | 0 | -6.240702            | -2.666375                    | 0.144359             |
| 51         | 1      | 0 | -7.333487            | 0.298572                     | 1.974767             |
| 52         | 1      | 0 | -7.079659            | -1.252069                    | 1.218126             |
| 53         | 1      | 0 | -1.303672            | 0.895858                     | 0.011693             |
| 54         | 1      | 0 | -1.005971            | 0.721955                     | -2.966221            |
| 55         | 1      | 0 | 1.416860             | 0.455797                     | -2.493215            |
| 56         | 1      | 0 | 0.104331             | -1.468203                    | -3.133409            |
| 57         | 1      | 0 | -1.566168            | -1.669938                    | -2.564460            |
| 58         | - 1    | 0 | -0.219875            | -1.806877                    | -1.418961            |
| 59         | - 1    | 0 | 1.835962             | 2.692209                     | -1.593998            |
| 60         | - 1    | 0 | 0 205881             | 2 782027                     | -0 907329            |
| 61         | - 1    | 0 | 0.432027             | 2.754532                     | -2.671038            |
| 62         | 1      | 0 | -0 115332            | -2 043794                    | 1 338873             |
| 63         | 1      | 0 | 0 488678             | -3 107303                    | 2 619503             |
| 64         | 1      | 0 | 1 062940             | -3 309321                    | 0 956278             |
| 65         | 1      | 0 | 3 434868             | -2 851556                    | 3 638175             |
| 66         | 1      | 0 | 4 551467             | -1 680618                    | 2 921804             |
| 67         | 1      | 0 | 4 012521             | -3 083525                    | 1 982818             |
| 68         | 1      | 0 | 2 399650             | 0 494747                     | 3 807082             |
| 69         | 1      | 0 | 0 746039             | 0 420881                     | 3 172502             |
| 70         | 1      | 0 | 1 296020             | -0 777034                    | 4 353982             |
| 70         | 1      | 0 | 3 082296             | -0 649259                    | -3 716541            |
| 72         | 1      | 0 | 4 734152             | -1 270239                    | -3 810998            |
| 73         | 1      | 0 | 4 435150             | 0 346012                     | -3 152712            |
| 74         | 1      | 0 | 6 219835             | -2 405205                    | -1 480796            |
| 75         | 1      | 0 | 5 699442             | -2 155201                    | 0 191830             |
| 76         | 1      | 0 | 6 2/31/2             | -0 780354                    | -0 783151            |
| 70         | 1      | 0 | 3 093424             | -3 747289                    | -0 736153            |
| 78         | 1      | 0 | 2 070656             | -3 110512                    | -2 032195            |
| 70         | 1      | 0 | 3 670110             | -3 770842                    | -2 /09772            |
| 80         | 1      | 0 | 2 177265             | 3 5/5680                     | 0 828307             |
| 81         | ±<br>1 | 0 | 2 565360             | 2 001261                     | 1 828561             |
| 82         | ⊥<br>1 | 0 | 2 1202200            | 7.004204<br>2.767017         | 7 306006<br>1.020301 |
| 83         | ⊥<br>1 | 0 | 6 017051             | 2.10/01/<br>2 1205/7         | 2.590090             |
| 87         | ⊥<br>1 | 0 | 6 028370             | 2.10UJ4/<br>0 50/051         | 2.14J090<br>1 500007 |
| 0 7<br>8 5 | ⊥<br>1 | 0 | J Q5Q/16             | 0.924291                     | 1.JZZUZ/<br>2.865110 |
| 86         | ⊥<br>1 | 0 |                      | 0.909029<br>1 010501         | -1 200JII0           |
| 87         | ⊥<br>1 | 0 | J.000320<br>A 101619 | 1.912J21<br>2 03071 <i>6</i> | -1 505252            |
| 07         | 1      | U | 7.191012             | 2.20110                      | )>)))/               |

| 88 | 1 | 0 | 5.467437 | 3.492409 | -0.502941 |
|----|---|---|----------|----------|-----------|
|    |   |   |          |          |           |

### TS J

| $1,3-anti(\phi = 60)$                   |            |                |          |
|-----------------------------------------|------------|----------------|----------|
| Method: B3LYP/6-31+G(d)                 |            |                |          |
| SCF Done: $E(RB+HF-LYP) = -2394.4$      | 9729675    | A.U. after     | 8 cycles |
| Imaginary frequencies: 1(-226)          |            |                |          |
| Zero-point correction=                  | 0.76486    | 1 (Hartree/Par | ticle)   |
| Thermal correction to Energy=           | 0.812      | 2047           |          |
| Thermal correction to Enthalpy=         | 0.81       | 2991           |          |
| Thermal correction to Gibbs Free Energy | gy=        | 0.683643       |          |
| Sum of electronic and zero-point Energ  | gies=      | -2393.73243    | 5        |
| Sum of electronic and thermal Energies  | <u>s</u> = | -2393.685249   | )        |
| Sum of electronic and thermal Enthalpi  | es=        | -2393.68430    | 5        |
| Sum of electronic and thermal Free Ene  | ergies=    | -2393.8136     | 53       |
|                                         |            |                |          |

| Center | Atomic | Atomic | Coordinates (Angstroms) |           |           |
|--------|--------|--------|-------------------------|-----------|-----------|
| Number | Number | Туре   | Х                       | Y         | Z         |
| 1      | 6      | 0      | 2.077507                | 1.889881  | 0.771210  |
| 2      | 6      | 0      | 3.223769                | 2.370796  | 0.152380  |
| 3      | 8      | 0      | 4.263255                | 1.643376  | -0.157812 |
| 4      | 6      | 0      | 3.311727                | 3.783229  | -0.367339 |
| 5      | 5      | 0      | 4.371122                | 0.126195  | -0.092529 |
| 6      | 6      | 0      | 4.932856                | -0.412342 | 1.323278  |
| 7      | 6      | 0      | 5.364295                | -0.396618 | -1.251404 |
| 8      | 6      | 0      | 5.361396                | -1.947256 | -1.258294 |
| 9      | 6      | 0      | 6.757509                | 0.239405  | -1.018494 |
| 10     | 6      | 0      | 4.914827                | -1.962362 | 1.305588  |
| 11     | 6      | 0      | 6.335285                | 0.212717  | 1.550350  |
| 12     | 6      | 0      | 5.641525                | -2.616898 | 0.107653  |
| 13     | 6      | 0      | 7.346755                | 0.021417  | 0.395408  |
| 14     | 8      | 0      | 2.927649                | -0.424008 | -0.309323 |
| 15     | 6      | 0      | 2.004341                | 0.274262  | -0.855266 |
| 16     | 6      | 0      | 0.622105                | -0.321552 | -0.927117 |
| 17     | 6      | 0      | -0.533119               | 0.713417  | -1.003898 |
| 18     | 6      | 0      | 0.623162                | -1.299873 | -2.129041 |
| 19     | 6      | 0      | -0.426104               | 1.693215  | -2.174373 |
| 20     | 8      | 0      | -1.759532               | -0.005047 | -1.123458 |
| 21     | 14     | 0      | -3.069733               | -0.100606 | -0.024553 |
| 22     | 14     | 0      | -4.613948               | -1.415312 | -1.282954 |
| 23     | 14     | 0      | -3.993666               | 2.053378  | 0.475496  |
| 24     | 14     | 0      | -2.428301               | -1.239743 | 1.984717  |
| 25     | 6      | 0      | -3.671299               | -2.821797 | -2.146276 |
| 26     | 6      | 0      | -5.954971               | -2.170401 | -0.162525 |
| 27     | 6      | 0      | -5.473228               | -0.370940 | -2.621066 |
| 28     | 6      | 0      | -0.964309               | -0.397487 | 2.866381  |
| 29     | 6      | 0      | -3.886683               | -1.267943 | 3.209560  |
| 30     | 6      | 0      | -1.918835               | -3.036117 | 1.610833  |
| 31     | 6      | 0      | -4.199956               | 3,122247  | -1.086407 |

| 32         | 6      | 0 | -5.719927              | 1.811021             | 1.246174      |
|------------|--------|---|------------------------|----------------------|---------------|
| 33         | 6      | 0 | -2.941699              | 3.050082             | 1.713916      |
| 34         | 1      | 0 | 2.104789               | 1.023335             | 1.418072      |
| 35         | 1      | 0 | 1.271285               | 2.595134             | 0.950215      |
| 36         | 1      | 0 | 3.480360               | 3.781994             | -1.451527     |
| 37         | 1      | 0 | 4 176680               | 4 280729             | 0 087922      |
| 38         | 1      | 0 | 2 413324               | 4 361981             | -0 138426     |
| 30         | 1      | 0 | 1 300386               | -0 092145            | 2 168063      |
| 40         | 1      | 0 | 5 021116               | -0 066796            | -2 247910     |
| 40         | 1      | 0 | 6 088195               | -2 326105            | -1 99/755     |
| 12         | 1      | 0 | A 37/191               | -2 279543            | -1 611824     |
| 13         | 1      | 0 | 7 177158               | _0 133968            | -1 764754     |
| 43         | ⊥<br>1 | 0 | 6 666524               | 1 210960             | -1 107/76     |
| 44         | 1      | 0 | 5 244511               | 2 257077             | -1.19/4/0     |
| 45         | 1      | 0 | 5.344511<br>2.0C201C   | -2.35/9//            | 2.239855      |
| 40         | 1      | 0 | 3.803810               | -2.284629            | 1.296137      |
| 4 /        | 1      | 0 | 6.//9356               | -0.180673            | 2.4/88/9      |
| 48         | 1      | 0 | 6.195/05               | 1.290772             | 1./15598      |
| 49         | 1      | 0 | 5.348669               | -3.675394            | 0.050000      |
| 50         | 1      | 0 | 6.720117               | -2.626651            | 0.295027      |
| 51         | 1      | 0 | 8.185242               | 0.717762             | 0.541331      |
| 52         | 1      | 0 | 7.788547               | -0.978558            | 0.458203      |
| 53         | 1      | 0 | 2.289263               | 0.984498             | -1.636000     |
| 54         | 1      | 0 | 0.475098               | -0.912268            | -0.015781     |
| 55         | 1      | 0 | -0.525011              | 1.284779             | -0.065520     |
| 56         | 1      | 0 | -0.376079              | -1.727461            | -2.246012     |
| 57         | 1      | 0 | 1.340934               | -2.107531            | -1.958133     |
| 58         | 1      | 0 | 0.894775               | -0.798756            | -3.065342     |
| 59         | 1      | 0 | -1.280901              | 2.376097             | -2.163420     |
| 60         | 1      | 0 | -0.435645              | 1.164430             | -3.132999     |
| 61         | 1      | 0 | 0.486598               | 2.297356             | -2.113751     |
| 62         | 1      | 0 | -2.911175              | -2.423579            | -2.828451     |
| 63         | 1      | 0 | -4.362195              | -3.439508            | -2.736074     |
| 64         | 1      | 0 | -3.164928              | -3.477865            | -1.428579     |
| 65         | 1      | 0 | -6.677326              | -2.732397            | -0.770033     |
| 66         | 1      | 0 | -6.515490              | -1.406355            | 0.389761      |
| 67         | 1      | 0 | -5.530850              | -2.868190            | 0.569759      |
| 68         | 1      | 0 | -6.118928              | 0.402429             | -2.187673     |
| 69         | 1      | 0 | -4.744824              | 0.125466             | -3.273394     |
| 70         | 1      | 0 | -6.103826              | -1.011065            | -3.253069     |
| 71         | 1      | 0 | -0.057618              | -0.386847            | 2,250574      |
| 72         | 1      | 0 | -0.723233              | -0.942194            | 3.789613      |
| 7.3        | 1      | 0 | -1.190141              | 0.638723             | 3.144621      |
| 74         | 1      | 0 | -3 620280              | -1 871044            | 4 088236      |
| 75         | 1      | 0 | -4 794476              | -1 702010            | 2 774739      |
| 76         | 1      | 0 | -4 135928              | -0 261919            | 3 568532      |
| 70         | 1      | 0 | -2 750591              | -3 625112            | 1 205833      |
| 78         | 1      | 0 | -1 09/292              | -3 0869/9            | 0.889066      |
| 79         | ⊥<br>1 | 0 | -1 581150              | -3 531/3/            | 2 531116      |
| , J<br>80  | ⊥<br>1 | 0 | -3 23/7/2              | 3 110116             | -1 510250     |
| 81         | ⊥<br>1 | 0 | -1 7/3/QQ              | 7.419140<br>7.419140 | T.JIZ0J3      |
| 8.2<br>0 T | ⊥<br>1 | 0 | _A 76/107              | 4.043343<br>2 606160 | -0.033392     |
| 02<br>93   | ⊥<br>1 | 0 | -4./0410/<br>_6 125/10 | 2.000109<br>0 705/05 | -1.0/148U     |
| 00         | ⊥<br>1 | U | -0.100410              | 2./00430<br>1 100640 | $\pm .00/304$ |
| 04         | 1      | U | -0.0942//              | 1.102049<br>1.252150 | Z.144288      |
| CO         | T      | U | -0.4233Ul              | 1.323128             | 0.3398/4      |

| 86 | 1 | 0 | -2.859147 | 2.546108 | 2.684447 |
|----|---|---|-----------|----------|----------|
| 87 | 1 | 0 | -1.924081 | 3.227408 | 1.344117 |
| 88 | 1 | 0 | -3.402268 | 4.031772 | 1.891204 |

### **General Procedures**

All non-aqueous reactions were carried out under an atmosphere of nitrogen in flame-dried glassware and were stirred using a magnetic stir plate. All reactions were carried out using anhydrous solvent unless otherwise noted. Anhydrous  $CH_2Cl_2$ , THF,  $Et_2O$ , and toluene were dried using an M BRAUN solvent system (A2 alumina). Yields refer to chromatographically and spectroscopically (<sup>1</sup>H NMR) homogenous materials unless noted otherwise. (*S*)-2-methyl butanal,<sup>17</sup> (*S*)-2-phenyl propanal,<sup>18</sup> *N*-benzyl, *N*-tosyl (*S*)-2-aminopropanal<sup>19</sup> 3-*t*-Butyldimethylsiloxy propanal<sup>20</sup> (*R*)-3-benzyloxy-2-methyl propanal<sup>21</sup> were prepared according to literature procedures. All other aldehydes were obtained from Sigma Aldrich and distilled prior to use.

Triflimide (HNTf<sub>2</sub>) was obtained from Sigma Aldrich and manipulated in a N<sub>2</sub> atmosphere glovebox. Dimethyl aluminum triflimide (Me<sub>2</sub>AlNTf<sub>2</sub>) was prepared from Me<sub>3</sub>Al and HNTf<sub>2</sub> according to the literature procedure.<sup>22</sup> Pentafluorophenylbis(trifyl)methide C<sub>6</sub>F<sub>5</sub>CH(Tf)<sub>2</sub><sup>23</sup> was prepared according to the literature procedure. BF<sub>3</sub>OEt<sub>2</sub>, LiHMDS (1.0 M toluene), 9-BBNOTf (0.5 M hexanes), Bu<sub>2</sub>BOTf (1.0 M CH<sub>2</sub>Cl<sub>2</sub>), (*c*-Hex)<sub>2</sub>BCl, (+)DIPCl, (-) DIPCl were obtained from Sigma Aldrich. Acetone TMS enol ether (isopropenyloxy trimethylsilane) was obtained from Sigma Aldrich. L-PTZ (L-proline tetrazole, (*S*)-(-)-5-(2-Pyrrolidinyl)-1*H*-tetrazole) was obtained from Chiro Technology (Japan). The *R*-enantiomer (D-PTZ) was synthesized from D-proline according to published procedures.<sup>24</sup> All other reagents were obtained from commercial sources.

All reactions were monitored by thin layer chromatography (TLC) on Whatman Partisil <sup>®</sup> K6F TLC plates (silica gel 60 Å, 0.25 mm thickness) and visualized using a UV lamp (366 or 254 nm) or by use of one of the following visualization reagents: PMA: 10 g phosphomolybdic acid/ 100 mL ethanol; KMnO<sub>4</sub>: 0.75 g potassium permanganate, 5 g K<sub>2</sub>CO<sub>3</sub>, / 100mL water; ANIS: 10% v/v concentrated H<sub>2</sub>SO<sub>4</sub> and 6% v/v *p*-anisaldehyde in ethanol. Products were isolated by flash chromatography (Zeochem<sup>®</sup> Zeoprep 60 Eco<sup>®</sup> silica gel 43-60 µm) or by automated flash chromatography using a Biotage<sup>®</sup> Isolera One<sup>®</sup> system (UV detector), using SNAP<sup>®</sup> cartridges.

Middle infrared spectra were recorded as thin films on polished sodium chloride plates using a Nicolet 6700 FTIR spectrometer unless otherwise noted. <sup>13</sup>C, and <sup>1</sup>H NMR

<sup>&</sup>lt;sup>17</sup> Anelli, P.; Montanari, F.; Quici, S. Org. Synth. 1990, 69, 212 , Org. Synth. 1993, Coll. Vol. 8, 367

<sup>&</sup>lt;sup>18</sup> Vogt, M; Ceylan, S.; Kirschning, A. *Tetrahedron*, **2010**, *66*, 6450-6456

<sup>&</sup>lt;sup>19</sup> Preparation of alanine methyl ester hydrochloride: *Eur. J. Org. Chem.*, **2010**, *22*, 4276. Conversion to *N*-tosyl 2-aminopropanal: *Tetrahedron*, **1998**, *54*, 6051. Product was recrystallized from boiling hexanes/ethyl acetate.

<sup>&</sup>lt;sup>20</sup> W. H. Pearson, J. E. Kropf, A. L. Choy, Ill, Y. Lee, J.W. Kampf J. Org. Chem. 2007, 72, 4135.

<sup>&</sup>lt;sup>21</sup> Kawabata, T.; Kimura, Y.; Ito, Y.; Terashima, S. Tetrahedron 1988, 44, 2149

<sup>&</sup>lt;sup>22</sup> Marx, A.; Yamamoto, H. Angew. Chem. Int. Ed. 2000, 39, 178.

<sup>&</sup>lt;sup>23</sup> A. Hasegawa, K. Ishihara, H. Yamamoto, Angew. Chem. 2003, 115, 5909–5911;

<sup>&</sup>lt;sup>24</sup> Org. Syn **2008**, 85, 72.

spectra were recorded on a Bruker Avance Model DRX 500 or DRX 400. Chemical shift values ( $\delta$ ) are reported in ppm and calibrated to the residual solvent peak CDCl<sub>3</sub>  $\delta$  = 7.26 ppm, for <sup>1</sup>H,  $\delta$  = 77.16 for <sup>13</sup>C; C<sub>6</sub>D<sub>6</sub>  $\delta$  = 7.16 ppm for <sup>1</sup>H,  $\delta$  = 128.0 ppm for <sup>13</sup>C, or calibrated to tetramethyl silane ( $\delta$  = 0.00). Diastereomeric ratios were determined by <sup>1</sup>H NMR integration of the unpurified reaction mixture. When noted, the diastereomeric ratio could not be determined by <sup>1</sup>H NMR analysis of the crude mixture and instead given after silica gel flash chromatography. Integral values were determined using standard, uncalibrated NMR experiments and should be viewed accordingly. All NMR spectra were recorded at ambient temperature (290 K) unless otherwise noted. <sup>1</sup>H NMR spectra are reported as follows: chemical shift (multiplicity, coupling constant, integration). The following abbreviations are used to indicate multiplicities: s, singlet; d, doublet; t, triplet; q, quartet; quint, quintet; m, multiplet; br, broad; app, apparent.

### Synthetic Procedures and Data for compounds 1 (Tables 1,2, 3).

OSi(TMS)₃ ↓ ,CHO

### **1**a

### General procedure 1 (GP 1)

To a stirring solution of  $CH_2Cl_2$  (3 mL) at 0°C was added triflic acid (0.28 mL, 3.15 mmol, 1.05 equiv.). Tris(trimethylsilyl)silane was added dropwise over 2 min and gas evolution was observed. The reaction mixture was warmed to ambient temperature and stirred for one hour before being re-cooled to 0°C.  $CH_2Cl_2$  (5 mL) was added, followed by *i*-Pr<sub>2</sub>NEt (0.78 mL, 4.5 -mL, 1.5 equiv.). (*R*) – ethyl 3-hydroxy-butarate was added in one portion (0.39 mL, 3 mmol, 1.0 equiv.) The reaction was stirred for one hour at ambient temperature and quenched by addition of 5 mL saturated aqueous NaHCO<sub>3</sub>. The mixture was diluted with hexanes (40 mL) and the layers were separated. The organic layer was washed consecutively with saturated aqueous NH<sub>4</sub>Cl (20 mL), H<sub>2</sub>O (20mL) and brine (20 mL), and was dried over anhydrous MgSO<sub>4</sub>. The organic layer was filtered and concentrated under reduced pressure. The material was sufficiently pure and was used without further purification.

A stirring solution of the methyl ester (3 mmol) in  $CH_2Cl_2$  (30 mL) was cooled to  $-85^{\circ}C$ . Diisobutylaluminum hydride (3.75 mL, 1.0 M hexanes, 1.25 equiv.) was added slowly over 10 min. The temperature was maintained at  $-78^{\circ}C$  for 1 hour then cooled to  $-90^{\circ}C$ . The reaction was quenched by slow addition of a mixture of Et<sub>2</sub>O (2 mL) and MeOH (1 mL). The mixture was stirred vigorously and allowed to warm to ambient temperature, whereupon saturated aqueous NaK(tartarte) was added (30mL). The biphasic mixture was stirred for 2 hr, then diluted with 60 mL hexanes. The layers were separated and the organic layer was washed consecutively with saturated aqueous NaHCO<sub>3</sub> (20mL) and brine (20 mL), followed by drying over MgSO<sub>4</sub> followed by filtration and concentration under reduced pressure. The crude material was purified by flash chromatography on silica gel (25g, 1-5% Et<sub>2</sub>O/hexanes) to yield the product as a waxy solid (0.91 g, 90% yield for 2 steps).

**Data for 1a:** TLC:  $R_f = 0.27$  (10:90 EtOAc/hexanes); <sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>, 295K),  $\delta = 202.26$ , 68.93, 53.00, 23.91, 0.5; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, 295K),  $\delta =$ 

9.77 (t, J=2.4 Hz, 1 H), 4.03 (sxt, J=6.0 Hz, 1 H), 2.44 - 2.48 (m, 2 H), 1.21 (d, J=6.1 Hz, 3 H), 0.19 (s, 27 H);LRMS (API-ES +): C<sub>13</sub>H<sub>35</sub>O<sub>2</sub>Si<sub>4</sub><sup>+</sup> [M+H]<sup>+</sup> m/z = 335.2 (100%); FTIR (thin film):2944, 2868, 2722, 1728, 1464, 1117, 1032, 883, 680; colorless oil.

```
OSi(Et)<sub>3</sub>
```

1b

### Prepared according to GP using commercial TESOTf

**Data for 1b:** TLC:  $R_f = 0.38 (10.90 \text{ EtOAc/Hexanes})$ ; <sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>, 295K)  $\delta = 202.31, 64.45, 53.21, 24.40, 6.92, 4.98; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, 295K) <math>\delta$  9.80 (t, *J*=2.4 Hz, 1 H), 4.36 (sxt, *J*=6.1 Hz, 1 H), 2.57 (ddd, *J*=15.9, 6.7, 3.1 Hz, 1 H), 2.47 (ddd, *J*=15.6, 5.2, 1.8 Hz, 1 H), 1.25 (d, *J*=6.1 Hz, 3 H), 0.95 (t, *J*=7.9 Hz, 6 H), 0.60 (q, *J*=7.7 Hz, 6 H); LRMS (API-ES +): C<sub>11</sub>H<sub>30</sub>NO<sub>3</sub>Si<sup>+</sup> [M + NH<sub>4</sub>+MeOH]<sup>+</sup> m/z = 252.1 (85%); FTIR (thin film):2957, 2978, 2827, 2723, 1730, 1457, 1376, 1135, 1016, 744; colorless oil

**OTIPS** 

,∠\_\_сно

### Prepared according to GP using commercial TESOTf 1c<sup>25</sup>

**Data for 1c** TLC:  $R_f = 0.39$  (10:90 EtOAc/Hexanes);<sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>, 295K),  $\delta = 202.48$ , 64.93, 53.36, 24.45, 18.18, 12.50; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, 295K),  $\delta = 9.86$  (t, *J*=2.4 Hz, 1 H), 4.46 (sxt, *J*=5.9 Hz, 1 H), 2.56 (app dd, *J*=5.8, 2.4 Hz, 2 H), 1.29 (d, *J*=6.1 Hz, 3 H), 1.02 - 1.08 (m, 21 H); LRMS (API-ES +): C<sub>13</sub>H<sub>29</sub>O<sub>2</sub>Si<sup>+</sup> [M+H]<sup>+</sup> m/z = 245.2 (100%); FTIR (thin film):2950, 2894, 2823, 2719, 1729, 1374, 1245, 1111, 1011, 834, 687; colorless oil

1d

Synthesized and used in situ

OSi(TMS)<sub>3</sub> ,CHO

1e Previously described compound

**If** Generated and used *in situ* 

<sup>&</sup>lt;sup>25</sup> Silylation of ethyl 3-hydroxybutarate: *J. Org. Chem.*, **1989**, *54*, 3792. Reduction of ester to aldehyde: *J. Am. Chem. Soc.*, **2000**, *122*, 3792.

**1g** Generated and used *in situ* 

1h

<sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  = 201.62, 138.32, 128.57, 127.83, 77.07, 70.37, 50.64, 19.94; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  =9.79 (t, *J*=2.1 Hz, 1 H), 4.61 (d, *J*=11.6 Hz, 1 H), 4.48 (d, *J*=11.6 Hz, 1 H), 4.05 - 4.13 (m, 1 H), 2.71 (ddd, *J*=16.2, 7.3, 2.4 Hz, 1 H), 2.52 (ddd, *J*=16.5, 4.9, 1.8 Hz, 1 H), 1.30 (d, *J*=6.1 Hz, 3 H); LRMS (API-ES +): m/z = 193.2 (100%); FTIR (thin film): 3064, 2973, 2727, 1725, 1377, 1098, 1060, 738, 698; colorless oil



Prepared according to Scheme S-7. Scheme S-7:



### **General Procedure 2 (GP 2)**

A dry 25mL round bottomed flask with magnetic stir bar was charged with **2i** (1.14, 2.72 mmol), fitted with a septum and purged with N<sub>2</sub>. CH<sub>2</sub>Cl<sub>2</sub> (7.0 mL) and octanal (430µL) were added sequentially, stirred and cooled to -78 °C in a dry ice/acetone bath. HNTf<sub>2</sub> (150µL, 0.010 M CH<sub>2</sub>Cl<sub>2</sub>, 1.5 x 10<sup>-3</sup> mmol) was added dropwise. After stirring for 1 h at the same temperature, TLC analysis indicated formation of product, and the reaction vessel was allowed to warm to ambient temperature, and the reaction was quenched by the addition of sat. aq. NaHCO<sub>3</sub> (10 mL). The layers were separated and the aqueous layer was extracted with CH<sub>2</sub>Cl<sub>2</sub> (5mL). The combined organic layers were dried (Na<sub>2</sub>SO<sub>4</sub>), filtered through cotton and concentrated. Flash column chromatography (75mL silica gel, 12→20% CH<sub>2</sub>Cl<sub>2</sub>/hexanes eluent) afforded 1.06 g of **1i** a colorless oil (72%).

**Data for 1i** TLC:  $R_f = 0.2$  (80:20 hexanes/CH<sub>2</sub>Cl<sub>2</sub>); FTIR: (thin film): 2953, 2934, 2875, 2727, 1726, 1461, 1416, 1235, 1004, 723; LRMS (APCI +)  $C_{28}H_{65}O_2Si^+$  [M+H]<sup>+</sup> m/z = 545.5 (25%); <sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 202.6$ , 73.3, 49.4, 37.2, 31.7, 29.7, 29.2, 24.9, 22.6, 14.0, 9.8, 8.6, 5.3, 4.7; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 9.70$  (dd, J = 3.5, 2.0 Hz, 1H), 3.75 (dddd, J = 4.5, 6.0, 4.5, 6.0 Hz, 1H), 2.53, (ddd, J = 15.5, 6.0, 2.0 Hz, 1H), 2.39 (ddd, J = 15.5, 4.5, 3.5 Hz, 1H), 1.51-1.61 (m, 1H), 1.40-1.48 (m, 1H), 1.2-1.3 (m,
10 H), 1.1-1.18 (m, 1 H), 1.04, (t, J = 8Hz, 27H), 0.88 (t, J = 7.0Hz, 3H), 0.76 (q, J =8.0Hz, 18H).

1j

Generated according to GP 2 and used in situ

OSi(TES)<sub>3</sub> CHO

1k Generated according to GP 2 and used in situ

Synthetic Procedures and Data for enolsilanes 2 and 23 OSi(TMS)<sub>3</sub>

**2a** Previously described compound<sup>26</sup>

OTMS

**2b** Obtained from Sigma Aldrich and reused without further purification.

OTIPS **2c** Previously described compound<sup>27</sup>

OSi(TES)<sub>3</sub> 2d Previously described compound.<sup>28</sup>

OSi(TMS)<sub>3</sub>

**2e** Previously described compound<sup>9</sup> OSi(TMS)<sub>3</sub>

**2f** Previously described compound<sup>9</sup>

OSi(TMS)<sub>3</sub>

 <sup>&</sup>lt;sup>26</sup> Boxer, M. B.; Akakura, M.; Yamamoto, H. J. Am. Chem. Soc. 2008, 130, 1580–1582.
<sup>27</sup> Simchen, G.; Jonas, S. Journal für Praktische Chemie/Chemiker-Zeitung 1998, 340, 506–512.

<sup>&</sup>lt;sup>28</sup> Yamaoka, Y.; Yamamoto, H. J. Am. Chem. Soc. 2010, 132, 5354–5356.

**2g** Previously described compound<sup>29</sup>

**2h** <sup>13</sup>C NMR (500MHz, CDCl<sub>3</sub>, 295K)  $\delta$  = 170.39, 82.85, 36.93, 28.34, 0.56; <sup>1</sup>H NMR (500MHz, CDCl<sub>3</sub>, 295K)  $\delta$  = 3.98 (d, *J*=1.8 Hz, 1 H), 3.79 (d, *J*=1.8 Hz, 1 H), 1.03 (s, 9 H), 0.21 (s, 27 H);

OSi(TES)<sub>3</sub>

# 2i

# Synthetic procedure for 2i

A flame-dried 100 mL round-bottomed flask fitted with a rubber septum containing a magnetic stir bar was charged with tris(triethylsilyl)silane (5.63 g, 15 mmol). CH<sub>2</sub>Cl<sub>2</sub> (22 mL) was added and the stirring flask was cooled to 0 °C. Triflic acid was added dropwise by syringe over 4 min. Gas evolution was observed. The reaction vessel was allowed to warm to ambient temperature and the reaction was stirred for 1 h. To a dry 25 mL secondary pear-shaped flask fitted with a rubber septum was added acetaldehyde (0.74 g, 17 mmol) under N<sub>2</sub>. The flask was immediately cooled to 0 °C and CH<sub>2</sub>Cl<sub>2</sub> (mL) and Et<sub>3</sub>N (3.2 mL, 23 mmol) were added. The contents of the flask were mixed and transferred by syringe to the reaction flask at 0°C in a dropwise manner. The reaction was stirred for 25 min then quenched by the addition of NaHCO<sub>3</sub> (sat. aq., 25mL) hexanes. The mixture was stirred vigorously then diluted with 50mL hexanes. The organic layer was washed with H<sub>2</sub>O (2 x 25mL), NaHCO<sub>3</sub> (25mL), and brine (25mL), dried over  $Na_2SO_4$ , filtered through cotton and concentrated. Purification by flash chromatography (200 mL silica gel, hexanes eluent) afforded 20 as a colorless oil (3.64 g, 58%). **Data for 20:** TLC:  $R_f = 0.59$  (hexanes); <sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 150.8, 92.6,$ 8.7, 5.3 <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 6.20$  (dd, J=13.1, 5.5 Hz, 1 H), 4.23 (dd, J=13.4, 0.6 Hz, 1 H), 3.95 (dd, J=5.5, 0.6 Hz, 1 H), 1.03 (t, J=7.9 Hz, 27 H), 0.79 (q, J=7.9 Hz, 18 H); FTIR (thin film): 2953, 2909, 2876, 1622, 1460, 1416, 1310, 1171, 1001, 828, 724. GCMS (EI)  $C_{18}H_{43}OSi_4^+ [M - CH_3CH_2]^+ m/z = 387.2$  (20%)

OSi(TMS)<sub>3</sub> 23-E Previously described compound<sup>30</sup> OSi(TMS)<sub>3</sub>

**23-***Z* Previously described compound<sup>13</sup>

# Synthetic procedure and data for compounds 3

<sup>&</sup>lt;sup>29</sup> Boxer, M. B.; Yamamoto, H. *Org. Lett.* **2005**, *7*, 3127–3129.,Boxer, M. B.; Yamamoto, H. *Nature Protocols* **2006**, *1*, 2434–2438.

<sup>&</sup>lt;sup>30</sup> Brady, P. B.; Yamamoto, H. Angew. Chem. Int. Ed. 2012, 51, 1942–1946.

Compounds **3a-3l** (Table 1, entries 1 - 12), were prepared according to **GP3**. (TMS)<sub>3</sub>Si  $\bigcirc \circ \circ \circ \circ$  $\downarrow \qquad \downarrow \qquad \downarrow$ 

# General procedure 3 (GP3)

A dry 10mL round bottomed flask with magnetic stir bar was charged with aldehyde 1a (83mg, 0.2 mmol), enolsilane 2a (73 mg, 0.24 mmol), then fitted with a septum and purged with N<sub>2</sub>. CH<sub>2</sub>Cl<sub>2</sub> (2.0 mL) was added, and the vessel was cooled to -45 °C in a dry ice/acetonitrile bath. HNTf2 (20uL, 0.010 M CH2Cl2, ) was added dropwise. After stirring for 1 h at the same temperature, TLC analysis indicated formation of product and consumption of starting materials, and the reaction vessel was allowed to warm to ambient temperature, then was quenched by the addition of sat. aq. NaHCO<sub>3</sub> (10 mL). The mixture was poured over 20 mL hexanes. The layers were then separated, and the organic layer was washed with  $H_2O$ , dried (Na<sub>2</sub>SO<sub>4</sub>), filtered through cotton and concentrated. Flash column chromatography (16mL silica gel.  $12 \rightarrow 35\%$  CH<sub>2</sub>Cl<sub>2</sub>/hexanes eluent) afforded **3a** (76%). **Data for 3a:** TLC:  $R_f = 0.60 (10:90 \text{ EtOAc/Hexanes})$ ;<sup>13</sup>C NMR (500MHz, CDCl<sub>3</sub>, 295K)  $\delta$  = 207.86, 70.76, 69.53, 50.05, 46.28, 31.12, 23.96, 0.7; <sup>1</sup>H NMR (500MHz, CDCl<sub>3</sub>, 295K)  $\delta = 3.95 - 4.06$  (m, 1 H), 3.66 (dqdd, J=8.2, 6.1, 6.1, 6.1, 4.0, 1.8 Hz, 1 H), 2.63 (dd, J=14.3, 4.9 Hz, 1 H), 2.45 (dd, J=14.3, 6.4 Hz, 1 H), 2.14 (s, 3 H), 1.71 (ddd, J=13.6, 8.4, 5.5 Hz, 1 H), 1.34 (ddd, J=13.4, 8.9, 4.3 Hz, 1 H), 1.13 (d, J=6.1 Hz, 3 H), 0.18 (s, 27 H), 0.18 (s, 27 H); LRMS (API-ES): C<sub>16</sub>H<sub>39</sub>O<sub>2</sub>Si<sub>4</sub><sup>+</sup> [M –  $TMS_3SiO^+_{1}m/z = 375.2 (100\%); FTIR (thin film):2949, 2893, 1719, 1244, 1035, 835, 1719, 1244, 1035, 100\%); FTIR (thin film):2949, 2893, 1719, 1244, 100\%); FTIR (thin film):2949, 100\%); FTIR (thin film); FTIR (t$ 687, 623; white solid

3b

**Data for 3b**TLC:  $R_f = 0.22$  (10:90 EtOAc/Hexanes); <sup>13</sup>C NMR (500MHz, CDCl<sub>3</sub>, 295K, mixture of diastereomers)  $\delta = 207.71$ , 207.67, 70.13, 69.78, 67.58, 66.49, 51.80, 51.74, 48.41, 47. 58, 31.77, 31.68, 24.01, 23.20, 0.61, 0.48; <sup>1</sup>H NMR (500MHz, CDCl<sub>3</sub>, 295K, 1:1 mixture of diastereomers)  $\delta = 4.22$  (quin, *J*=6.1 Hz, 1 H), 4.16 - 4.21 (m, 1 H), 3.60 (sxt, *J*=6.1 Hz, 1 H), 3.51 (sxt, *J*=6.1 Hz, 1 H), 2.60 (dd, *J*=15.0, 8.2 Hz, 2 H), 2.57 (d, *J*=5.8 Hz, 2 H), 2.44 (dd, *J*=15.0, 4.3 Hz, 1 H), 2.15 (s, 3 H), 2.14 (s, 3 H), 1.64 (s, 3 H), 1.54 (s, 0 H), 1.14 (s, 2 H), 1.12 (d, *J*=4.3 Hz, 3 H), 0.18 (s, 27 H), 0.09 (s, 8 H), 0.08 (s, 9 H)



3c

**Data for 3c:** TLC:  $R_f = 0.33$  (10:90 EtOAc/Hexanes); <sup>13</sup>C NMR (500MHz, CDCl<sub>3</sub>, 295K, mixture of diastereomers)  $\delta = 208.05$ , 207.60, 70.43, 69.55, 67.71, 67.08, 51.72, 50.72, 48.33, 46.99, 32.05, 31.74, 23.91, 23.67, 18.33, 18.31, 12.81, 12.75, 0.62; <sup>1</sup>H NMR (500MHz, CDCl<sub>3</sub>, 295K, mixture of diastereomers)  $\delta = 4.39 - 4.52$  (m, 1 H), 4.29

(ddt, *J*=8.9, 7.2, 4.4, 4.4 Hz, 1 H), 3.61 - 3.73 (m, 1 H), 3.46 (dquin, *J*=7.5, 5.9, 5.9, 5.9, 5.9, 5.9 Hz, 1 H), 2.74 (dd, *J*=14.8, 4.7 Hz, 1 H), 2.57 - 2.63 (m, 1 H), 2.49 - 2.55 (m, 2 H), 2.17 (s, 3 H), 2.15 - 2.16 (m, 3 H), 1.60 - 1.77 (m, 4 H), 1.53 (ddd, *J*=13.1, 9.1, 4.4 Hz, 1 H), 1.13 (d, *J*=6.1 Hz, 3 H), 1.12 (d, *J*=6.4 Hz, 3 H), 1.02 - 1.06 (m, 52 H), 0.18 (s, 54 H);LRMS (API-ES +):  $C_{25}H_{61}O_3Si_5^+$  [M+H]<sup>+</sup> m/z = 549.3 (100%); LRMS (API-ES -):  $C_{22}H_{51}O_3Si_4^-$  [M - TMS]<sup>-</sup> m/z = 475.2 (35%). FTIR (thin film): 2949, 2894, 1715, 1372, 1245, 1093, 835, 687; colorless oil.



3d

**Data for 3d:** TLC:  $R_f = 0.69 (10:90 \text{ EtOAc/Hexanes});^{13}\text{C NMR} (500 \text{MHz}, \text{CDCl}_3, 295 \text{K}, mixture of diastereomers) <math>\delta = 207.79, 207.45, 71.74, 70.95, 66.53, 65.55, 51.32, 50.16, 47.43, 46.58, 31.89, 31.73, 24.58, 24.40, 7.06, 5.24, 0.64. <sup>1</sup>H NMR (500 \text{MHz}, \text{CDCl}_3, 295 \text{K}, mixture of diastereomers) <math>\delta = 3.96 - 4.02 \text{ (m}, 1 \text{ H}), 3.90 - 3.95 \text{ (m}, 1 \text{ H}), 3.85 - 3.90 \text{ (m}, 1 \text{ H}), 3.78 - 3.84 \text{ (m}, 1 \text{ H}), 2.55 - 2.71 \text{ (m}, 2 \text{ H}), 2.42 - 2.54 \text{ (m}, 3 \text{ H}), 2.13 \text{ (s}, 3 \text{ H}), 2.13 \text{ (s}, 2 \text{ H}), 1.51 - 1.77 \text{ (m}, 2 \text{ H}), 1.34 - 1.45 \text{ (m}, 1 \text{ H}), 1.14 \text{ (d}, J=6.1 \text{ Hz}, 6 \text{ H}), 0.93 \text{ (t}, J=8.2 \text{ Hz}, 18 \text{ H}), 0.67 - 0.68 \text{ (m}, 12 \text{ H}), 0.57 \text{ (q}, J=7.7 \text{ Hz}, 15 \text{ H}), 0.16 - 0.22 \text{ (m}, 54 \text{ H}); LRMS (API-ES +) C_{16}H_{39}O_2Si_4^+ [M - \text{TESO}]^+ \text{m/z} = 375.2 (100\%); FTIR (thin film): 2953, 2878, 1718, 1373, 1245, 1058, 837, 745; colorless oil.$ 



3e

**Data for 3e:** TLC:  $R_f = 0.66 (10:90 \text{ EtOAc/Hexanes})$ ; <sup>13</sup>C NMR (500MHz, CDCl<sub>3</sub>, 295K, mixture of diastereomers)  $\delta = 207.46$ , 71.42, 70.69, 66.52, 65.95, 70.78, 50.81, 50.78, 47.77, 47.06, 31.86, 31.70, 24.18, 24.07, 138.39, 18.35, 18.30, 18.28, 12.7, 12.63, 0.66; <sup>1</sup>H NMR (500MHz, CDCl<sub>3</sub>, 295K, mixture of diastereomers)  $\delta = 4.05 - 4.19 (m, 1 H)$ , 3.96 - 4.04 (m, 1 H), 3.82 - 3.93 (m, 1 H), 2.65 (dd, *J*=15.3, 6.1 Hz, 1 H), 2.52 - 2.59 (m, 1 H), 2.45 - 2.51 (m, 1 H), 2.13 (s, 3 H), 1.62 - 1.82 (m, 3 H), 1.44 (dt, *J*=13.4, 6.4 Hz, 1 H), 1.20 (d, *J*=6.1 Hz, 3 H), 1.17 (d, *J*=6.1 Hz, 2 H), 1.02 - 1.08 (m, 21 H), 0.15 - 0.22 (m, 27 H) LRMS (API-ES +) C<sub>16</sub>H<sub>39</sub>O<sub>2</sub>Si<sub>4</sub><sup>+</sup> [M-TIPSO]<sup>+</sup> m/z = 375.2 (100%), C<sub>25</sub>H<sub>61</sub>O<sub>3</sub>Si<sub>5</sub><sup>+</sup> [M+H]<sup>+</sup> m/z = 549.2 (92%). FTIR (thin film): 2946, 2867, 1720, 1464, 1376, 1245, 1104, 1015, 882, 836, 684; colorless oil.



3f

**Data for 3f:** TLC:  $R_f = 0.22$  (25:75 CH<sub>2</sub>Cl<sub>2</sub>/hexanes); <sup>13</sup>C NMR (500MHz, CDCl<sub>3</sub>, 295K,)  $\delta = 207.11$ , 70.35, 70.10, 51.36, 46.18, 31.58, 22.87, 9.04, 5.57, 0.66; <sup>1</sup>H NMR (500MHz, CDCl<sub>3</sub>, 295K,)  $\delta = 3.89 - 4.00$  (m, 1 H), 3.58 - 3.70 (m, 1 H), 2.53 - 2.67 (m, 2 H), 2.12 (s, 2 H), 1.65 - 1.77 (m, 1 H), 1.37 (dt, *J*=13.4, 6.6 Hz, 1 H), 1.10 (d, *J*=6.1 Hz, 3 H), 0.99 - 1.07 (m, 27 H), 0.71 - 0.82 (m, 18 H), 0.14 - 0.23 (m, 27 H); LRMS (API-ES +) C<sub>16</sub>H<sub>39</sub>O<sub>2</sub>Si<sub>4</sub><sup>+</sup> [M - TES<sub>3</sub>SiO]<sup>+</sup> m/z = 375.2 (100%); LRMS (API-ES -) C<sub>31</sub>H<sub>75</sub>O<sub>3</sub>Si<sub>7</sub><sup>-</sup>

[M - TMS]<sup>-</sup> m/z = 691.3, (40%); FTIR (thin film):2953, 2876, 1719, 1458, 1418, 1376, 1245, 1091, 1005, 838, 724; colorless oil



#### 3g

**Data for 3g:** TLC:  $R_f = 0.11$  (CH<sub>2</sub>Cl<sub>2</sub>:hexanes 25:75); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): 4.01 (dq, *J*=8.1, 5.8 Hz, 1 H), 3.47 (tt, *J*=8.2, 4.3 Hz, 1 H), 2.59 (dd, *J*=14.2, 5.3 Hz, 1 H), 2.48 (dd, *J*=18.3, 6.1 Hz, 1 H), 2.14 (s, 3 H), 1.63 (ddd, *J*=13.4, 7.6, 4.9 Hz, 1 H), 1.37 - 1.46 (m, 2 H), 1.28 (br. s., 10 H), 0.88 (t, *J*=6.9 Hz, 3 H), 0.19 (s, 27 H), 0.18 (s, 27 H); <sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 207.8$ , 73.6, 70.8, 50.0, 43.5, 37.8, 32.1, 31.9, 30.1, 29.5, 25.3, 22.8, 14.3, 0.8, 0.7; FTIR (thin film): 2955, 2896, 2857, 1720, 1373, 1245, 1052, 836, 755, 688, 624.



**Data for 3h:**TLC:  $R_f = 0.30 (CH_2Cl_2:hexanes 25:75); {}^{1}H NMR (500 MHz, CDCl_3): <math>\delta = 3.97 (quin, J=6.3 Hz, 1 H), 3.45 (ddd, J=8.4, 5.0, 3.1 Hz, 1 H), 2.55 - 2.65 (m, 2 H), 2.46 - 2.54 (m, 1 H), 2.15 (s, 3 H), 1.73 - 1.87 (m, 1 H), 1.54 - 1.69 (m, 1 H), 1.26 (ddd, J=13.1, 7.8, 5.0 Hz, 1 H), 0.87 (d, J=6.7 Hz, 3 H), 0.84 (d, J=7.0 Hz, 3 H), 0.82 (d, J=6.7 Hz, 3 H), 0.18 (s, 54 H); {}^{13}C NMR (500 MHz, CDCl_3): <math>\delta = 207.57, 77.28, 70.86, 50.12, 38.62, 32.17, 17.73, 17.51, 17.36, 0.97, 0.70; LRMS (API-ES +) C_{27}H_{71}O_3Si_8^+ [M+H]^+ m/z = 667.2 (100%); FTIR (thin film): 2958, 2895, 1720, 1386, 1246, 1032, 831, 755, 687.4, 624; colorless oil.$ 



3i

**Data for 3i:** TLC:  $R_f = 0.30$  (CH<sub>2</sub>Cl<sub>2</sub>:hexanes 25:75); <sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  =206.82, 79.86, 70.44, 52.28, 42.74, 36.65, 31.48, 27.2, 26.27, 1.16, 0.88; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  =4.16 (sxt, *J*=5.5 Hz, 1 H), 3.36 (dd, *J*=8.4, 3.8 Hz, 1 H), 2.73 (dd, *J*=16.5, 4.6 Hz, 1 H), 2.54 (dd, *J*=16.3, 8.1 Hz, 1 H), 2.13 (s, 3 H), 1.60 - 1.70 (m, 1 H), 1.53 - 1.60 (m, 1 H), 0.90 (s, 9 H), 0.18 - 0.20 (m, 54 H); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  = LRMS (API-ES +) C<sub>19</sub>H<sub>45</sub>O<sub>2</sub>Si<sub>4</sub><sup>+</sup> [M - TMS<sub>3</sub>SiO]<sup>+</sup> m/z = 417.1 (100%); LRMS (APCI -) C<sub>25</sub>H<sub>63</sub>O<sub>3</sub>Si<sub>7</sub><sup>-</sup> [M - TMS]<sup>-</sup> m/z = 607.2 (100%). FTIR (thin film):2950, 2894, 1720, 1394, 1244, 1090, 1021, 835, 687; white solid.



3j

**Data for 3j:**<sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 213.01$ , 70.61, 69.75, 47.01, 46.25, 42.15, 23.66, 18.26, 17.75, 0.70; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 4.01$  (quin, *J*=5.5 Hz, 1 H), 3.68 (sxt, *J*=5.8 Hz, 1 H), 2.66 (dd, *J*=15.3, 5.5 Hz, 1 H), 2.55 - 2.63 (m, 1 H), 2.49 (dd, *J*=16.0, 6.6 Hz, 1 H), 1.65 - 1.74 (m, 1 H), 1.29 - 1.38 (m, 1 H), 1.13 (d, *J*=5.8 Hz, 3 H), 1.07 (d, *J*=7.0 Hz, 3 H), 1.05 (d, *J*=7.0 Hz, 3 H), 0.18 - 0.20 (m, 27 H), 0.17 (d, *J*=1.8 Hz, 27 H); LRMS (API-ES +) C<sub>27</sub>H<sub>71</sub>O<sub>3</sub>Si<sub>8</sub><sup>+</sup> [M+H]<sup>+</sup> m/z = 667.3 (100%); FTIR (thin film): 2949, 2894, 1717, 1257, 1244, 1049, 835, 687, 624; waxy solid



### 3k

**Data for 3k:**<sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 199.07, 138.14, 132.88, 128.55, 128.51, 71.22, 69.82, 46.69, 45.34, 23.63, 0.68; <sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.94 (d, *J*=7.9 Hz, 2 H), 7.50 - 7.56 (m, 1 H), 7.41 - 7.49 (m, 2 H), 4.20 (sxt, *J*=5.5 Hz, 1 H), 3.75 (sxt, *J*=6.0 Hz, 1 H), 3.11 (dd, *J*=15.3, 5.5 Hz, 1 H), 3.04 (dd, *J*=15.3, 6.4 Hz, 1 H), 1.79 (dt, *J*=13.4, 6.6 Hz, 1 H), 1.44 - 1.54 (m, 1 H), 1.18 (d, *J*=6.1 Hz, 3 H), 0.17 (s, 27 H), 0.14 (s, 27 H); LRMS (API-ES +) C<sub>30</sub>H<sub>69</sub>O<sub>3</sub>Si<sub>8</sub><sup>+</sup> [M +H]<sup>+</sup> m/z = 701.3 (100%); FTIR (thin film): 2949, 2894, 1687, 1244, 1055, 835, 623; white solid.



**Data for 31:**<sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>, 295K)  $\delta = 202.6$ , 70.01, 69.36, 49.72, 46.58, 24.05, 0.72, 0.62; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, 295K)  $\delta = 9.77$  (dq, *J*=2.1, 0.6 Hz, 1 H), 4.10 (sxt, *J*=5.2 Hz, 2 H), 3.57 - 3.68 (m, 2 H), 2.60 (dd, *J*=15.0, 4.0 Hz, 1 H), 2.38 (ddd, *J*=15.3, 6.7, 3.7 Hz, 1 H), 1.82 (ddd, *J*=13.7, 8.8, 5.0 Hz, 1 H), 1.42 (ddd, *J*=12.8, 8.9, 3.7 Hz, 2 H), 1.15 (d, *J*=6.1 Hz, 3 H), 0.18 (d, *J*=1.5 Hz, 54 H); LRMS (API-ES –) C<sub>21</sub>H<sub>55</sub>O<sub>3</sub>Si<sub>7</sub> [M – TMS]<sup>+</sup> m/z = 551.2 (40%); LRMS (APCI +) C<sub>9</sub>H<sub>27</sub>OSi<sub>4</sub><sup>+</sup> [TMS<sub>3</sub>SiO]<sup>+</sup> m/z = 263.0 (100%); waxy semi-solid.

# Stereochemical assignment for compounds 3

Compounds 3 were assigned 1,3 syn based on prior studies.<sup>31</sup>

# Synthetic procedures and data for compounds 5

Compounds 5 (Table 3) were prepared according to GP4

<sup>&</sup>lt;sup>31</sup> Boxer, M. B.; Yamamoto, H. J. Am. Chem. Soc. 2006, 128, 48–49.

(TMS)<sub>3</sub>SiO OH 5a

General Procedure 4: To a dry 1 dram vial containing a magnetic stir bar and fitted with a septum was added  $CH_2Cl_2$  (0.5 mL) and acetone (30µL, 0.41 mmol) under an  $N_2$ atmosphere. The solution was stirred, and cooled to -78 °C. Chlorodicyclohexylborane (0.4 mL, 1.0 M hexanes) and triethylamine (60 uL, 0.43 mmol) were sequentially added dropwise, resulting in the immediate formation of a white precipitate (Et<sub>3</sub>NHCl. The vial was stirred for 5 min at this temperature then warmed to 0°C. A separate 10mL roundbottomed flask containing a magnetic stir bar and fitted with a septum was charged with 1e (105 mg, 0.21 mmol). CH<sub>2</sub>Cl<sub>2</sub> (1.8 mL) was added and the flask was cooled to -78 °C. The enolborinate solution was added dropwise to the reaction flask  $(0.2 \text{ mL CH}_2\text{Cl}_2)$ rinse), leaving some of the white precipitate behind. The reaction was stirred 30 min, and TLC analysis indicated >90% conversion of the starting material. The reaction was quenched by the addition of MeOH (1 mL) and pH 7.0 Buffer (0.2 M, 4 mL). The mixture was allowed to warm to ambient temperature and stirred vigorously. H<sub>2</sub>O<sub>2</sub> was then added (30% ag., 0.1 mL), and the reaction was stirred for 30min. The mixture was poured onto  $H_2O$ , the layers separated, and the aqueous layer extracted with  $CH_2Cl_2$  (5 mL) and hexanes (5 mL) the combined organic layers were dried ( $Na_2SO_4$ ), filtered through cotton and concentrated. Flash column chromatography (16mL silica gel,  $5 \rightarrow 20\%$  Et<sub>2</sub>O/hexanes eluent) afforded 102 mg of **5a** a colorless oil (72%). Data for **5a**: TLC:  $R_f = 0.11$  (5:95 EtOAc/hexanes); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta =$ 4.12 - 4.21 (m, 1 H), 3.66 (d, J=1.8 Hz, 1 H), 3.61 (spt, J=4.1 Hz, 1 H), 2.57 (dd, J=9.2, 7.8 Hz, 1 H), 2.16 (s, 3 H), 1.55 - 1.64 (m, 2 H), 1.43 - 1.54 (m, 2 H), 1.26 (br. s., 10 H), 0.87 (t, J=6.9 Hz, 3 H), 0.20 (s, 27 H); <sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>):  $\delta = 208.9, 76.9,$ 66.9, 51.1, 42.3, 37.6, 31.9, 30.0, 29.5, 22.8, 14.2, 0.7; FTIR (thin film): 3479 (br, OH), 2948, 2857, 1714 (C=O), 1245, 1074, 837; LRMS (APCI+) C<sub>22</sub>H<sub>53</sub>O<sub>3</sub>Si<sub>4</sub><sup>+</sup> [M + H]<sup>+</sup> 477.2 (100%).

**5c** (See **6c**)

5d (See 6d)

**5f** (See **6f**)

(TMS)<sub>3</sub>Si OH

5i

**Data for 5i:** TLC:  $R_f = 0.37$  (10:90 EtOAc/hexanes); <sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>, 293K)  $\delta = 208.65$ , 72.72, 68.86, 50.86, 45.43, 30.86, 23.78, 0.56; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, 293K)  $\delta = 4.09 - 4.20$  (m, 1 H), 3.72 - 3.81 (m, 1 H), 3.64 (s, 1 H), 2.57 (dd, *J*=16.8, 7.3 Hz, 1 H), 2.50 (dd, *J*=16.8, 5.2 Hz, 1 H), 2.13 (s, 3 H), 1.50 (d, *J*=6.4 Hz, 1 H), 1.12 (d, *J*=6.1 Hz, 3 H), 0.15 - 0.19 (m, 27 H); LRMS (API-ES +): C<sub>16</sub>H<sub>41</sub>O<sub>3</sub>Si<sub>4</sub><sup>+</sup> [M +H]<sup>+</sup> m/z = 393.2 (100%); FTIR (thin film): 3482 (br), 2947, 2868, 1721, 1464, 1773, 1245, 1103, 836, 684.

colorless oil

Si(Et)<sub>3</sub> (Et)<sub>3</sub>Si~ <sup>.</sup>Si OH (Et)<sub>3</sub>Si

# **5**1

**Data for 51:** TLC:  $R_f = 0.$  (EtOAc/hexanes); <sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>, 293K)  $\delta = 209.50, 71.57, 65.75, 50.94, 45.60, 30.75, 32.25, 8.94, 5.48; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, 293K) <math>\delta = 4.05 - 4.21$  (m, 1 H), 3.71 (sxt, *J*=6.1 Hz, 1 H), 3.23 (d, *J*=2.7 Hz, 1 H), 2.50 - 2.61 (m, 2 H), 2.14 (s, 3 H), 1.62 (ddd, *J*=14.3, 9.5, 6.7 Hz, 1 H), 1.39 (ddd, *J*=13.7, 6.1, 3.4 Hz, 1 H), 1.12 (d, *J*=6.1 Hz, 3 H), 1.03 (t, *J*=7.9 Hz, 27 H), 0.76 (q, *J*=7.7 Hz, 18 H); LRMS (API-ES):  $C_{25}H_{59}O_{3}Si_{4}^{+}$  [M + H]<sup>+</sup> m/z = 519.3 (100%); FTIR (Thin film): 3483, 2951, 2875, 2729, 1713, 1458, 1417, 1376, 1095, 1004, 723, 579; colorless oil



#### 5n

**Data for 5n:** TLC:  $R_f = 0.20 (10:90 \text{ Et}_2\text{O}/\text{hexanes})$ ; <sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>, 293K)  $\delta = 209.11, 79.41, 66.18, 50.96, 38.27, 32.01, 30.77, 17.50, 17.16, 9.03, 5.60; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, 293K) <math>\delta = 4.06 - 4.16 \text{ (m, 1 H)}$ , 3.46 (ddd, *J*=7.7, 5.9, 2.9 Hz, 1 H), 3.26 (br. s., 1 H), 2.51 - 2.58 (m, 2 H), 2.15 (s, 3 H), 1.46 - 1.56 (m, 1 H), 1.36 - 1.43 (m, 1 H), 1.03 (t, *J*=7.9 Hz, 27 H), 0.85 (d, *J*=6.7 Hz, 3 H), 0.74 - 0.81 (m, 18 H); LRMS (API-ES):  $C_{27}H_{61}O_2Si_4^+$  [M - OH]<sup>+</sup> m/z = 529.4 (100%); FTIR (thin film): 3495, 2953, 2728, 1716, 1877, 1458, 1418, 1367, 1005, 722; colorless oil



50

Data for **50:** TLC:  $R_f = 0.13$  (10:90 EtOAc/hexanes); <sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>, 293K)  $\delta = 215.68$ , 75.52, 65.65, 47.69, 41.82, 41.47, 36.34, 31.93, 30.06, 29.46, 24.80, 22.78, 18.14, 18.10, 8.98, 5.53; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, 293K)  $\delta = 4.07 - 4.17$  (m, 1 H), 3.51 - 3.60 (m, 1 H), 3.35 (d, *J*=2.7 Hz, 1 H), 2.64 (dd, *J*=17.4, 4.0 Hz, 1 H), 2.58 (s, 2 H), 1.48 - 1.63 (m, 3 H), 1.36 - 1.46 (m, 1 H), 1.19 - 1.33 (m, 10H), 1.09 (d, *J*=7.0 Hz, 3 H), 1.09 (d, *J*=7.0 Hz, 3 H), 1.03 (t, *J*=7.8 Hz, 27 H), 0.85 - 0.91 (m, 0 H), 0.77 (q, *J*=7.6 Hz, 18 H); LRMS (API-ES):  $C_{32}H_{72}O_{3}Si_{4}^{+}$  [M+H]<sup>+</sup> m/z = 631.5 (100%); FTIR (thin film): 3509 (br), 2952, 2874, 1704, 1463, 1416, 1378, 1236, 1005, 723; colorless oil



#### **5**p

**Data for 5p:** TLC:  $R_f = 0.19$  (10:90 EtOAc/hexanes); <sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>, 293K)  $\delta = 217.20$ , 75.44, 65.67, 44.00, 41.86, 36.27, 31.95, 30.08, 29.47, 26.38, 24.71, 22.79, 14.22, 8.99, 5.53; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, 293K)  $\delta = 4.09$  (spt, *J*=4.1 Hz, 1 H), 3.49 - 3.60 (m, 1 H), 3.40 (d, *J*=2.7 Hz, 1 H), 2.65 (dd, *J*=17.7, 4.3 Hz, 1 H), 2.58 (dd, *J*=17.7, 7.3 Hz, 1 H), 1.48 - 1.61 (m, 3 H), 1.38 - 1.47 (m, 1 H), 1.26 (br. s., 10 H), 1.12 (s, 9 H), 1.03 (t, *J*=7.9 Hz, 27 H), 0.87 (t, *J*=6.7 Hz, 3 H), 0.76 (q, *J*=7.6 Hz, 18 H); LRMS (API-ES):  $C_{34}H_{77}O_3Si_4^+$  [M+H]<sup>+</sup> m/z = 645.5 (100%); FTIR (thin film):3524 (br), 2952, 1696, 1458, 1418, 1394, 1236, 1063, 1004, 722; colorless oil



#### 5q

**Data for 5q:** TLC:  $R_f = 0.13$  (25:75 CH<sub>2</sub>Cl<sub>2</sub>/hexanes); <sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>, 293K)  $\delta = 200.53$ , 137.04, 133.46, 128.72, 128.18, 75.58, 65.85, 46.02, 41.93, 36.44, 31.92, 30.07, 29.47, 24.77, 22.78, 14.21, 8.99, 5.54; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, 293K)  $\delta = 7.95$  (dd, *J*=8.4, 1.4 Hz, 2 H), 7.57 (tt, *J*=7.6, 1.2 Hz, 1 H), 7.46 (t, *J*=7.9 Hz, 2 H), 4.28 - 4.37 (m, 1 H), 3.56 - 3.66 (m, 1 H), 3.48 (d, *J*=2.7 Hz, 1 H), 3.16 (dd, *J*=17.4, 4.0 Hz, 1 H), 3.09 (dd, *J*=17.4, 7.6 Hz, 1 H), 1.63 - 1.73 (m, 2 H), 1.51 - 1.61 (m, 1 H), 1.40 - 1.50 (m, 1 H), 1.27 (br. s., 9 H), 1.16 (d, *J*=6.4 Hz, 1 H), 1.00 - 1.08 (m, 27 H), 0.88 (t, *J*=7.0 Hz, 3 H), 0.78 (q, *J*=8.0 Hz, 18 H); LRMS (API-ES): C<sub>36</sub>H<sub>73</sub>O<sub>3</sub>Si<sub>4</sub><sup>+</sup> [M+H]<sup>+</sup> m/z = 665.5 (100%); FTIR (thin film):3545 (br), 2952, 2874, 1679, 1623,1598,1581, 1460,1415, 1376, 1209, 1004, 732; colorless oil

5r

R<sub>f</sub> = 0.28 (1:4 Et<sub>2</sub>O/hexanes); IR (neat): 3487 (br, OH), 2952, 2875, 1712 (C=O), 1462, 1416, 1255, 1091, 1005, 836 cm<sup>-1</sup>; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, 293K) δ 4.23–4.17 (m, 1H), 3.72–3.58 (m, 3H), 3.29 (d, 1H, J = 2.5 Hz), 2.58 (dd, J = 17.1, 3.5 Hz), 2.51 (dd, 1H, J = 17.1, 8.3 Hz), 2.15 (s, 3H), 1.88–1.80 (m, 1H), 1.60–1.48 (m, 3H), 1.03 (t, 27H, J = 7.8 Hz), 0.87 (s, 9H), 0.77 (q, 18H, 7.8 Hz), 0.02 (s, 6H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>, 293K) δ 209.3, 72.9, 65.1, 59.7, 51.0, 41.9, 38.3, 30.6, 25.9, 18.3, 8.9, 5.4, -5.46, -5.54; LRMS (API-ES+) C<sub>32</sub>H<sub>74</sub>NaO<sub>4</sub>Si<sub>5</sub> [M + Na]<sup>+</sup> 685.4 (100%).

#### Stereochemical assignments for compounds 5

Compound **5a** was determined to be 1,3-*syn* by comparison to its corresponding1,3-*anti* diastereomer **6a**, which was determined to be 1,3-*anti* by conversion to acetonide and evaluation of  ${}^{13}$ C NMR resonances.

# **Synthetic Procedures and Data for compounds 6** (Table 3)

Compounds 6a-6j (Table 2) were prepared according to GP 5.



General Procedure 5 A dry 10mL round bottomed flask with magnetic stir bar was charged with aldehyde 1e (118mg, 0.387 mmol), and enolsilane 2a (105 mg), then fitted with a septum and purged with N<sub>2</sub>.  $CH_2Cl_2$  (2.5 mL) was added, and the vessel was cooled to -78 °C. BF<sub>3</sub>.OEt<sub>2</sub> (1.0 M CH<sub>2</sub>Cl<sub>2</sub>) was added dropwise. After stirring for 20 min at the same temperature, TLC analysis indicated formation of product and consumption of starting materials and formation of product. The reaction was quenched by addition sat. aq. NaHCO<sub>3</sub> (10 mL). The mixture was stirred vigourously, and warmed to 0°C. The layers were then separated, and the aqueous layer was extracted with CH<sub>2</sub>Cl<sub>2</sub> (2x 3 mL) and hexanes (3mL). The combined organic layers were dried (Na<sub>2</sub>SO<sub>4</sub>), filtered through cotton and concentrated. Flash column chromatography (12mL silica gel,  $2 \rightarrow 10\%$  v/v EtOAc/hexanes eluent) afforded **6a** a colorless oil (90mg, 75%). **Data for 6a:**  $R_f = 0.26$  (1:4 Et<sub>2</sub>O/hexanes); IR (neat): 3479 (br, OH), 2948, 2857, 1714 (C=O), 1245, 1074, 837 cm<sup>-1</sup>; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, 293K) δ 4.38–4.32 (m, 1H), 3.84 (br s, 1H), 3.68-3.62 (m, 1H), 2.63 (dd, 1H, J = 16.5, 7.5 Hz), 2.47 (dd, 1H, J =16.5, 5.0 Hz), 2.17 (s, 3H), 1.66–1.48 (m, 4H), 1.31–1.11 (m, 10H), 0.88 (t, 3H, J = 6.8Hz), 0.20 (s, 27H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>, 293K) δ 208.4, 76.4, 64.7, 51.2, 40.1, 35.9, 31.8, 30.9, 29.8, 29.3, 25.6, 22.6, 14.1, 0.5; LRMS (APCI+) C<sub>22</sub>H<sub>53</sub>O<sub>3</sub>Si<sub>4</sub> [M + H]<sup>+</sup> 477.2 (100%),  $C_{22}H_{51}O_2Si_4 [M - OH]^+$  459.2 (38%); colorless oil.





6c

**Data for 6c:** TLC:  $R_f = 0.14$  (10:90 EtOAc/hexanes); <sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>, 293K)  $\delta = 209.27$ , 66.46, 64.74, 50.93, 44.68, 30.92, 23.63, 6.94, 4.94; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, 293K)  $\delta = 4.30 - 4.40$  (m, 1 H), 4.13 - 4.20 (m, 1 H), 3.64 (d, *J*=2.1 Hz, 1 H), 2.59 (dd, *J*=16.8, 8.2 Hz, 1 H), 2.52 (dd, *J*=16.5, 3.7 Hz, 1 H), 1.60 (ddd, *J*=14.0, 10.1, 3.4 Hz, 1 H), 1.44 (ddd, *J*=14.3, 7.0, 2.4 Hz, 1 H), 1.21 (d, *J*=6.4 Hz, 3 H), 0.95 (t, *J*=7.9 Hz, 9 H), 0.60 (q, *J*=8.0 Hz, 6 H);LRMS (API-ES): C<sub>13</sub>H<sub>29</sub>O<sub>3</sub>Si<sup>+</sup> [M+H]<sup>+</sup> m/z = 261.2 (100%); FTIR (thin film):3481 (br), 2957, 2912, 2877, 1713, 1458, 1417, 1374, 1239, 1147, 1117, 1007, 746, colorless oil;



6d

**Data for 6d:** TLC:  $R_f = 0.15$  (10:90 EtOAc/hexanes); <sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>, 293K)  $\delta = 208.83$ , 67.6, 64.81, 44.32, 31.00, 23.16, 18.23, 12.49; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, 293K)  $\delta = 4.45$  (tdd, *J*=8.0, 8.0, 4.2, 2.1 Hz, 1 H), 4.31 (dd, *J*=5.3, 3.8 Hz, 1 H), 3.81 (d, *J*=1.8 Hz, 1 H), 2.62 (dd, *J*=16.8, 8.2 Hz, 1 H), 2.49 (dd, *J*=16.5, 4.3 Hz, 1 H), 2.17 (s, 3 H), 1.67 - 1.75 (m, 2 H), 1.48 (ddd, *J*=14.0, 5.2, 2.1 Hz, 2 H), 1.28 (d, *J*=6.4 Hz, 3 H), 1.06 (s, 21 H); LRMS (API-ES): C<sub>16</sub>H<sub>35</sub>O<sub>3</sub>Si<sup>+</sup> [M+H]<sup>+</sup> m/z = 303.3 (100%); FTIR (thin film):3489, 2943, 2887, 1715, 1464, 1419, 1373, 1256, 1098, 1057, 1014, 833, 877; colorless oil

6e

**Data for 6e:** TLC:  $R_f = 0.20 (10:75 \text{ EtOAc/hexanes}); {}^{13}\text{C} \text{NMR} (500 \text{ MHz, CDCl}_3, 293\text{K}) \delta = 208.70, 71.90, 64.79, 51.18, 43.87, 30.99, 22.57, 0.52, 0.51; {}^{1}\text{H} \text{NMR} (500 \text{ MHz, CDCl}_3, 293\text{K}) \delta = 4.34 - 4.41 (m, 1 \text{ H}), 3.83 - 3.93 (m, 1 \text{ H}), 3.75 (s, 1 \text{ H}), 2.60 (dd,$ *J*=16.5, 8.2 Hz, 1 H), 2.46 (dd,*J*=16.5, 4.9 Hz, 1 H), 2.16 (s, 3 H), 1.63 (ddd,*J*=14.0, 10.2, 3.5 Hz, 1 H), 1.42 (ddd,*J*=14.3, 5.5, 2.1 Hz, 1 H), 1.20 (d,*J* $=6.4 \text{ Hz}, 3 \text{ H}), 0.18 (s, 27 \text{ H}); LRMS (API-ES): <math>C_{16}H_{39}O_2\text{Si4}^+ [\text{M} - \text{OH}]^+ \text{m/z} = 375.2025 (\text{calc: } 375.2027; 0.91 \text{ ppm}) C_{16}H_{41}O_3\text{Si4}^+ [\text{M}+\text{H}]^+ \text{m/z} = 393.2131 (\text{calc: } 393.2133, 0.94 \text{ ppm});$ 

#### 6f

**Data for 6f:** TLC:  $R_f = 0.15$  (25:75 EtOAc/hexanes); <sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>, 293K)  $\delta = 209.53$ , 138.61, 128.53, 127.94, 127.76, 72.23, 70.92, 64.85, 50.50, 43.20, 30.86, 19.66; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, 293K)  $\delta = 7.35 - 7.41$  (m, 18 H), 7.32 (dd, *J*=4.7, 3.8 Hz, 1 H), 4.66 (d, *J*=11.3 Hz, 1 H), 4.48 (d, *J*=11.3 Hz, 5 H), 4.38 (d, *J*=5.2 Hz, 1 H), 3.85 - 3.94 (m, 1 H), 3.36 (br. s., 1 H), 2.60 (m, *J*=6.4 Hz, 2 H), 2.18 (s, 3 H), 1.65 - 1.73 (m, 1 H), 1.58 - 1.65 (m, 1 H), 1.28 (d, *J*=6.1 Hz, 3 H); (LMRS (API-ES)  $C_7H_{13}O_2^+$  [M - benzyl- OH+H]<sup>+</sup> m/z = 129.1 (100%); HRMS (ESI-TOF +)  $C_{14}H_{21}O_3^+$  [M+H]<sup>+</sup> m/z = 237.140909 (calc: 237.14907, 10 ppm); FTIR (thin film): 3466, 2968, 2931, 1711, 1454, 1419, 1376, 1165, 1095, 1064, 740, 699; colorless oil



#### 6g

**Data for 6g:** TLC:  $R_f = 0.11$  (10:90 EtOAc/hexanes); <sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>, 293K)  $\delta = 203.39$ , 78.99, 64.88, 51.20, 37.37, 32.89, 30.86, 19.27, 16.38, 0.80; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, 293K)  $\delta = 4.25$  (dqd, *J*=9.9, 4.0, 4.0, 4.0, 2.7 Hz, 1 H), 3.49 (ddd, *J*=7.8, 5.0, 2.7 Hz, 1 H), 2.59 (dd, *J*=17.7, 8.2 Hz, 1 H), 2.53 (dd, *J*=17.1, 4.3 Hz, 1 H), 2.16 (s, 3 H), 1.82 - 1.92 (m, 1 H), 1.42 - 1.49 (m, 2 H), 1.37 (ddd, *J*=14.0, 7.9, 2.7 Hz, 2

H), 0.87 (d, *J*=7.0 Hz, 3 H), 0.81 (d, *J*=7.0 Hz, 3 H), 0.19 (s, 27 H); LRMS (API-ES):  $C_{18}H_{43}O_2Si_4^+ [M - OH]^+ m/z = 403.3 (100\%), C_{18}H_{45}O_3Si_4^+ [M+H]^+ m/z = 421.2 (50\%);$ FTIR (thin film):3480 (br) 2958, 2895, 1716, 1680, 1367, 1245, 1040, 835, 687; colorless oil.



6h

**Data for 6h:** TLC:  $R_f = 0.44$  (10:90 EtOAc/hexanes);<sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>, 293K)  $\delta = 214.53$ , 76.34, 64.80, 47.92, 41.57, 40.67, 36.20, 31.91, 29.97, 29.41, 25.61, 22.77, 18.17, 18.10, 14.22, 0.61; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, 293K)  $\delta = 4.28 - 4.39$  (m, 1 H), 3.79 (s, 1 H), 3.65 (m, *J*=7.6, 5.2, 5.2, 3.1 Hz, 1 H), 2.66 (dd, *J*=16.9, 7.2 Hz, 1 H), 2.58 (dquin, *J*=13.9, 7.0, 7.0, 7.0, 7.0 Hz, 1 H), 2.49 (dd, *J*=17.1, 5.2 Hz, 1 H), 1.47 - 1.64 (m, 4 H), 1.27 (br. s., 10 H), 1.16 (d, *J*=7.9 Hz, 1 H), 1.08 (d, *J*=7.0 Hz, 3 H), 0.87 (t, *J*=6.7 Hz, 3 H), 0.19 (s, 27 H); LRMS(API-ES):  $C_{24}H_{57}O_3Si_4^+$  [M+H]<sup>+</sup> m/z = 505.4 (100%); FTIR (thin film):3081, 2958, 2995, 1716, 1879, 1387, 1367, 1245, 1040, 835, 687, 624; colorless oil



6i

**Data for 6i:** TLC:  $R_f = 0.$  (EtOAc/hexanes); <sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>, 293K)  $\delta = 216.01, 76.20, 64.82, 44.32, 40.90, 36.34, 31.93, 29.99, 29.41, 26.38, 25.52, 27.79, 14.24, 0.62; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, 293K) <math>\delta = 4.23 - 4.45$  (m, 1 H), 3.82 (s, 1 H), 3.66 (br. s, 1 H), 2.70 (dd, *J*=17.5, 6.9 Hz, 1 H), 2.53 (dd, *J*=17.4, 5.2 Hz, 1 H), 1.49 - 1.63 (m, 4 H), 1.28 (br. s., 10 H), 1.19 (br. s., 1 H), 1.12 (s, 9 H), 0.19 (s, 27 H); LRMS (API-ES):  $C_{25}H_{59}O_3Si_4^+[M+H]^+$  m/z = 519.3 (100%); FTIR (thin film):3489, 2956, 2858, 1697, 1465, 1394, 1367, 1245, 1066, 838, 687, 624



6j

**Data for 6j**:TLC:  $R_f = 0.44$  ( EtOAc/hexanes); <sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>, 293K)  $\delta = 199.56$ , 137.18, 133.34, 128.72, 128.27, 76.52, 65.05, 46.45, 40.61, 36.16, 31.92, 29.98, 29.42, 25.63, 22.79, 14.25, 0.63; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, 293K)  $\delta = 7.96$  (d, *J*=7.9 Hz, 2 H), 7.56 (t, *J*=7.3 Hz, 1 H), 7.45 (t, *J*=7.3 Hz, 2 H), 4.51 - 4.59 (m, 1 H), 3.96 (s, 1 H), 3.67 - 3.74 (m, 1 H), 3.23 (dd, *J*=17.1, 6.7 Hz, 1 H), 3.02 (dd, *J*=16.9, 5.6 Hz, 1 H), 1.55 - 1.76 (m, 5 H), 1.28 (br. s., 10 H), 1.19 (m, *J*=8.5 Hz, 1 H), 0.88 (t, *J*=6.7 Hz, 3 H),

0.20 (s, 27 H); HRMS (CI +)  $C_{27}H_{54}O_3Si_4[M]^+$  m/z = 538.3153 (calc.: 538.3150, 5.6 ppm),  $C_{19}H_{47}O_2Si_4[M$ -acetophenone]<sup>+</sup> m/z = 419.2686 (calc: 419.2653, 8 ppm).



#### 6k

**Data for 6k:** TLC:  $R_f = 0.21$  (20:80 Et<sub>2</sub>O/hexanes);FTIR (thin film) 3527, 2951, 2874, 1711, 1458, 1416, 1236, 1080, 1004, 700; LRMS (API-ES +)  $C_{32}H_{74}O_4NaSi_5^+$  [M+Na]<sup>+</sup> m/z = 685.4 (100%). <sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 209.1, 144.0, 128.3, 128.0, 126.3, 78.9, 65.4, 50.8, 43.0, 40.0, 30.6, 15.1, 0.7; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.17-7.28 (m, 5H), 4.09, (m, 1H), 3.82 (m, 1H), 3.01-3.02 (m, 2H), 2.47-2.52 (m, 2H), 2.14 (s, 3H), 1.43-1.45 (m, 2H), 1.24 (d, *J* = 3H), 0.19 (s, 27 H).

#### Stereochemical assignment for compounds 6

Compound **6a** was determined to be 1,3-*anti* configured by conversion to SI-1by the synthetic sequence shown in **Scheme S-8.** 1,3-diol <sup>13</sup>C resonances at  $\delta = 100.2, 29.5, 29.2$  indicated a 1,3-*anti* configuration as established by Rychnovsky.<sup>32,33,34</sup>

#### Scheme S-8: Preparation of SI-11



**General Procedure 6:** (1) To a dry 25 mL round bottomed flask was added **3**-*A* (141 mg, 0.3 mmol) under a N<sub>2</sub> atmosphere. Imidazole (37 mg, 0.54 mmol) was added followed by THF. The stirring reaction flask was cooled to 0 °C. TESCl was then added (75µL, 0.45 mmol) dropwise. The cooling bath was removed and the reaction stirred for an addition 2 h. The reaction was then diluted with H<sub>2</sub>O (10 mL) and hexanes (5 mL). The layers were separated and the organic layer was extracted with EtOAc/Hexanes (1:4, 5 mL). The combined organic layers were washed with H<sub>2</sub>O, NaHCO<sub>3</sub> (sat. aq.) and brine (10 mL each), dried over Na<sub>2</sub>SO<sub>4</sub>, filtered through cotton, and concentrated under reduced pressure. The silyl ether was purified by column chromatography (20 mL silica,  $2\rightarrow$ 5% EtOAc/hexanes eluent) affording a colorless oil (163 mg, 93%).

(2) To a stirring suspension of methyltriphenylphosphium bromide (220mg, 0.53 mmol) in anhydrous THF (1.5 mL) at 0°C was added *n*-Butyllithium (0.210mL, 0.62mmol, 2.5 M hexanes), dropwise. The yellow solution was stirred at this temperature

<sup>&</sup>lt;sup>32</sup> Rychnovsky, S. D.; Skalitzky, D. J. Tetrahedron Lett. **1990**, *31*, 945–948.

<sup>&</sup>lt;sup>33</sup> Rychnovsky, S. D.; Rogers, B.; Yang, G. J. Org. Chem. 1993, 58, 3511–3515.

<sup>&</sup>lt;sup>34</sup> Evans, D. A.; Rieger, D. L.; Gage, J. R. *Tetrahedron Lett.* **1990**, *31*, 7099–7100.

for 45 min then cooled to  $-78^{\circ}$ C. In a separate flask, the intermediate was described above was dissolved in anhydrous THF(0.3 mL) and added to the ylide solution by syringe, dropwise. The flask was rinsed with 2x 0.2 mL THF and added to the reaction vessel to quantitate the transfer. The reaction was slowly warmed to 0°C over 3 hr and quenched by the addition of 5 mL MeOH/H<sub>2</sub>O (3:2 v/v) and 3 mL of saturated aqueous NH<sub>4</sub>Cl. 20mL hexanes was then added. The layers were separated and the organic layer was washed with 5 mL of H<sub>2</sub>O and 5 mL of brine. The organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>, filtered through cotton and evaporated. The crude mixture was purified by flash chromatography (16 mL SiO<sub>2</sub> with hexanes as an eluent.

(3)The resulting olefin (145 mg, 92% yield) was dissolved in THF and cooled to 0°C and tetrabutylammonium fluoride (0.50 mL, 0.05 mmol, 1.0M THF) was added dropwise. Gas evolution was observed. The stirring solution was warmed to 23°C and stirred for an additional 30 min. 0.05 mL glacial acetic acid and the reaction was stirred overnight. The solvent was evaporated. The mixture was redissolved in 25 mL ethyl acetate and washed with water (2x 7mL) and brine (10mL) the organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>, filtered through cotton and evaporated. The crude reaction mixture was purified by flash chromatography (16 mL SiO<sub>2</sub>) with *i*-PrOH/Hexanes as the eluent (2% $\rightarrow$ 20% v/v), giving the intermediate diol (55 mg, >95 yield).

(4)The intermediate diol (24 mg, 0.1 mmol) was dissolved in CH<sub>2</sub>Cl<sub>2</sub> (1.0 mL) and cooled to 0°C. 2-methoxypropene (11µL, 0.11 mmol) was added, followed by *p*-toluenesulfonic acid monohydrate (0.2 mg) was added. The reaction was stirred for 1h and slowly warmed to 23°C. The reaction was quenched by the addition of sat. aq. NaHCO<sub>3</sub> (2mL). The layers were separated and aqueous layer was extracted with CH<sub>2</sub>Cl<sub>2</sub> (2x 5mL CH<sub>2</sub>Cl<sub>2</sub>). The organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>, filtered through cotton and evaporated. The crude reaction mixture was purified by flash chromatography (5mL SiO<sub>2</sub>) with EtOAc/hexanes as an eluent (1%→5% v/v) to give acetonide SI-11 (22 mg, 78% yield).

**Data for SI-11**: TLC:  $R_f = 0.44$  (5:95 EtOAc/hexanes); FTIR (thin film) 2931, 2856, 1651, 1458, 1378, 1224, 1168, 1028, 889; LRMS (API-ES + ):  $C_{17}H_{31}O^+ [M - H_2O + H]^+$ m/z = 251.2 (20%). <sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>)  $\delta = 142.4$ , 112.1, 100.2, 66.6, 65.1, 44.1, 38.5, 35.9, 31.8, 29.6, 29.5, 29.2, 25.4, 25.0, 24.8, 22.8, 22.6, 14.1; (500 MHz, CDCl<sub>3</sub>)  $\delta = 4.78$  (s, 1H), 4. 74 (s, 1H), 3.97 (app quint. *J* = 6.5Hz, 1H), 3.75 (m, 1H), 2.27 (dd, *J* = 7 Hz, 9.5 Hz, 1H), 2.11 (dd, *J* = 6 Hz, 9.5 Hz, 1H), 1.73 (s, 3H), 1.48-1.161 (m, 3H), 1.40-1.44 (m, 2H), 1.36 (s, 3H), 1.34 (s, 3H), 1.25-1.31 (m, 10H), 0.86 (t, *J* = 7 Hz, 1H)

# Synthetic procedures and data for compounds 8

Compounds 8 were prepared according to GP 7, according to Scheme  $S-5^8$ 

Scheme S-9: synthesis of 8d



8a Known compound<sup>8</sup>

Data for **8a:** TLC:  $R_f = 0.49$  (20:80 CH<sub>2</sub>Cl<sub>2</sub>/hexanes)FTIR (thin film) 2926, 2896, 2854, 1727, 1466, 1394, 1257, 1084, 836, 687, 624; <sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>)  $\delta = 202.4$ , 73.4, 69.6, 49.5, 43.6, 37.9, 31.9, 29.9, 29.7, 29.7, 29.6, 29.5, 29.4, 29.3, 25.3, 22.7, 14.1, 0.8, 0.6; <sup>1</sup>H NMR 500 MHz, CDCl<sub>3</sub>)  $\delta = 9.77$  (dd, 1H, J = 4.0, 1.1 Hz), 4.14–4.08 (m, 1H), 3.39 (app tt, 1H, J = 8.5, 4.3 Hz), 2.57 (ddd, 1H, J = 15.2, 4.7, 1.1 Hz), 2.36 (ddd, 1H, J = 15.2, 6.8, 4.0Hz), 1.74 (ddd, 1H, J = 14.0, 9.0, 5.5 Hz), 1.64–1.56 (m, 1H), 1.47 (ddd, 1H, J = 13.2, 9.3, 4.0 Hz), 1.33–1.23 (m, 23H), 0.88 (t, 3H, J = 6.8 Hz), 0.19 (s, 27H), 0.18 (s, 27H)

(TMS)<sub>3</sub>Si-O O-Si(TMS)<sub>3</sub> TBSO CHO

**Data for 8b:** TLC:  $R_f = 0.07 (25:75 \text{ CH}_2\text{Cl}_2/\text{hexanes}); {}^{13}\text{C} \text{ NMR} (500 \text{ MHz}, \text{CDCl}_3) \delta = 202.36, 70.86, 69.9, 59.70, 49.71, 43.69, 40.21, 26.08, 18.39, 0.83, 0.67, -5.27, -5.32; {}^{1}\text{H} \text{NMR} (500 \text{ MHz}, \text{CDCl}_3) \delta = 9.76 (dd, J=3.4, 1.5 \text{ Hz}, 1 \text{ H}), 4.07 - 4.22 (m, 1 \text{ H}), 3.57 - 3.69 (m, 3 \text{ H}), 2.56 (ddd, J=15.3, 4.5, 1.2 \text{ Hz}, 1 \text{ H}), 2.35 (ddd, J=15.3, 6.8, 3.8 \text{ Hz}, 1 \text{ H}), 1.95 (dtd, J=12.9, 7.8, 7.8, 4.7 \text{ Hz}, 1 \text{ H}), 1.76 (ddd, J=13.7, 8.7, 5.6 \text{ Hz}, 1 \text{ H}), 1.47 - 1.55 (m, 2 \text{ H}), 0.87 (s, 9 \text{ H}), 0.18 (d, J=1.8 \text{ Hz}, 54 \text{ H}), 0.03 (s, 6 \text{ H}); LRMS (API-ES): C_{31}H_{80}O_4\text{NaSi}_9^+ [\text{M+Na}]^+ \text{m/z} = 791.3 (15\%)$ 



**8c** Known compound<sup>35</sup>

(TMS)<sub>3</sub>Si (TMS)<sub>3</sub>Si-O O Ph CHO

**8d** PB-5135 Known compound<sup>18</sup>

<sup>&</sup>lt;sup>35</sup> Boxer, M. B.; Yamamoto, H. J. Am. Chem. Soc. 2006, 128, 48–49.

### **General Procedure GP 7**

To a flame-dried 50 mL round bottomed-flask was added enolsilane **2g** (960mg, 3.3 mmol, 2.2 equiv.),  $CH_2Cl_2$  (12 mL), and (*S*) 2-phenyl propanal (199µL, 1.5 mmol). The stirring flask was cooled to  $-78^{\circ}C$  in a dry ice/acetone cooling bath. HNTf<sub>2</sub> (0.010M  $CH_2Cl_2$ , 100µL) was added dropwise over 2 min. The reaction was stirred at this temperature for 15 min then slowly warmed to 0°C over the course of 1.5h. The reaction was judged to be complete by consumption of **2g**, (*S*) 2-phenyl propanal, and formation of product. The reaction was quenched by addition of 5mL pH 7.0 phosphate buffer and stirred vigorously. The layers were separated and the aqueous phases was extracted with hexanes (3x 5mL). The combined organic layers were dried (Na<sub>2</sub>SO<sub>4</sub>), filtered (cotton plug) and concentrated under reduced pressure. The crude mixture was purified by flash chromatography with  $CH_2Cl_2$ /hexanes as an eluent (5→20% gradient) to give **8d** as a colorless oil (760 mg, 71%). Previously described compound.

**8e** Known compound<sup>18</sup>

### Synthetic procedures and Data for Compounds 9-12.

Compounds 9 and 10 were synthesized according to GP 4 and GP 5, respectively.

#### 9a

TLC:  $R_f = 0.1$  (5:95 Et<sub>2</sub>O/hexanes); FTIR (thin film): 3148 (br), 2926, 2854, 1713, 1395, 1366, 1244, 1047, 837, 687; LRMS (APCI –) C<sub>39</sub>H<sub>94</sub>O<sub>4</sub>Si<sub>8</sub><sup>-</sup> [M+<sup>35</sup>Cl]<sup>-</sup> m/z = 885.5 (10%), C<sub>33</sub>H<sub>76</sub>O<sub>4</sub>Si<sub>6</sub><sup>-</sup> [M-TMS<sub>2</sub>]<sup>-</sup> m/z = 703 (100%); <sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 208.1, 73.8, 73.4, 66.9, 66.9, 51.2, 44.1, 41.8, 38.2, 31.9, 30.5, 29.85, 29.66, 29.64, 29.59, 29.55, 29.45, 29.35, 25.35, 22.7, 14.1, 0.7, 0.6; <sup>1</sup>H NMR 500 MHz, CDCl<sub>3</sub>)  $\delta$  = 4.35 (br, app tt, *J* = 6.4, 4.3, 1H), 4.10 (s, 1H), 3.99 (app dq, *J* = 9.8, 4.2, 1H), 3.34-3.40 (m, 1H), 2.65 (dd, *J* = 16.4, 6.7 Hz, 1H), 2.45 (dd, *J* = 16.4, 5.5 Hz), 2.15 (s, 3H), 1.78-1.5 (m, 7H), 1.24-1.34 (m, 24H), 0.88 (t, *J* = 6.9 Hz, 3H), 0.205 (s, 27H), 0.17 (s, 27H).



9b

TLC:  $R_f = 0.27 (10:90 \text{ EtOAc/hexanes}); {}^{13}\text{C}$  NMR 500 MHz, CDCl<sub>3</sub>)  $\delta = 208.34, 73.95, 70.79, 67.00, 59.76, 51.42, 43.99, 42.05, 40.48, 30.67, 26.07, 18.39, 0.82, 0.79, -5.32; {}^{1}\text{H}$  NMR 500 MHz, CDCl<sub>3</sub>)  $\delta = 4.17 - 4.29 (m, 1 \text{ H}), 3.91 (tt,$ *J*=8.8, 4.6 Hz, 1 H), 3.77 (s, 1 H), 3.53 - 3.68 (m, 3 H), 2.54 (m,*J*=15.6, 8.2 Hz, 1 H), 2.49 (dd,*J*=16.2, 4.3 Hz, 1 H), 2.18 (s, 3 H), 1.98 (dtd,*J*=12.7, 8.0, 8.0, 4.6 Hz, 1 H), 1.71 (ddd,*J*=13.0, 9.6, 5.5 Hz, 1 H), 1.63 (ddd,*J* $=14.0, 4.3, 2.7 Hz, 1 H), 1.33 - 1.53 (m, 3 H), 0.87 (s, 9 H), 0.20 - 0.22 (m, 27 H), 0.18 (s, 27 H); LRMS (API-ES) <math>C_{34}H_{87}O^5Si_9^+$  [M+H]<sup>+</sup> m/z = 827.2 (100%)

O**Si** O**Si** OH

9c

TLC:  $R_f = 0.29 (10:90 \text{ EtOAc/hexanes})$ ; <sup>13</sup>C NMR 500 MHz, CDCl<sub>3</sub>)  $\delta = 208.73$ , 77.54, 73.22, 66.22, 51.33, 43.02, 42.51, 39.80, 30.70, 28.77, 27.53, 27.03, 26.70, 26.43, 0.99, 0.78; <sup>1</sup>H NMR 500 MHz, CDCl<sub>3</sub>)  $\delta = 4.15 - 4.24 \text{ (m, 1 H)}$ , 3.84 (ddd, *J*=12.8, 8.0, 6.4 Hz, 1 H), 3.57 (d, *J*=1.5 Hz, 1 H), 3.33 (dt, *J*=8.8, 3.4 Hz, 1 H), 2.50 - 2.56 (m, 2 H), 2.17 (s, 3 H), 1.75 (d, *J*=11.0 Hz, 2 H), 1.64 - 1.71 (m, 3 H), 1.52 - 1.58 (m, 2 H), 1.44 - 1.52 (m, 2 H), 1.29 (ddd, *J*=13.0, 8.4, 4.0 Hz, 1 H), 1.21 (tt, *J*=12.5, 3.1 Hz, 1 H), 1.03 - 1.16 (m, 1 H), 0.97 (qd, *J*=12.8, 3.1 Hz, 1 H), 0.20 (s, 27 H), 0.18 (s, 27 H);

LRMS (API-ES):



9d

 $\begin{array}{l} R_{\rm f} = 0.33 \; (10:90 \; \text{EtOAc/hexanes}); \ ^{13} \text{C NMR} \; (500 \; \text{MHz}, \; \text{CDCl}_3) \; \delta = 209.15, \; 144.66, \\ 128.52, \; 128.09, \; 126.07, \; 77.13, \; 71.75, \; 65.61, \; 51.08, \; 43.53, \; 42.37, \; 40.84, \; 30.76, \; 14.87, \\ 1.05, \; 0.84; \; 7.26 - 7.35 \; (\text{m}, 6 \; \text{H}), \; 7.16 - 7.25 \; (\text{m}, 2 \; \text{H}), \; 4.20 \; (\text{dqd}, \textit{J=9.8}, \; 4.8, \; 4.8, \; 4.8, \; 2.4 \\ \text{Hz}, \; 1 \; \text{H}), \; 3.89 - 3.96 \; (\text{m}, \; 1 \; \text{H}), \; 3.85 \; (\text{td}, \textit{J=6.5}, \; 3.2 \; \text{Hz}, \; 1 \; \text{H}), \; 3.33 \; (\text{d}, \textit{J=2.1 \; \text{Hz}}, \; 1 \; \text{H}), \; 3.03 \; (\text{qd}, \textit{J=7.0}, \; 3.4 \; \text{Hz}, \; 1 \; \text{H}), \; 2.23 \; (\text{s}, \; 3 \; \text{H}), \; 1.83 \; (\text{ddd}, \textit{J=13.7}, \; 10.1, \; 5.8 \; \text{Hz}, \; 1 \; \text{H}), \; 1.60 \; (\text{td}, \textit{J=6.4}, \; 4.0 \; \text{Hz}, \; 3 \; \text{H}), \; 1.51 \; (\text{ddd}, \textit{J=13.4}, \; 7.6, \; 2.3 \; \text{Hz}, \; 1 \; \text{H}), \; 1.37 \; (\text{dd}, \textit{J=7.2}, \; 2.6 \; \text{Hz}, \; 1 \; \text{H}), \\ 1.27 \; (\text{d}, \textit{J=7.3 \; \text{Hz}, \; 1 \; \text{H}), \; 0.20 \; (\text{s}, \; 27 \; \text{H}), \; 0.19 \; (\text{s}, \; 27 \; \text{H}); \; \text{LRMS} \; (\text{API-ES}): \; \text{C}_{34}\text{H}_{75}\text{O}_3 \text{Si}_8^+ \; [\text{M} - \text{OH}]^+ \; \text{m/z} = 755.3 \; (10\%). \end{array}$ 



10a

R<sub>f</sub> = 0.2 (5:95 Et<sub>2</sub>O/hexanes); FTIR (thin film) 3469 (br), 2948, 2926, 2895, 1717, 1437, 1373, 1244, 1050, 836; LRMS (APCI +) C<sub>39</sub>H<sub>93</sub>O<sub>3</sub>Si<sub>8</sub><sup>+</sup> [M-OH]<sup>+</sup> m/z = 833.5 (10%), C<sub>30</sub>H<sub>68</sub>O<sub>3</sub>Si<sub>4</sub><sup>+</sup> [M-TMS<sub>3</sub>SiOH]<sup>+</sup> m/z = 587.5 (100%). <sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 207.3, 74.0, 73.5, 64.8, 51.4, 41.4, 38.9, 38.7, 31.92, 30.94, 29.96, 29.69, 29.65, 29.63, 29.53, 29.35, 25.45, 22.7, 14.1, 0.6, 0.5; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 4.20-4.24 (m, 1H), 3.91, (app tt, *J* = 9.0, 4.5 Hz, 1H), 3.82 (s, 1H), 3.37 (br, app. tt, *J* = 9.4, 4.8, 1H), 2.46-2.56 (m, 2H), 2.19 (s, 3H) 1.70 (ddd, *J* = 12.5, 10.0, 5.2 Hz, 1H), 1.61-1.67 (m, 2H), 1.37-1.53 (m, 2H) 1.24-1.34 (m, 25 H), 0.88 (t, *J* = 3H), 0.21 (s, 27H), 0.17 (s, 27H).

TBSO

10b

TLC:  $R_f = 0.40 (10:90 \text{ EtOAc/hexanes})^{13}$ C NMR (500 MHz, CDCl<sub>3</sub>, 295K)  $\delta = 207.63$ , 73.18, 71.18, 64.97, 59.78, 51.44, 41.97, 41.14, 39.42, 31.09, 26.09, 18.37, 0.82, 0.65, -

5.31; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, 295K)  $\delta$  = 4.34 (br. s., 1 H), 3.93 - 4.05 (m, 2 H), 3.60 - 3.72 (m, 2 H), 3.53 - 3.60 (m, 1 H), 2.61 (dd, *J*=16.2, 7.0 Hz, 1 H), 2.46 (dd, *J*=16.5, 4.9 Hz, 1 H), 2.17 - 2.19 (m, 1 H), 2.14 - 2.16 (m, 3 H), 1.95 - 2.05 (m, 1 H), 1.64 - 1.76 (m, 4 H), 1.48 - 1.61 (m, 3 H), 0.88 (s, 9 H), 0.20 (s, 27 H), 0.18 (d, *J*=1.8 Hz, 25 H), 0.04 (s, 6 H); LRMS (API-ES+) C<sub>34</sub>H<sub>87</sub>O<sub>5</sub>Si<sub>9</sub><sup>+</sup> [M+H]<sup>+</sup> m/z = 827.2 (100%); colorless oil



### 10c

<sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>, 295K)  $\delta$  = 207.40, 77.75, 74.46, 64.70, 51.59, 44.09, 39.07, 36.68, 31.03, 30.15, 29.85, 27.03, 26.79, 26.40, 26.22, 0.98, 0.62; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, 295K)  $\delta$  = 4.27 - 4.35 (m, 1 H), 4.14 (s, 1 H), 3.90 - 4.00 (m, 1 H), 3.28 (d, *J*=8.5 Hz, 1 H), 2.65 (dd, *J*=16.5, 6.4 Hz, 1 H), 2.46 (m, *J*=5.8 Hz, 1 H), 2.15 (s, 3 H), 1.68 - 1.83 (m, 5 H), 1.58 - 1.68 (m, 3 H), 1.48 - 1.58 (m, 2 H), 1.11 - 1.36 (m, 3 H), 0.93 - 1.10 (m, 2 H), 0.17 - 0.22 (m, 54 H)

LRMS (API-ES +)  $C_{32}H_{79}O_4Si_8^+[M+H]^+ m/z = 751.3 (90\%), C_{23}H_{51}O_3Si_4^+[M-TMS_3SiO]^+ m/z = 487.4 (100\%)$ 



#### 10d

 $\begin{array}{l} R_{\rm f} = 0.36 \; (10:90 \; EtOAc/hexanes) \; ^{13}{\rm C} \; {\rm NMR} \; (500 \; {\rm MHz}, {\rm CDCl}_3, 295{\rm K}) \; \delta = 208.08, \\ 142.60, \; 128.63, \; 128.11, \; 126.37, \; 78.60, \; 73.26, \; 64.64, \; 51.36, \; 43.54, \; 40.84, \; 38.67, \; 30.99, \\ 29.86, \; 17.41, \; 1.33, \; 0.54; \; ^{1}{\rm H} \; {\rm NMR} \; (500 \; {\rm MHz}, \; {\rm CDCl}_3, 295{\rm K}) \; \delta = 7.26 - 7.33 \; ({\rm m}, \; 6 \; {\rm H}), \\ 7.22 \; ({\rm td}, \; {\it J} = 5.7, \; 2.9 \; {\rm Hz}, \; 1 \; {\rm H}), \; 4.27 - 4.44 \; ({\rm m}, \; 1 \; {\rm H}), \; 3.90 \; ({\rm s}, \; 1 \; {\rm H}), \; 3.86 \; ({\rm sxt}, \; {\it J} = 4.3 \; {\rm Hz}, \; 1 \; {\rm H}), \\ 3.68 \; ({\rm dt}, \; {\it J} = 8.9, \; 3.4 \; {\rm Hz}, \; 1 \; {\rm H}), \; 3.11 \; ({\rm qd}, \; {\it J} = 7.0, \; 4.1 \; {\rm Hz}, \; 1 \; {\rm H}), \; 2.69 \; ({\rm dd}, \; {\it J} = 16.9, \; 7.2 \; {\rm Hz}, \\ 1 \; {\rm H}), \; 2.54 \; ({\rm dd}, \; {\it J} = 16.8, \; 5.2 \; {\rm Hz}, \; 1 \; {\rm H}), \; 2.21 \; ({\rm s}, \; 3 \; {\rm H}), \; 1.77 \; ({\rm ddd}, \; {\it J} = 14.3, \; 10.2, \; 4.1 \; {\rm Hz}, \; 2 \; {\rm H}), \\ 1.53 - 1.68 \; ({\rm m}, \; 3 \; {\rm H}), \; 1.36 \; ({\rm d}, \; {\it J} = 7.3 \; {\rm Hz}, \; 3 \; {\rm H}), \; 0.27 \; ({\rm s}, \; 27 \; {\rm H}), \; 0.10 \; ({\rm s}, \; 27 \; {\rm H}); \; LRMS \; ({\rm API-ES+}) \; C_{25} {\rm H}_{49} {\rm O}_3 {\rm Si4}^+ \; [{\rm M} - {\rm TMS}_3 {\rm SiO}]^+ \; {\rm m/z} = 509.3 \; (100\%), \; C_{34} {\rm H}_{77} {\rm O}_4 {\rm Si8}^+ \; [{\rm M} + {\rm H}]^+ \; {\rm m/z} = 773.2 \; (15\%). \end{array}$ 



12 Prepared according to GP 6

**Data for 12**:  $R_f = 0.32$  (5:95 EtOAc/hexanes); <sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>, 295K)  $\delta = 201.49$ , 138.76, 128.36, 127.83, 127.50, 75.05, 73.44, 72.71, 69.77, 50.10, 40.01, 38.23, 13.02, 0.9, 0.69; <sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>, 295K)  $\delta = 9.80 - 9.86$  (m, 1 H), 4.58 (d, *J*=12.2 Hz, 1 H), 4.47 (d, *J*=11.6 Hz, 1 H), 4.08 (quin, *J*=6.0 Hz, 1 H), 3.55 - 3.65 (m, 2 H), 3.27 (t, *J*=8.9 Hz, 1 H), 2.63 (ddd, *J*=15.6, 6.4, 1.8 Hz, 1 H), 2.51 (ddd, *J*=15.6, 5.5, 3.1 Hz, 1 H), 2.03 - 2.13 (m, 1 H), 1.64 - 1.76 (m, 1 H), 1.48 (br. s., 1 H), 0.97 (d, *J*=7.0 Hz, 3 H), 0.24 (s, 54 H); LRMS (API-ES +) C<sub>33</sub>H<sub>75</sub>O<sub>4</sub>Si<sub>8</sub><sup>+</sup> [M+H]<sup>+</sup> m/z = 759.3 (20%);

O**Si** O**Si** OH BnO

13

 $R_{\rm f} = 0.27$  (10:90 EtOAc/hexanes);

<sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>, 295K) δ =208.88, 138.82, 128.33, 127.82, 127.46, 75.32, 73.38, 72.93, 72, 39, 65.75, 51.12, 42.47, 39.48, 38.25, 30.69, 13.06, 0.86, 0.77; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, 295K) δ = 7.36 (d, *J*=4.6 Hz, 4 H), 7.30 (q, *J*=3.9 Hz, 1 H), 4.57 (d, *J*=11.9 Hz, 1 H), 4.45 (d, *J*=11.9 Hz, 1 H), 4.16 - 4.25 (m, 1 H), 3.86 (quin, *J*=6.6 Hz, 1 H), 3.55 - 3.62 (m, 2 H), 3.48 (s, 1 H), 3.23 (t, *J*=9.0 Hz, 1 H), 2.53 - 2.62 (m, 2 H), 2.19 - 2.24 (m, 3 H), 2.03 - 2.12 (m, 1 H), 1.62 - 1.70 (m, 1 H), 1.55 - 1.62 (m, 1 H), 1.45 - 1.54 (m, 2 H), 0.96 (d, *J*=6.7 Hz, 3 H), 0.22 - 0.24 (m, 32 H), 0.21 (s, 27 H); LRMS (API-ES)  $C_{36}H_{81}O_5Si_8^+$  [M+H]<sup>+</sup> m/z = 817.3 (100%)



14

<sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>, 320 K)  $\delta$  = 207.45, 138.69, 128.39, 127.87, 127.55, 76.52, 74.13, 73.61, 71.67, 64.62, 51.40, 39.39, 36.58, 30.99, 15.09, 0.89, 0.61; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, 320 K)  $\delta$  =7.34 - 7.43 (m, 4 H), 7.28 - 7.34 (m, 1 H), 4.54 - 4.60 (m, 1 H), 4.44 - 4.52 (m, 1 H), 4.35 (s, 1 H), 4.07 (s, 1 H), 3.94 (s, 1 H), 3.63 - 3.70 (m, 1 H), 3.43 - 3.49 (m, 1 H), 3.21 (t, *J*=9.0 Hz, 1 H), 2.69 (dd, *J*=16.8, 6.4 Hz, 1 H), 2.52 (dd, *J*=17.1, 6.1 Hz, 1 H), 2.19 (br. s, 3 H), 2.12 (dtt, *J*=9.7, 6.5, 6.5, 3.3, 3.3 Hz, 1 H), 1.62 - 1.76 (m, 3 H), 1.52 - 1.61 (m, 1 H), 1.07 (d, *J*=7.0 Hz, 3 H), 0.86 - 1.00 (m, 1 H), 0.22 (s, 54 H); LRMS (API-ES) C<sub>36</sub>H<sub>81</sub>O<sub>5</sub>Si<sub>8</sub><sup>+</sup> [M+H]<sup>+</sup> m/z = 817.3 (100%);

# 10e

TLC:  $R_f = 0.42$  (10:90 EtOAc/hexanes); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, 320 K)  $\delta = 4.27 - 4.36$  (m, 1 H), 4.04 - 4.14 (m, 1 H), 3.97 (sxt, *J*=4.9 Hz, 1 H), 3.70 (tt, *J*=9.2, 4.8 Hz, 1 H), 3.63 (d, *J*=2.4 Hz, 1 H), 2.55 (dd, *J*=15.6, 8.2 Hz, 1 H), 2.47 (dd, *J*=16.2, 4.0 Hz, 1 H), 2.17 (s, 3 H), 2.01 (ddd, *J*=13.3, 8.4, 5.2 Hz, 1 H), 1.66 - 1.80 (m, 3 H), 1.50 (ddd, *J*=14.3, 5.5, 2.4 Hz, 1 H), 1.27 - 1.34 (m, 3 H), 1.24 (d, *J*=6.1 Hz, 3 H), 1.06 (s 18 H), 0.20 (s, 27 H), 0.19 (s, 27 H); <sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>, 320 K)  $\delta = 208.1, 72.9, 70.0, 66.1, 65.1, 51.2, 48.6, 42.9, 40.3, 30.9, 24.8, 18.44, 18.36, 12.9, 0.9, 0.6; LRMS (API-ES+) C<sub>38</sub>H<sub>94</sub>O<sub>5</sub>NaSi<sub>9</sub><sup>+</sup> [M+Na]<sup>+</sup> m/z = 905.2 (100%).$ 

**Stereochemical assignments for compounds 9,10 13, 14:** Compounds **9a** was determined to be *syn-syn* by conversion to compound **SI-12** according to **GP 7** and evaluation of its <sup>13</sup>C NMR shifts according to the method described by Kishi.<sup>36,37</sup>

<sup>&</sup>lt;sup>36</sup> Kobayashi, Y.; Tan, C.-H.; Kishi, Y. Journal of the American Chemical Society 2001, 123, 2076–2078.

<sup>&</sup>lt;sup>37</sup> Kobayashi, Y.; Tan, C.-H.; Kishi, Y. Helvetica Chimica Acta 2000, 83, 2562–2571.

Resonances at 72.0, 71.3, 70.2 and 68.9 indicated a *syn-syn* configuration. In a similar manner, **10a** was converted to **SI-13** and determined to be *anti-syn* by resonances at 72.0, 71.5, 68.3 and 67.0 (**Scheme S-10**). Compounds **9b**, **9c**, **9d**, **10a**, **10b**, **10c**, **10d** were assigned by analogy.

### Scheme S-10



**Stereochemical determination:** The C(6)-C(8)-C(10) stereochemistry of **10e** was assigned *syn-syn*, by previous determination of stereochemistry of **8e**.<sup>18</sup> The C(4) stereochemistry was determined to be (*S*) (1,3-*anti* aldol) by conversion to **SI-14** following procedure **GP6** (**Scheme S-11**). Analysis of the <sup>13</sup>C NMR spectrum indicated C(4)-C(6)-*anti*- stereochemistry ( $\delta = 100.4, 24.9, 25.1$ ). **Scheme S-11** 



Data for **SI-2**:TLC:  $R_f = 0.11$  (10:90 *i*-PrOH/hexanes);FTIR (thin film) 3370, 2919, 2850, 1467, 1378, 1324, 1132, 847; LRMS (APCI – )  $C_{22}H_{46}^{35}ClO_4^{-}$  [M+<sup>35</sup>Cl]<sup>-</sup> m/z = 409.2 (100%),  $C_{22}H_{46}^{37}ClO_4^{-}$  [M+<sup>37</sup>Cl]<sup>-</sup> m/z = 411.2 (36%); <sup>13</sup>C NMR (500 MHz, CD<sub>3</sub>OD)  $\delta = 71.9$ , 71.5, 70.4, 46.1, 44.8, 38.6, 32.9, 30.63, 30.57, 30.55, 30. 26, 28.7, 26.3, 23.5, 14.4; <sup>1</sup>H NMR (500 MHz, CD<sub>3</sub>OD)  $\delta = 4.15$  (dddd, J = 7.6, 7.5, 5.2, 5.0 Hz, 1H), 3.97 (app tt, J = 8.3, 4.4, 1H), 3.71-3.77 (m, 1H), 1.50-1.64 m (5H), 1.38-1.48 (m, 3H), 1.24-1.34 (m, 25H), 1.23 (s, 3H), 0.88 (t, J = 6.9 Hz, 3H).



**Data for SI-13:** TLC:  $R_f = 0.26$  (15:85 *i*-PrOH/hexanes); FTIR (thin film) 3349 (br), 2919, 2850, 2496, 1468, 1378, 1137, 1081, 740.1, LRMS(APCI – )  $C_{22}H_{46}^{35}ClO_4^{-1}$  [M+<sup>35</sup>Cl]<sup>-</sup>m/z = 409.2 (100%),  $C_{22}H_{46}^{37}ClO_4^{-1}$  [M+<sup>37</sup>Cl]<sup>-</sup>m/z = 411.2 (37%); <sup>13</sup>C NMR (500 MHz, CD<sub>3</sub>OD)  $\delta$  = 72.0, 71.5, 68.3, 67.0, 46.6, 45.3, 38.6, 32.9, 30.72, 30.66, 30.35, 28.7, 26.4, 23.6, 14.4; <sup>1</sup>H NMR (500 MHz, CD<sub>3</sub>OD)  $\delta$  = 4.21 (br, app. t *J* = 4.3 Hz, 1H), 3.98-4.04 (m, 1H), 3.72-3.78 (m, 1H)1.55-1.65 (m, 6H), 1.34-1.38 (m, 6 H), 1.25-1.31 (m, 35H), 1.23 (s, 3H), 0.88 (t, *J* = 7 Hz, 1H).



**Data for SI-4:** <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 4.78 (s, 3 H), 4.74 (s, 1 H), 3.93 - 4.03 (m, 4 H), 2.28 (dd, *J*=14.3, 7.6 Hz, 1 H), 2.13 (dd, *J*=14.3, 5.8 Hz, 1 H), 1.83 (dt, *J*=14.0, 7.2 Hz, 1 H), 1.74 (s, 3 H), 1.55 - 1.65 (m, 3 H), 1.45 - 1.53 (m, 2 H), 1.36 (s, 3 H), 1.34 (s, 3 H), 1.17 (d, *J*=6.1 Hz, 3 H); <sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 142.4, 112.3, 100.4, 65.7, 65.2, 65.1, 63.0, 44.2, 42.4, 38.6, 38.3, 25.1, 24.9, 23.0, 22.4; LRMS (API-ES+) C<sub>12</sub>H<sub>21</sub>O<sub>2</sub><sup>+</sup> [M - acetone - OH]<sup>+</sup> m/z = 197.0 (95%).

Synthetic Procedures, Stereochemical determination, and data for 15, 16, 17, 18 Compound 15a, 15b, 15c, and 17 were prepared according to published procedure<sup>38</sup>. (TMS)<sub>3</sub>Si (TMS)<sub>3</sub>Si–Q Q O<sup>-Si</sup>(TMS)<sub>3</sub>

#### 15a

<sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>, 290 K)  $\delta$  = 202.24, 69.80, 69.76, 69.12, 49.95, 48.58, 44.36, 24.51, 0.96, 0.75; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, 290 K)  $\delta$  = 9.75 (t, *J*=2.1 Hz, 1 H), 4.18 - 4.31 (m, 1 H), 3.65 (qd, *J*=8.9, 4.6 Hz, 2 H), 2.50 (ddd, *J*=15.4, 3.7, 1.8 Hz, 1 H), 2.33 (ddd, *J*=15.3, 8.9, 3.7 Hz, 1 H), 1.95 (ddd, *J*=12.8, 9.8, 4.9 Hz, 1 H), 1.75 (ddd, *J*=12.8, 9.8, 5.5 Hz, 1 H), 1.48 (ddd, *J*=12.8, 9.2, 3.7 Hz, 1 H), 1.16 - 1.22 (m, 1 H), 1.17 (br. s., 3 H), 0.18 (s, 81 H); LRMS (API-ES +) C<sub>26</sub>H<sub>67</sub>O<sub>3</sub>Si<sub>8</sub><sup>+</sup> [M – TMS<sub>3</sub>SiO]<sup>+</sup> m/z = 651.2 (80%)



<sup>&</sup>lt;sup>38</sup> Albert, B. J.; Yamamoto, H. Angew. Chem. Int. Ed. 2010, 49, 2747–2749.

СНО

Known compound<sup>21</sup>

(TMS)<sub>3</sub>Si Si(TMS)3 (TMS)<sub>3</sub>Si-O Ó OH റ

**16a** Prepared according to **GP 4** 

<sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>, 290 K)  $\delta$  = 208.73, 72.14, 69.71, 69.36, 65.05, 51.23, 48.84, 43.90, 41.49, 30.97, 24.47, 1.03, 0.81; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, 290 K)  $\delta$  =4.22 - 4.38 (m, 1 H), 3.88 - 4.04 (m, 1 H), 3.66 (m, *J*=3.4 Hz, 2 H), 3.30 (d, *J*=3.1 Hz, 1 H), 2.48 - 2.59 (m, 2 H), 2.17 (s, 3 H), 1.95 (ddd, *J*=13.1, 9.5, 4.9 Hz, 1 H), 1.65 - 1.75 (m, 2 H), 1.56 (ddd, *J*=13.0, 9.5, 3.5 Hz, 1 H), 1.44 (ddd, *J*=14.0, 7.0, 2.7 Hz, 1 H), 1.17 (d, *J*=6.1 Hz, 3 H), 0.16 - 0.22 (m, 81 H); LRMS (API-ES+) C<sub>44</sub>H<sub>113</sub>O<sub>5</sub>Si<sub>12</sub><sup>+</sup> [M+H]<sup>+</sup> m/z = 973.5 (100%);



# 16b Prepared according to GP 4

<sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>, 290 K)  $\delta$  = 208.97, 77.68, 72.03, 69.90, 64.93, 51.30, 41.57, 30.95, 27.12, 26.83, 26.27, 1.15, 1.10, 0.84; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, 290 K)  $\delta$  = 4.27 - 4.37 (m, 1 H), 3.94 (br. s., 1 H), 3.69 (tt, *J*=9.3, 4.6 Hz, 1 H), 3.34 (d, *J*=9.8 Hz, 1 H), 3.17 (d, *J*=3.1 Hz, 1 H), 2.52 (d, *J*=5.8 Hz, 2 H), 2.18 (s, 3 H), 1.67 - 1.85 (m, 5 H), 1.50 - 1.66 (m, 4 H), 1.48 (br. s., 0 H), 1.01 - 1.33 (m, 5 H), 0.20 (d, *J*=2.1 Hz, 81 H); C<sub>44</sub>H<sub>112</sub>O<sub>5</sub>Si<sub>12</sub><sup>+</sup> [M+H]<sup>+</sup> m/z = 1057.5 (100%);



**16c** Prepared according to **GP 4** <sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>, 290 K)  $\delta$  = 208.86, 73.68, 71.88, 69.59, 65.03, 51.23, 46.05, 43.95, 41.68, 38.65, 31.80, 30.95, 29.91, 29.38, 26.20, 22.76, 14.28, 1.00, 0.87, 0.83; <sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>, 290 K)  $\delta$  = 4.26 - 4.40 (m, 1 H), 3.88 - 4.10 (m, 1 H), 3.71 (d, *J*=4.0 Hz, 1 H), 3.40 (br. s., 1 H), 3.21 (d, *J*=3.7 Hz, 1 H), 2.52 (d, *J*=5.8 Hz, 2 H), 2.18 (s, 3 H), 1.80 (t, *J*=8.9 Hz, 1 H), 1.62 - 1.74 (m, 3 H), 1.47 - 1.57 (m, 1 H), 1.36 - 1.45 (m, 2 H), 1.15 - 1.34 (m, 12 H), 0.84 - 0.94 (m, 3 H), 0.14 - 0.27 (m, 81 H); LMRS (API-ES) C<sub>43</sub>H<sub>108</sub>O<sub>5</sub>Si<sub>12</sub><sup>+</sup> [M+H]<sup>+</sup> m/z = 1041.5 (100%)

**Stereochemical determination of 16a:** There stereochemistry of **16a** was confirmed by derivatization to **SI-5**, by a 1,3-*syn*- selective chelation controlled reduction followed by desilylation (**Scheme S-12**). The stereochemistry of resultant penta-ol **SI-15** was determined as follows: C(2),C(4), C(6) was assigned to be *syn-syn* based on the stereochemical outcome of the tri-aldol cascade to form **15a**.<sup>21</sup>The C(8)-C(10) *syn* stereochemistry was assigned to the literature precedent of 1,3-chelation controlled-*syn* 

reduction.<sup>39</sup> Finally, <sup>13</sup>C NMR analysis revealed PB-5149 to possess  $C_1$ -symmetry, indicating C(6)-C(8) *anti*-relationship resulting from a 1,3-*anti* aldol addition to **15**a. **16b** and **16c** were assigned by analogy.

### Scheme S-12



$$\begin{array}{cccc} OH & OH & OH & OH & OH \\ \hline I & I & \hline \vdots & \hline \vdots & \hline \\ 2 & 4 & 6 & 8 & 10 \end{array}$$

**Data for SI-15** <sup>1</sup>H NMR (500MHz, CD<sub>3</sub>OD, 294K)  $\delta = 3.98 - 4.06$  (m, 2 H), 3.91 - 3.98 (m, 3 H), 1.65 - 1.69 (m, 1 H), 1.61 - 1.65 (m, 1 H), 1.57 - 1.61 (m, 2 H), 1.52 - 1.57 (m, 2 H), 1.49 (ddd, *J*=14.0, 5.2, 4.3 Hz, 1 H), 1.18 (d, *J*=6.1 Hz, 6 H); <sup>13</sup>C NMR (500MHz, CD<sub>3</sub>OD, 294K)  $\delta = 70.16$ , 68.08, 67.90, 67.34, 67.32, 47.50, 46.88, 46.07, 45.97, 23.68, 23.66; LRMS (API-ES +) C<sub>11</sub>H<sub>24</sub>NaO<sub>5</sub><sup>+</sup> [M+Na]<sup>+</sup> m/z = 259.2 (100%), C<sub>11</sub>H<sub>25</sub>O<sub>5</sub><sup>+</sup> [M+H]<sup>+</sup> m/z 237.2 (40%); LRMS (API-ES -) C<sub>11</sub>H<sub>24</sub><sup>35</sup>ClO<sub>5</sub><sup>-</sup> [M+<sup>35</sup>Cl]<sup>-</sup> m/z = 271.0 (100%), C<sub>11</sub>H<sub>24</sub><sup>37</sup>ClO<sub>5</sub><sup>-</sup> [M+<sup>37</sup>Cl]<sup>-</sup> m/z = 273.1 (30%); HRMS-TOF (ESI/CI multimode +): C<sub>11</sub>H<sub>25</sub>O<sub>5</sub><sup>+</sup> [M+H]<sup>+</sup> m/z = 237.1703 (cale: 237.17023, 0.2 ppm); HRMS-TOF (ESI/CI multimode -): C<sub>11</sub>H<sub>24</sub><sup>35</sup>ClO<sub>5</sub><sup>-</sup> m/z = 271.1310 (cale: 271.13125, 0.9 ppm)

### Additional data for eq. 3,4,5

In order to determine diastereoselection for the overall tetra-aldol process of eq. 5 compound **18**, the individual aldol steps were evaluated using diastereomerically pure aldehyde substrates.



<sup>&</sup>lt;sup>39</sup> Evans et. al. J. Org. Chem. **1990**, 55, 5190.



Aldol reaction of **23** and **17** yields **25** with excellent diastereoselectivity. Because the dr of the triple aldol reaction of **17** and *R*)-3-(TIPSOxy)butanal (eq. **S5**) cannot be directly determined by <sup>1</sup>H NMR, the dr can be inferred by comparing eq. **S4** and eq. **S2**. Thus the diastereoselectivity of **S5** can be estimated at ~5:1.



Reaction of 17 with acetone enolborinate by **GP 4** gives product 18 in good selectivity dr = 89:11. The overall diastereoselectivity (ds) of the tetraaldol sequence in eq. 5, therefore is approximately 75%



**Data for 26:** TLC:  $R_f = 0.58 (10:90 \text{ EtOAc/hexanes})$ ;<sup>1</sup>H NMR (500 MHz,  $C_6D_6$ , 333K)  $\delta = 4.55 - 4.64 (m, 1 H)$ , 4.37 - 4.45 (m, 1 H), 4.24 (tt, J=9.0, 4.4 Hz, 1 H), 4.14 - 4.21 (m, 1 H), 4.10 (tt, J=9.0, 4.4 Hz, 1 H), 2.40 - 2.57 (m, 2 H), 2.21 - 2.30 (m, 1 H), 2.13 - 2.20 (m, 2 H), 2.09 (ddd, J=12.9, 9.7, 5.3 Hz, 1 H), 1.92 - 2.01 (m, 1 H), 1.88 (ddd, J=12.5, 8.9, 3.5 Hz, 1 H), 1.81 (s, 3 H), 1.61 (d, J=6.0 Hz, 3 H), 1.33 - 1.39 (m, 21 H), 0.53 (s, 27 H), 0.47 - 0.50 (m, 54 H); <sup>13</sup>C NMR (500 MHz,  $C_6D_6, 333$ K)  $\delta = 207.3, 73.5, 71.3, 70.4, 66.9, 65.7, 50.9, 48.1, 46.5, 46.2, 45.1, 30.0, 24.4, 18.8, 18.7, 13.2, 1.5, 1.32, 1.27; LRMS (API-ES+) <math>C_{49}H_{123}O_5Si_{13}^{+}$  [M-OH]<sup>+</sup> m/z = 1155.5 (22%),  $C_9H_{27}Si_4^{+}$  [TMS<sub>3</sub>Si]<sup>+</sup> m/z = 247.3 (95%). FTIR (thin film): 3521 (br), 2947, 2894, 2867, 1715, 1376, 1244, 1034, 835, 686, 624.

**Stereochemical assignment: 18** was determined to be C(4)-C(6)-C(8)-C(10)-(C12)-*syn-syn-syn-syn-configured by previous determination of the stereochemistry of intermediate* **17**. The C(4) stereochemistry was determined to be (*R*) by conversion to C<sub>2</sub>-symmetric *meso-* hexa-ol **SI-16** by a *syn-selective*<sup>22</sup> reduction and desilylation sequences shown in

Scheme S-13.  $C_2$ - symmetry was inferred from the simplicity of <sup>13</sup>C NMR spectrum: resonances at  $\delta = 70.1, 70.0, 67.3, 46.8, 45.4, 45.3, 23.7$  ppm.



Scheme S-13: Synthesis of hexa-ol SI-16



(1) A 25 mL flame-dried round-bottomed flask with magnetic stir bar was charged with ketone 26 (171mg, 0.15 mmol), fitted with a rubber septum, and purged with  $N_2$ . THF (1 mL) was added and the reaction was stirred and cooled to -10°C. Catecholborane (0.75 mL,1.0 M THF, obtained from Sigma-Aldrich) was added dropwise. The reaction was stirred overnight, then quenched by addition of methanol (1mL) and NaK tatrate solution (sat. aq., 2mL). The biphasic mixture was stirred at r.t. for 2 hrs, then extracted with CH<sub>2</sub>Cl<sub>2</sub> (3x 5 mL). The combined organic layers were dried (Na<sub>2</sub>SO<sub>4</sub>), filtered through cotton, and concentrated. Flash chromatography (35mL SiO<sub>2</sub>,  $0.5 \rightarrow 5\%$  v/v EtOAc/hexanes eluent) yield the intermediate diol (166mg, 94% yield). (2) The intermediate diol (166 mg, 0.141 mmol) was added to a dry 25 mL round-bottomed flask containing a magnetic stir bar and fitted with a septum. THF (1.0 mL) was added, the reaction cooled to 0°C and TBAF (0.8 mL, 1.0 THF) was added dropwise (gas evolution observed). The reaction was stirred for 1 h, and the volatiles were then removed by evacuation. 15 mL H<sub>2</sub>O was added, the aqueous layer was extracted with CH<sub>2</sub>Cl<sub>2</sub> Et<sub>2</sub>O. and EtOAc (5 mL each). The aqueous layer was concentrated, revealing the product contaminated with a large excess of  $Bu_4N^+X^-$ . (3) The mixture was purified by passing through a column of DOWEX<sup>®</sup>-50WX8-200 ion exchange resin (30g, pretreated by elution of MeOH (100mL), 1N HCl (100mL) and H<sub>2</sub>O (100mL) eluting with 1 N NH<sub>4</sub>OH. Evaporation of the volatiles gave SI-16 (20 mg, 54% yield). **Data for SI-16:**<sup>1</sup>H NMR (500 MHz, CD<sub>3</sub>OD)  $\delta$  = 3.88 - 4.06 (m, 6 H), 1.50 - 1.74 (m, 10 H), 1.18 (d, J=6.1 Hz, 6 H);  $^{13}$ C NMR (500 MHz, CD<sub>3</sub>OD)  $\delta$  = 70.1, 70.0, 67.3, 46.8, 45.4, 45.3, 23.7; LRMS (API-ES –)  $C_{13}H_{27}O_6^{-1}$  [M–H]<sup>-</sup> m/z = 279.1 (100%);

# Synthetic Procedures, Stereochemical Assignments, and Data for Compounds 20, 21, and 22

Known compound.<sup>13</sup> Prepared by Me<sub>2</sub>AlNTf<sub>2</sub>-catalyzed aldol reaction of E-23 and (S)-2methyl propanal. Stereochemistry previously determined.

**Data for 19a**: TLC:  $(CH_2Cl_2:hexanes, 25:75)R_f = 0.38; {}^{1}H NMR (500 MHz, C_6D_6 dr =$ 88:8:4) § 9.73 (d, J=1.8 Hz, 1 H), 3.53 (t, J=3.9 Hz, 1 H), 2.36 (ddd, J=7.1, 3.4, 2.0 Hz, 1 H), 1.43 - 1.55 (m, 2 H), 1.00 (d, J=7.1 Hz, 3 H), 0.84 - 0.95 (m, 1 H), 0.82 (t, J=7.1 Hz, 3 H), 0.77 (d, J=7.0 Hz, 3 H), 0.25 (s, 27 H); FTIR (thin film): 2961, 2893, 1724, 1459, 1425, 1245, 1023, 834, 756, 687, 624; <sup>13</sup>C NMR (500 MHz,  $C_6D_6$ , dr = 88:8:4)  $\delta$ = 202.5, 83.6, 49.7, 40.5, 26.8, 15.6, 12.3, 12.1, 0.9; LRMS (APCI +) C<sub>9</sub>H<sub>28</sub>OSi<sub>4</sub>Na<sup>+</sup>  $[TMS_3SiOHNa]^+ m/z = 288.1 (100\%), C_{17}H_{43}O_2Si_4^+ [M+H]^+ m/z = 391.2 (30\%). [a]_D^{24}$  $=-12.020^{\circ}$  (c 1.00, CH<sub>2</sub>Cl<sub>2</sub>).

(TMS)<sub>3</sub>S



22a Prepared according to GP: 4 with the following modifications: Acetone 9-BBN enolborinate must be generated at -78 °C, rather than 0°C as it is unstable at higher temperatures. A solution of the aldehyde is therefore added to a stirring solution of enolborinate at -78°C.

**Data for 22a**: <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 3.97 (tt, *J*=9.2, 2.6 Hz, 1 H), 3.64 (dd, J=2.4, 0.9 Hz, 1 H), 3.49 (dd, J=4.9, 3.1 Hz, 1 H), 2.63 (dd, J=15.9, 2.6 Hz, 1 H), 2.44 (dd, J=15.9, 9.5 Hz, 1 H), 2.20 (s, 3 H), 1.83 - 1.92 (m, 1 H), 1.67 - 1.77 (m, 0 H), 1.48 -1.58 (m, 2 H), 1.08 - 1.19 (m, 1 H), 0.87 - 0.93 (m, 3 H), 0.85 (d, J=6.9 Hz, 3 H), 0.82 (d, J=7.0 Hz, 3 H), 0.22 (s, 27 H); <sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>)  $\delta = 209.5$ , 84.5, 70.5, 48.7, 41.4, 39.7, 30.9, 25.0, 15.7, 15.4, 12.2, 0.9; FTIR (thin film) 3497 (br), 2961, 2894, 1711, 1380, 1244, 1041, 836, 687; LRMS (APCI +):  $C_{20}H_{49}O_3Si_4^+$  [M+H]<sup>+</sup> m/z = 449.2 (100%);  $C_{20}H_{47}O_2Si_4^+$  [M - OH]<sup>+</sup> m/z = 431.2 (65%).

Procedure for one-pot anti-propionaldehyde, anti-acetone addition: GP 7



# 22b

General procedure GP 7: An oven-dried 10 mL pear-shaped flask (primary reaction flask) was equipped with a magnetic stir bar and septum, then charged with E-23 (96 mg, 0.315 mmol, CH<sub>2</sub>Cl<sub>2</sub> (2 mL) and cyclohexane carboxyaldehyde (36.5  $\mu$ L, 0.3 mmol). The stirring reaction was cooled to -78 °C, and HNTf<sub>2</sub> was added dropwise (30 mL, 0.01M CH<sub>2</sub>Cl<sub>2</sub> 3 x  $10^{-4}$  mmol). The reaction was stirred at this temperature for 1.5 h, then warmed to -45 °C, stirred for 30min, then re-cooled to -78 °C, at which point <3µL Et<sub>3</sub>N was added to quench the Lewis acid catalyst. Simultaneously, an oven-dried secondary reaction flask (25 mL round-bottomed) was charged with toluene (1.5 mL), acetone (26

 $\mu$ L, 0.36 mmol), and Et<sub>3</sub>N (56 μL, 0.39 mmol). The stirring flask was cooled to −78 °C, at which point 9-BBN OTf (0.5 M hexanes, 0.720 mL) was added dropwise, with immediate formation of a white precipitate. After stirring for 15min, the contents of the primary reaction flask were slowly cannulated to the secondary reaction flask over 3 min, down the side of the flask to minimize local heating. The primary flask was rinsed (2 x 0.3 mL). The reaction was stirred for 45 min at −78 °C then warmed to −45°C. The reaction was quenched by addition of MeOH (0.2 mL) and pH 7.0 buffer (0.2 M, 4 mL), warmed to 0 °C, and stirred vigorously. Et<sub>2</sub>O was then added (2 mL), followed by 1 mL 3:1 MeOH/H<sub>2</sub>O<sub>2</sub> (30% aq.). The biphasic mixture was stirred vigorously for 0.5 h. H<sub>2</sub>O was added (5mL), and the layers were separated. The aqueous layer was extracted (3x 3mL Et<sub>2</sub>O, and the combined organic layers were washed with NaHCO<sub>3</sub>, dried (Na<sub>2</sub>SO<sub>4</sub>), filtered (cotton plug) and concentrated. The mixture was purified by flash chromatography (16 mL SiO<sub>2</sub>, EtOAc/Hex 0.5→3% v/v). 135 mg, 95% yield colorless oil.

TLC:  $R_f = 0.27$  (10:90 EtOAc/Hexanes); <sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>)  $\delta = 209.2$ , 85.6, 70.5, 48.7, 43.7, 40.7, 30.8, 29.6, 27.4, 26.6, 26.2, 16.4, 0.8; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta = 3.99$  (tt, *J*=9.2, 2.2 Hz, 1 H), 3.67 (t, *J*=0.9 Hz, 1 H), 3.34 (t, *J*=4.1 Hz, 1 H), 2.60 (dd, *J*=15.4, 2.9 Hz, 1 H), 2.42 (dd, *J*=15.6, 9.5 Hz, 1 H), 2.18 (s, 3 H), 1.70 - 1.78 (m, 3 H), 1.61 - 1.68 (m, 2 H), 1.50 - 1.57 (m, 2 H), 1.09 - 1.25 (m, 3 H), 0.97 - 1.08 (m, 1 H), 0.80 (d, *J*=7.0 Hz, 3 H), 0.19 - 0.23 (m, 27 H); LRMS (API-ES): C<sub>22</sub>H<sub>51</sub>O<sub>3</sub>Si<sub>4</sub><sup>+</sup> [M+H]<sup>+</sup> m/z = 475.2 (20%);

(TMS)<sub>3</sub>Si



22c

<sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  =209.1, 89.6, 70.6, 49.1, 42.0, 37.5, 31.4, 27.1, 17.8, 1.5; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 4.01 (tt, *J*=8.9, 2.7 Hz, 1 H), 3.54 (s, 1 H), 3.30 (d, *J*=4.0 Hz, 1 H), 2.61 (dd, *J*=15.1, 2.3 Hz, 1 H), 2.42 (dd, *J*=15.3, 8.9 Hz, 1 H), 2.19 (s, 3 H), 1.76 (dqd, *J*=10.3, 6.9, 6.9, 6.9, 3.7 Hz, 1 H), 0.90 (s, 9 H), 0.88 (d, *J*=7.0 Hz, 3 H), 0.23 (s, 27 H); C<sub>20</sub>H<sub>49</sub>O<sub>3</sub>Si<sub>4</sub><sup>+</sup> [M + H]<sup>+</sup> m/z = 449.3; C<sub>20</sub>H<sub>47</sub>O<sub>2</sub>Si<sub>4</sub><sup>+</sup> [M - OH]<sup>+</sup> m/z = 431.3 (85%)





TLC:  $R_f = 0.17$  (10:90 EtOAc/hexanes), <sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>)  $\delta = 209.09$ , 137.86, 128.55, 128.00, 127.88, 76.56, 75.10, 73.5, 70.38, 48.87, 44.93, 35.04, 31.04, 13.16, 11.58, 0.83; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta = 7.28 - 7.41$  (m, 5 H), 4.58 (d, *J*=11.3 Hz, 1 H), 4.49 (d, *J*=11.6 Hz, 1 H), 3.88 - 3.97 (m, 2 H), 3.61 (dd, *J*=3.1, 1.2 Hz, 1 H), 3.41 (t, *J*=8.2 Hz, 1 H), 3.36 (dd, *J*=8.9, 5.5 Hz, 1 H), 2.60 (dt, *J*=15.6, 0.9 Hz, 1 H), 2.52 (dd, *J*=15.9, 9.5 Hz, 1 H), 2.21 (s, 3 H), 2.05 (m, *J*=7.0 Hz, 1 H), 1.72 - 1.81 (m, 1 H), 0.90 (d, *J*=6.7 Hz, 3 H), 0.83 (d, *J*=6.7 Hz, 3 H), 0.24 (s, 27 H); FTIR (thin film):3485 (br), 2948, 2893, 1713, 1380, 1244, 1105, 1030, 837, 744, 687, 511; HMRS-TOF:  $C_{26}H_{51}O_3Si_4^+$  [M-OH]<sup>+</sup> m/z = 523.2900 (calc.: 523.2915, 3ppm),  $C_{26}H_{53}O_4Si_4^+$  [M+H]<sup>+</sup> m/z = 541.3003 (calc.: 541.3020, 3ppm) colorless oil.



#### 22f

<sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 210.6, 140.9, 128.0, 127.3, 126.9, 78.3, 69.3, 47.7, 45.3, 30.9, 9.4, 9.0, 5.4; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  =7.30 (dd, *J*=8.2, 0.9 Hz, 2 H), 7.24 (td, *J*=7.6, 0.6 Hz, 2 H), 7.18 (tt, *J*=7.0, 1.2 Hz, 1 H), 4.91 (d, *J*=4.0 Hz, 1 H), 3.30 - 3.39 (m, 2 H), 2.56 (dd, *J*=17.4, 2.1 Hz, 1 H), 2.42 (dd, *J*=17.9, 8.7 Hz, 1 H), 2.11 (s, 3 H), 1.97 (dqd, *J*=10.5, 6.7, 6.7, 6.7, 3.1 Hz, 1 H), 0.99 (t, *J*=7.9 Hz, 27 H), 0.70 (q, *J*=7.9 Hz, 18 H), 0.61 (d, *J*=6.7 Hz, 3 H);



#### 22h

<sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 210.5, 137.2, 131.3, 129.8, 128.6, 127.4, 126.4, 77.8, 69.7, 47.9, 45.2, 30.9, 9.4, 8.9, 5.5; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  =7.36 (dd, *J*=8.5, 1.2 Hz, 2 H), 7.31 (t, *J*=7.6 Hz, 2 H), 7.22 (m, *J*=7.3, 7.3, 7.3, 1.2, 1.2 Hz, 1 H), 6.52 (d, *J*=16.2 Hz, 1 H), 6.07 (dd, *J*=16.2, 7.0 Hz, 1 H), 4.44 (ddd, *J*=7.0, 4.3, 0.9 Hz, 1 H), 3.69 (tdd, *J*=9.5, 9.5, 3.7, 2.4 Hz, 1 H), 3.20 (d, *J*=4.0 Hz, 1 H), 2.70 (dd, *J*=17.7, 2.1 Hz, 1 H), 2.48 (dd, *J*=17.7, 9.5 Hz, 1 H), 2.16 (s, 3 H), 1.80 - 1.93 (m, 1 H), 1.03 (t, *J*=7.9 Hz, 27 H), 0.78 (m, *J*=7.6, 7.6, 7.6 Hz, 18 H); LRMS (API-ES+) C<sub>33</sub>H<sub>64</sub>NaO<sub>3</sub>Si<sub>4</sub><sup>+</sup> [M+Na]<sup>+</sup> m/z = 643.2 (20%)

(Et₃Si)₃Si ∖O



**22i** Me<sub>2</sub>AlNTf<sub>2</sub> (0.5 mol%) used as a catalyst for the first aldol, rather than HNTf<sub>2</sub>. <sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 209.56, 145.60, 128.42, 128.16, 126.55, 79.25, 69.06, 49.04, 45.05, 42.76, 30.56, 21.05, 11.20, 9.19, 5.81; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.18 - 7.38 (m, 7 H), 4.06 (dd, *J*=8.2, 2.7 Hz, 1 H), 2.76 - 2.87 (m, 2 H), 2.47 (dd, *J*=16.8, 1.8 Hz, 1 H), 2.17 - 2.27 (m, 2 H), 2.03 (s, 3 H), 1.74 (quint, *J*=7.0, 7.0, 7.0, 7.0, 2.7, 2.7 Hz, 1 H), 1.32 (d, *J*=7.0 Hz, 3 H), 1.08 - 1.17 (m, 27 H), 0.85 (q, *J*=7.9 Hz, 21 H); LRMS (API-ES): C<sub>33</sub>H<sub>66</sub>NaO<sub>3</sub>Si<sub>4</sub><sup>+</sup> [M+Na]<sup>+</sup> m/z = 645.3 (100%); C<sub>33</sub>H<sub>65</sub>O<sub>2</sub>Si<sub>4</sub><sup>+</sup> [M - OH]<sup>+</sup> m/z = 605.5 (95%)



### 20a

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 3.84 (dt, *J*=8.8, 3.5 Hz, 1 H), 3.32 (m, *J*=4.9, 1.2 Hz, 1 H), 2.74 (dd, *J*=17.1, 8.5 Hz, 1 H), 2.61 (dd, *J*=17.1, 3.1 Hz, 1 H), 2.13 (s, 3 H), 1.59 - 1.66 (m, 1 H), 1.51 - 1.59 (m, 1 H), 1.25 - 1.34 (m, 1 H), 1.16 - 1.25 (m, 1 H), 0.90 (d, *J*=7.0 Hz, 3 H), 0.87 (t, *J*=7.0 Hz, 3 H), 0.80 (d, *J*=6.7 Hz, 3 H), 0.19 (s, 27 H), 0.17 - 0.19 (m, 27 H); <sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 205.9, 81.5, 72.7, 50.29, 46.03, 37.3, 31.2, 30.1, 14.5, 12.4, 9.5, 0.94, 0.91; FTIR (thin film): 2949, 2893, 1718, 1243, 1018.4, 835; LRMS (APCI+) C<sub>20</sub>H<sub>45</sub>O<sub>2</sub>Si<sub>4</sub> [M-OSiTMS<sub>3</sub>]<sup>+</sup> m/z = 431 (35%).



# 20b

<sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  =206.7, 140.0, 131.2, 130.5, 128.6, 127.4, 126.8, 78.1, 74.4, 50.2, 47.0, 31.3, 10.9, 0.9, 0.7; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  =7.36 (dd, *J*=7.9, 1.2 Hz, 2 H), 7.30 (t, *J*=7.3 Hz, 2 H), 7.22 (tt, *J*=7.0, 1.2 Hz, 1 H), 6.49 (d, *J*=15.9 Hz, 1 H), 6.18 (dd, *J*=15.9, 6.4 Hz, 1 H), 4.02 (ddd, *J*=6.1, 4.6, 1.2 Hz, 1 H), 3.83 (td, *J*=6.5, 4.1 Hz, 1 H), 2.78 (dd, *J*=16.5, 6.7 Hz, 1 H), 2.70 (dd, *J*=16.5, 4.0 Hz, 1 H), 2.16 (s, 3 H), 1.79 - 1.88 (m, 0 H), 0.86 (d, *J*=6.7 Hz, 3 H), 0.18 (s, 27 H), 0.17 (s, 27 H); LRMS (API-ES -) C<sub>30</sub>H<sub>63</sub>O<sub>3</sub>Si<sub>7</sub> [M – TMS]<sup>-</sup> m/z = 667.2 (100%). FTIR (thin film): 3032, 2950, 2895, 1297, 1868, 1718, 1653, 1496, 1396, 1360, 1245, 1048, 836, 689. Waxy solid.



#### 20c

Compound previously described, and stereochemical determination previously established.<sup>13</sup>



# 20d

<sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>) δ =159.89 (d, *J*=242.3 Hz), 130.18 (d, *J*=4.5 Hz), 129.39 (d, *J*=13.5 Hz), 128.98 (d, *J*=8.5 Hz), 124.17 (d, *J*=3.0 Hz), 115.16 (d, *J*=23.4 Hz), 73.29, 71.93, 49.52, 47.02, 31.53, 10.40, 0.87, 0.49; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ =7.36 (td, *J*=7.5, 1.5 Hz, 1 H), 7.20 (tdd, *J*=7.3, 7.3, 5.5, 1.8 Hz, 1 H), 7.12 (t, *J*=7.3 Hz, 1 H), 6.95 (dd, *J*=9.9, 8.7 Hz, 1 H), 4.79 (d, *J*=4.9 Hz, 1 H), 3.45 (quind, *J*=4.9, 4.9, 4.9, 0.9 Hz,

1 H), 2.79 (dd, J=16.2, 5.5 Hz, 1 H), 2.74 (dd, J=15.9, 4.3 Hz, 1 H), 2.16 (s, 3 H), 2.01 -2.11 (m, 1 H), 0.79 (d, J=7.0 Hz, 3 H), 0.08 (s, 54H); <sup>19</sup>F NMR (500MHz, CDCl<sub>3</sub>, 295K,  $C_6H_5CF_3$  external std.,  $\delta = -63.72$ )  $\delta = -119.41$ ; LRMS (API-ES +): $C_{31}H_{70}FO_3Si_8^+$  $[M+H]^+ m/z = 733.3 (18\%), C_{22}H_{42}FO_2Si_4 [M - TMS_3SiO]^+ m/z = 469.2 (100\%); LRMS$  $(API-ES -) C_{28}H_{60}FO_3Si_7 [M - TMS] m/z = 659.3 (100\%); FTIR (thin film): 2949,$ 2894, 2071, 1925, 1863, 1727, 1704, 1615, 1585, 1458, 1367, 1244, 1046, 834, 687, 624; white solid.



20e

<sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 207.21, 155.37, 141.25, 110.51, 108.51, 74.67, 72.33, 48.96, 46.13, 31.65, 10.84, 0.91, 0.43; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  =7.30 (t, J=0.9 Hz, 1 H), 6.32 (dd, J=3.1, 1.8 Hz, 1 H), 6.17 (d, J=2.7 Hz, 1 H), 4.53 (d, J=4.9 Hz, 1 H), 3.38 (tdd, J=5.2, 5.2, 4.3, 3.7 Hz, 1 H), 2.65 (dd, J=15.3, 3.7 Hz, 2 H), 2.57 (dd, J=15.6, 5.2 Hz, 2 H), 2.15 (s, 3 H), 1.97 - 2.06 (m, 1 H), 0.84 (d, J=6.7 Hz, 3 H), 0.14 (s, 27 H), 0.11 (s, 27 H); LRMS (API-ES +): $C_{29}H_{68}NaO_4Si_8^+[M+Na]^+m/z = 727.3$  (5%); LRMS (API-ES -):  $C_{26}H_{59}O_4Si_7[M - TMS] m/z = 631.2 (100\%)$ ; FTIR (thin film): 2949, 2894, 1720, 1705, 1245, 1051, 835, 687, 624; white solid.



20f

 $^{13}$ C NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  =205.8, 82.0, 73.8, 51.1, 47.0, 40.6, 33.1, 31.1, 28.2, 26.8, 26.5, 26.4, 11.8, 1.00, 0.98; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 3.82 (td, J=7.0, 3.4 Hz, 1 H), 3.11 (dd, J=4.3, 1.8 Hz, 1 H), 2.75 (dd, J=17.2, 7.2 Hz, 1 H), 2.59 (dd, J=17.4, 3.4 Hz, 1 H), 2.13 (s, 3 H), 1.56 - 1.73 (m, 6 H), 1.34 - 1.51 (m, 2 H), 1.15 - 1.32 (m, 5 H), 1.01 - 1.12 (m, 1 H), 0.94 (d, J=7.0 Hz, 3 H), 0.20 (s, 27 H), 0.19 (s, 27 H); LRMS  $(APCI+), C_{31}H_{76}O_{3}Si_{8}^{+}[M+H]^{+}m/z = 721.3 (15\%), C_{22}H_{49}O_{2}Si_{4}^{+}[M-TMS_{3}SiO]^{+}m/z$ = 457.2 (100%); LRMS (API-ES – )  $C_{28}H_{67}O_3Si_7[M - TMS] m/z = 647.2 (100%); FTIR$ (thin film): 2949, 2895, 1721, 1450, 1361, 1244, 1050, 835, 687; waxy solid



(21a) TLC:  $R_f = 0.16$  (10:90 EtOAc/hexanes); <sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>)  $\delta = 208.56$ , 87.68, 67.87, 48.84, 40.73, 37.67, 30.97, 24.10, 15.90, 13.28, 12.47, 1.00, 0.99; <sup>1</sup>HNMR  $(500 \text{ MHz}, \text{CDCl}_3) \delta = 4.46 (\text{tt}, J=6.4, 1.8 \text{ Hz}, 1 \text{ H}), 3.42 (\text{s}, 1 \text{ H}), 3.35 (\text{dd}, J=4.3, 2.7)$ Hz, 1 H), 2.66 (dd, J=16.5, 7.9 Hz, 1 H), 2.40 (dd, J=16.5, 5.2 Hz, 1 H), 2.16 (s, 3 H),

1.69 - 1.76 (m, 1 H), 1.61 - 1.69 (m, 3 H), 1.13 - 1.23 (m, 1 H), 0.99 (d, J=7.3 Hz, 3 H), 0.91 (m, J=7.3, 7.3 Hz, 2 H), 0.88 (d, J=7.0 Hz, 3 H), 0.21 (s, 27 H); LRMS (APCI +): C<sub>20</sub>H<sub>49</sub>O<sub>3</sub>Si<sub>4</sub><sup>+</sup> [M+H]<sup>+</sup> m/z = 449.2 (100%),: C<sub>20</sub>H<sub>47</sub>O<sub>2</sub>Si<sub>4</sub><sup>+</sup> [M - OH]<sup>+</sup> m/z = 431.2 (65%).

# Stereochemical assignment for compounds 20, 21, 22

The stereochemistry of 20a was determined to be 3,5-*anti* by conversion to SI-7 (Scheme S-10). Compounds 20b, 20c, 20d, 20e, and 20f were assigned by analogy. The stereochemistry of compound 21a was determined by conversion to 20a (Scheme S-11). The stereochemistry of 22a was assigned 3,4-*anti* by contrast to 21a. The stereochemistry of 22f was determined by conversion to SI-8 (Scheme S-8). 3,5-*syn* stereochemistry was established by <sup>13</sup>C NMR resonances of  $\delta = 23.3$ , 19.5, 98.7 ppm.





**SI-17** Data for **SI-7:** TLC:  $R_f = 0.34$  (5:95 EtOAc/hexanes); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta = 4.73 - 4.82$  (m, 2 H), 3.97 (dt, *J*=8.5, 4.9 Hz, 1 H), 3.18 (dd, *J*=7.3, 3.4 Hz, 1 H), 2.17 (dd, *J*=14.6, 8.9 Hz, 1 H), 2.06 (dd, *J*=14.6, 4.9 Hz, 1 H), 1.74 - 1.79 (m, 1 H), 1.76 (s, 1 H), 1.37 - 1.52 (m, 2 H), 1.31 - 1.32 (m, 3 H), 1.31 (s, 3 H), 1.18 - 1.28 (m, 1 H), 0.90 (d, *J*=6.7 Hz, 3 H), 0.90 (t, *J*=7.3 Hz, 3 H), 0.84 (d, *J*=6.7 Hz, 3 H); <sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>)  $\delta = 143.2$ , 111.8, 100.3, 77.3, 67.9, 39.1, 38.2, 36.8, 26.3, 25.6, 23.8, 23.2, 14.0, 12.5, 12.2; LRMS (APCI +) C<sub>15</sub>H<sub>29</sub>O<sub>2</sub> [M+H]<sup>+</sup> m/z = 241.2 (45%); FTIR (thin film) = 2964, 2935, 2877, 1653, 1437, 1379, 1227, 1172, 1021, 888.

# SI-18

<sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 143.2, 140.9, 128.4, 128.1, 127.9, 112.2, 98.7, 78.7, 73.7, 41.5, 40.4, 30.4, 23.3, 19.5, 12.6; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.32 - 7.41 (m, 4 H), 7.25 - 7.31 (m, 1 H), 4.79 (d, *J*=18.6 Hz, 1 H), 4.43 (d, *J*=10.1 Hz, 1 H), 3.83 (ddd, *J*=11.3, 8.5, 2.7 Hz, 1 H), 2.39 (d, *J*=15.0 Hz, 1 H), 2.17 (dd, *J*=14.6, 8.5 Hz, 1 H), 1.81 (d, *J*=0.6 Hz, 3 H), 1.59 - 1.68 (m, 1 H), 1.56 (s, 3 H), 1.47 (s, 3 H), 0.66 (d, *J*=6.4 Hz, 3 H);



<sup>13</sup>/<sub>2</sub> <sup>14</sup>/<sub>2</sub> <sup>15</sup>/<sub>2</sub> **25** Known compound<sup>13</sup> Stereochemistry previously determined. **Data for 25**:TLC: (EtOAc:hexanes, 10:90), R<sub>f</sub> = 0.63; <sup>1</sup>H NMR (500MHz, CDCl<sub>3</sub>) δ = 9.99 (s, 1 H), 7.08 - 7.16 (m, 5 H), 7.02 - 7.07 (m, 2 H), 6.90 - 6.97 (m, 2 H), 5.07 (dd, *J*=10.3, 2.4 Hz, 1 H), 4.79 (d, *J*=15.4 Hz, 1 H), 4.48 (qd, *J*=7.1, 1.5 Hz, 1 H), 4.43 (d, *J*=15.4 Hz, 1 H), 3.94 (dd, *J*=4.6, 1.7 Hz, 1 H), 2.85 (qd, *J*=6.7, 2.4 Hz, 1 H), 2.30 (s, 3 H), 2.06 (m, *J*=10.4, 7.4, 4.6 Hz, 1 H), 1.36 (d, *J*=7.0 Hz, 3 H), 1.16 (d, *J*=6.8 Hz, 3 H), 1.00 (d, *J*=7.6 Hz, 3 H), 0.30 (s, 27 H), 0.18 (s, 27 H); <sup>13</sup>C NMR (500MHz, CDCl<sub>3</sub>) δ = 202.7, 142.1, 139.8, 136.5, 130.2, 129.1, 128.9, 128.0, 127.1, 127.0, 81.1, 75.3, 53.9, 53.3, 51.0, 42.7, 21.4, 20.2, 10.2, 7.6, 1.5, 1.3; LRMS (APCI +) C<sub>41</sub>H<sub>85</sub>NO<sub>5</sub>SSi<sub>8</sub><sup>+</sup> [M+H]<sup>+</sup> m/z = 926.7 (8%), C<sub>29</sub>H<sub>50</sub>NO<sub>3</sub>SSi<sub>4</sub><sup>+</sup> [M - TMS<sub>3</sub>SiOH - CH<sub>3</sub>CH<sub>2</sub>CHO]<sup>+</sup> m/z = 604 (100%). FTIR (thin film): 2949, 2893, 1724, 1684, 1653, 1339, 1244, 1166, 1091, 1022, 836, 688. [α]<sub>D</sub><sup>25</sup> = +7.72° (c, 1.00, CH<sub>2</sub>Cl<sub>2</sub>).



**Data for 26a:** TLC:  $R_f = 0.33$  (10:90 acetone/hexanes); <sup>1</sup>H NMR (500MHz, CDCl<sub>3</sub>)  $\delta = 7.12$  (s, 7 H), 6.97 (d, *J*=8.2 Hz, 2 H), 4.73 (d, *J*=15.3 Hz, 1 H), 4.41 (d, *J*=15.3 Hz, 1 H), 4.39 (q, *J*=7.3 Hz, 1 H), 4.31 (dd, *J*=10.1, 1.2 Hz, 1 H), 4.12 (t, *J*=9.9 Hz, 1 H), 3.91 (dd, *J*=4.6, 0.9 Hz, 1 H), 3.66 (d, *J*=18.0 Hz, 1 H), 3.39 (d, *J*=2.4 Hz, 1 H), 2.50 (dd, *J*=18.2, 10.5 Hz, 1 H), 2.32 (s, 3 H), 2.17 (s, 3 H), 2.06 (s, 1 H), 1.95 - 2.02 (m, 1 H), 1.60 - 1.76 (m, 1 H), 1.44 - 1.58 (m, 2 H), 1.31 (d, *J*=7.0 Hz, 3 H), 1.14 (d, *J*=6.7 Hz, 3 H), 1.14 (d, *J*=7.3 Hz, 3 H), 0.31 (s, 27 H), 0.16 (s, 27 H); <sup>13</sup>C NMR (500MHz, CDCl<sub>3</sub>)  $\delta$  = 211.5, 142.1, 138.8, 136.1, 129.8, 128.8, 127.9, 126.9, 126.8, 81.1, 75.7, 70.5, 52.9, 50.9, 48.2, 46.3, 41.9, 34.8, 30.8, 27.4, 22.7, 21.4, 20.0, 12.0, 10.0, 1.7, 1.2; FTIR (thin film): 3545,

2948, 2894, 1711, 1652, 1599, 1332, 1245, 1165, 1026, 835, 690; LRMS (APCI+)  $C_{44}H_{89}NNaO_6SSi_8^+[M+Na]^+m/z = 1006.3$  (35%).

**Stereochemical Assignment:** Stereochemistry confirmed by conversion to **SI-9** (TMSCl, Et<sub>3</sub>N, CH<sub>2</sub>Cl<sub>2</sub>, DMAP (cat)), which was analyzed by single crystal X-ray diffraction analysis. Crytallographic information file can be obtained at CCDC # 936272 See below for details.



**Data for SI-19** TLC:  $R_f = 0.36$  (10:90 EtOAc/hexanes); recrystallized by slow evaporation from Et<sub>2</sub>O, mp = 217–219 °C; <sup>1</sup>H NMR (500MHz, CDCl<sub>3</sub>)  $\delta$  = 7.02 - 7.17 (m, 7 H), 6.95 (d, *J*=8.2 Hz, 2 H), 4.68 (d, *J*=15.3 Hz, 1 H), 4.40 (d, *J*=15.3 Hz, 1 H), 4.35 (q, *J*=7.0 Hz, 1 H), 4.26 - 4.32 (m, 2 H), 3.88 (d, *J*=4.6 Hz, 1 H), 3.42 (d, *J*=17.1 Hz, 1 H), 2.62 (dd, *J*=17.2, 9.6 Hz, 1 H), 2.30 (s, 3 H), 2.11 (s, 3 H), 1.95 - 2.06 (m, 2 H), 1.27 (d, *J*=6.7 Hz, 3 H), 1.09 (d, *J*=7.3 Hz, 3 H), 1.05 (d, *J*=6.7 Hz, 3 H), 0.30 (s, 27 H), 0.16 (s, 27 H), 0.10 (s, 9 H); <sup>13</sup>C NMR (500MHz, CDCl<sub>3</sub>)  $\delta$  =207.7, 142.1, 138.8, 136.4, 129.8, 128.9, 127.9, 127.0, 126.9, 81.3, 76.3, 72.2, 52.8, 50.9, 49.8, 47.7, 41.8, 31.1, 21.5, 20.0, 13.3, 10.0, 1.8, 1.3, 0.8; FTIR: 2950, 2895, 1722, 1457, 1334, 1246, 11163, 1111, 1027, 835, 689. LRMS (APCI+) C<sub>38</sub>H<sub>69</sub>NO<sub>5</sub>SSi<sub>5</sub><sup>+</sup> [M- (TMS<sub>3</sub>SiOH)<sub>2</sub>]<sup>+</sup> m/z = 790.3 (100%).



Prepared according to TLC:  $R_f = 0.38$  (10:90 EtOAc/hexanes); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta = 4.71$  (d, *J*=15.3 Hz, 1 H), 4.41 (d, *J*=15.1 Hz, 1 H), 4.37 (q, *J*=6.6 Hz, 1 H), 4.30 (d, *J*=10.2 Hz, 1 H), 4.12 (t, *J*=9.9 Hz, 1 H), 3.91 (d, *J*=4.4 Hz, 1 H), 3.62 (d, *J*=17.9 Hz, 1 H), 3.55 (s, 1 H), 2.39 - 2.58 (m, 3 H), 2.32 (s, 3 H), 2.03 - 2.11 (m, 1 H), 1.95 - 2.02 (m, 1 H), 1.29 (d, *J*=7.0 Hz, 3 H), 1.14 (t, *J*=6.0 Hz, 6 H), 1.00 (td, *J*=7.3, 1.0 Hz, 3 H), 0.30 (s, 27 H), 0.16 (s, 27 H); <sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>)  $\delta = 214.3$ , 142.1, 138.9, 136.3, 129.8, 128.9, 127.9, 127.0, 126.9, 81.2, 75.8, 70.7, 52.9, 51.0, 47.0, 46.6, 42.0, 36.8, 21.4, 20.2, 12.2, 10.1, 7.6, 1.8, 1.3; LRMS (API-ES +): C<sub>36</sub>H<sub>63</sub>NO<sub>5</sub>SSi<sub>4</sub><sup>+</sup> [M - Si(TMS)<sub>3</sub>]<sup>+</sup> m/z = 734.3 (36%), C<sub>45</sub>H<sub>91</sub>NO<sub>6</sub>NaSSi<sub>4</sub><sup>+</sup> [M+Na]<sup>+</sup> m/z = 1020.5 (5%); FTIR (thin film): 3545, 2950, 2895, 1702, 1675, 1624, 1457, 1335, 1245, 1154, 1031, 835, 690, 654, 547.

Synthetic procedures and Data for 27a, 28, 31, 32, 33, 34



# 27a

Known compound.<sup>7</sup> Stereochemistry previously determined.

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 9.82 (s, 1 H), 3.65 - 3.73 (m, 1 H), 2.46 - 2.54 (m, 1 H), 1.45 - 1.58 (m, 2 H), 1.06 - 1.19 (m, 2 H), 1.04 (d, *J*=7.0 Hz, 3 H), 0.88 (t, *J*=7.2 Hz, 6 H), 0.78 (d, *J*=6.7 Hz, 3 H), 0.19 (s, 27 H); <sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 205.1, 80.9, 50.4, 39.5, 26.1, 14.6, 12.5, 10.2, 0.8; LRMS (APCI +) C<sub>9</sub>H<sub>28</sub>OSi<sub>4</sub>Na<sup>+</sup> [TMS<sub>3</sub>SiOHNa]<sup>+</sup> m/z = 288.1 (100%), C<sub>17</sub>H<sub>43</sub>O<sub>2</sub>Si<sub>4</sub><sup>+</sup> [M+H]<sup>+</sup> m/z = 391.2 (30%); 2961, 2893, 1724, 1459, 1425, 1245, 1023, 834, 756, 687, 624; [a]<sub>D</sub><sup>21</sup>=+33.97° (*c* 0.37, CH<sub>2</sub>Cl<sub>2</sub>).



**28a** Prepared according to **GP2**, using Me<sub>2</sub>AlNTf<sub>2</sub> as a catalyst instead of HNTf<sub>2</sub> (Table 3, entry 1). **28a**: TLC:  $R_f = 0.39$  (25:75 CH<sub>2</sub>Cl<sub>2</sub>/hexanes); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta = 4.01$  (dt, *J*=9.4, 3.0 Hz, 1 H), 3.28 (dd, *J*=6.8, 1.7 Hz, 1 H), 2.77 (dd, *J*=16.4, 9.6 Hz, 1 H), 2.55 (dd, *J*=16.4, 3.5 Hz, 1 H), 2.13 (s, 3 H), 1.47 - 1.53 (m, 1 H), 1.37 - 1.46 (m, 1 H), 1.20 - 1.32 (m, 2 H), 0.90 (t, *J*=7.3 Hz, 3 H), 0.86 (d, *J*=6.7 Hz, 3 H), 0.82 (d, *J*=6.8 Hz, 3 H), 0.19 (s, 27 H), 0.17 - 0.18 (m, 27 H)<sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>)  $\delta = 206.6$ , 82.9, 72.3, 48.6, 41.4, 38.3, 31.3, 27.1, 12.2, 12.0, 11.9, 1.3, 0.7; FTIR (thin film): 2949, 2894, 1718, 1244, 1015, 835, 744; LRMS (APCI+)  $C_{20}H_{45}O_2Si_4$  [M-OSiTMS<sub>3</sub>]<sup>+</sup> m/z = 431 (35%).

**Stereochemical Assignment:** Stereochemistry at position C(3) of **28a** was determined to be (*S*) by conversion to 1,3-diol acetonide **SI-20** (Scheme S-13) following GP 6 (steps 2-4). 3,5-*syn* stereochemistry was indicated by <sup>13</sup>C NMR analysis ( $\delta = 99.0$ , 19.7, 30.2 ppm).





**29a** TLC:  $R_f = 0.17$  (10:90 EtOAc/hexanes); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta = 4.06$  (dq, *J*=7.5, 3.8 Hz, 1 H), 3.36 (t, *J*=3.2 Hz, 1 H), 2.77 (d, *J*=3.1 Hz, 1 H), 2.58 (m, *J*=2.4 Hz, 2 H), 2.17 (s, 3 H), 1.52 - 1.63 (m, 4 H), 0.99 - 1.11 (m, 1 H), 0.88 (m, *J*=7.5, 7.5 Hz, 4 H), 0.88 (d, *J*=7.0 Hz, 3 H), 0.84 (d, *J*=7.0 Hz, 3 H), 0.20 (s, 27 H); <sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>)  $\delta = 210.0, 82.6, 69.6, 48.7, 40.3, 39.9, 31.0, 25.1, 15.2, 12.4, 10.7, 1.0; LRMS (APCI +) C<sub>20</sub>H<sub>48</sub>NaO<sub>3</sub>Si<sub>4</sub><sup>+</sup> [M + Na]<sup>+</sup> m/z = 417.2 (100%).$ 

Stereochemical Assignment: 29a was determined to be 3,4-syn by conversion to SI-20.



**Data for SI-20:** <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 4.79 (s, 2 H), 4.76 (s, 1 H), 4.01 (ddd, *J*=7.6, 5.8, 2.1 Hz, 1 H), 3.41 (dd, *J*=9.8, 1.8 Hz, 1 H), 2.23 (dd, *J*=14.3, 7.3 Hz, 1 H), 2.10 (dd, *J*=14.5, 6.0 Hz, 1 H), 1.75 (s, 3 H), 1.45 - 1.55 (m, 2 H), 1.41 (s, 3 H), 1.40 (s, 3 H), 0.92 (d, *J*=6.4 Hz, 7 H), 0.88 (t, *J*=6.4 Hz, 3 H), 0.84 (d, *J*=6.7 Hz, 3 H); TLC: R<sub>f</sub> = 0.31 (5:95 EtOAc/hexanes);<sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 142.7, 112.1, 99.0, 78.3, 72.1, 41.2, 35.5, 32.7, 30.2, 23.6, 23.1, 19.7, 15.6, 11.0, 4.9; FTIR (thin film): 2967, 2937, 1653, 1278, 1200, 1011, 836. LRMS (APCI +) C<sub>15</sub>H<sub>32</sub>NO<sub>2</sub><sup>+</sup> [M + NH<sub>4</sub>]<sup>+</sup> m/z = 258 (40%), C<sub>15</sub>H<sub>27</sub>O<sup>+</sup> [M-OH]<sup>+</sup> m/z = 223 (35%);



**General Procedure GP9** An oven-dried 1dram vial was charged with a magnetic stir bar, **27a** (40mg, 0.1 mmol), acetone 0.4 mL, DMF (0.8 mL) and L-PTZ (2.6 mg, weighed on a microbalance, 0.02 mmol). The vial was sealed and stirred under air for 5 days. The reaction mixture was poured onto cold water (10 mL) and NaHCO<sub>3</sub> (sat. aq., 1 mL) was added. The mixture was extracted with CH<sub>2</sub>Cl<sub>2</sub> (3 x 6 mL). The combined organic layers were washed with H<sub>2</sub>O and brine (5 mL each), dried over Na<sub>2</sub>SO<sub>4</sub>, filtered through cotton and concentrated. Purification by flash chromatrography (10 mL silica, 1-7% EtOAc/hexanes) afforded **30a** as a white semi-solid (32 mg, 71%). **Data for 30a**:TLC: Rf = 0.23 (10:90 EtOAc/hexanes); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 3.98 (tt, *J*=9.2, 2.4 Hz, 1 H), 3.89 - 3.94 (m, 1 H), 3.53 (d, *J*=5.5 Hz, 1 H), 2.57 (dd, *J*=15.9, 3.1 Hz, 1 H), 2.47 (dd, *J*=15.6, 8.9 Hz, 1 H), 2.20 (s, 3 H), 1.74 (dqd, *J*=9.4, 7.0, 7.0, 7.0, 2.1 Hz, 1 H), 1.45 - 1.57 (m, 2 H), 1.07 - 1.18 (m, 1 H), 0.92 (d, *J*=6.7 Hz, 3 H), 0.88 (t, *J*=7.5 Hz, 3 H), 0.76 (d, *J*=7.0 Hz, 3 H), 0.21 (s, 27 H); <sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 209.7, 83.6, 71.0, 49.0, 41.8, 38.4, 31.5, 27.2, 15.7, 13.3, 12.4, 0.9; FTIR (thin film): 3534 (br), 2949, 2894, 1712, 1381, 1244, 1016, 836, 686, 624; LRMS (APCI

**Stereochemical Assignment:** The stereochemistry of **30a** determined by conversion to acetonide **SI-21** following **GP 6.** 3,5-*anti* stereochemistry was indicated by <sup>13</sup>C NMR analysis ( $\delta = 100.8, 24.7, 24.9$  ppm).

+)  $C_{20}H_{48}NaO_3Si_4^+ [M + Na]^+ m/z = 417.2 (100\%).$ 



**Data for SI-21:** TLC:  $R_f = 0.37$  (5:95 EtOAc/hexanes); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta = 4.74 - 4.81$  (m, 2 H), 3.37 - 3.42 (m, 1 H), 3.42 (dd, *J*=9.2, 4.3 Hz, 1 H), 2.24 (dd, *J*=15.0, 8.5 Hz, 1 H), 2.19 (dd, *J*=14.6, 4.3 Hz, 1 H), 1.75 (s, 3 H), 1.71 (quind, *J*=6.9, 6.9, 6.9, 6.9, 4.6 Hz, 1 H), 1.36 - 1.51 (m, 2 H), 1.34 (s, 3 H), 1.31 (s, 3 H), 0.93 - 0.98 (m, 0 H), 0.92 (d, *J*=6.4 Hz, 3 H), 0.90 (t, *J*=6.7 Hz, 3 H), 0.85 (d, *J*=6.7 Hz, 3 H); <sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>)  $\delta = 143.3$ , 112.0, 100.8, 73.8, 73.3, 43.1, 38.7, 34.3, 24.9, 24.7, 23.8, 23.0, 15.7, 12.1, 12.2; LRMS (APCI +)  $C_{15}H_{29}O_2$  [M+H]<sup>+</sup> m/z = 241.2 (45%). FTIR (thin film) 2985, 2968, 2934, 2876, 1653, 1378, 1227, 1107, 996, 888.



<sup>1</sup>H NMR (500MHz, CDCl<sub>3</sub>, 294K)  $\delta$  = 7.27 - 7.33 (m, 4 H), 7.19 - 7.25 (m, 1 H), 4.04 (dt, *J*=7.4, 4.7 Hz, 1 H), 3.70 (dd, *J*=7.0, 2.4 Hz, 1 H), 3.47 (dd, *J*=18.5, 4.7 Hz, 1 H), 2.80 (quin, *J*=7.0 Hz, 1 H), 2.53 (dd, *J*=18.6, 4.3 Hz, 1 H), 2.09 (s, 3 H), 1.74 (dqd, *J*=7.0, 6.8, 6.8, 2.0 Hz, 1 H), 1.28 (d, *J*=7.0 Hz, 3 H), 0.34 (d, *J*=7.3 Hz, 3 H), 0.30 (s, 27 H), 0.20 (s, 27 H); <sup>13</sup>C NMR (500MHz, CDCl<sub>3</sub>, 294K)  $\delta$  = 206.74, 144.21, 128.37, 128.36, 126.34, 83.29, 73.04, 51.02, 44.87, 43.11, 30.69, 20.25, 15.72, 1.28, 0.85; LRMS (APCI +): C<sub>24</sub>H<sub>47</sub>O<sub>2</sub>Si<sub>4</sub><sup>+</sup> [M – TMS<sub>3</sub>SiO]<sup>+</sup> m/z = 479.2 (100%); FTIR (thin film):2949, 2894, 1926, 1868, 1720, 1680, 1453, 1365, 1245, 1067, 1031, 835, 687; waxy solid.



**29c** <sup>1</sup>H NMR (500MHz, CDCl<sub>3</sub>, 294K)  $\delta$  = 4.01 (dt, *J*=8.6, 3.3 Hz, 1 H), 3.27 (dd, *J*=5.5, 0.9 Hz, 1 H), 2.81 (dd, *J*=16.8, 8.9 Hz, 1 H), 2.54 (dd, *J*=16.9, 3.5 Hz, 1 H), 2.13 (s, 3 H), 1.72 - 1.81 (m, 2 H), 1.63 - 1.69 (m, 1 H), 1.49 - 1.62 (m, 4 H), 1.19 - 1.31 (m, 4 H), 1.07 - 1.18 (m, 2 H), 0.83 (d, *J*=6.7 Hz, 3 H), 0.20 (s, 27 H), 0.19 (s, 27 H); <sup>13</sup>C NMR (500MHz, CDCl<sub>3</sub>, 294K)  $\delta$  = 206.56, 81.59, 72.71, 48.71, 42.03, 41.08, 31.22, 29.58, 27.17, 26.67, 26.4, 12.07, 1.40, 0.81; LRMS (APCI +): C<sub>22</sub>H<sub>49</sub>O<sub>2</sub>Si<sub>4</sub><sup>+</sup> [M – TMS<sub>3</sub>SiO]<sup>+</sup> m/z = 457.4 (100%); LRMS (APCI -): C<sub>28</sub>H<sub>67</sub>O<sub>3</sub>Si<sub>7</sub>- [M – TMS]<sup>-</sup> m/z = 642.7 (55%), FTIR (thin film): 2948m 2854, 1719, 1445, 1359, 1244, 1014, 834m 745, 687, 624; waxy solid.

(TMS)<sub>3</sub>Si O O Si(TMS)<sub>3</sub> CHO

and (S)-2-methylbutanal.<sup>7</sup> As shown in **Scheme S-17** 31 Synthesized by double propionaldehyde addition of 23-Z

#### Scheme S-17


A 200 mL round bottomed flask with magnetic stir bar and septum was charged with 23-Z (3.5g, 11.5 mmol), CH<sub>2</sub>Cl<sub>2</sub> (60 mL), and (S)-2-methyl butanal (0.525 mL, 5.0 mmol). The reaction was cooled to -78 °C and freshly prepared Me<sub>2</sub>AlNTf<sub>2</sub> (0.05 M CH<sub>2</sub>Cl<sub>2</sub>, 0.7 mL) was added dropwise. The reaction was stirred at -78 °C then warmed to -45 °C and stirred at this temperature overnight. The reaction was then quenched with 10mL of NaK tartrate (sat. aq.). The mixture was vigorously stirred at r.t. for 10 min, then poured on hexanes 100 mL. The layers were separated and the organic layer was washed with brined, dried (MgSO<sub>4</sub>), filtered and concentrated. Flash chromatography (300 mL silica gel,  $5 \rightarrow 15\%$  v/v CH<sub>2</sub>Cl<sub>2</sub>/hexanes yield **31** with good separation of diastereomers (3.15 g, 65% yield)

**Data for 31:**TLC:  $R_f = 0.36 (25:75 \text{ CH}_2\text{Cl}_2\text{/hexanes})$ ; <sup>1</sup>H NMR (500 MHz, CDCl}3)  $\delta = 9.89 (s, 1 \text{ H})$ , 3.83 (t, *J*=4.1 Hz, 1 H), 3.23 (dd, *J*=6.1, 2.4 Hz, 1 H), 2.65 (qd, *J*=7.0, 4.7 Hz, 1 H), 1.63 (quind, *J*=6.6, 6.6, 6.6, 6.6, 3.8 Hz, 1 H), 1.51 - 1.59 (m, 2 H), 1.46 (dqdd, *J*=8.0, 7.0, 7.0, 7.0, 6.7, 3.1 Hz, 1 H), 1.20 - 1.30 (m, 1 H), 1.04 (d, *J*=7.0 Hz, 3 H), 0.91 (t, *J*=7.3 Hz, 5 H), 0.89 (d, *J*=7.0 Hz, 3 H), 0.77 (d, *J*=6.7 Hz, 3 H), 0.20 (s, 27 H), 0.18 (s, 27 H); <sup>13</sup>C NMR (500 MHz, CDCl\_3)  $\delta = 204.9$ , 82.8, 78.4, 51.0, 40.6, 38.3, 27.3, 14.1, 12.6, 12.0, 9.9, 1.3, 1.1; FTIR (thin film): 2940, 2894, 1723, 1457, 1244, 1018, 835, 686, 624; LRMS (APCI+) C<sub>20</sub>H<sub>47</sub>O<sub>2</sub>Si<sub>4</sub><sup>+</sup> [M–TMS<sub>3</sub>SiO]<sup>+</sup> m/z = 431.2 (100%). HRMS (FIA-APIC +) C<sub>17</sub>H<sub>43</sub>O<sub>2</sub>Si<sub>4</sub><sup>+</sup> [M–**23Z** (retro-aldol)]<sup>+</sup> m/z (found: 391.2781 calc: 391.2340) (100%).



**32** Synthesized according to **GP** 4. Enoloborination was conducted with 2-butanone rather than acetone, with (*c*-Hex)<sub>2</sub>BCl and Et<sub>3</sub>N at room 0°C. **Data for 32:**TLC:  $R_f = 0.51$  (10:90 EtOAc/hexanes); 4.16 (td, *J*=6.3, 3.2 Hz, 1 H), 3.42 (dd, *J*=5.0, 3.2 Hz, 1 H), 3.24 (dd, *J*=7.0, 1.8 Hz, 1 H), 3.00 (d, *J*=2.7 Hz, 1 H), 2.59 (dd, *J*=17.7, 9.8 Hz, 1 H), 2.52 (m, *J*=2.1 Hz, 1 H), 2.44 (q, *J*=7.3 Hz, 2 H), 1.80 (quind, *J*=6.9, 6.9, 6.9, 6.9, 3.5 Hz, 1 H), 1.59 - 1.67 (m, 1 H), 1.52 - 1.58 (m, 1 H), 1.42 (dqd, *J*=7.0 Hz, 3 H), 0.95 (d, *J*=7.0 Hz, 3 H), 0.89 (t, *J*=7.3 Hz, 4 H), 0.78 (d, *J*=7.0 Hz, 3 H), 0.19 (br. s, 54 H); <sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 214.8, 83.0, 80.1, 67.3, 47.9, 42.2, 41.5, 38.9, 36.8, 27.4, 16.1, 12.9, 12.3, 11.1, 7.8, 1.4, 1.3; LRMS (APCI +) C<sub>36</sub>H<sub>55</sub>O<sub>3</sub>Si<sub>4</sub><sup>+</sup> [M - TMS<sub>3</sub>SiO]<sup>+</sup> m/z = 503.2 (55%), m/z = 387.2 (100%); LRMS (APCI -): C<sub>29</sub>H<sub>74</sub>O<sub>3</sub>Si<sub>8</sub>

Si(TMS)3 (TMS)<sub>3</sub>Si OH

**33** Synthesized according to **GP 4** using 9-BBNOTf for enolborination (Table 4, eq. 3).

**Data for 33** TLC:  $R_f = 0.38$  (10:90 EtOAc/hexanes); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$ =4.16 (dq, *J*=10.1, 2.4 Hz, 1 H), 3.42 (dd, *J*=5.0, 3.2 Hz, 1 H), 2.92 (d, *J*=2.7 Hz, 1 H), 2.62 (dd, *J*=17.7, 9.8 Hz, 1 H), 2.54 (dd, *J*=17.7, 2.1 Hz, 1 H), 2.16 (s, 3 H), 1.87 (qt, *J*=6.1, 3.4 Hz, 1 H), 1.80 (quind, *J*=6.9, 6.9, 6.9, 6.9, 3.4 Hz, 1 H), 1.58 - 1.66 (m, 1 H), 1.50 - 1.58 (m, 1 H), 1.34 - 1.48 (m, 1 H), 1.01 (d, *J*=7.0 Hz, 3 H), 0.94 (d, *J*=6.7 Hz, 3 H), 0.89 (t, *J*=7.5 Hz, 3 H), 0.78 (d, *J*=6.7 Hz, 3 H), 0.18 - 0.21 (m, 54 H); <sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 210.0, 83.0, 80.2, 67.2, 49.2, 42.1, 41.5, 38.9, 30.8, 27.4, 16.1, 12.9, 12.2, 11.0, 1.4, 1.3; LRMS (APCI – ): C<sub>32</sub>H<sub>79</sub>O<sub>4</sub>Si<sub>8</sub> [M – H]<sup>-</sup> m/z = 751.4 (90%); FTIR (thin film): 3543 (br), 2949, 2894, 1713, 1379, 1244, 1019, 835, 686, 624.

**Stereochemical Assignment: 33** was determined to (*S*) at C(4) by conversion to *p*methoxy benzylidene acetal **SI-23** as shown in **Scheme S-19**. The 2,3- *syn*stereochemistry of **SI-23** was determined by vicinal couplings  $J^{H2-H3} = 2.1 \text{ Hz} J^{H4-H3} = 2.1$ Hz. A NOESY experiment revealed NOE between the benzylidine H and H<sup>2</sup>/H<sup>4</sup>, indicating C(4)-C(6)-*syn* stereochemistry. NOE interactions between H<sup>2</sup> and H<sup>4</sup> also support this structure. A COSY experiment validated assignment of <sup>1</sup>H NMR resonances.

Scheme S-19: Synthesis of SI-23 and selected <sup>1</sup>H NMR *J* values and NOE interactions.





(1) To a dry 10 mL round-bottomed flask with stir bar was added **33** (0.2 mmol).  $CH_2Cl_2$  (0.5mL) and hexanes (1.5mL) were added and flask cooled to 0°C. *p*-

methoxybenzyltrichloroacetimidate was added (90 mg, 0.35 mmol), followed by TfOH (0.03 mL, 1.0 M CH<sub>2</sub>Cl<sub>2</sub>). The reaction was allowed to warm to r.t., and stirred overnight. The reaction was then quenched by addition of NaHCO<sub>3</sub>. Normal aqueous workup, followed by column chromatography (30 mL silica gel,  $1 \rightarrow 10\%$  v/v Et<sub>2</sub>O/hexanes) afford the PMB-protected alcohol in 71% yield.

(2) Wittig reaction performed according to **GP 6** (step 2), 63% yield)

**Data for SI-22:** TLC:  $R_f = 0.59$  (20:80 Et<sub>2</sub>O/hexanes); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta = 7.20$  (d, *J*=8.7 Hz, 2 H), 6.84 (d, *J*=8.7 Hz, 2 H), 4.37 (s, 2 H), 4.10 (qd, *J*=5.2, 1.1 Hz, 1 H), 3.48 (dd, *J*=6.5, 2.1 Hz, 1 H), 3.26 (dd, *J*=7.6, 1.1 Hz, 1 H), 2.78 (dd, *J*=16.9, 6.6 Hz, 1 H), 2.63 (dd, *J*=16.8, 5.2 Hz, 1 H), 2.12 (s, 3 H), 1.73 - 1.81 (m, 1 H), 1.56 - 1.70 (m, 2 H), 1.37 - 1.44 (m, 1 H), 1.26 - 1.35 (m, 1 H), 1.07 (d, *J*=6.9 Hz, 3 H), 1.04 (d, *J*=6.9 Hz, 3 H), 0.84 - 0.91 (m, 3 H), 0.73 (d, *J*=6.7 Hz, 3 H), 0.21 (s, 27 H), 0.19 (s, 27 H); <sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>)  $\delta = 206.9$ , 159.1, 131.1, 129.2, 113.7, 84.0, 79.6, 75.4, 71.7, 55.4, 47.7, 42.7, 42.1, 38.1, 31.1, 27.9, 15.5, 13.2, 12.1, 12.1, 1.4, 1.3; LRMS (APCI – ):  $C_{37}H_{79}O_5Si_7 [M - TMS]^- m/z = 799.3$  (60%);



Preparation of **3** TBAF desilylation carried out by analogy to **GP 6** (3). The resultant triol (28 mg, 0.073 mmol) was loaded into a 25mL round-bottomed flask. CH<sub>2</sub>Cl<sub>2</sub> was added, and stirring mixture cooled to 0°C. Powdered molecular sieves (4Å, 150mg) were added and the reaction stirred for 1 h. DDQ (25 mg, 0.11 mmol) was then added. A blue color appeared immediately. After 2 h, the reaction was warmed to r.t. filtered through celite (Et<sub>2</sub>O eluent). The resulting organic layer was washed with NaHCO<sub>3</sub> and brine (10 mL) each, dried (Na<sub>2</sub>SO<sub>4</sub>), filtered and concentrated. Flash chromatography (8 mL silica gel,  $2\rightarrow 25\%$  EtOAc/hexanes eluent) afforded **SI13** (16 mg, 58% yield), along with the fully oxidized *p*-methoxy benzoyl ester (7 mg, 24% yield).

**Data for SI-23:** TLC:  $R_f = 0.38$  (25:75 EtOAc/hexanes); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$ = 7.43 (d, *J*=8.8 Hz, 2 H), 6.88 (d, *J*=8.5 Hz, 5 H), 5.51 (s, *H*<sup>1</sup>), 4.81 (app d, *J*=7.3 Hz, 2 H), 4.02 (ddd, *J*=7.7, 5.7, 2.1 Hz, *H*<sup>2</sup>), 3.80 (s, 1 H), 3.78 (dd, *J*=11.4, 2.1 Hz, *H*<sup>4</sup>), 3.28 -3.35 (m, 1 H), 2.41 (dd, *J*=14.0, 7.6 Hz, 1 H), 2.21 (dd, *J*=14.2, 6.0 Hz, 1 H), 2.02 (qdd, *J*=9.2, 9.2, 9.2, 6.9, 2.1 Hz, 6 H), 1.79 (s, 3 H), 1.74 (qt, *J*=6.8, 2.1 Hz, *H*<sup>3</sup>), 1.53 (td, *J*=6.1, 3.1 Hz, 1 H), 1.42 - 1.50 (m, 1 H), 1.19 - 1.30 (m, 1 H), 1.00 (d, *J*=6.7 Hz, 1 H), 1.01 (d, *J*=5.5 Hz, 1 H), 0.97 (d, *J*=6.7 Hz, 3 H), 0.90 (t, *J*=7.3 Hz, 1 H); <sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 159.8, 142.5, 131.9, 127.4, 113.7, 112.7, 101.6, 84.1, 79.7, 74.6, 55.4, 41.1, 38.1, 35.8, 32.3, 24.9, 23.2, 15.7, 11.1, 8.8, 6.4; LRMS (API-ES +), C<sub>23</sub>H<sub>35</sub>O<sub>3</sub> [M – OH]<sup>+</sup> m/z = 359.1 (100%), C<sub>23</sub>H<sub>35</sub>O<sub>3</sub><sup>+</sup> [M+H]<sup>+</sup> m/z = 377.2 (35%).

**34** Synthesized according to **GP 9. Data for 34:** TLC: R<sub>f</sub> = 0.60 (10:90 EtOAc/hexanes);<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 3.95 (tt, *J*=9.5, 2.5 Hz, 1 H), 3.75 (dd, *J*=5.8, 1.5 Hz, 1 H), 3.48 (d, *J*=2.7 Hz, 1 H), 3.21 (dd, *J*=4.9, 3.7 Hz, 1 H), 2.63 (dd, *J*=16.3, 2.6 Hz, 1 H), 2.44 (dd, *J*=16.5, 9.5 Hz, 1 H), 2.19 (s, 3 H), 1.83 (dqd, *J*=9.8, 7.0, 7.0, 7.0, 1.5 Hz, 1 H), 1.67 - 1.74 (m, 1 H), 1.64 (qt, *J*=7.0, 3.4 Hz, 1 H), 1.50 (dqd, *J*=13.2, 7.6, 7.6, 7.6, 3.4 Hz, 1 H), 1.13 - 1.23 (m, 1 H), 1.03 (d, *J*=7.0 Hz, 3 H), 0.88 (t, *J*=7.3 Hz, 3 H), 0.79 (d, *J*=6.7 Hz, 3 H), 0.72 (d, *J*=7.0 Hz, 3 H), 0.20 - 0.22 (m, 27 H), 0.19 - 0.20 (m, 27 H); <sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  = 210.0, 83.0, 79.7, 69.8, 48.6, 42.4, 41.0, 38.8, 31.3, 27.1, 16.4, 13.9, 12.2, 12.1, 1.4, 1.3; LRMS (APCI – ): C<sub>32</sub>H<sub>79</sub>O<sub>4</sub>Si<sub>8</sub> [M – H]<sup>-</sup> m/z = 751.4 (85%).

Stereochemical Assignment: 34 was assigned (R) at C(4) by contrast to 33.



## SI-3

TLC:  $R_f = 0.47$  (25:75 CH<sub>2</sub>Cl<sub>2</sub>/hexanes); <sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>)  $\delta = 203.83$ , 138.41, 128.41, 127.62, 127.57, 79.68, 72.92, 71.79, 50.75, 38.53, 15.01, 10.98, 0.82; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta = 9.61 - 9.68$  (m, 1 H), 7.26 - 7.40 (m, 4 H), 4.42 (d, *J*=11.9 Hz, 1 H), 4.38 (d, *J*=11.9 Hz, 1 H), 3.84 (ddd, *J*=5.5, 3.8, 1.7 Hz, 1 H), 3.37 (dd, *J*=9.8, 5.2 Hz, 1 H), 3.30 (dd, *J*=8.5, 4.0 Hz, 1 H), 2.60 (s, 1 H), 1.95 (spt, *J*=5.8 Hz, 1 H), 1.15 (d, *J*=7.0 Hz, 3 H), 1.04 (d, *J*=7.0 Hz, 3 H), 0.23 (s, 27 H); LRMS (APCI +) C<sub>23</sub>H<sub>47</sub>O<sub>3</sub>Si<sub>4</sub><sup>+</sup> [M + H]<sup>+</sup> m/z = 483.4 (100%)

**SI-5a** TLC:  $R_f = 0.42$  (25:75 CH<sub>2</sub>Cl<sub>2</sub>/hexanes)<sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>)  $\delta = 205.03$ , 138.56, 128.42, 127. 72, 127.60, 50.76, 37.29, 12.77, 0.89, 0.80; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta = 9.92$  (s, 1 H), 7.22 - 7.44 (m, 5 H), 4.56 (d, *J*=11.0 Hz, 9 H), 4.48 (d, *J*=12.2 Hz, 5 H), 3.92 (dd, *J*=4.7, 2.9 Hz, 5 H), 3.66 - 3.75 (m, 1 H), 3.52 (dd, *J*=8.7, 6.0 Hz, 5 H), 3.30 (dd, *J*=8.7, 7.2 Hz, 5 H), 2.58 - 2.65 (m, 1 H), 2.04 (dqd, *J*=13.3, 6.6, 6.6, 6.6, 2.9 Hz, 5 H), 1.06 (d, *J*=6.7 Hz, 3 H), 0.90 (d, *J*=7.0 Hz, 3 H), 0.24 (s, 27 H); LRMS (APCI +) C<sub>23</sub>H<sub>47</sub>O<sub>3</sub>Si<sub>4</sub><sup>+</sup> [M + H]<sup>+</sup> m/z = 483.4 (100%)



## SI-5b

TLC:  $R_f = 0.36 (25:75 \text{ CH}_2\text{Cl}_2/\text{hexanes}); {}^{13}\text{C} \text{ NMR} (500 \text{ MHz}, \text{CDCl}_3) \delta = 205.18, 78.12, 65.46, 51.17, 39.38, 26.05, 18.38, 12.21, 9.97, 0.83, -5.14, -.517; {}^{1}\text{H} \text{ NMR} (500 \text{ MHz}, \text{CDCl}_3) \delta = 9.89 (s, 2 \text{ H}), 3.87 (dd,$ *J*=4.9, 3.1 Hz, 1 H), 3.53 (dd,*J*=9.8, 6.4 Hz, 2 H), 3.39 (dd,*J*=9.8, 6.4 Hz, 2 H), 2.56 - 2.66 (m, 2 H), 1.72 - 1.81 (m, 1 H), 1.00 (d,*J*=7.0 Hz, 3 H), 0.87 (s, 5 H), 0.78 (d,*J* $=7.0 \text{ Hz}, 3 \text{ H}), 0.21 (s, 27 \text{ H}), 0.01 - 0.05 (m, 6 \text{ H}); LRMS (APCI +) C_{22}H_{55}O_3Si_5^+ [M+H] m/z = 507.5 (32\%).$ 

## NMR spectra

































3i









(TMS)₃Si∖\_O 5i он о Ű.





S99

## Electronic Supplementary Material (ESI) for Chemical Science This journal is O The Royal Society of Chemistry 2013



Electronic Supplementary Material (ESI) for Chemical Science This journal is O The Royal Society of Chemistry 2013

(TES)<sub>3</sub>SiO 0 QН



5n (mixture of diastereomers)















S108






## 6f (mixture of diastereomers)









6j





## **8**b





9b





9d











S126















18





## 20b



20d






















22i















S153









Electronic Supplementary Material (ESI) for Chemical Science This journal is The Royal Society of Chemistry 2013

















































# **Crystal Structure Report for Compound SI19**

C47H97NO6SSi9

**Report Prepared for:** 

Patrick Brady and Mr. H. Yamamoto

October, 2012

Ian Steele (steele@geosci.uchicago.edu)

X-ray Laboratory, Searle B013, 773-834-5861

Department of Chemistry

The University of Chicago

5735 S. Ellis Ave.

Chicago, Il 60637

## **Crystallographic Experimental Section**

#### **Data Collection**

An irregular broken fragment  $(0.40 \times 0.24 \times 0.12 \text{ mm})$  was selected under a stereo-microscope while immersed in Fluorolube oil to avoid possible reaction with air. The crystal was removed from the oil using a tapered glass fiber that also served to hold the crystal for data collection. The crystal was mounted and centered on a Bruker SMART APEX system at 100 K. Rotation and still images showed the diffractions to be sharp. Frames separated in reciprocal space were obtained and provided an orientation matrix and initial cell parameters. Final cell parameters were obtained from the full data set.

A "full sphere" data set was obtained which samples approximately all of reciprocal space to a resolution of 0.75 Å using  $0.3^{\circ}$  steps in  $\omega$  using 10 second integration times for each frame. Data collection was made at 100 K. Integration of intensities and refinement of cell parameters were done using SAINT [1]. Absorption corrections were applied using SADABS [1] based on redundant diffractions.

### Structure solution and refinement

The space group was determined as P1(bar) based on systematic absences and intensity statistics. Direct methods were used to locate most Si atoms and some C atoms from the E-map. Repeated difference Fourier maps allowed recognition of all expected C, N, O and S atoms. Following anisotropic refinement of all non-H atoms, ideal H-atom positions were calculated. Final refinement was anisotropic for all non-H atoms, and isotropic-riding for H atoms. No anomalous bond lengths or thermal parameters were noted. All ORTEP diagrams have been drawn with 50% probability ellipsoids.

# **Equations of interest:**

$$R_{int} = \Sigma |F_o^2 - \langle F_o^2 \rangle | / \Sigma |F_o^2|$$

$$R1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|$$

wR2 =  $[\Sigma [w (F_o^2 - F_c^2)^2] / \Sigma [w (F_o^2)^2]]^{1/2}$  C where: w = q / $\sigma^2 (F_o^2) + (aP)^2 + bP$ ; q, a, b, P as defined in [1]

GooF = S = 
$$[\Sigma [w (F_o^2 - F_c^2)^2] / (n-p)^{1/2}]$$
  
n = number of independent reflections;  
p = number of parameters refined.

#### References

[1] All software and sources of scattering factors are contained in the SHELXTL (version 5.1) program library (G. Sheldrick, Bruker Analytical X-ray Systems, Madison, WI).






| Table 1. Crystal and structure refinement  | for Brady11.                            |                               |
|--------------------------------------------|-----------------------------------------|-------------------------------|
| Identification Code                        | Brady11                                 |                               |
| Empirical formula                          | C47H97NO6SSi9                           |                               |
| Formula weight                             | 1057.13                                 |                               |
| Temperature                                | 100 K                                   |                               |
| Wavelength                                 | 0.71073 Å                               |                               |
| Crystal system                             | Triclinic                               |                               |
| Space Group                                | P1(bar)                                 |                               |
| Unit cell dimensions                       | a = 13.583(4) Å                         | $\alpha = 110.618(7)^{\circ}$ |
|                                            | <i>b</i> = 15.995(5) Å                  | $\beta = 111.892(6)^{\circ}$  |
|                                            | c = 16.961(5) Å                         | $\gamma = 93.200(6)^{\circ}$  |
| Volume                                     | 3125.1(17) Å <sup>3</sup>               |                               |
| Ζ                                          | 2                                       |                               |
| Density (calculated)                       | 1.123 Mg/m <sup>3</sup>                 |                               |
| Absorption coefficient                     | 0.265 mm <sup>-1</sup>                  |                               |
| F(000)                                     | 1152                                    |                               |
| Crystal size, color, habit                 | 0.40 x 0.24 x 0.12 mm, tr               | ansparent, irregular          |
| Theta range for data collection            | 1.65 – 28.73 °                          |                               |
| Index ranges                               | $-18 \le h \le 18, -20 \le k \le 21$    | , $-22 \le 1 \le 22$          |
| Reflections collected                      | 37,882                                  |                               |
| Independent reflections                    | 15,162 ( $R_{int} = 0.0395$ )           |                               |
| Reflections with $I > 4\sigma(F_o)$        | 6,006                                   |                               |
| Absorption correction                      | SADABS based on redun                   | dant diffractions             |
| Max. and min. transmission                 | 1.0, 0.773                              |                               |
| Refinement method                          | Full-matrix least squares               | on F <sup>2</sup>             |
| Weighting scheme                           | $w = q [\sigma^2 (F_o^2) + (aP)^2 + 1]$ | bP] <sup>-1</sup> where:      |
|                                            | $P = (F_o^2 + 2F_c^2)/3, a = 0.0$       | 316, b = 0.0, q =1            |
| Data / restraints / parameters             | 15162 / 0 / 603                         |                               |
| Goodness-of-fit on F <sup>2</sup>          | 0.726                                   |                               |
| Final R indices $[I > 2 \text{ sigma}(I)]$ | R1 = 0.0691, $wR2 = 0.10$               | 18                            |
| R indices (all data)                       | R1 = 0.1620, wR2 = 0.12                 | 10                            |
| Largest diff. peak and hole                | 0.473, -0.376 eÅ <sup>-3</sup>          |                               |

|       | х                            | У                  | Z                | U(eq)                  | SOF |
|-------|------------------------------|--------------------|------------------|------------------------|-----|
| C(1)  | 5089(3)                      | 1144(3)            | 2777(3)          | 34(1)                  |     |
| C(2)  | 5229(3)                      | 315(3)             | 2816(3)          | 38(1)                  |     |
| C(3)  | 6140(3)                      | 266(3)             | 3518(3)          | 39(1)                  |     |
| C(4)  | 6916(3)                      | 1041(3)            | 4177(3)          | 37(1)                  |     |
| C(5)  | 6744(3)                      | 1866(3)            | 4134(3)          | 39(1)                  |     |
| C(6)  | 5851(3)                      | 1929(3)            | 3440(3)          | 35(1)                  |     |
| C(7)  | 7916(3)                      | 984(3)             | 4910(3)          | 51(1)                  |     |
| C(8)  | 2274(3)                      | 839(2)             | 2208(3)          | 35(1)                  |     |
| C(9)  | 2746(3)                      | 264(3)             | 2732(3)          | 34(1)                  |     |
| C(10) | 3294(3)                      | 623(3)             | 3685(3)          | 41(1)                  |     |
| C(11) | 3683(3)                      | 76(3)              | 4154(3)          | 48(1)                  |     |
| C(12) | 3516(4)                      | -849(3)            | 3665(3)          | 52(1)                  |     |
| C(13) | 2954(3)                      | -1218(3)           | 2719(3)          | 52(1)                  |     |
| C(14) | 2581(3)                      | -668(3)            | 2261(3)          | 46(1)                  |     |
| C(15) | 3077(3)                      | 2535(2)            | 2675(2)          | 30(1)                  |     |
| C(16) | 3437(3)                      | 2854(2)            | 3713(2)          | 36(1)                  |     |
| C(17) | 2020(3)                      | 2823(2)            | 2237(2)          | 27(1)                  |     |
| C(18) | 1664(3)                      | 3099(3)            | 5011(3)          | 70(2)                  |     |
| C(19) | 236(4)                       | 1229(3)            | 3721(3)          | 68(2)                  |     |
| C(20) | -729(3)                      | 2869(3)            | 4305(3)          | 59(1)                  |     |
| C(21) | -1199(3)                     | 597(2)             | 952(3)           | 45(1)                  |     |
| C(22) | -2587(3)                     | 1727(3)            | 1743(3)          | 47(1)                  |     |
| C(23) | -1843(3)                     | 2165(3)            | 433(3)           | 51(1)                  |     |
| C(24) | -1233(3)                     | 4410(3)            | 2931(3)          | 58(1)                  |     |
| C(25) | 212(3)                       | 4552(2)            | 1974(3)          | 45(1)                  |     |
| C(26) | 1173(3)                      | 5053(3)            | 4076(3)          | 58(1)                  |     |
| C(27) | 1634(3)                      | 2688(2)            | 1217(2)          | 28(1)                  |     |
| C(28) | 1244(3)                      | 1683(2)            | 544(2)           | 34(1)                  |     |
| C(29) | 2453(3)                      | 3220(2)            | 1048(2)          | 27(1)                  |     |
| C(30) | 5483(3)                      | 3725(2)            | 1290(3)          | 44(1)                  |     |
| C(31) | 6309(3)                      | 5/60(2)            | 2414(3)          | 39(1)                  |     |
| C(32) | 5945(3)                      | 4511(3)            | 3315(3)          | 44(1)<br>40(1)         |     |
| C(33) | 2566(3)                      | 6623(2)            | 3244(3)          | 40(l)                  |     |
| C(34) | 3965(3)                      | 5545(2)            | 4180(2)          | 41(1)<br>20(1)         |     |
| C(35) | 4999(3)                      | 7094(2)            | 3933(2)          | 39(1)<br>40(1)         |     |
| C(36) | 1/50(3)                      | 3984(3)<br>5115(3) | 001(3)<br>200(2) | 49(1)<br>54(1)         |     |
| C(37) | 3147(3)                      | 5115(3)            | -209(3)          | 54(L)<br>44(1)         |     |
| C(38) | 4111(3)                      | 00/1(2)            | 1391(3)          | 44(L)<br>20(1)         |     |
| C(39) | 2000(3)                      | 3135(2)            | -260(2)          | 20(1)<br>20(1)         |     |
| C(40) | 972 (J)<br>2110 (Z)          | 2220(2)            | -200(2)          | 30(1)<br>21(1)         |     |
| C(12) | 2 I I U ( J )<br>5 5 5 ( 2 ) | 2923(2)            | -2884(3)         | ) _ ( _ /<br>/ 7 / 1 ) |     |
| C(42) | _70(3)                       | 2901(2)<br>1268(3) | -2649(3)         | サノ(エ)<br>5ク(1)         |     |
| C(44) | 1694(4)                      | 1442(3)            | -3325(3)         | 63(1)                  |     |
| C(45) | 167(4)<br>3167(3)            | 2001(2)            | -436(2)          | 33(1)                  |     |
| C(46) | 3150(3)                      | 1065(3)            | -1094(3)         | 36(1)                  |     |
| C(47) | 4193(3)                      | 749(3)             | -810(3)          | 60(1)                  |     |
| N(1)  | 3060(2)                      | 1551(2)            | 2241(2)          | 29(1)                  |     |

Table 2. Atomic coordinates [ x 10<sup>4</sup>] and equivalent isotropic displacement parameters [Å<sup>2</sup> x 10<sup>3</sup>] for Brady11. U(eq) is defined as one third of the trace of the orthogonalized U<sub>ij</sub> tensor.

| 0(1)   | 3502(2)  | 312(2)  | 1165(2)  | 46(1) |
|--------|----------|---------|----------|-------|
| 0(2)   | 4358(2)  | 1922(2) | 1661(2)  | 43(1) |
| 0(3)   | 1175(2)  | 2373(2) | 2353(2)  | 31(1) |
| 0(4)   | 2704(2)  | 4159(2) | 1699(2)  | 28(1) |
| 0(5)   | 1968(2)  | 2556(2) | -1478(2) | 33(1) |
| 0(6)   | 2347(2)  | 603(2)  | -1777(2) | 42(1) |
| S(1)   | 3968(1)  | 1216(1) | 1869(1)  | 36(1) |
| Si(1)  | 3655(1)  | 5036(1) | 1939(1)  | 30(1) |
| Si(2)  | 5406(1)  | 4722(1) | 2234(1)  | 36(1) |
| Si(3)  | 3799(1)  | 6116(1) | 3370(1)  | 32(1) |
| Si(4)  | 3138(1)  | 5752(1) | 881(1)   | 37(1) |
| Si(5)  | 183(1)   | 2723(1) | 2645(1)  | 30(1) |
| Si(6)  | 372(1)   | 2471(1) | 3973(1)  | 38(1) |
| Si(7)  | -1440(1) | 1770(1) | 1396(1)  | 36(1) |
| Si(8)  | 116(1)   | 4258(1) | 2920(1)  | 39(1) |
| Si(10) | 1057(1)  | 2047(1) | -2554(1) | 39(1) |
|        |          |         |          |       |

| C(1) $C(2)$                              | 1 272 (5)            | C(20) = C(20)              | 1 500(4)               |
|------------------------------------------|----------------------|----------------------------|------------------------|
| C(1) - C(2)                              | 1.372(3)             | C(29) = C(39)              | 1.020(4)               |
| C(1) - C(0)                              | 1.300(3)             | C(30) = SI(2)              | 1.001(4)               |
| C(1) - S(1)                              | 1.761(4)             | C(31) = S1(2)              | 1.867(4)               |
| C(2) - C(3)                              | 1.390(5)             | C(32) - S1(2)              | 1.865(4)               |
| C(3) - C(4)                              | 1.378(5)             | C(33)-S1(3)                | 1.875(4)               |
| C(4)-C(5)                                | 1.374(5)             | C(34)-Si(3)                | 1.857(3)               |
| C(4)-C(7)                                | 1.495(5)             | C(35)-Si(3)                | 1.875(3)               |
| C(5)-C(6)                                | 1.378(5)             | C(36)-Si(4)                | 1.861(4)               |
| C(8)-N(1)                                | 1.488(4)             | C(37)-Si(4)                | 1.862(4)               |
| C(8)-C(9)                                | 1.505(5)             | C(38)-Si(4)                | 1.869(4)               |
| C(9)-C(10)                               | 1.377(5)             | C(39)-C(40)                | 1.530(4)               |
| C(9)-C(14)                               | 1.378(5)             | C(39)-C(41)                | 1.539(4)               |
| C(10)-C(11)                              | 1.381(5)             | C(41)-O(5)                 | 1.430(4)               |
| C(11)-C(12)                              | 1.373(5)             | C(41)-C(45)                | 1.505(4)               |
| C(12)-C(13)                              | 1.370(5)             | C(42)-Si(10)               | 1.852(4)               |
| C(13) - C(14)                            | 1.369(5)             | C(43)-Si(10)               | 1.842(4)               |
| C(15) - N(1)                             | 1.480(4)             | C(44)-Si(10)               | 1.855(4)               |
| C(15) - C(16)                            | 1.514(4)             | C(45) - C(46)              | 1.513(5)               |
| C(15) - C(17)                            | 1.531(4)             | C(46) - O(6)               | 1.201(4)               |
| C(17) = O(3)                             | 1,431(4)             | C(46) - C(47)              | 1.496(5)               |
| C(17) - C(27)                            | 1 536(4)             | N(1) - S(1)                | 1 620(3)               |
| C(18) - Si(6)                            | 1 855(4)             | O(1) - S(1)                | 1,020(3)<br>1,426(3)   |
| C(10) = Si(6)                            | 1 860(4)             | O(2) - S(1)                | 1,426(3)               |
| $C(20) = S_{1}(6)$                       | 1,856(4)             | O(2) = S(1)<br>O(3) = S(1) | 1,420(2)<br>1,662(2)   |
| C(20) = SI(0)                            | 1,050(4)<br>1,858(4) | O(3) = SI(3)               | 1.002(2)<br>1.675(2)   |
| C(21) = 51(7)                            | 1 965(4)             | O(4) = SI(1)               | 1.073(2)               |
| C(22) = SI(7)                            | 1,000(4)             | O(3) = SI(10)              | 1.037(3)               |
| C(23) = SI(7)                            | 1.002(4)             | SI(1) - SI(3)              | 2.3609(10)             |
| C(24) = SI(0)                            | 1.009(4)             | SI(1) - SI(2)              | 2.3019(17)             |
| C(25) = SI(8)                            | 1.869(4)             | S1(1) - S1(4)              | 2.3/10(16)             |
| C(26) - S1(8)                            | 1.861(4)             | S1(5) - S1(8)              | 2.3459(17)             |
| C(27) - C(28)                            | 1.527(4)             | S1(5) - S1(6)              | 2.3498(17)             |
| C (27) –C (29)                           | 1.533(4)             | S1(5)-S1(7)                | 2.3539(16)             |
| C(29)-O(4)                               | 1.445(4)             |                            |                        |
| C(2)-C(1)-C(6)                           | 119.8(4)             | O(3)-C(17)-C(15)           | 108.9(3)               |
| C(2) - C(1) - S(1)                       | 120.7(3)             | O(3)-C(17)-C(27)           | 109.8(3)               |
| C(6)-C(1)-S(1)                           | 119.5(3)             | C(15)-C(17)-C(27)          | 117.5(3)               |
| C(1)-C(2)-C(3)                           | 120.0(4)             | C(28)-C(27)-C(29)          | 112.8(3)               |
| C(4)-C(3)-C(2)                           | 120.9(4)             | C(28)-C(27)-C(17)          | 113.0(3)               |
| C(5)-C(4)-C(3)                           | 117.9(4)             | C(29)-C(27)-C(17)          | 113.1(3)               |
| C(5) - C(4) - C(7)                       | 121.2(4)             | O(4) -C(29) -C(39)         | 109.5(3)               |
| C(3) - C(4) - C(7)                       | 120.9(4)             | O(4) - C(29) - C(27)       | 106.5(3)               |
| C(4) - C(5) - C(6)                       | 122.1(4)             | C(39) = C(29) = C(27)      | 115.8(3)               |
| C(5) = C(6) = C(1)<br>N(1) = C(8) = C(9) | 119.3(4)<br>116.7(3) | C(29) = C(39) = C(40)      | 111, 4(3)<br>110, 2(3) |
| C(10) = C(9) = C(14)                     | 117 6(4)             | C(29) = C(39) = C(41)      | 119.2(3)<br>110.6(3)   |
| C(10) - C(9) - C(8)                      | 122.5(4)             | O(5) - C(41) - C(45)       | 108.4(3)               |
| C(14) - C(9) - C(8)                      | 119.8(4)             | O(5) - C(41) - C(39)       | 107.2(3)               |
| C(9)-C(10)-C(11)                         | 121.4(4)             | C(45)-C(41)-C(39)          | 114.7(3)               |
| C(12)-C(11)-C(10)                        | 119.7(4)             | C(41)-C(45)-C(46)          | 116.0(3)               |
| C(13)-C(12)-C(11)                        | 119.5(4)             | O(6)-C(46)-C(47)           | 122.9(4)               |
| C(14)-C(13)-C(12)                        | 120.3(4)             | O(6)-C(46)-C(45)           | 122.0(4)               |
| C(13)-C(14)-C(9)                         | 121.5(4)             | C(47)-C(46)-C(45)          | 115.1(4)               |
| N(1) - C(15) - C(16)                     | 111.2(3)             | C(15) - N(1) - C(8)        | 121.2(3)               |
| N(1) - C(15) - C(17)                     | 110 0(2)             | U(15) = N(1) = S(1)        | 117 (2)                |
| C(16) - C(15) - C(17)                    | 110.8(3)             | C(8) - N(1) - S(1)         | ⊥⊥/ <b>.</b> 6(2)      |

| Table 3. | Bond | lengths | [Å] | and | angles | [°] | for | Brady11. |
|----------|------|---------|-----|-----|--------|-----|-----|----------|
|----------|------|---------|-----|-----|--------|-----|-----|----------|

| 133.0(2)   | C(38)-Si(4)-Si(1)                                                                                                                                                                                                                                                                                                                                                                                                                     | 109.11(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 128.8(2)   | O(3)-Si(5)-Si(8)                                                                                                                                                                                                                                                                                                                                                                                                                      | 114.92(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 129.3(2)   | O(3)-Si(5)-Si(6)                                                                                                                                                                                                                                                                                                                                                                                                                      | 108.17(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 120.00(17) | Si(8)-Si(5)-Si(6)                                                                                                                                                                                                                                                                                                                                                                                                                     | 109.62(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 107.15(16) | O(3)-Si(5)-Si(7)                                                                                                                                                                                                                                                                                                                                                                                                                      | 105.56(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 107.09(16) | Si(8)-Si(5)-Si(7)                                                                                                                                                                                                                                                                                                                                                                                                                     | 109.49(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 107.17(18) | Si(6)-Si(5)-Si(7)                                                                                                                                                                                                                                                                                                                                                                                                                     | 108.87(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 105.98(17) | C(18)-Si(6)-C(20)                                                                                                                                                                                                                                                                                                                                                                                                                     | 106.06(19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 109.14(16) | C(18)-Si(6)-C(19)                                                                                                                                                                                                                                                                                                                                                                                                                     | 108.4(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 102.80(10) | C(20)-Si(6)-C(19)                                                                                                                                                                                                                                                                                                                                                                                                                     | 108.5(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 114.58(10) | C(18)-Si(6)-Si(5)                                                                                                                                                                                                                                                                                                                                                                                                                     | 115.05(15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 105.35(6)  | C(20)-Si(6)-Si(5)                                                                                                                                                                                                                                                                                                                                                                                                                     | 108.18(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 114.34(10) | C(19)-Si(6)-Si(5)                                                                                                                                                                                                                                                                                                                                                                                                                     | 110.43(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 106.34(6)  | C(21)-Si(7)-C(23)                                                                                                                                                                                                                                                                                                                                                                                                                     | 107.99(18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 112.16(6)  | C(21)-Si(7)-C(22)                                                                                                                                                                                                                                                                                                                                                                                                                     | 108.95(17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 107.55(18) | C(23)-Si(7)-C(22)                                                                                                                                                                                                                                                                                                                                                                                                                     | 108.47(18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 108.15(17) | C(21)-Si(7)-Si(5)                                                                                                                                                                                                                                                                                                                                                                                                                     | 108.21(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 108.51(17) | C(23)-Si(7)-Si(5)                                                                                                                                                                                                                                                                                                                                                                                                                     | 110.77(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 115.03(13) | C(22)-Si(7)-Si(5)                                                                                                                                                                                                                                                                                                                                                                                                                     | 112.34(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 110.10(13) | C(26)-Si(8)-C(24)                                                                                                                                                                                                                                                                                                                                                                                                                     | 107.04(19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 107.33(12) | C(26)-Si(8)-C(25)                                                                                                                                                                                                                                                                                                                                                                                                                     | 111.02(18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 107.55(17) | C(24)-Si(8)-C(25)                                                                                                                                                                                                                                                                                                                                                                                                                     | 107.83(18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 108.29(17) | C(26)-Si(8)-Si(5)                                                                                                                                                                                                                                                                                                                                                                                                                     | 111.95(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 106.90(17) | C(24)-Si(8)-Si(5)                                                                                                                                                                                                                                                                                                                                                                                                                     | 107.12(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 109.01(13) | C(25)-Si(8)-Si(5)                                                                                                                                                                                                                                                                                                                                                                                                                     | 111.62(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 112.63(13) | O(5)-Si(10)-C(43)                                                                                                                                                                                                                                                                                                                                                                                                                     | 111.07(16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 112.28(12) | O(5)-Si(10)-C(42)                                                                                                                                                                                                                                                                                                                                                                                                                     | 105.29(15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 108.09(19) | C(43)-Si(10)-C(42)                                                                                                                                                                                                                                                                                                                                                                                                                    | 110.07(18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 108.08(18) | O(5)-Si(10)-C(44)                                                                                                                                                                                                                                                                                                                                                                                                                     | 110.49(17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 105.35(18) | C(43)-Si(10)-C(44)                                                                                                                                                                                                                                                                                                                                                                                                                    | 111.6(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 110.07(13) | C(42)-Si(10)-C(44)                                                                                                                                                                                                                                                                                                                                                                                                                    | 108.08(18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 115.82(14) |                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            | 133.0(2)<br>128.8(2)<br>129.3(2)<br>120.00(17)<br>107.15(16)<br>107.09(16)<br>107.17(18)<br>105.98(17)<br>109.14(16)<br>102.80(10)<br>114.58(10)<br>105.35(6)<br>114.34(10)<br>106.34(6)<br>112.16(6)<br>107.55(18)<br>108.15(17)<br>108.51(17)<br>115.03(13)<br>110.10(13)<br>107.33(12)<br>107.55(17)<br>108.29(17)<br>108.29(17)<br>108.90(17)<br>109.01(13)<br>112.28(12)<br>108.08(18)<br>105.35(18)<br>110.07(13)<br>115.82(14) | 133.0(2) $C(38) - Si(4) - Si(1)$ $128.8(2)$ $0(3) - Si(5) - Si(8)$ $129.3(2)$ $0(3) - Si(5) - Si(6)$ $120.00(17)$ $Si(8) - Si(5) - Si(7)$ $107.15(16)$ $0(3) - Si(5) - Si(7)$ $107.19(16)$ $Si(8) - Si(5) - Si(7)$ $107.17(18)$ $Si(6) - Si(5) - Si(7)$ $107.17(18)$ $Si(6) - Si(6) - C(20)$ $109.14(16)$ $C(18) - Si(6) - C(19)$ $102.80(10)$ $C(20) - Si(6) - C(19)$ $102.80(10)$ $C(20) - Si(6) - Si(5)$ $105.35(6)$ $C(20) - Si(6) - Si(5)$ $105.35(6)$ $C(21) - Si(7) - C(23)$ $114.34(10)$ $C(19) - Si(6) - Si(5)$ $106.34(6)$ $C(21) - Si(7) - C(22)$ $107.55(18)$ $C(23) - Si(7) - C(22)$ $108.15(17)$ $C(23) - Si(7) - Si(5)$ $115.03(13)$ $C(22) - Si(7) - Si(5)$ $110.10(13)$ $C(26) - Si(8) - C(25)$ $107.35(17)$ $C(24) - Si(8) - C(25)$ $108.29(17)$ $C(26) - Si(8) - Si(5)$ $106.90(17)$ $C(24) - Si(8) - Si(5)$ $109.01(13)$ $C(25) - Si(10) - C(43)$ $112.28(12)$ $0(5) - Si(10) - C(42)$ $108.08(18)$ $0(5) - Si(10) - C(44)$ $105.35(18)$ $C(43) - Si(10) - C(44)$ $10.07(13)$ $C(42) - Si(10) - C(44)$ |

Table 4. Anisotropic displacement parameters  $[\text{\AA}^2 \times 10^3]$  for Brady11. The anisotropic displacement factor exponent takes the form:  $-2\pi^2[\text{h}^2a^{*2}U_{11}+\ldots+2\text{hka}^*b^*U_{12}]$ 

|       | U <sub>11</sub> | U <sub>22</sub> | U <sub>33</sub> | U <sub>23</sub> | U <sub>13</sub> | U <sub>12</sub> |
|-------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| C(1)  | 39(3)           | 40(3)           | 40(3)           | 22(2)           | 27(2)           | 17(2)           |
| C(2)  | 34(3)           | 43(3)           | 41(3)           | 14(2)           | 22(2)           | 14(2)           |
| C(3)  | 41(3)           | 46(3)           | 51(3)           | 33(3)           | 26(2)           | 22(2)           |
| C(4)  | 35(3)           | 52(3)           | 37(3)           | 24(2)           | 21(2)           | 14(2)           |
| C(5)  | 34(3)           | 47(3)           | 35(3)           | 12(2)           | 17(2)           | 4(2)            |
| C(6)  | 37(3)           | 35(3)           | 43(3)           | 20(2)           | 23(2)           | 13(2)           |
| C(7)  | 36(3)           | 71(3)           | 51(3)           | 30(3)           | 17(2)           | 18(2)           |
| C(8)  | 32(2)           | 30(2)           | 41(3)           | 11(2)           | 17(2)           | 7(2)            |
| C(9)  | 30(2)           | 33(3)           | 43(3)           | 18(2)           | 17(2)           | 7(2)            |
| C(10) | 39(3)           | 37(3)           | 52(3)           | 20(2)           | 22(2)           | 10(2)           |
| C(11) | 54(3)           | 51(3)           | 49(3)           | 29(3)           | 23(3)           | 17(3)           |
| C(12) | 55(3)           | 54(3)           | 69(4)           | 38(3)           | 33(3)           | 22(3)           |
| C(13) | 61(3)           | 32(3)           | 74(4)           | 26(3)           | 36(3)           | 14(2)           |
| C(14) | 49(3)           | 38(3)           | 58(3)           | 18(3)           | 30(3)           | 12(2)           |
| C(15) | 33(2)           | 29(2)           | 31(2)           | 14(2)           | 14(2)           | 5(2)            |
| C(16) | 42(3)           | 32(2)           | 33(2)           | 14(2)           | 15(2)           | 7(2)            |
| C(17) | 32(2)           | 18(2)           | 30(2)           | 7(2)            | 16(2)           | 5(2)            |
| C(18) | 44(3)           | 112(4)          | 44(3)           | 27(3)           | 15(3)           | -1(3)           |
| C(19) | 109(4)          | 59(3)           | 58(3)           | 34(3)           | 46(3)           | 28(3)           |
| C(20) | 57(3)           | 80(4)           | 51(3)           | 27(3)           | 32(3)           | 20(3)           |
| C(21) | 42(3)           | 36(3)           | 43(3)           | 6(2)            | 15(2)           | -5(2)           |
| C(22) | 32(3)           | 45(3)           | 60(3)           | 20(2)           | 19(2)           | 4(2)            |
| C(23) | 45(3)           | 50(3)           | 42(3)           | 17(2)           | 2(2)            | -2(2)           |
| C(24) | 50(3)           | 54(3)           | 91(4)           | 38(3)           | 41(3)           | 27(2)           |
| C(25) | 47(3)           | 28(2)           | 62(3)           | 17(2)           | 26(2)           | 12(2)           |
| C(26) | 67(3)           | 35(3)           | 61(3)           | -2(2)           | 39(3)           | 1(2)            |
| C(27) | 24(2)           | 23(2)           | 31(2)           | 8(2)            | 10(2)           | 5(2)            |
| C(28) | 31(2)           | 36(2)           | 34(2)           | 13(2)           | 13(2)           | 4(2)            |
| C(29) | 24(2)           | 23(2)           | 31(2)           | 12(2)           | 9(2)            | 4(2)            |
| C(30) | 32(3)           | 43(3)           | 57(3)           | 17(2)           | 22(2)           | 3(2)            |
| C(31) | 31(2)           | 43(3)           | 48(3)           | 19(2)           | 20(2)           | 9(2)            |
| C(32) | 36(3)           | 45(3)           | 52(3)           | 25(2)           | 16(2)           | 11(2)           |
| C(33) | 49(3)           | 28(2)           | 44(3)           | 13(2)           | 24(2)           | 7(2)            |
| C(34) | 41(3)           | 44(3)           | 37(3)           | 18(2)           | 16(2)           | 8(2)            |
| C(35) | 43(3)           | 36(3)           | 32(2)           | 10(2)           | 14(2)           | 3(2)            |
| C(36) | 51(3)           | 51(3)           | 50(3)           | 32(2)           | 15(2)           | 15(2)           |
| C(37) | 70(3)           | 48(3)           | 49(3)           | 24(2)           | 28(3)           | 4(2)            |
| C(38) | 46(3)           | 43(3)           | 49(3)           | 29(2)           | 18(2)           | 9(2)            |
| C(39) | 30(2)           | 23(2)           | 29(2)           | 12(2)           | 10(2)           | 1(2)            |
| C(40) | 42(3)           | 35(2)           | 36(2)           | 18(2)           | 13(2)           | 12(2)           |
| C(41) | 37(2)           | 28(2)           | 30(2)           | 14(2)           | 15(2)           | 7(2)            |
| C(42) | 48(3)           | 45(3)           | 39(3)           | 20(2)           | 7(2)            | 5(2)            |
| C(43) | 50(3)           | 42(3)           | 46(3)           | 16(2)           | 4(2)            | 7(2)            |
| C(44) | 90(4)           | 67 (3)          | 42(3)           | 27(3)           | 31(3)           | 38(3)           |
| C(45) | 33(2)           | 40(3)           | 28(2)           | 14(2)           | 16(2)           | 8(2)            |
| C(46) | 39(3)           | 43(3)           | 35(3)           | 19(2)           | 21(2)           | 8(2)            |
| C(47) | 52(3)           | 65(3)           | 61(3)           | 17(3)           | 27(3)           | 32(3)           |
| N(1)  | 32(2)           | 28(2)           | 30(2)           | 11(2)           | 16(2)           | 10(2)           |

| 0(1)   | 44(2) | 52(2) | 34(2) | 9(2)  | 14(2) | 21(2) |
|--------|-------|-------|-------|-------|-------|-------|
| 0(2)   | 40(2) | 60(2) | 52(2) | 37(2) | 29(2) | 24(2) |
| 0(3)   | 31(2) | 27(2) | 44(2) | 17(1) | 23(1) | 8(1)  |
| 0(4)   | 29(2) | 27(2) | 30(2) | 9(1)  | 16(1) | 5(1)  |
| 0(5)   | 40(2) | 33(2) | 28(2) | 15(1) | 15(1) | 6(1)  |
| 0(6)   | 44(2) | 33(2) | 43(2) | 11(2) | 16(2) | 7(1)  |
| S(1)   | 36(1) | 45(1) | 34(1) | 19(1) | 18(1) | 18(1) |
| Si(1)  | 30(1) | 29(1) | 30(1) | 12(1) | 13(1) | 5(1)  |
| Si(2)  | 29(1) | 38(1) | 41(1) | 16(1) | 16(1) | 7(1)  |
| Si(3)  | 36(1) | 28(1) | 32(1) | 11(1) | 14(1) | 4(1)  |
| Si(4)  | 41(1) | 38(1) | 37(1) | 18(1) | 17(1) | 6(1)  |
| Si(5)  | 28(1) | 29(1) | 33(1) | 11(1) | 14(1) | 7(1)  |
| Si(6)  | 35(1) | 45(1) | 34(1) | 14(1) | 18(1) | 7(1)  |
| Si(7)  | 32(1) | 34(1) | 37(1) | 13(1) | 11(1) | 4(1)  |
| Si(8)  | 38(1) | 31(1) | 52(1) | 13(1) | 26(1) | 10(1) |
| Si(10) | 47(1) | 37(1) | 32(1) | 14(1) | 14(1) | 12(1) |
|        |       |       |       |       |       |       |

|                    | Х          | У     | Z            | U(eq) |
|--------------------|------------|-------|--------------|-------|
|                    | 4504       | 225   | 00.60        | 4.5   |
| H(2)               | 4/04       | -226  | 2363         | 45    |
| Н(З)               | 6228       | -310  | 3543         | 47    |
| Н(5)               | 7257       | 2410  | 4597         | 47    |
| Н(б)               | 5761       | 2507  | 3419         | 42    |
| H(7A)              | 7798       | 398   | 4959         | 77    |
| Н(7В)              | 8077       | 1486  | 5506         | 77    |
| H(7C)              | 8529       | 1030  | 4743         | 77    |
| H(8A)              | 1834       | 425   | 1550         | 42    |
| H(8B)              | 1773       | 1146  | 2453         | 42    |
| H(10)              | 3406       | 1262  | 4027         | 49    |
| H(11)              | 4065       | 338   | 4811         | 58    |
| H(12)              | 3788       | -1230 | 3982         | 63    |
| H(13)              | 2823       | -1859 | 2379         | 62    |
| H(14)              | 2199       | -934  | 1604         | 55    |
| H(15)              | 3646       | 2871  | 2590         | 36    |
| H(16A)             | 2885       | 2566  | 3833         | 53    |
| H(16B)             | 3533       | 3521  | 3994         | 53    |
| H(16C)             | 4128       | 2683  | 3983         | 53    |
| H(17)              | 2136       | 3492  | 2607         | 32    |
| H(18A)             | 1772       | 3751  | 5132         | 105   |
| H(18B)             | 2270       | 2859  | 4901         | 105   |
| H(18C)             | 1633       | 3020  | 5550         | 105   |
| н(10С)<br>н(19Ъ)   | 293        | 1133  | 1275         | 102   |
| U(10D)             | 2JJ<br>817 | 1000  | 3547         | 102   |
| П(19D)<br>П(10C)   | - 472      | 1009  | 3200         | 102   |
| н (19C)<br>ц (20Л) | -473       | 092   | 1010         | 102   |
| H(20A)             | -0//       | 2700  | 4040         | 00    |
| H(20B)             | -1455      | 2000  | 3/0/<br>AAEC | 00    |
| H(20C)             | -030       | 3526  | 4456         | 88    |
| H(ZIA)             | -935       | 391   | 1460         | 67    |
| H(21B)             | -655       | 60I   | /02          | 6 /   |
| H(21C)             | -1880      | 1/9   | 460          | 6/    |
| H(22A)             | -2683      | 2349  | 2023         | 70    |
| Н(22В)             | -2425      | 1448  | 2195         | 70    |
| H(22C)             | -3256      | 1361  | 1194         | 70    |
| H(23A)             | -2475      | 1724  | -104         | 77    |
| Н(23В)             | -1238      | 2213  | 258          | 77    |
| Н(23С)             | -2027      | 2765  | 637          | 77    |
| H(24A)             | -1329      | 4212  | 3387         | 86    |
| Н(24В)             | -1811      | 4043  | 2314         | 86    |
| H(24C)             | -1266      | 5057  | 3098         | 86    |
| H(25A)             | -332       | 4110  | 1372         | 67    |
| Н(25В)             | 940        | 4534  | 1992         | 67    |
| H(25C)             | 79         | 5168  | 2064         | 67    |
| H(26A)             | 1172       | 5686  | 4137         | 86    |
| Н(26В)             | 1888       | 4924  | 4135         | 86    |
| H(26C)             | 1015       | 4970  | 4565         | 86    |
| Н(27)              | 979        | 2962  | 1077         | 33    |
| H(28A)             | 756        | 1633  | -74          | 51    |
| H(28B)             | 853        | 1347  | 762          | 51    |

Table 5. Hydrogen coordinates [ x  $10^4]$  and isotropic displacement parameters  $[{\rm \AA}^2~x~10^3]$  for Brady11.

| H(28C) | 1870 | 1422 | 511   | 51 |
|--------|------|------|-------|----|
| Н(29)  | 3132 | 2977 | 1199  | 32 |
| H(30A) | 5127 | 3781 | 697   | 66 |
| Н(ЗОВ) | 5115 | 3159 | 1255  | 66 |
| H(30C) | 6246 | 3708 | 1420  | 66 |
| H(31A) | 7066 | 5699 | 2649  | 59 |
| H(31B) | 6224 | 6303 | 2864  | 59 |
| H(31C) | 6109 | 5822 | 1822  | 59 |
| H(32A) | 5412 | 4041 | 3275  | 65 |
| Н(32В) | 6080 | 5078 | 3851  | 65 |
| H(32C) | 6625 | 4302 | 3387  | 65 |
| H(33A) | 1916 | 6132 | 2941  | 59 |
| Н(ЗЗВ) | 2504 | 6978 | 2867  | 59 |
| H(33C) | 2632 | 7025 | 3859  | 59 |
| H(34A) | 3900 | 5957 | 4735  | 61 |
| H(34B) | 4682 | 5391 | 4359  | 61 |
| H(34C) | 3400 | 4984 | 3873  | 61 |
| H(35A) | 4980 | 7553 | 4489  | 58 |
| H(35B) | 4973 | 7371 | 3497  | 58 |
| H(35C) | 5670 | 6869 | 4109  | 58 |
| H(36A) | 1691 | 6215 | 1273  | 74 |
| Н(З6В) | 1210 | 5417 | 252   | 74 |
| H(36C) | 1641 | 6441 | 413   | 74 |
| H(37A) | 2985 | 5490 | -632  | 80 |
| н(37в) | 2595 | 4544 | -602  | 80 |
| H(37C) | 3864 | 4976 | -180  | 80 |
| H(38A) | 3872 | 7190 | 976   | 65 |
| H(38B) | 4837 | 6762 | 1465  | 65 |
| H(38C) | 4134 | 7247 | 1998  | 65 |
| Н(39)  | 2599 | 3692 | 124   | 33 |
| H(40A) | 398  | 2908 | -459  | 56 |
| Н(40В) | 864  | 3608 | -781  | 56 |
| H(40C) | 943  | 3950 | 253   | 56 |
| H(41)  | 1503 | 1821 | -893  | 37 |
| H(42A) | 115  | 3248 | -2555 | 70 |
| H(42B) | 111  | 2736 | -3555 | 70 |
| H(42C) | 1175 | 3454 | -2717 | 70 |
| H(43A) | 209  | 797  | -2437 | 78 |
| Н(43В) | -607 | 976  | -3297 | 78 |
| H(43C) | -417 | 1615 | -2262 | 78 |
| H(44A) | 2285 | 1877 | -3263 | 95 |
| H(44B) | 1148 | 1173 | -3970 | 95 |
| H(44C) | 1987 | 956  | -3148 | 95 |
| H(45A) | 3362 | 1994 | 185   | 39 |
| H(45B) | 3742 | 2451 | -381  | 39 |
| H(47A) | 4131 | 166  | -1299 | 89 |
| H(47B) | 4346 | 669  | -232  | 89 |
| H(47C) | 4786 | 1207 | -712  | 89 |
|        |      |      |       |    |

| Table | 6. | Torsion | angles | [°] for | Brady11. |
|-------|----|---------|--------|---------|----------|

| C(6) = C(1) = C(2) = C(3)     | -0 4 (5)           | C(6) = C(1) = C(1) = N(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -90 5(3)        |
|-------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
|                               | 0.4(3)             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00.5(5)         |
| S(1) = C(1) = C(2) = C(3)     | 1/.5(3)            | C(29) = O(4) = S1(1) = S1(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -162.9(2)       |
| C(1) - C(2) - C(3) - C(4)     | -0.6(6)            | C(29)-O(4)-Si(1)-Si(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -49.1(3)        |
| C(2) - C(3) - C(4) - C(5)     | 2.0(6)             | C(29) = O(4) = Si(1) = Si(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 82.3(3)         |
| C(2) = C(3) = C(4) = C(7)     | -177 6(3)          | O(4) = O(1) = O(2) = O(30)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 56 43 (17)      |
| C(2) = C(3) = C(4) = C(7)     | =1/7.0(3)          | U(4) = SI(1) = SI(2) = C(30)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50.45(17)       |
| C(3) - C(4) - C(5) - C(6)     | -2.4(6)            | Si(3)-Si(1)-Si(2)-C(30)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 168.65(14)      |
| C(7) - C(4) - C(5) - C(6)     | 177.1(3)           | Si(4)-Si(1)-Si(2)-C(30)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -76.08(15)      |
| C(A) = C(E) = C(E) = C(1)     | 1 5 (6)            | $O(4) = C_{1}(1) = C_{1}(2) = C_{2}(2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 65 26(17)       |
| C(4) - C(3) - C(0) - C(1)     | 1.3(0)             | O(4) - SI(1) - SI(2) - C(32)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -03.20(17)      |
| C(2) - C(1) - C(6) - C(5)     | -0.1(5)            | S1(3)-S1(1)-S1(2)-C(32)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 46.96(15)       |
| S(1)-C(1)-C(6)-C(5)           | -178.0(3)          | Si(4)-Si(1)-Si(2)-C(32)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 162.23(14)      |
| N(1) = C(8) = C(9) = C(10)    | 65 8 (5)           | O(4) - Si(1) - Si(2) - C(31)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 176 81 (16)     |
| N(1) = C(0) = C(0) = C(14)    | 110 0 (4)          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 70.07(14)       |
| N(1) = C(8) = C(9) = C(14)    | -118.0(4)          | SI(3) - SI(1) - SI(2) - C(31)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | = /0.9/(14)     |
| C(14)-C(9)-C(10)-C(11)        | 1.2(6)             | Si(4)-Si(1)-Si(2)-C(31)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 44.30(14)       |
| C(8) - C(9) - C(10) - C(11)   | 177.5(3)           | O(4) - Si(1) - Si(3) - C(34)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 49.75(16)       |
| C(0) = C(10) = C(11) = C(12)  | -0 6 (6)           | $c_{1}(2) - c_{1}(1) - c_{1}(2) - c_{1}(2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -70 57 (14)     |
| C(9) - C(10) - C(11) - C(12)  | -0.0(0)            | 31(2) - 31(1) - 31(3) - 0(34)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -70.57(14)      |
| C(10) - C(11) - C(12) - C(13) | -0.7(6)            | S1(4)-S1(1)-S1(3)-C(34)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 170.21(13)      |
| C(11)-C(12)-C(13)-C(14)       | 1.3(7)             | O(4)-Si(1)-Si(3)-C(35)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 169.03(15)      |
| C(12) - C(13) - C(14) - C(9)  | -0.7(6)            | Si(2) - Si(1) - Si(3) - C(35)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 48 71 (14)      |
|                               | 0.7(0)             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 70 51 (14)      |
| C(10) - C(9) - C(14) - C(13)  | -0.6(6)            | S1(4) - S1(1) - S1(3) - C(35)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -/0.51(14)      |
| C(8)-C(9)-C(14)-C(13)         | -176.9(4)          | O(4)-Si(1)-Si(3)-C(33)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -70.24(16)      |
| N(1)-C(15)-C(17)-O(3)         | 63.4(4)            | Si(2)-Si(1)-Si(3)-C(33)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 169.44(13)      |
| C(16) = C(15) = C(17) = O(3)  | -63 8(1)           | $S_{1}(A) = S_{1}(A) $ | 50 22/14        |
| X(1) = O(1E) = O(1E) = O(1E)  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| N(1) - C(15) - C(17) - C(27)  | -o∠.⊥(4)           | ∪(4)-S1(1)-S1(4)-C(36)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4/.55(18)       |
| C(16)-C(15)-C(17)-C(27)       | 170.6(3)           | Si(3)-Si(1)-Si(4)-C(36)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -65.15(15)      |
| O(3) - C(17) - C(27) - C(28)  | -55.4(4)           | Si(2)-Si(1)-Si(4)-C(36)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -179.82(14)     |
| C(15) = C(17) = C(27) = C(29) | 69 9 (1)           | $O(A) = e_1(1) - e_2(A) - e_2(27)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | =75 10(10)      |
| C(13) - C(17) - C(27) - C(28) | 09.0(4)            | O(4) - SI(1) - SI(4) - C(37)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -75.40(18)      |
| O(3) - C(17) - C(27) - C(29)  | 174.9(3)           | $S_1(3) - S_1(1) - S_1(4) - C(37)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 171.89(15)      |
| C(15)-C(17)-C(27)-C(29)       | -60.0(4)           | Si(2)-Si(1)-Si(4)-C(37)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 57.22(16)       |
| C(28) - C(27) - C(29) - O(4)  | 177.2(3)           | O(4) - Si(1) - Si(4) - C(38)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 165,99(16)      |
| C(17) $C(27)$ $C(20)$ $O(4)$  | E2 0 (4)           | $c_{1}(2)$ $c_{2}(1)$ $c_{1}(1)$ $c_{2}(2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | E2 20(1E)       |
| C(17) = C(27) = C(29) = O(4)  | -33.0(4)           | SI(3) = SI(1) = SI(4) = C(30)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 55.20(15)       |
| C(28)-C(27)-C(29)-C(39)       | 55.2(4)            | Si(2)-Si(1)-Si(4)-C(38)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -61.39(15)      |
| C(17) - C(27) - C(29) - C(39) | -175.0(3)          | C(17)-O(3)-Si(5)-Si(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.5(3)          |
| O(4) = C(29) = C(39) = C(40)  | -68 9(4)           | C(17) = O(3) = Si(5) = Si(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -1224(3)        |
|                               | 50.5(4)<br>E1 E(4) | C(17) O(3) D1(3) D1(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 101 0(0)        |
| C(27) = C(29) = C(39) = C(40) | 51.5(4)            | C(17) = O(3) = S1(3) = S1(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 121.2(3)        |
| O(4)-C(29)-C(39)-C(41)        | 160.4(3)           | O(3)-Si(5)-Si(6)-C(18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 61.2(2)         |
| C(27) - C(29) - C(39) - C(41) | -79.2(4)           | Si(8)-Si(5)-Si(6)-C(18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -64.79(18)      |
| C(29) = C(39) = C(41) = O(5)  | -167 1 (3)         | $g_{i}(7) - g_{i}(5) - g_{i}(6) - g_{i}(18)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 175 46(17)      |
|                               | 107.1(3)           | $S_{1}(7) = S_{1}(5) = S_{1}(6) = C(10)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 170.40(17)      |
| C(40) - C(39) - C(41) - O(5)  | 61.9(4)            | O(3) - Si(5) - Si(6) - C(20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1/9.56(1/)      |
| C(29)-C(39)-C(41)-C(45)       | -46.7(4)           | Si(8)-Si(5)-Si(6)-C(20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 53.56(16)       |
| C(40) - C(39) - C(41) - C(45) | -177.7(3)          | Si(7)-Si(5)-Si(6)-C(20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -66.19(16)      |
| O(5) = C(41) = C(45) = C(46)  | -72 2 (4)          | $O(3) = S_1(5) = S_1(6) = C(19)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -61 80(19)      |
|                               | 12.2(1)            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 01.00(1)        |
| C(39) - C(41) - C(45) - C(46) | 168.1(3)           | S1(8)-S1(5)-S1(6)-C(19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 172.19(16)      |
| C(41)-C(45)-C(46)-O(6)        | -1.6(5)            | Si(7)-Si(5)-Si(6)-C(19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 52.44(17)       |
| C(41) - C(45) - C(46) - C(47) | -179.3(3)          | O(3) - Si(5) - Si(7) - C(21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 37,67(16)       |
| C(16) - C(15) - N(1) - C(9)   | 66 7 (4)           | $c_1(0) = c_1(0) = c_1(0) = c_2(0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 161 01(13)      |
| C(10) - C(15) - N(1) - C(0)   | 00.7(4)            | 31(0) - 31(0) - 31(7) - 0(21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 101.91(13)      |
| C(17) - C(15) - N(1) - C(8)   | -60.3(4)           | S1(6) - S1(5) - S1(7) - C(21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - /8.26(14)     |
| C(16)-C(15)-N(1)-S(1)         | -107.6(3)          | O(3)-Si(5)-Si(7)-C(23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -80.53(17)      |
| C(17) - C(15) - N(1) - S(1)   | 125.4(3)           | si(8)-si(5)-si(7)-c(23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 43,71(16)       |
| C(9) = C(8) = N(1) = C(15)    | -116 3(4)          | $c_1(6) = c_1(5) = c_1(7) = c_1(22)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 163 54 (15)     |
| C(0) = C(0) = M(1) = C(10)    | TTO. 2 (4)         | $D_{\perp}(0)  D_{\perp}(0) = D_{\perp}(1) = C(20)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100.04(10)      |
| C(9) - C(8) - N(1) - S(1)     | 58.2(4)            | O(3) - Si(5) - Si(7) - C(22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 158.00(16)      |
| C(15)-C(17)-O(3)-Si(5)        | 137.5(3)           | Si(8)-Si(5)-Si(7)-C(22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -77.77(14)      |
| C(27) - C(17) - O(3) - Si(5)  | -92.5(3)           | Si(6)-Si(5)-Si(7)-C(22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 42.06(15)       |
| C(20) C(20) O(4) C(1)         | 62 2 (4)           | $O(2)$ $C_{1}^{2}(E)$ $C_{2}^{2}(P)$ $C(2E)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 77 22 (19)      |
| C(33) = C(23) = O(4) = ST(1)  | -02.3(4)           | $O(3) = 3 \pm (3) = 3 \pm (0) = O(20)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - / / . 22 (18) |
| C(27) - C(29) - O(4) - Si(1)  | 171.7(2)           | Si(6)-Si(5)-Si(8)-C(26)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 44.83(15)       |
| C(45)-C(41)-O(5)-Si(10)       | 111.6(3)           | Si(7)-Si(5)-Si(8)-C(26)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 164.20(14)      |
| C(39) - C(41) - O(5) - Si(10) | -124.0(3)          | O(3) - Si(5) - Si(8) - C(24)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 165.73(18)      |
| C(15) = N(1) = C(1) = C(1)    | _155 //2)          | $a_{1}(c) = a_{1}(c) = a_{1}(c) = a_{1}(c)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _72 01 (10)     |
| $C(T_2) = N(T) = S(T) = O(T)$ | -100.4(2)          | $S_{\perp}(0) - S_{\perp}(0) - S_{\perp}(0) - C(24)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -/2.21(16)      |
| C(8)-N(1)-S(1)-O(1)           | 30.1(3)            | Si(7)-Si(5)-Si(8)-C(24)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 47.16(16)       |
| C(15)-N(1)-S(1)-O(2)          | -25.4(3)           | O(3)-Si(5)-Si(8)-C(25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 47.92(18)       |
| C(8) = N(1) = S(1) = O(2)     | 160 1 (2)          | Si(6) - Si(5) - Si(8) - C(25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 169 97(1/1)     |
| C(15) $N(1)$ $C(1)$ $C(2)$    | 100.1(2)           | $a_{1}^{2}(0) = a_{1}^{2}(0) = a_{1}^{2}(0) = a_{1}^{2}(0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |
| C(T2) = N(T) = S(T) = C(T)    | 88.9(3)            | $S_{\perp}(7) - S_{\perp}(5) - S_{\perp}(8) - C(25)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -/0.00(15)      |
| C(8)-N(1)-S(1)-C(1)           | -85.6(3)           | C(41)-O(5)-Si(10)-C(43)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15.7(3)         |
| C(2)-C(1)-S(1)-O(1)           | -14.1(3)           | C(41)-O(5)-Si(10)-C(42)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 134.8(3)        |
| C(6) - C(1) - S(1) - O(1)     | 163 8 (3)          | C(41) = O(5) = Si(10) = C(44)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -1087(3)        |
| C(0) = C(1) = C(1) = C(1)     | 142 4(2)           | (111) 0(0) 01(10) 0(44)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100.1(0)        |
| C(2) = C(1) = S(1) = O(2)     | -143.4(3)          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| C(6)-C(1)-S(1)-O(2)           | 34.5(3)            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| C(2)-C(1)-S(1)-N(1)           | 101.6(3)           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |