Supporting Information

Metal-organic frameworks displaying single crystal-to-single crystal

transformation through postsynthetic uptake of metal clusters

Jia Li, Peng Huang, Xue-Ru Wu, Jun Tao,* Rong-Bin Huang, Lan-Sun Zheng

State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of

Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China

E-mail: taojun@xmu.edu.cn

Contents

Experimental Section2
Materials and Physical Measurements2
Synthesis of 1a ······2
Synthesis of 1b ······2
Synthesis of 1c 3
Transformation From 1a-1c to 2 ······3
Additional Experiment3
Crystallographic Data······4
Crystallographic Data Collection4
Table S1 Crystallographic data and structural refinement details of ${f 1a-1c}$ and ${f 25}$
Table S2 Selected bond lengths and angles associating with the bond cleavage5
Table S3 Temperature-dependent crystallographic data of 1c ·····
Additional Figures
Fig. S1 Structural unit of 1a ······6
Fig. S2 Structural unit of 1b ······7
Fig. S3 Structural unit of 1c ······7
Fig. S4 Structural unit of 2 8
Fig. S5 XRPD pattern of 1a-1c ·····8-9
Fig. S6 XRPD pattern of 2 10
Fig. S7 IR spectra of 1a 10
Fig. S8 IR spectra of 1b 11
Fig. S9 IR spectra of 1c 11
Fig. S10 IR spectra of 2 12
Fig. S11 TGA pattern of 1a-1c and 2 12
Fig. S12 Plot of the unit cell volume of 1c evolution versus temperature······13
Fig. S13 DSC plot of 1c 13
Fig. S14 Crystals of additional experiments14
Fig. S15 Crystal packing diagram of {Co(CHOO) ₃ [NH ₂ (CH ₃) ₂]} ······14

Experimental Section

Materials and Physical Measurements. Chemicals were purchased from commercial sources and were used without further purification. Thermogravimetric analysis was performed on a NETZSCH TG 209 thermobalance in a nitrogen atmosphere, sample was placed in alumina containers and data were recorded at 10 °C/min between 20 and 800 °C. IR spectra (KBr pellet) were obtained from a Nicolet 5DX spectrometer in the region of 400–4000 cm⁻¹. X-ray powder diffraction (XRPD) was collected on Bruker D8 ADVANCE diffractometer at room temperature using Cu *Ka* (λ = 1.5418 Å) radiation. Elemental analysis of carbon, hydrogen and nitrogen was carried out on a Vario EL III analyzer. The solid-state absorption spectra were measured by Vario Cary 5000 spectrometer. Electrospray ionization mass spectrometry was performed on Bruker Daltonics esquire HCT.

Synthesis of 1a: 1,3,5-benzenetribenzoate acid (H₃BTB, 0.1 mmol, 0.0438 g) was stirred in 4 ml DMF for 5 minutes, which was filtered and the resulting solution was placed in a test tube, above which 6 ml DMF-EtOH (1:1 v/v) and then 4 ml EtOH containing 0.3 mmol (0.0714 g) CoCl₂·6H₂O was layered, respectively. The test tube was sealed and put aside. Four months later, purple crystals of $[Co_3O(BTB)_2(H_2O)(DMF)]$ ·7.5DMF·12H₂O (**1a**) crystalline aggregates began to form on the wall of test tube and completed within several days. (yield: \sim 72% based on H₃BTB). Elemental analysis for 1a: calcd.: C 49.76%, H 6.07%, N 6.20%; found: C 49.97%, H 5.75%, N 6.23%. IR (KBr pellet, cm⁻¹): 3408(br), 2920(sh), 1658(s), 1591(s), 1534(m), 1393(s), 1252(w), 1099(w), 1014(w), 850(w), 782(s), 669(w), 477(w).

Synthesis of 1b: A mixture of H₃BTB ligand (0.15 mmol, 0.0657 g) and CoCl₂·6H₂O (0.4 mmol, 0.0952 g) in 15 mL DMF-EtOH (1:1 v/v) was sealed in a 20 mL Pyrex glass bottle, which was heated to 45 °C at a rate of 1 °C/min and stayed at this temperature for 20 days. Then the bottle was heated to 90 °C within 9000 minutes and was directly cooled to 30 °C at a rate of 1 °C/min to give purple crystals of $[Co_3O(BTB)_2(H_2O)_2]$ ·8.5DMF·8H₂O (**1b**, yield: ~55% based on H₃BTB). Elemental

analysis for **1b**: calcd.: C 51.20%, H 5.92%, N 6.38%; found: C 51.34%, H 5.44%, N 6.50%. IR (KBr pellet, cm⁻¹): 3408(br), 2924(sh), 1652(s), 1581(s), 1538(m), 1387(s), 1250(w), 1097(w), 1017(w), 855(w), 779(m), 665(w), 478(w).

Synthesis of 1c: A mixture of H₃BTB ligand (0.10 mmol, 0.0438 g) and CoCl₂·6H₂O (0.3 mmol, 0.0714 g) in 10 mL DMF-EtOH (1:1 v/v) was sealed in a 15 mL Teflon-lined stainless steel vessel, which was heated to 70 °C within 2000 minutes and stayed at this temperature for 3 days. Then the vessel was heated to 110 °C within 2000 minutes and was directly cooled to 30 °C within 2000 minutes to give purple crystals of $[Co_3O(BTB)_2(DMF)(H_2O)_2]$ ·7DMF·8H₂O (**1c**, yield: ~39% based on H₃BTB). Elemental analysis for **1c**: calcd.: C 51.24%, H 5.84%, N 6.13%; found: C 50.97%, H 5.62%, N 6.19%. IR (KBr pellet, cm⁻¹): 3416(br), 2926(sh), 1659(m), 1593(m), 1536(m), 1389(s), 1101(w), 783(m), 660(w), 485(w).

Transformation From 1a-1c to 2: Crushed crystals of **1a**, **1b** or **1c** were immersed in collective filtrate **1a-s** (freshly filtered) or **1b-s** (filtered and opened in air for at least 3 days), the solution was then sealed and **1a-1c** transformed to crystals of $[Co_6O_2(OH)_4(BTB)_{8/3}(H_2O)_4]\cdot14DMF\cdot4EtOH\cdot2H_2O$ (**2**) in one week, three weeks and two months for **1a**, **1b** and **1c**, respectively. As-synthesized un-crushed crystals of **1a** immersed in **1a-s** transformed to **2** in two months, and un-crushed crystals of **1b** or **1c** did not show obvious transformation in **1a-s**. X-ray powder diffraction studied revealed that the transformation from **1a-1c** to **2** was in 100% yield. Elemental analysis for **2**: calcd.: C 50.00%, H 6.12 %, N 6.69%; found: C 50.84%, H 6.06%, N 6.87%. IR (KBr pellet, cm⁻¹): 3422(br), 2916(sh), 1655(s), 1597(s), 1531(m), 1381(s), 1257(w), 1107(w), 1016(w), 859(w), 784(m), 660(w), 485(w).

Additional Experiment: In order to prove that **2** can only be obtained through SCSC process, more experiments have been done.

Additional exp. 1. Various metal-to-ligand ratios in the initial reaction mixture (from 3:1 to 8:1) have been adopted, and the reaction temperature was slowly increased to

90 °C within 1000 minutes, further stayed at this temperature for 1 day (Fig. S14). Then the solution was sealed in a vessel, which was heated to 130 °C within 1000 minutes and was then cooled to 30 °C within 2000 minutes. Only the metal-to-ligand ratios of 4:1 and 5:1 give little crystals of **1c** that were mixed with numerous blue crystals **3**, while large metal-to-ligand ratio (8:1) only generates large quantity of **3**. Unfortunately, we cannot determine the crystal structure of **3** because of its bad crystallinity. The color of mother solution is green (Metal:Ligand = 3:1 and 4:1) and deep blue (Metal:Ligand \geq 5:1).

Additional exp. 2. In order to find out whether dioxygen can accelerate the SCSC transformation, a DMF-EtOH (1:1 v/v) solution containing $CoCl_2 \cdot 6H_2O$ was stirred in a glass bottle for 20 days, the color of solution changed from blue-violet to red, which was used as metal-ion source. The reaction was then taken in the same conditions as synthesizing **1c** (90 and then 130 °C), lager quantity of purple crystals of **1c** (rod-like) yielded when the metal-to-ligand ratio being about 2:1. However, bulky red crystals of **4** {Co(CHOO)₃[NH₂(CH₃)₂]} (**Fig. S15**) crystallized out at the metal-to-ligand ratio being 3:1. When the metal-to-ligand ratio exceeded 4:1, no purple crystals of **1c** yielded and only the red crystals **4** appeared. In the above process, no crystals of **2** were found.

Crystallographic Data Collection and Structure Determination. Diffraction data for all complexes were collected on Oxford Gemini S Ultra diffractometer using Cu *Ka* (λ = 1.54178 Å) or Mo *Ka* (λ = 0.71073 Å) radiation. Experimental absorption corrections were performed using CrysAlisPro. The structures were solved using SHELXS-97 and refined using SHELXL-97.¹ All non-hydrogen atoms were refined anisotropically and hydrogen atoms were generated using the riding model. The contribution of highly disordered solvent molecules was treated using SQUEEZE procedure implemented in PLATON program.² Crystallographic data and structural refinement details are presented in Table 1, selected bond lengths (Å) and angles (deg) associating with bond cleavage are summarized in Table 2.

1 Sheldrick, G. M. *SHELXL-97*, *Program for refinement of crystal structures;* University of Göttingen: Göttingen, Germany, 1997.

2 Spek, A. L. Acta Cryst. **1990**, A46, 194-201.

	1a	1b	1c	2		
Formula	C57H39C03NO15	C54H34C03O15	$C_{57}H_{41}Co_3NO_{16}$	$C_{36}H_{24}Co_3O_{13}$		
<i>T</i> /K		1	173			
F.W.	1154.68	1099.60	1172.70	841.34		
Cryst syst		orthorhombic cubic				
Space group		Pnma Im 3				
a/Å	17.564(4)	17.561 (1)	17.446(4)	27.2496(1)		
b/Å	25.629(5)	25.347 (2)	27.758(6)	27.2496(1)		
c/Å	20.800(4)	20.880 (2)	18.762(4)	27.2496(1)		
<i>V/</i> Å	9363(3)	9294.3(1)	9086(3)	20233.9(1)		
Ζ		4		12		
<i>D</i> (g cm ⁻³)	0.819	0.786	0.857	0.829		
μ (mm ⁻¹)	0.565	0.566	0.583	6.014		
S	1.020	0.920	1.061	1.624		
R_1/wR_2	0.1115/0.2909	0.1155/0.2987	0.0927/0.2575	0.1315/0.3304		

Table S1. Crystallographic data and structural refinement details of **1a-1c** and **2**.

Table S2. Selected bond lengths (Å) and angles (deg) associating with the bond cleavage.

	1a	1b	1c
01-Co1-02/deg	57.4(3)	58.7(3)	59.3(1)
Co1–O1/Å	2.186(8)	2.167(8)	2.244(4)
Co1–O2/Å	2.170(7)	2.174(7)	2.140(3)

			1c		
T/K	100	120	140	160	180
	(De		W		
Cryst syst			orthorhombic		
Space group			Pnma		
a/Å	17.4883(6)	17.4474(3)	17.4730 (6)	17.4692(6)	17.4280(4)
b/Å	27.5596(19)	27.5264(10)	27.5347 (17)	27.5594(16)	27.5847(11)
c/Å	18.8181(15)	18.8060(9)	18.8196 (15)	18.8257(15)	18.8087(13)
<i>V/</i> Å	9069.8(10)	9031.8(6)	9054.4(10)	9063.5(9)	9042.2(8)
S	1.069	0.977	1.087	1.063	1.015

R_1/wR_2	0.0884/0.258	0.0774/0.210	0.0904/0.267	0.0901/0.258	0.0872/0.241
	4	8	1	4	0
	$\langle \rangle$	\diamond	\diamond	\diamond	$\langle \rangle$
T/K	200	230	250	270	290
Cryst syst	orthorhombic				
Space group	Pnma				
a/Å	17.4516(4)	17.4940(4)	17.4362 (12)	17.426(2)	17.2514(19)
b/Å	27.5162(13)	27.0815(9)	25.136 (2)	25.294(6)	24.999(7)
c/Å	19.0369(19)	19.6022(7)	22.475 (2)	21.889(4)	21.297(5)
<i>V/</i> Å	9141.6(10)	9286.8(5)	9850.3(14)	9648.0(3)	9185(4)
S	1.085	1.027	0.869	0.844	0.785
R_1/wR_2	0.1081/0.308	0.0676/0.206	0.0840/0.205	0.0986/0.228	0.0942/0.223
	3	7	2	8	4
	$\langle \rangle$	\diamond	$\langle \rangle$	$\langle \rangle$	Notes that the second secon

Additional figures

Fig. S1 Perspective view of the structural unit of 1a.

Fig. S2 Perspective view of the structural unit of 1b.

Fig. S3 Perspective view of the structural unit of 1c.

Fig. S4 Perspective view of the structural unit of 2.

Fig. S5 XRPD pattern of 1a-1c.

Fig. S6 XRPD pattern of 2.

Fig. S7 IR spectra of 1a.

Fig. S8 IR spectra of 1b.

Fig. S9 IR spectra of 1c.

Fig. S10 IR spectra of 2.

Fig. S11 TGA pattern of 1a-1c and 2.

Fig. S12 Plot of the unit cell volume of 1c evolution versus temperature.

Fig. S13 DSC plot of 1c.

CoCl2:BTB=2:1

CoCl2:BTB=3:1

CoCl2:BTB=5:1

CoCl2:BTB=8:1

Fig. S14 Additional experiment with the CoCl₂:BTB ratio ranging from 2:1 to 8:1 (washed with DMF).

Fig. S15 Crystal packing diagram of {Co(CHOO)₃[NH₂(CH₃)₂]}. (*Inorg. Chem.*, 2004, **43**, 4615)