Supporting Information for

Rh(III)-Catalyzed C-H Activation/Cycloaddition of Benzamides and Methylenecyclopropanes: Divergence in Ring Formation

Sunliang Cui,* Yan Zhang, and Qifan Wu

Institute of Materia Medica and College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R.China E-mail: slcui@zju.edu.cn

Contents

General Considerations	S2
General Procedure for the Synthesis of 4 - 6	S3
Characterization of 4 - 6	S4-S21
Derivatization of Products to 7 and 8	S21-S23
Kinetic Isotope Effect Study	S24-S27
References	S27
Copies of NMR Spectra	S28-S147

General Information:

Infrared spectra were obtained on a FTIR spectrometer. ¹H NMR and ¹³C NMR spectra were recorded on BRUKER AVANCE III 500 or BRUKER AVANCE III 400 spectrometer. CDCl₃ was used as solvent and tetramethylsilane (TMS) as internal standard. Chemical shifts were referenced relative to residual solvent signal (¹HNMR: δ 7.26 ppm, ¹³C NMR: δ 77.0 ppm). The following abbreviations are used to describe peak patterns where appropriate: b = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. Coupling constants (*J*) are reported in Hertz (Hz). HRMS were performed on Waters GCT Premier Time of Flight Mass Spectrometer (EI) or Agilent Technologies 6224 TOF LC/MS apparatus (ESI). Melting points were measured with micro melting point apparatus.

The methylenecyclopropanes 1, *N*-methoxybenzamide 2, and *N*-pivaloyloxybenzamides 3, were prepared according to the literature. ^{[1], [2]} [Cp*RhCl₂]₂, CsOAc, anhydrous MeOH and d₅-benzoic acid were commercial available.

General Procedure:

General procedure for synthesis of spiro dihydroisoquinolinones 4: $[Cp*RhCl_2]_2$ (2.5 mg, 2 mol%), benzamide (**3a-3j**) (0.2 mmol), CsOAc (38.4 mg, 0.2 mmol) were added to a vial. Methanol (1.0 mL) was added, followed by micro-syringe addition of methylenecyclopropane **1** (0.4 mmol). The micro-syringe was washed with an additional 0.5 mL methanol and added to the reaction solution. The mixture was kept at 30 °C under air. After completion (1 h - 2 h), it was diluted with CH₂Cl₂ and transferred to a round bottom flask. Silica was added to the flask and volatiles were evaporated under vacuum. The purification was performed by flash column chromatography on silica gel using ethyl acetate/petroleum ether (v/v, 1:2) as eluent to give the product **4**.

General procedure for synthesis of furan-fused caprolactams **6**: $[Cp*RhCl_2]_2$ (2.5 mg, 2 mol%), *N*-(pivaloyloxy)furan-2-carboxamide (**31-3n**) (0.2 mmol), CsOAc (38.4 mg, 0.2 mmol) were added to a vial. Methanol (1.0 mL) was added, followed by micro-syringe addition of methylenecyclopropane **1** (0.4 mmol). The micro-syringe was washed with an additional 0.5 mL methanol and added to the reaction solution. The mixture was kept at 60 °C under air. After completion (6 h – 8h), it was diluted with CH₂Cl₂ and transferred to a round bottom flask. Silica was added to the flask and volatiles were evaporated under vacuum. The purification was performed by flash column chromatography on silica gel using ethyl acetate/petroleum ether (v/v, 1:1) as eluent to give the product **6**.

Characterization of Products 4-6:

3'-Phenyl-2',3'-dihydro-1'*H***-spiro[cyclopropane-1,4'-isoquinolin]-1'-one** (4a). White solid; mp. 172-173 °C; ¹H NMR (CDCl₃, 500 MHz) δ 8.14 (dd, $J_1 = 1.0$ Hz, $J_2 = 7.5$ Hz, 1H), 7.44 (m, 1H), 7.32 (m, 1H), 7.25 (m, 3H), 7.20 (m, 2H), 6.91 (b, 1H), 6.87 (d, J = 7.5 Hz, 1H), 4.37 (d, J = 3.0 Hz, 1H), 1.18 (m, 1H), 1.00 (m, 2H), 0.95 (m, 1H) ppm; ¹³C NMR (CDCl₃, 125 MHz) δ 166.1, 141.8, 139.5, 132.9, 129.2, 128.4, 128.1, 128.0, 127.4, 126.3, 121.6, 61.9, 23.3, 16.8, 11.4 ppm; IR (KBr) *v* 3200, 3078, 2910, 1656, 1596, 1467, 1400, 1332, 1272, 1022, 752, 698 cm⁻¹; HRMS (EI) (*m*/*z*): calcd for C₁₇H₁₅NO [M⁺] 249.1154; found 249.1150.

6'-Methoxy-3'-phenyl-2',3'-dihydro-1'*H***-spiro[cyclopropane-1,4'-isoquinolin]-1'one (4b).** White solid; mp. 178-180 °C; ¹H NMR (CDCl₃, 500 MHz) δ 8.11 (d, *J* = 8.5 Hz, 1H), 7.26 (m, 3H), 7.22 (m, 2H), 6.83 (dd, *J*₁ = 2.5 Hz, *J*₂ = 8.5Hz, 1H), 6.62 (b, 1H), 6.36 (d, *J* = 2.5 Hz, 1H), 4.33 (d, *J* = 3.5 Hz, 1H), 3.82 (s, 3H), 1.16 (m, 1H), 1.02 (m, 2H), 0.94 (m, 1H) ppm; ¹³C NMR (CDCl₃, 125 MHz) δ 166.0, 163.4, 144.0,

139.7, 130.4, 128.4, 128.0, 127.4, 122.2, 111.0, 107.5, 62.0, 55.3, 23.6, 17.0, 11.5 ppm; IR (KBr) v 3179, 2917, 2848, 1663, 1607, 1457, 1407, 1258, 1070, 1026, 826, 708 cm⁻¹; HRMS (EI) (*m*/*z*): calcd for C₁₈H₁₇NO₂ [M⁺] 279.1259; found 279.1265.

7'-Methyl-3'-phenyl-2',3'-dihydro-1'*H***-spiro[cyclopropane-1,4'-isoquinolin]-1'-on e (4c).** White solid; mp. 206-208 °C; ¹H NMR (CDCl₃, 400 MHz) δ 7.97 (s, 1H), 7.27 (m, 4H), 7.20 (m, 2H), 6.76 (d, *J* = 8.0 Hz, 1H), 6.45 (b, 1H), 4.36 (d, *J* = 2.8 Hz, 1H), 2.38 (s, 3H), 1.12 (m, 1H), 0.96 (m, 3H) ppm; ¹³C NMR (CDCl₃, 125 MHz) δ 166.3, 139.6, 138.8, 136.0, 133.7, 128.9, 128.5, 128.4, 128.0, 127.4, 121.6, 62.0, 23.1, 20.9, 16.5, 11.2 ppm; IR (KBr) *v* 3191, 3056, 2920, 1655, 1614, 1466, 1431, 1336, 803, 709 cm⁻¹; HRMS (EI) (*m/z*): calcd for C₁₈H₁₇NO [M⁺] 263.1310; found 263.1307.

8'-Bromo-3'-phenyl-2',3'-dihydro-1'*H***-spiro[cyclopropane-1,4'-isoquinolin]-1'-on e (4d).** White solid; mp. 201-203 °C; ¹H NMR (CDCl₃, 500 MHz) δ 7.57 (dd, $J_1 = 0.5$ Hz, $J_2 = 8.0$ Hz, 1H), 7.27 (m, 3H), 7.20 (m, 3H), 6.99 (b, 1H), 6.86 (dd, $J_1 = 1.0$ Hz, $J_2 = 8.0$ Hz, 1H), 4.31 (d, J = 4.0 Hz, 1H), 1.23 (m, 1H), 1.11 (m, 1H), 1.01 (m, 1H), 0.95 (m, 1H) ppm; ¹³C NMR (CDCl₃, 125 MHz) δ 164.0, 144.5, 138.6, 133.7, 132.5, 128.4, 128.3, 128.0, 127.3, 122.8, 121.6, 60.8, 25.2, 15.9, 11.2 ppm; IR (KBr) *v* 3187, 3061, 2924, 1657, 1588, 1550, 1450, 1381, 1287, 960, 772, 721 cm⁻¹; HRMS (EI) (*m/z*): calcd for C₁₇H₁₄BrNO [M⁺] 327.0259; found 327.0251.

1'-Oxo-3'-phenyl-2',3'-dihydro-1'*H***-spiro[cyclopropane-1,4'-isoquinoline]-6'-carb onitrile (4e).** White solid; mp. 181-183 °C; ¹H NMR (CDCl₃, 500 MHz) δ 8.23 (d, *J* = 10.0 Hz, 1H), 7.60 (dd, *J*₁ = 1.5 Hz, *J*₂ = 10.0 Hz, 1H), 7.28 (m, 3H), 7.17 (m, 4H), 4.40 (d, *J* = 4.0 Hz, 1H), 1.24 (m, 1H), 1.13 (m, 2H), 0.99 (m, 1H) ppm; ¹³C NMR (CDCl₃, 125 MHz) δ 164.3, 143.1, 138.6, 132.9, 129.9, 128.8, 128.7, 128.4, 127.2, 125.8, 118.1, 116.2, 61.5, 23.4, 17.5, 11.8 ppm; IR (KBr) *v* 3227, 3062, 2924, 2221, 1674, 1552, 1453, 1287, 778, 701 cm⁻¹; HRMS (EI) (*m*/*z*): calcd for C₁₈H₁₄N₂O [M⁺] 274.1106; found 274.1104.

6'-Nitro-3'-phenyl-2',3'-dihydro-1'*H***-spiro[cyclopropane-1,4'-isoquinolin]-1'-one** (**4f**). Yellow solid; mp. 155-156 °C; ¹H NMR (CDCl₃, 400 MHz) δ 8.32 (d, *J* = 8.4 Hz, 1H), 8.15 (d, *J* = 8.8 Hz, 1H), 7.77 (s, 1H), 7.29 (m, 3H), 7.19 (m, 2H), 6.95 (b, 1H), 4.45 (d, *J* = 2.4 Hz, 1H), 1.29 (m, 1H), 1.17 (m, 2H), 1.07 (m, 1H) ppm; ¹³C NMR (CDCl₃, 125 MHz) δ 164.2, 150.7, 143.9, 138.6, 134.3, 129.6, 128.7, 128.4, 127.2, 121.2, 117.3, 61.6, 23.7, 17.8, 12.0 ppm; IR (KBr) *v* 3428, 1672, 1617, 1584, 1528, 1341, 1054, 783, 695 cm⁻¹; HRMS (EI) (*m*/*z*): calcd for C₁₇H₁₄N₂O₃ [M⁺] 294.1004; found 294.1012.

7'-Methyl-6'-nitro-3'-phenyl-2',3'-dihydro-1'*H*-spiro[cyclopropane-1,4'-isoquinol in]-1'-one (4g). Yellow solid; mp. 182-184 °C; ¹H NMR (CDCl₃, 500 MHz) δ 8.11 (s, 1H), 7.43 (s, 1H), 7.34 (b, 1H), 7.28 (m, 3H), 7.19 (m, 2H), 4.39 (d, J = 3.0 Hz, 1H), 2.60 (s, 3H), 1.28 (m, 1H), 1.14 (m, 2H), 1.00 (m, 1H) ppm; ¹³C NMR (CDCl₃, 125 MHz) δ 164.3, 151.7, 141.1, 138.8, 132.8, 132.6, 131.3, 128.7, 128.3, 127.1, 118.4, 61.7, 23.3, 19.8, 17.7, 11.7 ppm; IR (KBr) *v* 3212, 2927, 1665, 1620, 1568, 1516, 1341, 836, 759, 707 cm⁻¹; HRMS (EI) (*m*/*z*): calcd for C₁₈H₁₆NO₃ [M⁺] 308.1161; found 308.1147.

3'-(*p***-Tolyl)-2',3'-dihydro-1'***H***-spiro[cyclopropane-1,4'-isoquinolin]-1'-one (4h).** White solid; mp. 164-165 °C; ¹H NMR (CDCl₃, 500 MHz) δ 8.14 (d, *J* = 7.5 Hz, 1H), 7.44 (m, 1H), 7.32 (m, 1H), 7.08 (m, 4H), 6.87 (d, *J* = 7.5 Hz, 1H), 6.69 (b, 1H), 4.38 (s, 1H), 2.29 (s, 3H), 1.10 (m, 1H), 0.98 (m, 3H) ppm; ¹³C NMR (CDCl₃, 125 MHz) δ 166.1, 141.9, 137.7, 136.4, 132.8, 129.3, 129.0, 128.0, 127.3, 126.2, 121.5, 61.5, 23.3, 21.0, 16.4, 11.4 ppm; IR (KBr) *v* 3184, 3035, 2911, 1663, 1601, 1571, 1509, 1473, 1406, 1293, 810, 759 cm⁻¹; HRMS (EI) (*m*/*z*): calcd for C₁₈H₁₇NO [M⁺] 263.1310; found 263.1302.

3'-(4-Chlorophenyl)-2',3'-dihydro-1'H-spiro[cyclopropane-1,4'-isoquinolin]-1'-on e (4i). White solid; mp. 127-129 °C; ¹H NMR (CDCl₃, 500 MHz) δ 8.12 (d, *J* = 7.5 Hz, 1H), 7.45 (m, 1H), 7.33 (m, 1H), 7.21 (d, *J* = 8.0 Hz, 2H), 7.13 (d, *J* = 8.0 Hz,

2H), 7.06 (b, 1H), 6.85 (d, J = 3.0 Hz, 1H), 4.26 (d, J = 2.0 Hz, 1H), 1.28 (m, 1H), 1.06 (m, 1H), 0.98 (m, 1H), 0.93 (m, 1H) ppm; ¹³C NMR (CDCl₃, 125 MHz) δ 165.9, 141.4, 138.4, 133.9, 133.0, 129.2, 128.7, 128.6, 128.2, 126.5, 121.6, 61.6, 23.4, 17.6, 11.0 ppm; IR (KBr) v 3203, 3066, 2967, 1660, 1600, 1573, 1468, 1394, 1257, 1090, 799 cm⁻¹; HRMS (EI) (*m*/*z*): calcd for C₁₇H₁₄CINO [M⁺] 283.0764; found 283.0759.

4-(1'-Oxo-2',3'-dihydro-1'*H***-spiro[cyclopropane-1,4'-isoquinolin]-3'-yl)benzonitri le (4j).** Yellow solid; mp. 161-162 °C; ¹H NMR (CDCl₃, 500 MHz) δ 8.10 (m, 1H), 7.68 (b, 1H), 7.52 (m, 2H), 7.46 (m, 1H), 7.32 (m, 3H), 6.86 (d, J = 7.5 Hz, 1H), 4.19 (d, J = 3.5 Hz, 1H), 1.47 (m, 1H), 1.19 (m, 1H), 1.02 (m, 1H), 0.94 (m, 1H) ppm; ¹³C NMR (CDCl₃, 125 MHz) δ 166.1, 145.7, 140.7, 133.2, 132.2, 129.1, 128.1, 127.9, 126.6, 121.7, 118.4, 111.6, 61.8, 23.1, 19.4, 10.2 ppm; IR (KBr) *v* 3204, 3071, 2920, 2220, 1659, 1600, 1462, 1392, 1259, 1021, 802, 756 cm⁻¹; HRMS (EI) (*m/z*): calcd for C₁₈H₁₄N₂O [M⁺] 274.1106; found 274.1104.

3'-(2-Bromophenyl)-2',3'-dihydro-1'H-spiro[cyclopropane-1,4'-isoquinolin]-1'-on e (4k). White solid; mp. 196-197 °C; ¹H NMR (CDCl₃, 500 MHz) δ 8.07 (dd, *J*₁ = 1.5 Hz, *J*₂ = 8.0 Hz, 1H), 7.50 (m, 2H), 7.34 (m, 1H), 7.23 (m, 1H), 7.11 (m, 2H), 6.97 (d, *J* = 8.0 Hz, 1H), 6.58 (b, 1H), 4.59 (d, *J* = 4.0 Hz, 1H), 1.45 (m, 1H), 1.23 (m, 1H), 0.98 (m, 2H) ppm; ¹³C NMR (CDCl₃, 125 MHz) δ 165.1, 141.9, 139.4, 133.2, 133.1, 129.5, 129.0, 128.9, 128.4, 127.7, 126.4, 124.0, 121.1, 60.7, 21.8, 20.5, 10.9 ppm; IR

(KBr) *v* 3179, 3037, 2919, 1656, 1600, 1558, 1457, 1410, 1022, 748 cm⁻¹; HRMS (EI) (*m/z*): calcd for C₁₇H₁₄BrNO [M⁺] 327.0259; found 327.0254.

3'-(Pyridin-3-yl)-2',3'-dihydro-1'*H***-spiro[cyclopropane-1,4'-isoquinolin]-1'-one** (**4**). White solid; mp. 175-177 °C; ¹H NMR (CDCl₃, 500 MHz) δ 8.47 (m, 2H), 8.11 (d, *J* = 7.5 Hz, 1H), 7.46 (m, 3H), 7.33 (m, 1H), 7.15 (m, 1H), 6.86 (d, *J* = 7.5 Hz, 1H), 4.20 (d, *J* = 4.0 Hz, 1H), 1.43 (m, 1H), 1.18 (m, 1H), 1.01 (m, 1H), 0.91 (m, 1H) ppm; ¹³C NMR (CDCl₃, 125 MHz) δ 166.1, 149.1, 148.6, 140.8, 134.5, 133.1, 129.1, 128.1, 126.6, 121.7, 60.0, 23.2, 19.2, 10.3 ppm; IR (KBr) *v* 3177, 3032, 2913, 1657, 1600, 1569, 1476, 1408, 1300, 1024, 802, 760, 703 cm⁻¹; HRMS (EI) (*m/z*): calcd for C₁₆H₁₄N₂O [M⁺] 250.1106; found 250.1103.

Ethyl 1'-oxo-2',3'-dihydro-1'*H*-spiro[cyclopropane-1,4'-isoquinoline]-3'-carboxylate (4m). White solid; 159-160 °C; ¹H NMR (CDCl₃, 400 MHz) δ 8.09 (d, *J* = 7.6 Hz, 1H), 7.41 (m, 2H), 7.29 (m, 1H), 6.83 (d, *J* = 7.6 Hz, 1H), 4.06 (q, *J* = 7.2 Hz, 2H), 3.52 (d, *J* = 4.4 Hz, 1H), 1.58 (m, 1H), 1.34 (m, 1H), 1.23 (m, 1H), 1.10 (t, *J* = 7.2 Hz, 3H), 0.75 (m, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ 170.6, 166.4, 140.0, 132.7, 129.0, 128.0, 126.5, 121.1, 61.4, 61.1, 21.2, 20.3, 14.0, 9.5 ppm; IR (KBr) *v* 3192, 3070, 2946, 1728, 1669, 1194, 1024, 765 cm⁻¹; HRMS (ESI) (*m*/*z*): calcd for C₁₄H₁₅NO₃ ([M+H]⁺), 246.1130; found 246.1138.

6'-Methyl-3'-(*p*-tolyl)-2',3'-dihydro-1'*H*-spiro[cyclopropane-1,4'-isoquinolin]-1'-o ne (4n). White solid; mp. 146-147 °C; ¹H NMR (CDCl₃, 500 MHz) δ 8.02 (d, *J* = 7.5 Hz, 1H), 7.09 (m, 5H), 6.67 (m, 1H), 6.65 (s, 1H), 4.33 (d, *J* = 3.0 Hz, 1H), 2.34 (s, 3H), 2.29 (s, 3H), 1.13 (m, 1H), 0.96 (m, 3H) ppm; ¹³C NMR (CDCl₃, 125 MHz) δ 166.2, 143.3, 141.7, 137.7, 136.5, 129.1, 128.1, 127.3, 127.1, 126.7, 122.1, 61.7, 23.4, 21.8, 21.0, 16.3, 11.3 ppm; IR (KBr) *v* 3176, 3023, 2920, 1658, 1603, 1560, 1468, 1413, 1284, 819 cm⁻¹; HRMS (EI) (*m*/*z*): calcd for C₁₉H₁₉NO [M⁺] 277.1467; found 277.1465.

3'-(4-Chlorophenyl)-6'-methyl-2',3'-dihydro-1'*H***-spiro[cyclopropane-1,4'-isoquin olin]-1'-one (4o). White solid; mp. 168-170 °C; ¹H NMR (CDCl₃, 400 MHz) \delta 8.02 (d, J = 8.0 Hz, 1H), 7.22 (d, J = 8.0 Hz, 2H), 7.12 (m, 3H), 6.64 (s, 1H), 6.59 (b, 1H), 4.22 (d, J = 2.0 Hz, 1H), 2.34 (s, 3H), 1.25 (m, 1H), 0.98 (m, 3H) ppm; ¹³C NMR (CDCl₃, 125 MHz) \delta 166.1, 143.6, 141.1, 138.5, 133.8, 128.60, 128.59, 128.2, 127.3, 126.5, 122.2, 61.6, 23.4, 21.9, 17.8, 10.8 ppm; IR (KBr) v 3185, 3060, 2918, 1660, 1611, 1567, 1487, 1394, 1276, 1090, 811 cm⁻¹; HRMS (EI) (***m/z***): calcd for C₁₈H₁₆CINO [M⁺] 297.0920; found 297.0913.**

6'-Methoxy-3'-(*p*-tolyl)-2',3'-dihydro-1'*H*-spiro[cyclopropane-1,4'-isoquinolin]-1' -one (4p). White solid; mp. 177-178 °C; ¹H NMR (CDCl₃, 400 MHz) δ 8.09 (d, J = 8.4 Hz, 1H), 7.08 (m, 4H), 6.81 (dd, $J_1 = 2.0$ Hz, $J_2 = 8.8$ Hz, 1H), 6.56 (m, 1H), 6.34 (d, J = 2.4 Hz, 1H), 4.32 (s, 1H), 3.81 (s, 3H), 2.29 (s, 3H), 1.10 (m, 1H), 0.95 (m, 3H) ppm; ¹³C NMR (CDCl₃, 125 MHz) δ 166.0, 163.3, 144.1, 137.7, 136.6, 130.3, 129.0, 127.3, 122.2, 110.9, 107.5, 61.6, 55.2, 23.6, 21.0, 16.6, 11.5 ppm; IR (KBr) *v* 3179, 2918, 1661, 1602, 1458, 1400, 1324, 1254, 1075, 1029, 803 cm⁻¹; HRMS (EI) (*m*/*z*): calcd for C₁₉H₁₉NO₂ [M⁺] 293.1416; found 293.1411.

6'-Chloro-3'-(*p***-tolyl)-2',3'-dihydro-1'***H***-spiro[cyclopropane-1,4'-isoquinolin]-1'-o ne (4q). White solid; mp. 135-136 °C; ¹H NMR (CDCl₃, 400 MHz) \delta 8.08 (d,** *J* **= 8.4 Hz, 1H), 7.29 (d,** *J* **= 8.4 Hz, 1H), 7.09 (m, 4H), 6.84 (s, 1H), 6.33 (b, 1H), 4.38 (d,** *J* **= 2.4 Hz, 1H), 2.31 (s, 3H), 1.04 (m, 4H) ppm; ¹³C NMR (CDCl₃, 125 MHz) \delta 165.2, 143.9, 139.1, 138.1, 135.9, 129.8, 129.2, 127.7, 127.2, 126.6, 122.1, 61.5, 23.5, 21.0, 16.6, 11.8 ppm; IR (KBr)** *v* **3416, 3187, 2920, 1662, 1590, 1466, 1283, 1094, 840 cm⁻¹; HRMS (EI) calcd for C₁₈H₁₆CINO (M⁺), 297.0920; found, 297.0922.**

8'-Methyl-3'-(*p***-tolyl)-2',3'-dihydro-1'***H***-spiro[cyclopropane-1,4'-isoquinolin]-1'-o ne (4r). White solid; mp. 71-73 °C; ¹H NMR (CDCl₃, 500 MHz) δ 7.26 (m, 1H), 7.08 (m, 5H), 6.74 (d,** *J* **= 7.5 Hz, 1H), 6.67 (b, 1H), 4.28 (d,** *J* **= 3.5 Hz, 1H), 2.74 (s, 3H), 2.29 (s, 3H), 1.11 (m, 1H), 0.99 (m, 1H), 0.92 (m, 2H) ppm; ¹³C NMR (CDCl₃, 125**

MHz) δ 166.8, 142.6, 141.1, 137.6, 136.2, 131.6, 130.4, 129.0, 127.8, 127.3, 119.9, 60.9, 24.6, 22.5, 21.0, 15.2, 11.0 ppm; IR (KBr) *v* 3178, 3062, 2916, 1653, 1598, 1506, 1476, 1390, 1275, 1025, 805, 780 cm⁻¹; HRMS (EI) (*m*/*z*): calcd for C₁₉H₁₉NO [M⁺], 277.1467; found 277.1463.

7'-Methyl-3'-(*p*-tolyl)-2',3'-dihydro-1'*H*-spiro[cyclopropane-1,4'-isoquinolin]-1'-o ne (4s). White solid; mp. 209-211 °C; ¹H NMR (CDCl₃, 500 MHz) δ 7.95 (s, 1H), 7.24 (d, *J* = 7.5 Hz, 1H), 7.09 (d, *J* = 7.5 Hz, 2H), 7.05 (d, *J* = 7.5 Hz, 2H), 7.00 (b, 1H), 6.76 (d, *J* = 8.0 Hz, 1H), 4.32 (s, 1H), 2.37 (s, 3H), 2.28 (s, 3H), 1.12 (m, 1H), 0.94 (m, 2H), 0.90 (m, 1H) ppm; ¹³C NMR (CDCl₃, 125 MHz) δ 166.4, 138.8, 137.6, 136.5, 135.9, 133.5, 129.0, 128.9, 128.4, 127.3, 121.5, 61.6, 23.1, 21.0, 20.9, 16.4, 11.1 ppm; IR (KBr) *v* 3187, 3043, 2911, 1663, 1610, 1571, 1473, 1380, 1282, 1144, 803 cm⁻¹; HRMS (EI) (*m*/*z*): calcd for C₁₉H₁₉NO [M⁺] 277.1467; found 277.1470.

3'-Phenethyl-2',3'-dihydro-1'*H*-**spiro**[**cyclopropane-1,4'-isoquinolin**]-**1'-one** (**4t**). White solid; mp. 91-93 °C; ¹H NMR (CDCl₃, 500 MHz) δ 8.13 (d, *J* = 7.5 Hz, 1H), 7.81 (m, 1H), 7.45 (m, 1H), 7.32 (m, 1H), 7.26 (m, 2H), 7.17 (m, 3H), 6.88 (d, *J* = 7.5 Hz, 1H), 2.78 (m, 2H), 2.64 (m, 1H), 1.90 (m, 2H), 1.52 (m, 1H), 1.07 (m, 1H), 0.82 (m, 1H), 0.64 (m, 1H) ppm; ¹³C NMR (CDCl₃, 125 MHz) δ 165.8, 141.5, 141.2, 132.6, 129.3, 128.4, 128.2, 128.0, 126.1, 125.9, 121.7, 58.5, 36.4, 32.1, 23.2, 20.0, 9.0 ppm; IR (KBr) *v* 3190, 3061, 2921, 1661, 1607, 1563, 1466, 1405, 1307, 1124, 751,

696 cm⁻¹; HRMS (EI) (m/z): calcd for C₁₉H₁₉NO [M⁺] 277.1467; found 277.1465.

6'-Chloro-3'-phenethyl-2',3'-dihydro-1'*H***-spiro[cyclopropane-1,4'-isoquinolin]-1' -one (4u). White solid; mp. 112-113 °C; ¹H NMR (CDCl₃, 500 MHz) δ 8.04 (d, J = 10.5 Hz, 1H), 7.80 (m, 1H), 7.25 (m, 3H), 7.15 (m, 3H), 6.84 (d, J = 2.5 Hz, 1H), 2.77 (m, 2H), 2.62 (m, 1H), 1.87 (m, 2H), 1.47 (m, 1H), 1.08 (m, 1H), 0.84 (m, 1H), 0.65 (m, 1H) ppm; ¹³C NMR (CDCl₃, 125 MHz) δ 165.0, 143.6, 140.9, 138.8, 129.7, 128.5, 128.2, 127.8, 126.5, 126.0, 122.1, 58.4, 36.4, 32.0, 23.2, 20.2, 9.3 ppm; IR (KBr)** *ν* **3192, 2924, 2854, 1666, 1596, 1462, 1399, 1130, 837, 747, 696 cm⁻¹; HRMS (EI) (***m***/***z***): calcd for C₁₉H₁₈CINO [M⁺] 311.1077; found 311.1079.**

5'-Phenyl-5'*H***-spiro[cyclopropane-1,4'-thieno[2,3-c]pyridin]-7'(6'H)-one** (4v). White solid; mp. 201-202 °C; ¹H NMR (CDCl₃, 500 MHz) δ 7.51 (d, *J* = 5.0Hz, 1H), 7.33 (m, 3H), 7.28 (m, 2H), 6.59 (d, *J* = 5.0Hz, 1H), 5.90 (b, 1H), 4.79 (d, *J* = 1.5 Hz, 1H), 1.04 (m, 1H), 0.87 (m, 3H) ppm; ¹³C NMR (CDCl₃, 125 MHz) δ 163.2, 150.0, 138.1, 132.2, 130.1, 128.5, 128.4, 127.9, 122.4, 62.7, 22.3, 14.1, 13.3 ppm; IR (KBr) *v* 3187, 3056, 2916, 1655, 1471, 1436, 1402, 1333, 1143, 989, 776, 702 cm⁻¹; HRMS (EI) (*m*/*z*): calcd for C₁₅H₁₃NOS [M⁺] 255.0718; found 255.0723.

4'-Phenethyl-2',4'-dihydro-1'*H***-spiro[cyclopropane-1,3'-isoquinolin]-1'-one (5a).** White solid; mp. 180-182 °C; ¹H NMR (CDCl₃, 500 MHz) δ 8.12 (dd, $J_1 = 1.5$ Hz, $J_2 = 7.5$ Hz, 1H), 7.51 (m, 1H), 7.42 (m, 1H), 7.27 (m, 2H), 7.18 (m, 2H), 7.14 (d, J = 7.0 Hz, 2H), 6.27 (m, 1H), 2.63 (t, J = 7.5 Hz, 2H), 2.18(m, 2H), 2.06 (m, 1H), 0.93 (m, 2H), 0.74 (m, 1H), 0.63 (m, 1H) ppm; ¹³C NMR (CDCl₃, 125 MHz) δ 167.3, 142.5, 141.6, 132.0, 128.4, 128.2, 128.0, 127.7, 127.2., 125.9, 45.8, 37.9, 35.4, 33.1, 15.0, 10.7 ppm; IR (KBr) v 3173, 3059, 2932, 1667, 1594, 1413, 1380, 1079, 794, 744, 697 cm⁻¹; HRMS (EI) (*m*/*z*): calcd for C₁₉H₁₉NO [M⁺] 277.1467; found 277.1465.

6'-Chloro-4'-phenethyl-2',4'-dihydro-1'*H***-spiro[cyclopropane-1,3'-isoquinolin]-1' -one (5b).** White solid; mp. 178-180 °C; ¹H NMR (CDCl₃, 500 MHz) δ 8.04 (d, *J* = 10.0 Hz, 1H), 7.37 (dd, *J*₁ = 2.5 Hz, *J*₂ = 10.5 Hz, 1H), 7.26 (m, 2H), 7.18 (m, 1H), 7.13 (m, 3H), 6.57 (b, 1H), 2.63 (t, *J* = 10.5 Hz, 2H), 2.10 (m, 3H), 0.93 (m, 2H), 0.73 (m, 1H), 0.61 (m, 1H) ppm; ¹³C NMR (CDCl₃, 125 MHz) δ 166.7, 144.3, 141.2,

138.0, 130.0, 128.5, 128.2, 127.6, 127.5, 126.5, 126.0, 45.6, 37.8, 35.2, 33.1, 14.9, 10.6 ppm; IR (KBr) v 3173, 3059, 2932, 1667, 1594, 1413, 1380, 1079, 794, 744, 697 cm⁻¹; HRMS (EI) (m/z): calcd for C₁₉H₁₈CINO [M⁺] 311.1077; found 311.1079.

(*Z*)-4-Benzylidene-6,7-dihydro-4*H*-thieno[2,3-c]azepin-8(5*H*)-one (6a). White solid; mp. 183-185 °C; ¹H NMR (CDCl₃, 500 MHz) δ 7.20 (m, 4H), 7.06 (d, *J* = 6.5 Hz, 2H), 6.95 (b, 1H), 6.62 (d, *J* = 5.0 Hz, 1H), 6.58 (s, 1H), 3.53 (d, *J* = 5.5 Hz, 2H), 2.95 (m, 2H) ppm; ¹³C NMR (CDCl₃, 125 MHz) δ 166.7, 140.9, 136.9, 135.9, 133.5, 130.5, 130.1, 129.1, 129.0, 128.1, 127.2, 42.6, 39.2 ppm; IR (KBr) *v* 3164, 3030, 2926, 1651, 1520, 1473, 1441, 1348, 1166, 957, 765, 714 cm⁻¹; HRMS (EI) (*m/z*): calcd for C₁₅H₁₃NOS [M⁺] 255.0718; found 255.0723.

(Z)-4-Benzylidene-6,7-dihydro-4*H*-furo[2,3-c]azepin-8(5*H*)-one (6b). Pale yellow solid; mp. 154-156 °C; ¹H NMR (CDCl₃, 500 MHz) δ 7.69 (b, 1H), 7.29 (m, 6H), 6.61 (s, 1H), 5.92 (d, *J* = 1.0 Hz, 1H), 3.57 (q, *J* = 4.5 Hz, 2H), 2.84 (t, *J* = 4.5 Hz, 2H)

ppm; ¹³C NMR (CDCl₃, 125 MHz) δ 162.4, 144.2, 143.7, 137.2, 131.1, 130.3, 129.0, 128.4, 127.6, 127.5, 112.2, 42.2, 38.2 ppm; IR (KBr) *v* 3353, 3183, 2921, 2849, 1662, 1622, 1491, 1412, 1367, 1229, 1029, 763, 704 cm⁻¹; HRMS (EI) (*m*/*z*): calcd for C₁₅H₁₃NO₂[M⁺] 239.0946; found 239.0943.

(Z)-4-(4-Methylbenzylidene)-6,7-dihydro-4*H*-furo[2,3-c]azepin-8(5*H*)-one (6c). Pale yellow solid; mp. 217-219 °C; ¹H NMR (CDCl₃, 500 MHz) δ 7.30 (d, *J* = 1.5 Hz, 1H), 7.14 (d, *J* = 8.5 Hz, 2H), 7.12 (d, *J* = 8.5 Hz, 2H), 6.94 (b, 1H), 6.57 (s, 1H), 6.01 (d, *J* = 2.0 Hz, 1H), 3.55 (q, *J* = 5.0 Hz, 2H), 2.82 (t, *J* = 4.5 Hz, 2H), 2.36 (s, 3H) ppm; ¹³C NMR (CDCl₃, 125 MHz) δ 162.4, 144.1, 143.7, 137.3, 134.2, 131.2, 129.8, 129.1, 128.9, 127.8, 112.2, 42.3, 38.2, 21.2 ppm; IR (KBr) *v* 3193, 3060, 2918, 1653, 1552, 1506, 1495, 1440, 1337, 1265, 1201, 1097, 890, 785 cm⁻¹; HRMS (EI) (*m*/*z*): calcd for C₁₆H₁₅NO₂ [M⁺] 253.1103; found 253.1105.

(Z)-4-(4-Chlorobenzylidene)-6,7-dihydro-4*H*-furo[2,3-c]azepin-8(5*H*)-one (6d). Pale yellow solid; mp. 221-223 °C; ¹H NMR (CDCl₃, 500 MHz) δ 7.59 (b, 1H), 7.32 (d, *J* = 2.0 Hz, 1H), 7.28 (d, *J* = 8.5 Hz, 2H), 7.18 (d, *J* = 8.5 Hz, 2H), 6.52 (s, 1H), 5.96 (d, *J* = 2.0 Hz, 1H), 3.55 (q, *J* = 4.5 Hz, 2H), 2.82 (t, *J* = 4.5 Hz, 2H) ppm; ¹³C

NMR (CDCl₃, 125 MHz) δ 162.3, 144.4, 143.9, 135.5, 133.3, 131.0, 130.4, 129.6, 128.6, 127.1, 112.0, 42.1, 38.2 ppm; IR (KBr) *v* 3201, 3064, 2923, 1652, 1471, 1201, 1088, 889, 784 cm⁻¹; HRMS (EI) (*m*/*z*): calcd for C₁₅H₁₂ClNO₂ [M⁺] 273.0557; found 273.0552.

(Z)-4-(4-Bromobenzylidene)-6,7-dihydro-4H-furo[2,3-c]azepin-8(5H)-one (6e). Pale yellow solid; mp. 230-232 °C; ¹H NMR (CDCl₃, 500 MHz) δ 7.61 (b, 1H), 7.44 (d, *J* = 8.0 Hz, 2H), 7.32 (d, *J* = 2.0 Hz, 1H), 7.12 (d, *J* = 8.0 Hz, 2H), 6.49 (s, 1H), 5.97 (d, *J* = 2.0 Hz, 1H), 3.55 (q, *J* = 4.5 Hz, 2H), 2.82 (d, *J* = 4.5 Hz, 2H) ppm; ¹³C NMR (CDCl₃, 125 MHz) δ 162.4, 144.4, 143.9, 136.0, 131.6, 131.1, 130.7, 129.6, 127.1, 121.5, 112.0, 42.0, 38.2 ppm; IR (KBr) *v* 3203, 3064, 2923, 1655, 1471, 1200, 1101, 890, 784 cm⁻¹; HRMS (EI) (*m*/*z*): calcd for C₁₅H₁₂BrNO₂ [M⁺] 317.0051; found 317.0049.

(*Z*)-4-(3-Bromo-4-fluorobenzylidene)-6,7-dihydro-4*H*-furo[2,3-c]azepin-8(5*H*)-on e (6f). Pale yellow solid; mp. 193-195 °C; ¹H NMR (CDCl₃, 500 MHz) δ 7.08 (b, 1H), 7.44 (dd, $J_1 = 2.0$ Hz, $J_2 = 7.0$ Hz, 1H), 7.35 (d, J = 2.0 Hz, 1H), 7.14 (m, 1H), 7.06 (m, 1H), 6.45 (S, 1H), 5.95 (d, J = 2.0 Hz, 1H), 3.55 (q, J = 4.5 Hz, 2H), 2.82 (t, J =

4.5 Hz, 2H) ppm; ¹³C NMR (CDCl₃, 125 MHz) δ 162.3, 158.3 (d, $J_{C-F} = 247.5$ Hz), 144.5, 144.0, 134.6 (d, $J_{C-F} = 3.75$ Hz), 133.9, 131.7, 129.7 (d, $J_{C-F} = 6.25$ Hz), 128.2, 126.8, 116.4 (d, $J_{C-F} = 22.5$ Hz), 111.9, 109.0 (d, $J_{C-F} = 21.25$ Hz), 42.0, 38.1 ppm; IR (KBr) *v* 3192, 3050, 2928, 1660, 1495, 1478, 1443, 1248, 1206, 882 cm⁻¹; HRMS (EI) (*m/z*): calcd for C₁₅H₁₁BrFNO₂ [M⁺] 334.9957; found 334.9960.

(Z)-4-(3-Nitrobenzylidene)-6,7-dihydro-4*H*-furo[2,3-c]azepin-8(5*H*)-one (6g). Dark yellow solid; mp. 207-209 °C; ¹H NMR (CDCl₃, 500 MHz) δ 8.13 (m, 2H), 7.58 (d, *J* = 8.0 Hz, 1H), 7.49 (m, 1H), 7.34 (d, *J* = 2.0 Hz, 1H), 7.23 (b, 1H), 6.59 (s, 1H), 5.85 (d, *J* = 2.0 Hz, 1H), 3.58 (q, *J* = 5.0 Hz, 2H), 2.90 (t, *J* = 4.5 Hz, 2H) ppm; ¹³C NMR (CDCl₃, 125 MHz) δ 161.9, 148.3, 144.8, 144.3, 138.8, 135.2, 132.9, 129.4, 128.0, 126.3, 123.9, 122.4, 111.6, 42.0, 38.3 ppm; IR (KBr) *v* 3203, 3704, 2924, 1663, 1526, 1348, 1205, 781 cm⁻¹; HRMS (EI) (*m*/*z*): calcd for C₁₅H₁₂N₂O₄[M⁺] 284.0797; found 284.0794.

(Z)-4-Benzylidene-2-methyl-6,7-dihydro-4*H*-furo[2,3-c]azepin-8(5*H*)-one (6h). Pale yellow solid; mp.163-165 °C; ¹H NMR (CDCl₃, 500 MHz) δ 7.28 (m, 5H), 6.92 (b, 1H), 6.55 (s, 1H), 5.58 (d, *J* = 5.0 Hz, 1H), 3.52 (q, *J* = 5.0 Hz, 2H), 2.80 (t, *J* = 4.5 Hz, 2H), 2.19 (s, 3H) ppm; ¹³C NMR (CDCl₃, 125 MHz) δ 162.2, 154.8, 142.4, 137.3, 130.9, 130.6, 129.0, 128.8, 128.3, 127.4, 108.6, 42.3, 38.4, 13.7 ppm; IR (KBr) *v* 3180, 3050, 2923, 1654, 1479, 1438, 1211, 1016, 820 cm⁻¹; HRMS (EI) (*m/z*): calcd for C₁₆H₁₅NO₂ [M⁺] 253.1103; found 253.1102.

(Z)-ethyl-(2-methyl-8-oxo-5,6,7,8-tetrahydro-4*H*-furo[2,3-c]azepin-4-ylidene) acetate (6i).

Yellow solid; mp. 172-173 °C; ¹H NMR (CDCl₃, 400 MHz) δ 7.16 (b, 1H), 6.33 (s, 1H), 6.13 (s, 1H), 4.19 (q, *J* = 7.2 Hz, 2H), 3.41 (s, 4H), 2.38 (s, 3H), 1.30 (t, *J* = 7.2 Hz, 3H) ppm; ¹³C NMR (CDCl₃, 100 MHz) δ 166.2, 162.4, 156.2, 147.4, 142.9, 130.0, 116.8, 105.7, 60.2, 39.6, 31.9, 14.2, 13.7 ppm; IR (KBr) *v* 2923, 2853, 1710, 1661, 1464, 1183, 1081, 966 cm⁻¹; HRMS (EI) (*m*/*z*): calcd for C₁₃H₁₅NO₄[M⁺] 249.1001; found 249.0999.

(Z)-4-Benzylidene-2-bromo-6,7-dihydro-4*H*-furo[2,3-c]azepin-8(5*H*)-one (6j).

Yellow solid; mp. 219-220 °C; ¹H NMR (CDCl₃, 500 MHz) δ 7.33 (m, 4H), 7.23 (m, 2H), 6.63 (s, 1H), 5.86 (s, 1H), 3.53 (q, *J* = 4.8 Hz, 2H), 2.82 (t, *J* = 4.4 Hz, 2H) ppm; ¹³C NMR (CDCl₃, 125 MHz) δ 161.3, 145.5, 136.6, 132.3, 129.7, 129.4, 128.8, 128.6, 127.9, 126.6, 113.7, 42.0, 38.1 ppm; IR (KBr) *v* 3179, 3054, 2925, 1655, 1493,

1477, 1187, 932, 705 cm⁻¹; HRMS (EI) (m/z): calcd for C₁₅H₁₂BrNO₂ [M⁺] 317.0051; found 317.0049.

(Z)-2-bromo-4-(4-bromobenzylidene)-6,7-dihydro-4H-furo[2,3-c]azepin-

8(5H)-one (6k).

Yellow solid; mp. 246-248 °C; ¹H NMR (CDCl₃, 400 MHz) δ 7.47 (d, *J* = 8.4 Hz, 2H), 7.36 (b, 1H), 7.11 (d, *J* = 8.4 Hz, 2H), 6.52 (s, 1H), 5.92 (s, 1H), 3.53 (q, *J* = 4.4 Hz, 2H), 2.81 (t, *J* = 4.8 Hz, 2H) ppm; ¹³C NMR (CDCl₃, 100 MHz) δ 161.1, 145.6, 135.4, 131.8, 130.9, 130.6, 130.1, 129.4, 127.0, 122.0, 113.5, 42.0, 38.1 ppm; IR (KBr) *v* 2924, 2853, 1657, 1486, 1185, 1071 cm⁻¹; HRMS (EI) (*m*/*z*): calcd for C₁₅H₁₁Br₂NO₂ [M⁺] 394.9157; found 394.9161.

(Z)-ethyl 2-(2-bromo-8-oxo-5,6,7,8-tetrahydro-4*H*-furo[2,3-c]azepin-4-ylidene) acetate (6l).

Yellow solid; mp. 125-127 °C; ¹H NMR (CDCl₃, 400 MHz) δ 7.88 (b, 1H), 7.01 (s, 1H), 5.86 (s, 1H), 4.20 (q, *J* = 6.8 Hz, 2H), 3.47 (q, *J* = 4.8 Hz, 2H), 2.80 (t, *J* = 4.4 Hz, 2H), 1.29 (t, *J* = 7.2 Hz, 3H) ppm; ¹³C NMR (CDCl₃, 100 MHz) δ 165.4, 161.0,

146.3, 141.1, 127.6, 126.8, 121.0, 114.9, 60.8, 40.7, 38.9, 14.1 ppm; IR (KBr) *v* 2924, 2853, 1718, 1661, 1491, 1182 cm⁻¹; HRMS (EI) (*m/z*): calcd for C₁₂H₁₂BrNO₄ [M⁺] 312.9950; found 312.9952.

(Z)-5-(4-bromobenzylidene)-2,3,4,5-tetrahydro-1*H*-benzofuro[2,3-c]azepin-1-one (6m).

Yellow solid; mp. 237-238 °C; ¹H NMR (CDCl₃, 400 MHz) δ 7.55 (d, *J* = 8.4 Hz, 1H), 7.30 (m, 1H), 7.20 (d, *J* = 8.4 Hz, 2H), 6.94 (d, *J* = 8.4 Hz, 2H), 6.91 (d, *J* = 0.8 Hz, 1H), 6.80 (b, 1H), 6.70 (m, 2H), 3.62 (m, 2H), 3.05 (m, 2H) ppm; ¹³C NMR (CDCl₃, 100 MHz) δ 163.6, 155.0, 144.9, 135.4, 131.3, 130.6, 130.5, 129.0, 127.1, 124.3, 123.6, 123.4, 123.0, 121.4, 112.3, 42.8, 39.4 ppm; IR (KBr) *v* 2924, 2853, 1655, 1492, 1463, 1186, 1080, 966 cm⁻¹; HRMS (EI) (*m*/*z*): calcd for C₁₉H₁₄BrNO₂ [M⁺] 367.0208; found 367.0209.

Derivatization of Products to 7 and 8:

A solution of 4a (70 mg, 0.28 mmol) in THF (5 mL) protected under Argon was treated with LiAlH₄ (32 mg, 0.84 mmol), and the mixture heated at reflux for 8h. Then it was cooled and quenched with water (1.0 mL) (CAUTION), stirred for 10 min at rt and treated with NaOH (0.5 mL of 2 M aqueous solution), stirred for 5 min and

diluted with additional water (5 mL). The solution was extracted with ethyl acetate (10 mL * 2), the combined organic layer were dried (Na₂SO₄), filtered, concentrated under vacuum. The purification was performed by flash column chromatography on basic alumina using ethyl acetate/petroleum ether (v/v, 1:1) as eluent to give the product 7 as pale yellow gel (56 mg, 85%).

3'-Phenyl-2',3'-dihydro-1'*H***-spiro[cyclopropane-1,4'-isoquinoline] (7).** Pale yellow gel; ¹H NMR (CDCl₃, 500 MHz) δ 7.56 (d, *J* = 7.5 Hz, 2H), 7.28 (m, 3H), 7.19 (m, 1H), 7.11 (m, 1H), 7.00 (d, *J* = 8.0 Hz, 1H), 6.85 (d, *J* = 8.0 Hz, 1H), 4.11 (d, *J* = 16.5 Hz, 1H), 3.97 (d, *J* = 13.5 Hz, 2H), 2.72 (b, 1H), 1.18 (m, 1H), 0.94 (m, 2H), 0.84 (m, 1H) ppm; ¹³C NMR (CDCl₃, 125 MHz) δ 140.3, 139.8, 135.5, 128.6, 128.0, 127.2, 126.8, 125.7, 124.8, 121.7, 63.9, 46.4, 21.6, 18.0, 14.2 ppm; IR (KBr) *v* 3393, 3032, 2924, 1613, 1486, 1452, 1372, 1024, 743, 703 cm⁻¹; HRMS (EI) (*m/z*): calcd for C₁₇H₁₇N [M⁺] 235.1361; found 235.1353.

To a solution of LiAlH₄ (29 mg, 0.75 mmol) in THF (2 mL) protected under Argon at 0 $^{\circ}$ C was added dropwise of THF (2 mL) solution of **4a** (60 mg, 0.25 mmol), the mixture was then heated at reflux for 3h. Then it was cooled and quenched with water (1.0 mL) (CAUTION), stirred for 10 min at rt and treated with NaOH (0.5 mL of 2 M

aqueous solution), stirred for 5 min and diluted with additional water (5 mL). The solution was extracted with ethyl acetate (10 mL * 2), the combined organic layer were dried (Na₂SO₄), filtered, concentrated under vacuum. The purification was performed by flash column chromatography on basic alumina using ethyl acetate/petroleum ether (v/v, 1:1) as eluent to give the inseparable Z/E mixture **8** as pale yellow gel (45 mg, 80%).

4-Benzylidene-5,6,7,8-tetrahydro-4*H***-furo[2,3-c]azepine (8).** Pale yellow gel; ¹H NMR (CDCl₃, 400 MHz) δ 7.28 (m, 1H), 7.15 (m, 6H), 6.95 (d, *J* = 2.0 Hz, 1H), 6.66 (s, 0.43 H), 6.47 (d, *J* = 2.0 Hz, 0.44H), 6.31 (s, 1H), 5.78 (d, *J* = 2.0 Hz, 1H), 3.96 (s, 0.85H), 3.93 (s, 2H), 3.15 (m, 2H), 3.05 (m, 0.88H), 2.75 (m, 0.91H), 2.54 (m, 2H) ppm; ¹³C NMR (CDCl₃, 100 MHz) δ 155.5, 153.7, 140.3, 139.2, 137.7, 137.6, 132.7, 132.4, 129.2, 129.0, 128.2, 127.9, 127.0, 126.6, 126.4, 126.0, 124.2, 120.9, 111.6, 109.7, 50.7, 48.9, 47.1, 46.8, 43.0, 34.5 ppm; IR (KBr) *v* 3321, 3021, 2924, 2853, 1637, 1492, 1445, 1146, 1059, 749, 698 cm⁻¹; HRMS (EI) (*m*/*z*): calcd for C₁₅H₁₅NO [M⁺] 225.1154; found 225.1158.

Kinetic Isotope Effect Study:

 $[D_5]$ -**3a** was synthesized following literature report,² and $[D_4]$ -**4a** was prepared according to general procedure in 75% yield.

White solid; mp. 172- 173 °C; ¹H NMR (CDCl₃, 500 MHz) δ 7.28 (m, 3H), 7.22 (m, 2H), 6.68 (b, 1H), 4.40 (d, J = 3.0 Hz, 1H), 1.17 (m, 1H), 0.99 (m, 3H) ppm; ¹³C NMR (CDCl₃, 125 MHz) δ 166.1, 141.7, 139.4, 132.4, 129.1, 128.5, 128.1, 127.4, 125.8, 121.4, 61.9, 23.3, 16.6, 11.5 ppm; IR (KBr) v 3214, 3067, 2921, 1656, 1582, 1411, 1320, 1080, 775, 708 cm⁻¹; HRMS (EI) calcd for C₁₇H₁₁D₄NO ([M]⁺), 253.1405; found, 253.1411.

Following general procedure, $[Cp*RhCl_2]_2$ (1.2 mg, 2 mol%), benzamide **3a** (22.1 mg, 0.1 mmol), CsOAc (20 mg, 0.1 mmol) were added to a vial. Methanol (0.6 mL) was added, followed by micro-syringe addition of methylenecyclopropane **1a** (26 mg, 0.2 mmol). The micro-syringe was washed with an additional 0.15 mL methanol and added to the reaction solution. In another reaction vial, $[D_5]$ -**3a** (22.6 mg, 0.1 mmol, 1.0 equiv) was used instead of **3a**. The two reactions were allowed to stir at 30 °C for 12 min. Afterwards, the reactions were quenched with water, combined and extracted with CH₂Cl₂. The organic layer was washed with brine, dried over Na₂SO₄. The product (20 mg, 40% combined yield) was isolated by flash chromatography. The value of K_H/K_D was obtained based on ¹HNMR.

d₃-furan-2-carboxylic acid and $[D_3]$ -**31** were synthesized following literature report,^{[3],} ^[2] $[D_2]$ -**6b** was prepared according to general procedure in 64% yield.

¹H NMR (CDCl₃, 500 MHz) δ 9.46 (b, 1H), 7.49 (s, 0.09H), 7.23 (m, 0.17H), 6.54 (m, 0.17H), 1.35 (s, 9H) ppm.

¹H NMR (CDCl₃, 500 MHz) δ 7.31 (m, 3.20 H), 7.25 (m, 1.84H), 6.61 (s, 1H), 5.94 (s, 0.26H), 3.56 (q, J = 6.0 Hz, 2H), 2.84 (t, J = 6.0 Hz, 2H) ppm; ¹³CNMR (CDCl₃, 125 MHz) δ 162.2, 154.8, 142.4, 137.3, 10.9, 130.6, 129.0, 128.8, 128.3, 127.4, 108.6, 42.3, 38.S4 ppm; IR (KBr) v 3204, 3059, 2925, 1683, 1657, 1476, 1438, 1193, 698 cm⁻¹; HRMS (EI) (m/z): calcd for C₁₅H₁₁D₂NO₂ [M⁺] 241.1072; found 241.1069.

Following general procedure, $[Cp*RhCl_2]_2$ (1.2 mg, 2 mol%), amide **31** (21.1 mg, 0.1 mmol), CsOAc (20 mg, 0.1 mmol) were added to a vial. Methanol (0.6 mL) was added, followed by micro-syringe addition of methylenecyclopropane **1a** (26 mg, 0.2 mmol). The micro-syringe was washed with an additional 0.15 mL methanol and added to the reaction solution. In another reaction vial, $[D_3]$ -**31** (21.4 mg, 0.1 mmol, 1.0 equiv) was used instead of **31**. The two reactions were allowed to stir at 60 °C for 40 min. Afterwards, the reactions were quenched with water, combined and extracted with CH₂Cl₂. The organic layer was washed with brine, dried over Na₂SO₄. The product (20 mg, 42% combined yield) was isolated by flash chromatography. The value of K_H/K_D was obtained based on ¹HNMR *considering the deuterium incorporation ratio of starting material* [D₃]-**31** (83% deuterium incorporation).

Reference:

- [1] A. Brandi, A. Goti Chem. Rev. 1998, 98, 589.
- [2] H. Wang, F. Glorius Angew. Chem., Int. Ed. 2012, 51, 7318-7322.

[3] D. J. Chadwick, J. Chambers, G. D. Meakins, R. L. Snowden J. Chem. Soc., Perkin Trans. 1, 1973, 201.

168 166 164 162 160 158 156 154 152 150 148 146 144 142 140 138 136 134 132 130 128 126 124 122 120 118 116 114 112 f1 (ppm)

502 499

237 232 224 38 38 23

172 170 168 166 164 162 160 158 156 154 152 150 148 146 144 142 140 138 136 134 132 130 128 126 124 122 120 118 116 f1 (ppm)

882 867 860 854 844 481 481 481 457 457 091

654 650 643

S109

166 164 162 160 158 156 154 152 150 148 146 144 142 140 138 136 134 132 130 128 126 124 122 120 118 116 114 112 110 108 106 f1 (ppm)

164 162 160 158 156 154 152 150 148 146 144 142 140 138 136 134 132 130 128 126 124 122 120 118 116 114 112 110 108 f1 (ppm)

158 156 154 152 150 148 146 144 142 140 138 136 134 132 130 128 126 124 122 120 118 116 114 112 110 108 f1 (ppm)

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2013

