Benzofuran Synthesis via Copper-Mediated Oxidative Annulation of

Phenols and Unactivated Internal Alkynes

(Supporting Information)

Ru-Yi Zhu^{\dagger}, *Jiang-Bo Wei*^{\dagger} and *Zhang-Jie Shi**^{\dagger,\ddagger}

[†]Beijing National Laboratory of Molecular Sciences and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 10087, China [‡]State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry,

Chinese Academy of Sciences, Shanghai 200032, China

Contents

General Considerations	S 3
General Procedure for the Copper-Mediated Annulation	S 3
Optimization of the Reaction Condition	S4
Characterization of Products 3aa-3ap	S 9
Mechanistic Experiments	S25
References	S36
¹ H NMR and ¹³ C NMR Spectra of Products	S37

General Considerations

Methods: The reactions were carried out in oven-dried glassware sealed with rubber plug using vacuum line technique. Reactions were stirred using Teflon-coated magnetic stir bars. Room temperature in the laboratory was 20 ± 2 °C. Elevated temperatures were maintained using the parallel synthesizer. Organic solutions were concentrated using a Büchi rotary evaporator (water bath temperature 35-40 °C) with a desktop vacuum pump. Analytical TLC was performed with 0.25 mm silica gel G plates with a 254 nm fluorescent indicator visualized by ultraviolet light. Purification of products was accomplished by flash chromatography on silica gel 300 mesh.

GC analyses were conducted with an Agilent 6820 GC equipped with an HP-5 column (25 m \times 0.20 mm ID \times 0.33 µm film) and an FID detector. The temperature for each run was held at 80 °C for 2 min, ramped from 80 °C to 260 °C at 30 °C/min, and held at 260 °C for 2 min.

¹H NMR (400 MHz) and ¹³C NMR (100 MHz) was registered on Bruker spectrometers with CDCl₃ as solvent and tetramethylsilane (TMS) as internal standard. Chemical shifts are referenced to residual solvent peaks (CHCl₃ in CDCl₃: 7.26 ppm for ¹H, 77.00 ppm for ¹³C). Data for ¹H-NMR spectra are reported as follows: chemical shift (ppm, referenced to TMS; s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, dt = doublet of triplets, m = multiplet), coupling constant (Hz), and integration. Infrared spectra were recorded on an AVATAR 330 Fourier transform spectrometer (FT-IR) with an OMNI sampler and are reported in wavenumbers (cm⁻¹). High-resolution mass spectra (HRMS) were recorded on a Bruker Apex IV FTMS mass spectrometer (ESI) in the State-authorized Analytical Center in Peking University.

Materials: Decalin (mixtures of *cis* and *trans*) was purchased from Alfa Aesar and was degassed before use. $[Cp*RhCl_2]_2$ was purchased from Sinocompound, stored in a dessicator and weighed out to air. Silver hexafluorophosphate was purchased from Alfa Aesar, stored and weighed in a glove-box. $[Cp*Rh(MeCN)_3](SbF_6)_2$ was prepared via literature procedure¹, stored in a dessicator and weighed out to air. All the substituted phenols are commercially available. Diphenylacetylene was purchased from Alfa Aesar. Diarylacetylene **2b-2i** were prepared through literature method², Unsymmetric Diarylacetylene **2j-2m** were prepared through literature method³.

General Procedure for the Copper-Mediated Annulation

4-*tert*-butylphenol **1a** (0.30 mmol, 45.0 mg), diphenylacetylene **2a** (0.10 mmol, 17.8 mg), $[Cp*Rh(MeCN)_3](SbF_6)_2$ (5 mol%, 0.005 mmol, 4.2 mg), acetanilide (0.20 equiv, 0.02 mmol, 2.7 mg), DTAC (dodecyl trimethyl ammonium chloride) (0.5 equiv, 0.05 mmol, 13.2 mg) were weighed in the air and Cu(OTf)₂ (1.0 equiv, 0.10 mmol, 36.2 mg), AgPF₆ (2.5 equiv, 0.25 mmol, 63.2 mg) were weighed in the glovebox and charged into an oven-dried 50 mL Schlenk tube. The tube was evacuated and refilled with N₂, which was repeated for 3 times. After addition of 0.5 mL of decalin under a positive pressure of N₂ *via* syringe, the sealed tube was placed in a 120 °C parallel synthesizer and stirred for 3 h. After completion, the reaction mixture was cooled down to room temperature and directly purified by flash column chromatography eluting with petroleum ether.

Optimization of the Reaction Condition

<i>Table S1.</i> Optimization of the Ratio of 1a to 2a ^[a]				
^r Bu OH	+	Ph Ph	[Cp [*] Rh(MeCN) ₃](SbF ₆₎₂ (5 mol%) Cu(OTf) ₂ (2.0 equiv) decalin ^[b] (0.2 M), 120 °C, 18 h	^r Bu
1a		2a		3aa
entry			the ritio of 1a to 2a	GC ratio[^c]
1			4 : 1	0.91
2			3:1	0.94
3			2:1	0.79
4			1:1	0.48
5			1:2	0.53
6			1:3	0.63

[a] Reaction conditions: 0.30 mmol of **1a**, 0.10 mmol of **2a**, 0.005 mmol of $[Cp*Rh(MeCN)_3](SbF_6)_2$, 0.20 mmol of Cu(OTf)₂, 0.50 mL of solvent, 120 °C, 18 h. [b] decalin: decahydronaphthalene. [c] 20 µL *n*-dodecane was used as an internal standard, the ratio was the area of product to the area of *n*-dodecane.

rBu H	$\begin{array}{c c} Ph & [Cp^{\circ}Rh(MeCN)_{3}](SbF_{6})_{2} (5 \text{ mol}\%) \\ & & \\ & \\ \hline & Cu(OTf)_{2} (2.0 \text{ equiv}) \\ \hline & \\ \hline & \\ \hline & \\ Ph & \\ decalinl^{b} (0.2 \text{ M}), 120 ^{\circ}\text{C}, 18 \text{ h} \\ \hline & \\ 2a \end{array}$	^r Bu O Bu Ph 3aa
entry	[^A g]	GC ratio[^c]
1	no [Ag]	0.71
2	Ag ₂ CO ₃	0.59
3	AgOAc	1.06
4	AgOTFA	0.82
5	Ag ₂ O	0.69
6	AgSbF ₆	1.01
7	AgPF ₆	1.14
8	AgBF ₄	1.10
9	AgOTf	1.10

Table S2. Optimization of Different Silver Salts^[a]

[a] Reaction conditions: 0.30 mmol of 1a, 0.10 mmol of 2a, 0.005 mmol of $[Cp*Rh(MeCN)_3](SbF_6)_2$, 0.20 mmol of Cu(OTf)₂, 0.10 mmol [Ag], 0.50 mL of solvent, 120 °C,

18 h. [b] decalin: decahydronaphthalene. [c] 20 μ L *n*-dodecane was used as an internal standard, the ratio was the area of product to the area of *n*-dodecane.

rBu 1a	+	Ph Ph 2a	[Cp [*] Rh(MeCN) ₃](SbF ₆₎₂ (5 mol%) Cu(OTf) ₂ (2.0 equiv) AgPF ₆ (x equiv) decalin ^[b] (0.2 M), 120 °C, 3 h	^t Bu Ph Ph Bu Ph Bu Ph Bu Ph Ph
entry			x	GC ratio[^c]
1			1.0	0.58
2			1.5	0.80
3			2.0	0.88
4			2.5	0.99
5			3.0	0.95

Table S3. Optimization of the Ratio of $AgPF_6^{[a]}$

[a] Reaction conditions: 0.30 mmol of **1a**, 0.10 mmol of **2a**, 0.005 mmol of $[Cp*Rh(MeCN)_3](SbF_6)_2$, 0.20 mmol of Cu(OTf)_2, 0.50 mL of solvent, 120 °C, 3 h. [b] decalin: decahydronaphthalene. [c] 20 μ L *n*-dodecane was used as an internal standard, the ratio was the area of product to the area of *n*-dodecane.

<i>t</i> Βu	OH Ph + ↓ Ph ↓ 1a 2a	Cu(AgF L (20 mol decalin	M (5 mol%) DTf) ₂ (1.0 equ 汗 ₆ (2.5 equiv %), DTAC (0. (0.2 M), 120	uiv) [/] Bu /) 5 equiv) ^o C, 3 h 3	Ph Ph Ph
Entry	м	GC ^[b]	Entry	м	GC
1	none	1.28	8	PtCl ₂	1.16
2	[Cp*Rh(MeCN) ₃](SbF ₆) ₂	1.55	9	AICI ₃	1.37
3	Pd(OAc) ₂	0.99	10	Mn(OAc) ₂	1.28
4	[Ru(p-cymene)Cl ₂]2	1.34	11	Au(IPr)CI	1.20
5	Fe(acac) ₃	1.22	12	Ce(SO ₄) ₂	1.40
6	Ni(acac) ₂	1.25	13	Zn(OAc) ₂	1.40
7	Co(acac) ₃	1.31			

Table S4. Optimization of Different Metals^[a]

[a] Reaction conditions: 0.30 mmol of **1a**, 0.10 mmol of **2a**, 0.005 mmol of **M**, 0.10 mmol of Cu(OTf)₂, 0.25 mmol of AgPF₆, 0.02 mmol of L, 0.05 mmol of DTAC, 0.50 mL of solvent, 120 °C, 3 h. [b] 20 μ L *n*-dodecane was used as an internal standard, the ratio was the area of product to the area of

n-dodecane.

[a] Reaction conditions: 0.30 mmol of **1a**, 0.10 mmol of **2a**, 0.10 mmol of Cu(OTf)₂, 0.02 mmol ligand, 0.25 mmol AgPF₆, 0.50 mL of solvent, 120 °C, 3 h. [b] decalin: decahydronaphthalene. [c] 20 μ L *n*-dodecane was used as an internal standard, the ratio was the area of product to the area of *n*-dodecane.

^r Bu la	+ $ \begin{array}{c c} Ph & [Cp^*Rh(MeCN)_3](SbF_6)_2 (5 \text{ mol}\%) \\ \hline & & \\ \hline & & \\ Ph & \frac{Cu(OTf)_2 (1.0 \text{ equiv})}{AgPF_6 (2.5 \text{ equiv})} \\ Ph & \textbf{Acetanilide Derivative} (0.2 \text{ equiv}) \\ \textbf{2a} & & \\ decalin(^b) (0.2 \text{ M}), 120 \text{ °C}, 3 \text{ h} \end{array} $	Ph Ph 3aa
entry	Acetanilide Derivative	GC ratio[^c]
1	Acetanilide	1.15
2	4-MeO-Acetanilide	1.02
3	4-F-Acetanilide	1.04
4	4-AcO-Acetanilide	0.82
5	2-Me-Acetanilide	1.16
6	4-N ₂ O-Acetanilide	0.95
7	<i>N</i> -Me- Acetanilide	1.08

Table S6. Optimization of Different Acetanilide Derivatives^[a]

[a] Reaction conditions: 0.30 mmol of **1a**, 0.10 mmol of **2a**, 0.005 mmol of $[Cp*Rh(MeCN)_3](SbF_6)_2$, 0.10 mmol of Cu(OTf)₂, 0.25 mmol AgPF₆, 0.02 mmol acetanilide derivative, 0.50 mL of solvent, 120 °C, 3 h. [b] decalin: decahydronaphthalene. [c] 20 µL *n*-dodecane was used as an internal standard, the ratio was the area of product to the area of *n*-dodecane.

^r Bu 1a	+	Ph ││ ₽h 2a	$[Cp^*Rh(MeCN)_3](SbF_{6})_2 (5 \text{ mol}\%) \\ Cu(OTf)_2 (* equiv) \\ \hline AgPF_6 (2.5 equiv) \\ L (20 \text{ mol}\%)^{[D]} \\ decalin[C] (0.2 \text{ M}), 120 \text{ °C}, 3 \text{ h} \\ \end{bmatrix}$	^r Bu O Bu Jaa
entry			x	GC ratio[d]
1			1.0	1.22
2			1.5	1.18
3			2.0	1.08
4			2.5	1.11
5			3.0	0.98

Table S7. Optimization of the Ratio of Cu(OTf)₂^[a]

[a] Reaction conditions: 0.30 mmol of **1a**, 0.10 mmol of **2a**, 0.005 mmol of $[Cp*Rh(MeCN)_3](SbF_6)_2$, 0.25 mmol AgPF₆, 0.02 mmol acetanilide derivative, 0.50 mL of solvent, 120 °C, 3 h. [b] L: acetanilide. [c] decalin: decahydronaphthalene. [d] 20 µL *n*-dodecane was used as an internal standard, the ratio was the area of product to the area of *n*-dodecane.

	<i>Table S8.</i> Optimization of PTCs ^[a]	
r _{Bu} OH 1a	$\begin{array}{ccc} \mbox{Ph} & [Cp^{\mbox{`}}Rh(MeCN)_3](SbF_6)_2 \ (5 \ mol\%) \\ + & \\ \mbox{+} & \\ \mbox{+} & \\ \mbox{-} & \\ \mbox{Ph} & \\ \mbox{Ph} & L \ (20 \ mol\%)^{[D]}, \mbox{PTC} \ (0.5 \ equiv) \\ \mbox{2a} & \\ \mbox{decalin}^{[C]} \ (0.2 \ M), \ 120 \ ^{\circ}C, \ 3 \ h \end{array}$	/Bu Ph O Ph 3aa
entry	PTC	GC ratio[d]
1	no PTC	1.04
2	⊕ NBnMe₃Cl	1.12
3	TBAB	1.17
4	TBAI	1.19
5	$\stackrel{\oplus}{N}$ ${N}$ Bu_4PF_6	1.15
6	DTAC ^[e]	1.30
7	HTAC ^[f]	1.09

[a] Reaction conditions: 0.30 mmol of **1a**, 0.10 mmol of **2a**, 0.005 mmol of $[Cp*Rh(MeCN)_3](SbF_6)_2$, 0.10 mmol of Cu(OTf)_2, 0.25 mmol AgPF_6, 0.02 mmol acetanilide derivative, 0.50 mL of solvent, 120 °C, 3 h. [b] L: acetanilide. [c] decalin: decahydronaphthalene. [d] 20 µL *n*-dodecane was used as an internal standard, the ratio was the area of product to the area of *n*-dodecane. [e] DTAC: Dodecyl trimethyl ammonium chloride. [f] HTAC: *N*-Hexadecyltrimethylammonium chloride.

^r Bu 1a	+	$\begin{array}{c c} Ph & [Cp^{*}Rh(MeCN)_{3}](SbF_{6})_{2} (5 \ mol\%) \\ & \underbrace{Cu(OTf)_{2} (1.0 \ equiv)}_{AgPF_{6} (2.5 \ equiv)} \\ Ph & L (20 \ mol\%)^{[0]}, \ DTAC (\mathbf{x} \ equiv)^{[0]} \\ 2a & \operatorname{decalin}^{[d]} (0.2 \ M), 120 \ ^{\circ}C, 3 \ h \end{array}$	⁴ Bu Ph Definition Ph 3aa
entry		x	GC ratio[e]
1		0.25	little
2		0.5	1.16
3		0.75	1.28
4		1.0	1.17
5		1.25	0.68
6		1.5	little
7		2.0	trace

Table S9. Optimization of the Ratio of DTAC^[a]

[a] Reaction conditions: 0.30 mmol of **1a**, 0.10 mmol of **2a**, 0.005 mmol of $[Cp*Rh(MeCN)_3](SbF_6)_2$, 0.10 mmol of Cu(OTf)₂, 0.25 mmol AgPF₆, 0.02 mmol acetanilide derivative, 0.50 mL of solvent, 120 °C, 3 h. [b] L: acetanilide. [c] DTAC: Dodecyl trimethyl ammonium chloride. [d] decalin: decahydronaphthalene. [e] 20 µL *n*-dodecane was used as an internal standard, the ratio was the area of product to the area of *n*-dodecane.

Characterization of Products

5-t-butyl-2, 3-diphenylbenzofuran 3aa

Prepared according to General Procedure using **1a** (45.0 mg, 0.30 mmol), **2a** (17.8 mg, 0.10 mmol); flash chromatography on silica gel (petroleum ether) provided the title compound (21.5 mg, 66% yield) as a white solid.

¹**H NMR (400 MHz, CDCl₃):** δ 7.63-7.62 (d, J = 6.8 Hz, 2H), 7.52-7.40 (m, 8H), 7.30-7.28 (m, 3H), 1.35 (s, 9H).

¹³C NMR (100 MHz, CDCl₃): δ 152.2, 150.8, 146.1, 133.1, 130.8, 129.8, 129.0, 128.4, 128.2, 127.5, 127.0, 122.7, 118.0, 115.9, 110.4, 34.8, 31.8.

HRMS (ESI): calculated for C₂₄H₂₂OH (M+H⁺) 327.1749, found 327.1752. **FTIR (cm⁻¹):** *v* 2960, 2368, 2345, 1476, 763.

2, 3-diphenylbenzofuran 3ba

Prepared according to General Procedure using **1b** (28.2 mg, 0.30 mmol), **2a** (17.8 mg, 0.10 mmol); flash chromatography on silica gel (petroleum ether) provided the title compound (7.8 mg, 29% yield) as a white solid.

¹H NMR (400 MHz, CDCl₃): δ 7.67-7.65 (m, 2H), 7.56-7.38 (m, 7H), 7.35-7.22 (m, 5H).

¹³C NMR (100 MHz, CDCl₃): δ 154.0, 150.5, 132.9, 130.7, 130.3, 129.8, 129.0, 128.4, 128.3, 127.6, 127.0, 124.7, 122.9, 120.0, 117.5, 111.1.

HRMS (ESI): calculated for C₂₀H₁₄OH (M+H⁺) 271.1123, found 271.1116. **FTIR (cm⁻¹):** *v* 2925, 2360, 1455, 831, 749.

5-methyl-2, 3-diphenylbenzofuran 3ca

Prepared according to General Procedure using **1c** (32.4 mg, 0.30 mmol), **2a** (17.8 mg, 0.10 mmol); flash chromatography on silica gel (petroleum ether) provided the title compound (19.4 mg, 68% yield) as a white solid.

¹**H** NMR (400 MHz, CDCl₃): δ 7.65-7.63 (m, 2H), 7.51-7.38 (m, 6H), 7.32-7.27 (m, 4H), 7.15-7.13 (d, J = 8.4 Hz, 1H), 2.42 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 152.4, 150.6, 133.0, 132.4, 130.8, 130.3, 129.8, 128.9, 128.4, 128.2, 127.5, 126.9, 125.9, 119.8, 117.3, 110.6, 21.4.
HRMS (ESI): calculated for C₂₁H₁₆OH (M+H⁺) 285.1279, found 285.1269.
FTIR (cm⁻¹): v 2921, 1602, 1473, 1064, 759.

2, 3, 5-Triphenylbenzofuran 3da

Prepared according to General Procedure using **1d** (51.0 mg, 0.30 mmol), **2a** (17.8 mg, 0.10 mmol); flash chromatography on silica gel (petroleum ether) provided the title compound (18.2 mg, 53% yield) as a yellow solid.

¹**H NMR (400 MHz, CDCl₃):** δ 7.68-7.66 (m, 3H), 7.62-7.52 (m, 6H), 7.48 (t, *J* = 8.0 Hz, 2H), 7.41 (t, *J* = 8.0 Hz, 3H), 7.33-7.30 (m, 4H).

¹³C NMR (100 MHz, CDCl₃): δ 153.6, 151.2, 141.7, 136.7, 132.8, 130.8, 130.6, 129.8, 129.0, 128.7, 128.4, 127.7, 127.5, 127.0, 126.9, 124.4, 118.5, 117.7, 111.2.

HRMS (ESI): calculated for $C_{26}H_{18}OH (M+H^+)$ 347.1436, found 347.1426.

FTIR (cm⁻¹): *v* 2989, 1463, 1063, 763, 745.

5-chloro-2, 3-diphenylbenzofuran 3ea

Prepared according to General Procedure using **1e** (38.7 mg, 0.30 mmol), **2a** (17.8 mg, 0.10 mmol); flash chromatography on silica gel (petroleum ether) provided the title compound (15.4 mg, 50% yield) as a white solid.

¹**H NMR (400 MHz, CDCl₃):** δ 7.65-7.63 (m, 2H), 7.50-7.40 (m, 7H), 7.32-7.26 (m, 4H).

¹³C NMR (100 MHz, CDCl₃): δ 152.3, 151.9, 132.1, 131.7, 130.2, 129.6, 129.1, 128.7, 128.6, 128.5, 127.9, 127.0, 124.8, 119.6, 117.1, 112.1.

HRMS (ESI): calculated for C₂₀H₁₃ClOH (M+H⁺) 305.0733, found 305.0735. **FTIR (cm⁻¹):** *v* 2372, 1451, 1440, 762, 744.

propyl 2,3-diphenylbenzofuran-5-carboxylate 3fa

Prepared according to General Procedure using **1f** (54.0 mg, 0.30 mmol), **2a** (17.8 mg, 0.10 mmol); flash chromatography on silica gel (petroleum ether: ethyl acetate = 50:1) provided the title

compound (21.9 mg, 62% yield) as a white solid.

¹**H** NMR (400 MHz, CDCl₃): δ 8.22 (d, J = 1.2 Hz, 1H), 8.08-8.06 (dd, J = 1.6 Hz, J = 8.8 Hz, 1H), 7.67-7.65 (m, 2H), 7.59-7.57 (d, J = 8.4 Hz, 1H), 7.51-7.44 (m, 5H), 7.34-7.32 (m, 3H), 4.29 (t, J = 6.8 Hz, 2H), 1.84-1.75 (m, 2H), 1.02 (t, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 166.9, 156.5, 151.8, 132.1, 130.3, 130.1, 129.7, 129.1, 128.7, 128.5, 127.9, 127.0, 126.4, 125.7, 122.5, 117.8, 110.9, 66.5, 22.1, 10.5.

HRMS (ESI): calculated for $C_{24}H_{20}O_{3}H$ (M+H⁺) 357.1491, found 357.1490.

FTIR (cm⁻¹): v 2966, 2363, 1714, 1235, 760.

6-methyl-2, 3-diphenylbenzofuran 3ga and 4-methyl-2, 3-diphenylbenzofuran 3ga'

Prepared according to General Procedure using **1g** (32.4 mg, 0.30 mmol), **2a** (17.8 mg, 0.10 mmol); flash chromatography on silica gel (petroleum ether) provided the title compound (12.3 mg, 43% yield) as a 3.2:1 mixture of regioisomers as a white solid.

¹**H** NMR (400 MHz, CDCl₃): δ 7.65-7.63 (dd, J = 1.6 Hz, J = 8.0 Hz, 2H), 7.52-7.36 (m, 9.77H), 7.33-7.18 (m, 5.03H), 7.08-7.06 (d, J = 8.0 Hz, 1H), 6.95-6.93 (d, J = 7.2 Hz, 0.30H), 2.50 (s, 3H), 2.04 (s, 0.93H).

¹³C NMR (100 MHz, CDCl₃): δ 154.4, 153.7, 150.1, 149.9, 135.0, 134.7, 133.0, 132.2, 130.9, 130.8, 130.7, 129.7, 128.9, 128.6, 128.4, 128.3, 128.1, 127.9, 127.8, 127.5, 126.9, 126.4, 124.4, 124.4, 124.3, 119.5, 117.4, 111.3, 108.8, 21.7, 19.2.

HRMS (ESI): calculated for C₂₁H₁₆OH (M+H⁺) 285.1279, found 285.1275. **FTIR (cm⁻¹):** *v* 3054, 1602, 1443, 1063, 761.

5, 6-dimethyl-2, 3-diphenylbenzofuran 3ha and 4, 5-dimethyl-2, 3-diphenylbenzofuran 3ha'

Prepared according to General Procedure using **1h** (36.6 mg, 0.30 mmol), **2a** (17.8 mg, 0.10 mmol); flash chromatography on silica gel (petroleum ether) provided the title compound (19.1 mg, 64% yield) as a 3.4:1 mixture of regioisomers as a white solid.

¹**H** NMR (400 MHz, CDCl₃): δ 7.64 (s, 1H), 7.62 (s, 1H), 7.50-7.38 (m, 7.26H), 7.33-7.21 (m, 6.63H), 7.12-7.10 (d, J = 8.0 Hz, 0.30H), 2.39 (s, 3H), 2.31 (s, 3H), 2.30 (s, 0.89H), 1.93 (s, 0.89H).

¹³C NMR (100 MHz, CDCl₃): δ 152.9, 152.4, 150.2, 149.7, 135.1, 133.9, 133.2, 131.5, 131.0, 130.8, 130.7, 130.0, 129.8, 128.9, 128.7, 128.3, 128.2, 128.1, 128.0, 127.8, 127.5, 126.8, 126.7, 126.4, 120.0, 117.2, 111.6, 108.1, 20.5, 20.0, 19.6, 15.1.

HRMS (ESI): calculated for C₂₂H₁₈OH (M+H⁺) 299.1436, found 299.1430. **FTIR (cm⁻¹):** *v* 3056, 1462, 1442, 762, 745.

6-fluoro-5-methyl-2, 3-diphenylbenzofuran 3ia and 4-fluoro-5-methyl-2, 3-diphenylbenzofuran 3ia'

Prepared according to General Procedure using **1i** (37.8 mg, 0.30 mmol), **2a** (17.8 mg, 0.10 mmol); flash chromatography on silica gel (petroleum ether) provided the title compound (18.3 mg, 61% yield) as a 3.0:1 mixture of regioisomers as a white solid.

¹**H** NMR (400 MHz, CDCl₃): δ 7.62-7.60 (m, 2.12H), 7.57-7.40 (m, 7.93H), 7.35-7.21 (m, 7.30H), 7.10 (t, J = 7.6 Hz, 0.34H), 2.32 (d, J = 1.6 Hz, 3H), 2.30 (d, J = 2.0 Hz, 1.01H).

¹³C NMR (100 MHz, CDCl₃): δ 160.8, 158.4, 152.4, 152.3, 150.9, 150.8, 132.8, 132.7, 131.6, 130.5, 130.3, 129.7, 129.0, 128.5, 128.4, 128.4, 128.3, 128.2, 127.7, 127.1, 127.1, 127.0, 126.7, 126.2, 121.0, 120.9, 120.6, 120.4, 117.0, 106.7, 106.7, 106.7, 98.4, 98.2, 14.9 (*J* = 4.3 Hz), 14.0 (*J* = 4.1 Hz).

HRMS (ESI): calculated for C₂₁H₁₅FOH (M+H⁺) 303.1185, found 303.1187. **FTIR (cm⁻¹):** *v* 2924, 1602, 1463, 1061, 763.

6-chloro-5-methyl-2, 3-diphenylbenzofuran 3ja and 4-chloro-5-methyl-2, 3-diphenylbenzofuran 3ja'

Prepared according to General Procedure using **1j** (42.9 mg, 0.30 mmol), **2a** (17.8 mg, 0.10 mmol); flash chromatography on silica gel (petroleum ether) provided the title compound (24.9 mg, 78% yield) as a 1.9:1 mixture of regioisomers as a white solid.

¹**H** NMR (400 MHz, CDCl₃): δ 7.63-7.61 (m, 2H), 7.56 (s, 1H), 7.50-7.39 (m, 9.04H), 7.38-7.35 (d, *J* = 8.4 Hz, 0.59H), 7.30-7.23 (m, 6.23H), 7.18-7.16 (d, *J* = 8.0 Hz, 0.52H), 2.41 (s, 3H), 2.39 (s, 1.56H).

¹³C NMR (100 MHz, CDCl₃): δ 152.8, 152.5, 151.5, 151.0, 133.1, 132.5, 131.2, 130.8, 130.8, 130.7, 130.4, 129.7, 129.2, 129.0, 128.4, 128.3, 128.3, 127.8, 126.9, 126.8, 126.7, 126.0, 120.9, 117.6, 117.0, 111.6, 109.2, 20.3, 19.6.

HRMS (ESI): calculated for C₂₁H₁₅ClOH (M+H⁺) 319.0890, found 319.0888. **FTIR (cm⁻¹):** *v* 3053, 1455, 1441, 1002, 760.

6-bromo-5-methyl-2, 3-diphenylbenzofuran 3ka and 4-bromo-5-methyl-2, 3-diphenylbenzofuran 3ka'

Prepared according to General Procedure using **1k** (56.1 mg, 0.30 mmol), **2a** (17.8 mg, 0.10 mmol); flash chromatography on silica gel (petroleum ether) provided the title compound (24.6 mg, 68% yield) as a 1.7:1 mixture of regioisomers as a white solid.

¹**H** NMR (400 MHz, CDCl₃): δ 7.75 (s, 1H), 7.63-7.61 (m, 2.07H), 7.50-7.40 (m, 10.04H), 7.31-7.29 (m, 4.26H), 7.24-7.23 (m, 2.15H), 7.20-7.17 (d, *J* = 8.4 Hz, 0.67H), 2.44 (s, 3H), 2.43 (s, 1.75H).

¹³C NMR (100 MHz, CDCl₃): δ 152.6, 152.4, 151.7, 151.0, 133.0, 132.8, 132.4, 132.2, 131.6, 130.4, 130.3, 129.8, 129.7, 129.0, 128.9, 128.5, 128.4, 128.3, 127.9, 127.8, 126.9, 126.7, 126.6, 120.7, 120.6, 118.4, 117.0, 115.8, 114.8, 109.8, 23.0, 22.6.

HRMS (ESI): calculated for $C_{21}H_{15}BrOH (M+H^+)$ 363.0385, found 363.0389.

FTIR (cm⁻¹): *v* 2917, 1453, 1440, 984, 759.

5-tert-butyl-2, 3-diphenylbenzofuran-7-ol 3la

Prepared according to General Procedure using **11** (49.8 mg, 0.30 mmol), **2a** (17.8 mg, 0.10 mmol); flash chromatography on silica gel (petroleum ether: ethyl acetate = 5:1) provided the title compound (14.4 mg, 43% yield) as a yellow oil.

¹**H NMR (400 MHz, CDCl₃):** δ 7.55-7.52 (m, 2H), 7.44-7.34 (m, 5H), 7.24-7.22 (m, 3H) 6.97 (s, 1H), 6.91 (s, 1H), 5.21 (s, 0.84H), 1.26 (s, 9H).

¹³C NMR (100 MHz, CDCl₃): δ 150.9, 147.9, 140.4, 139.9, 132.8, 131.2, 130.6, 129.8, 129.0, 128.4, 128.4, 127.6, 127.0, 118.4, 109.4, 108.3, 34.9, 31.8.

HRMS (ESI): calculated for C₂₄H₂₂O₂H (M+H⁺) 343.1698, found 343.1700. **FTIR (cm⁻¹):** *v* 2964, 1603, 1479, 1219, 952.

4, 6-dimethyl-2, 3-diphenylbenzofuran 3ma

Prepared according to General Procedure using **1m** (36.6 mg, 0.30 mmol), **2a** (17.8 mg, 0.10 mmol); flash chromatography on silica gel (petroleum ether) provided the title compound (15.2

mg, 51% yield) as a white solid.

¹**H NMR (400 MHz, CDCl₃):** δ 7.49-7.44 (m, 7H), 7.24-7.20 (m, 4H), 6.78 (s, 1H) 2.44 (s, 3H), 2.00 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 154.2, 149.5, 134.8, 134.7, 131.6, 131.0, 130.7, 128.6, 128.3, 127.7, 127.6, 126.2, 125.9, 118.3, 109.0, 21.5, 19.1.

HRMS (ESI): calculated for $C_{22}H_{18}OH (M+H^+)$ 299.1436, found 299.1427.

FTIR (cm⁻¹): v 2920, 2363, 1443, 1070, 761.

4, 5, 6-trimethyl-2, 3-diphenylbenzofuran 3na

Prepared according to General Procedure using **1n** (40.8 mg, 0.30 mmol), **2a** (17.8 mg, 0.10 mmol); flash chromatography on silica gel (petroleum ether) provided the title compound (18.9 mg, 61% yield) as a white solid.

¹**H NMR (400 MHz, CDCl₃):** δ 7.44 (m, 7H), 7.22-7.20 (m, 4H), 2.42 (s, 3H), 2.19 (s, 3H), 1.96 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 152.1, 149.4, 135.3, 133.9, 131.1, 130.8, 129.8, 129.7, 128.8, 128.2, 127.7, 127.5, 126.8, 126.2, 118.3, 109.5, 21.7, 15.5, 15.0.

HRMS (ESI): calculated for $C_{23}H_{20}OH (M+H^+) 313.1592$, found 313.1583.

FTIR (cm⁻¹): *v* 2921, 1601, 1443, 1070, 761.

4, 6-dimethyl-2, 3, 5-triphenylbenzofuran 3oa

Prepared according to General Procedure using **10** (59.4 mg, 0.30 mmol), **2a** (17.8 mg, 0.10 mmol); flash chromatography on silica gel (petroleum ether) provided the title compound (23.4 mg, 63% yield) as a yellow solid.

¹**H NMR** (**400 MHz**, **CDCl₃**): δ 7.50-7.48 (m, 2H), 7.44-7.37 (m, 7H), 7.34-7.29 (m, 2H), 7.26-7.20 (m, 2H), 7.13-7.11 (m, 2H), 2.12 (s, 3H), 1.69 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 152.9, 149.9, 141.2, 137.4, 134.9, 133.6, 131.0, 130.8, 129.8, 129.7, 128.6, 128.3, 128.3, 127.7, 127.7, 126.5, 126.5, 126.3, 118.6, 109.4, 21.9, 16.9.

HRMS (ESI): calculated for $C_{28}H_{22}OH (M^+)$ 374.1671, found 374.1668.

FTIR (cm⁻¹): *v* 3055, 1442, 1071, 761, 748.

5-chloro-4, 6-dimethyl-2, 3-diphenylbenzofuran 3pa

Prepared according to General Procedure using **1p** (46.8 mg, 0.30 mmol), **2a** (17.8 mg, 0.10 mmol); flash chromatography on silica gel (petroleum ether) provided the title compound (27.2 mg, 82% yield) as a white solid.

¹**H NMR (400 MHz, CDCl₃):** δ 7.46-7.39 (m, 7H), 7.30 (s, 1H), 7.24-7.22 (m, 3H), 2.50 (s, 3H), 2.06 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 151.9, 150.5, 134.3, 132.9, 130.7, 130.6, 129.6, 129.5, 128.9, 128.3, 128.0, 127.7, 126.3, 118.2, 110.3, 21.8, 16.1.

HRMS (ESI): calculated for $C_{22}H_{17}CIOH (M+H^+) 333.1046$, found 333.1038.

FTIR (cm⁻¹): v 3054, 1443, 1010, 771, 763.

7-bromo-1, 2-diphenylnaphtho[2, 1-b]furan 3qa

Prepared according to General Procedure using 1q (66.9 mg, 0.30 mmol), 2a (17.8 mg, 0.10 mmol); flash chromatography on silica gel (petroleum ether) provided the title compound (24.0 mg, 60% yield) as a colorless oil.

¹**H NMR (400 MHz, CDCl₃):** δ 8.05 (s, 1H), 7.74-7.72 (d, *J* = 8.8 Hz, 1H), 7.64-7.62 (d, *J* = 8.8 Hz, 1H), 7.55-7.53 (m, 7H), 7.39-7.24 (m, 5H).

¹³C NMR (100 MHz, CDCl₃): δ 151.3, 150.5, 134.3, 132.2, 130.8, 130.6, 130.4, 129.5, 129.1, 128.4, 128.4, 128.0, 126.7, 126.2, 124.8, 124.7, 123.8, 119.2, 118.0, 113.2.

HRMS (ESI): calculated for C₂₄H₁₅BrOH (M+H⁺) 399.0385, found 399.0369.

FTIR (cm⁻¹): *v* 2924, 1736, 1395, 818, 764.

butyl 1, 2-diphenylnaphtho[2, 1-b]furan-7-carboxylate 3ra

Prepared according to General Procedure using 1r (73.2 mg, 0.30 mmol), 2a (17.8 mg, 0.10 mmol); flash chromatography on silica gel (petroleum ether, then petroleum ether: ethyl acetate = 50:1) provided the title compound (25.2 mg, 60% yield) as a colorless oil.

¹H NMR (400 MHz, CDCl₃): δ 8.66 (s, 1H), 7.87-7.76 (m, 3H), 7.56-7.54 (m, 8H), 7.28-7.25 (m,

3H), 4.35 (t, *J* = 6.8 Hz, 3H), 1.80-1.73 (m, 2H), 1.54-1.45 (m, 2H), 0.98 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 166.8, 152.5, 150.6, 134.2, 131.7, 130.7, 130.5, 130.4, 130.0, 129.4, 128.4, 128.4, 128.0, 127.1, 126.2, 126.1, 125.6, 123.7, 123.1, 119.4, 113.0, 64.8, 30.8, 19.3, 13.8.

HRMS (ESI): calculated for C₂₉H₂₄O₃H (M+H⁺) 421.1804, found 421.1791. **FTIR (cm⁻¹):** *v* 2959, 2358, 1714, 1252, 1189.

2, 3-diphenyl-4H-furo[3, 2-c]chromen-4-one 3sa

Prepared according to General Procedure using 1s (48.6 mg, 0.30 mmol), 2a (17.8 mg, 0.10 mmol); flash chromatography on silica gel (petroleum ether: ethyl acetate = 20:1) provided the title compound (23.0 mg, 68% yield) as a white solid.

¹**H** NMR (400 MHz, CDCl₃): δ 7.99-7.97 (dd, J = 1.2 Hz, J = 7.6 Hz, 1H), 7.55-7.49 (m, 5H), 7.45-7.43 (m, 4H), 7.39-7.30 (m, 4H).

¹³C NMR (100 MHz, CDCl₃): δ 157.4, 156.4, 152.7, 151.3, 130.7, 130.2, 130.1, 129.3, 128.8, 128.6, 128.5, 128.4, 126.7, 124.4, 120.9, 117.2, 112.7, 111.3.

HRMS (EI)⁴: calculated for $C_{23}H_{14}O_3$ (M⁺) 338.0943, found 338.0943.

FTIR (cm⁻¹)⁴: v 3060, 2923, 1744, 1626, 1500.

5-chloro-4, 6-dimethyl-2, 3-di-o-tolylbenzofuran 3pb

Prepared according to General Procedure using **1p** (46.8 mg, 0.30 mmol), **2b** (20.6 mg, 0.10 mmol); flash chromatography on silica gel (petroleum ether) provided the title compound (24.7 mg, 69% yield) as a white solid.

¹**H NMR (400 MHz, CDCl₃):** δ 7.31 (s, 1H), 7.25-7.12 (m, 6H), 7.08-7.06 (m, 1H), 7.02-6.98 (m, 1H), 2.51 (s, 3H), 2.34 (s, 3H), 2.10 (s, 6H), 2.07 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 152.6, 152.4, 137.9, 137.8, 132.9, 132.5, 131.4, 130.5, 130.3, 129.9, 129.8, 129.5, 129.4, 128.8, 127.9, 126.8, 125.7, 125.3, 118.4, 110.5, 21.7, 20.6, 20.1, 15.3. HRMS (ESI): calculated for C₂₄H₂₁ClOH (M+H⁺) 361.1359, found 361.1357. FTIR (cm⁻¹): *v* 2925, 1451, 1066, 1010, 762.

5-chloro-4, 6-dimethyl-2, 3-di-m-tolylbenzofuran 3pc

Prepared according to General Procedure using **1p** (46.8 mg, 0.30 mmol), **2c** (20.6 mg, 0.10 mmol); flash chromatography on silica gel (petroleum ether) provided the title compound (29.7 mg, 83% yield) as a white solid.

¹**H NMR (400 MHz, CDCl₃):** δ 7.38-7.32 (m, 2H), 7.29 (s, 1H), 7.24-7.17 (m, 4H), 7.09 (t, *J* = 7.6 Hz, 1H), 7.04-7.02 (m, 1H), 2.49 (s, 3H), 2.38 (s, 3H), 2.26 (s, 3H), 2.07 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 151.8, 150.6, 138.4, 137.9, 134.2, 132.7, 131.3, 130.6, 129.6, 129.5, 128.7, 128.6, 128.1, 127.8, 127.0, 123.5, 118.3, 110.3, 21.8, 21.5, 21.4, 16.1.

HRMS (ESI): calculated for $C_{24}H_{21}CIOH (M+H^+)$ 361.1359, found 361.1349.

FTIR (cm⁻¹): v 2923, 1448, 1076, 836, 785.

5-chloro-4, 6-dimethyl-2, 3-di-p-tolylbenzofuran 3pd

Prepared according to General Procedure using **1p** (46.8 mg, 0.30 mmol), **2d** (20.6 mg, 0.10 mmol); flash chromatography on silica gel (petroleum ether) provided the title compound (23.9 mg, 66% yield) as a white solid.

¹**H NMR (400 MHz, CDCl₃):** δ 7.37-7.35 (d, *J* = 8.0 Hz, 2H), 7.27-7.26 (m, 5H), 7.05-7.03 (d, *J* = 8.0 Hz, 2H), 2.49 (s, 3H), 2.45 (s, 3H), 2.29 (s, 6H), 2.07 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 151.8, 150.8, 137.9, 137.6, 132.5, 131.2, 130.6, 129.6, 129.5, 129.4, 129.0, 127.9, 127.9, 126.3, 117.5, 110.3, 21.8, 21.4, 21.2, 16.0.

HRMS (ESI): calculated for C₂₄H₂₁ClOH (M+H⁺) 361.1359, found 361.1344. **FTIR (cm⁻¹):** *v* 2920, 1520, 1078, 1009, 820.

5-chloro-2, 3-bis(3, 5-dimethylphenyl)-4, 6-dimethylbenzofuran 3pe

Prepared according to General Procedure using **1p** (46.8 mg, 0.30 mmol), **2e** (23.4 mg, 0.10 mmol); flash chromatography on silica gel (petroleum ether) provided the title compound (31.4

mg, 81% yield) as a white solid.

¹**H NMR (400 MHz, CDCl₃):** δ 7.28 (s, 1H), 7.12 (s, 2H), 7.07 (s, 1H), 7.01 (s, 2H), 6.86 (s, 1H), 2.49 (s, 3H), 2.34 (s, 6H), 2.20 (s, 6H), 2.09 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 151.8, 150.6, 138.1, 137.7, 134.1, 132.5, 130.5, 129.6, 129.5, 129.5, 129.4, 128.4, 127.8, 124.2, 118.3, 110.3, 21.8, 21.4, 21.3, 16.1.

HRMS (ESI): calculated for $C_{26}H_{25}CIOH (M+H^+)$ 389.1672, found 389.1677.

FTIR (cm⁻¹): *v* 2919, 1602, 1448, 1009, 849.

5-chloro-2, 3-bis(4-methoxyphenyl)-4, 6-dimethylbenzofuran 3pf

Prepared according to General Procedure using 1p (46.8 mg, 0.30 mmol), 2f (23.8 mg, 0.10 mmol); flash chromatography on silica gel (petroleum ether: ethyl acetate = 50:1) provided the title compound (28.6 mg, 73% yield) as a colorless oil.

¹**H** NMR (400 MHz, CDCl₃): δ 7.42-7.40 (d, J = 9.2 Hz, 2H), 7.30-7.28 (m, 3H), 7.00-6.98 (d, J = 8.8 Hz, 2H), 6.79-6.77 (d, J = 8.8 Hz, 2H), 3.89 (s, 3H), 3.77 (s, 3H), 2.48 (s, 3H), 2.08 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 159.3, 159.3, 151.7, 150.9, 132.2, 131.9, 129.5, 129.2, 128.0, 127.7, 126.4, 123.5, 116.2, 114.3, 113.8, 110.2, 55.2, 55.2, 21.7, 16.0.

HRMS (ESI): calculated for C₂₄H₂₁ClO₃H (M+H⁺) 393.1257, found 393.1261. **FTIR (cm⁻¹):** *v* 2930, 1517, 1250, 1177, 831.

5-chloro-2, 3-bis(4-chlorophenyl)-4, 6-dimethylbenzofuran 3pg

Prepared according to General Procedure using **1p** (46.8 mg, 0.30 mmol), **2g** (24.7 mg, 0.10 mmol); flash chromatography on silica gel (petroleum ether) provided the title compound (25.7 mg, 64% yield) as a white solid.

¹**H NMR (400 MHz, CDCl₃):** δ 7.47-7.45 (m, 2H), 7.36-7.29 (m, 5H), 7.24-7.22 (m, 2H), 2.50 (s, 3H), 2.07 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 151.9, 149.7, 134.4, 134.1, 133.5, 132.5, 132.0, 129.9, 129.4, 129.3, 128.8, 128.7, 127.6, 127.3, 117.4, 110.5, 21.8, 16.3.

HRMS (ESI): calculated for C₂₂H₁₅Cl₃OH (M+H⁺) 401.0267, found 401.0265. **FTIR (cm⁻¹):** *v* 2923, 1497, 1092, 1012, 829.

CI F

Prepared according to General Procedure using **1p** (46.8 mg, 0.30 mmol), **2h** (21.4 mg, 0.10 mmol); flash chromatography on silica gel (petroleum ether) provided the title compound (29.4 mg, 80% yield) as a white solid.

¹**H NMR (400 MHz, CDCl₃):** δ 7.43-7.39 (dd, J = 5.2 Hz, J = 8.8 Hz, 2H), 7.37-7.34 (dd, J = 5.2 Hz, J = 8.8 Hz, 2H), 7.28 (s, 1H), 7.18 (t, J = 8.4 Hz, 3H), 2.50 (s, 3H), 2.07 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 163.9-163.7 (d, *J* = 25.1 Hz), 161.4-161.2 (d, *J* = 26.4 Hz), 151.8, 150.0, 133.1, 132.4-128.2 (dd, *J* = 8.0 Hz, *J* = 415.9 Hz), 130.0-126.6 (dd, *J* = 3.5 Hz, *J* = 331.0 Hz), 129.8, 129.3, 127.4, 116.8, 116.2, 116.0, 115.6, 115.4, 110.4, 21.8, 16.1.

HRMS (ESI): calculated for $C_{22}H_{15}ClF_2OH (M+H^+)$ 369.0858, found 369.0857.

FTIR (**cm**⁻¹): *v* 2974, 1515, 1498, 1235, 834.

5-chloro-4, 6-dimethyl-2, 3-di(naphthalen-1-yl)benzofuran 3pi

Prepared according to General Procedure using **1p** (46.8 mg, 0.30 mmol), **2i** (27.8 mg, 0.10 mmol); flash chromatography on silica gel (petroleum ether) provided the title compound (26.7 mg, 62% yield) as a colorless oil.

¹**H NMR (400 MHz, CDCl₃):** δ 8.11-8.10 (m, 1H), 7.87-7.78 (m, 4H), 7.72-7.70 (d, *J* = 8.4 Hz, 1H), 7.49-7.38 (m, 5H), 7.32-7.27 (m, 2H), 7.19-7.17 (m, 1H), 7.13-7.09 (m, 1H), 2.55 (s, 3H), 1.82 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 153.2, 152.7, 133.8, 133.6, 133.4, 133.0, 132.2, 131.0, 129.8, 129.5, 128.8, 128.3, 128.3, 127.8, 127.6, 126.5, 126.0, 125.9, 125.9, 125.4, 124.9, 118.6, 110.7, 21.8, 15.6.

HRMS (ESI): calculated for C₃₀H₂₁ClOH (M+H⁺) 433.1359, found 433.1362. **FTIR (cm⁻¹):** *v* 3046, 1738, 1386, 795, 775.

5-chloro-2, 3-bis(4-fluorophenyl)-4, 6-dimethylbenzofuran 3ph

5-chloro-3-(4-methoxyphenyl)-4, 6-dimethyl-2-phenylbenzofuran 3pj and 5-chloro-2-(4-methoxyphenyl)-4, 6-dimethyl-3-phenylbenzofuran 3pj'

Prepared according to General Procedure using **1p** (46.8 mg, 0.30 mmol), **3j** (20.8 mg, 0.10 mmol); flash chromatography on silica gel (petroleum ether) provided the title compound (30.3 mg, 84% yield) as a 3.8:1 mixture of regioisomers (inseparable mixture) as a colorless oil.

¹**H NMR (400 MHz, CDCl₃):** δ 7.49-7.37 (m, 3H), 7.30-7.23 (m, 5H), 7.01-6.99 (d, *J* = 8.4 Hz, 1.59H), 6.77-6.75 (d, *J* = 8.8 Hz, 0.36H), 3.89 (s, 2.44H), 3.76 (s, 0.64H), 2.49 (s, 3H), 2.09, 2.05 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 159.3, 151.8, 151.7, 150.7, 150.6, 132.8, 131.8, 130.9, 130.7, 129.6, 128.8, 128.3, 127.9, 127.8, 126.3, 126.1, 117.9, 114.3, 113.8, 110.4, 110.2, 55.2, 55.2, 21.8, 21.8, 16.1, 16.0.

HRMS (ESI): calculated for C₂₃H₁₉ClO₂H (M+H⁺) 363.1152, found 363.1153. **FTIR (cm⁻¹):** *v* 2928, 1513, 1247, 1174, 756.

5-chloro-3-(4-fluorophenyl)-4, 6-dimethyl-2-phenylbenzofuran 3pk and 5-chloro-2-(4-fluorophenyl)-4, 6-dimethyl-3-phenylbenzofuran 3pk'

Prepared according to General Procedure using **1p** (46.8 mg, 0.30 mmol), **2k** (19.6 mg, 0.10 mmol); flash chromatography on silica gel (petroleum ether) provided the title compound (22.1 mg, 63% yield) as a 1.1:1 mixture of regioisomers as a white solid.

¹**H NMR (400 MHz, CDCl₃):** δ 7.47-7.36 (m, 5.62H), 7.30-7.25 (m, 3.04H), 7.17 (t, *J* = 8.8 Hz, 1.17H), 6.92 (t, *J* = 8.8 Hz, 0.93H), 2.50 (s, 3H), 2.07 (s, 1.53H), 2.06 (s, 1.45H).

¹³C NMR (100 MHz, CDCl₃): δ 163.9-163.6 (d, *J* = 29.7 Hz), 161.4-161.1 (d, *J* = 31.1 Hz), 151.9, 151.8, 150.8, 149.8, 134.1, 133.1, 132.9, 132.5, 132.4, 130.7, 130.4, 130.2, 130.1, 129.7, 129.5, 129.3, 129.0, 128.4, 128.3, 128.2, 128.1, 127.6, 127.6, 126.9, 126.8, 126.4, 117.9, 117.1, 116.1, 115.9, 115.5, 115.3, 110.5, 110.4, 21.8, 16.1, 16.1.

HRMS (ESI): calculated for C₂₂H₁₆ClFOH (M+H⁺) 351.0952, found 351.0951. **FTIR (cm⁻¹):** *v* 2926, 2358, 1510, 1233, 837.

5-chloro-4, 6-dimethyl-3-phenyl-2-*o*-tolylbenzofuran 3pl and 5-chloro-4, 6-dimethyl-2-phenyl-3-*o*-tolylbenzofuran 3pl'

Prepared according to General Procedure using **1p** (46.8 mg, 0.30 mmol), **2l** (19.2 mg, 0.10 mmol); flash chromatography on silica gel (petroleum ether) provided the title compound (24.6 mg, 71% yield) as a 1.6:1 mixture of regioisomers as a white solid.

¹**H NMR (400 MHz, CDCl₃):** δ 7.45-7.14 (m, 10.14H), 7.05 (t, *J* = 6.8 Hz, 0.39H), 2.51, 2.50 (s, 3H), 2.23, 2.21 (s, 2.28H), 2.11 (s, 1.89H), 2.00 (s, 1.82H).

¹³C NMR (100 MHz, CDCl₃): δ 152.9, 152.4, 152.1, 149.9, 138.1, 137.9, 133.7, 133.4, 132.9, 132.5, 131.0, 130.9, 130.8, 130.3, 130.3, 129.9, 129.7, 129.5, 129.4, 128.9, 128.4, 128.1, 127.9, 127.4, 127.3, 126.5, 126.5, 125.7, 125.3, 120.0, 117.1, 110.5, 110.5, 21.8, 21.7, 20.4, 20.0, 16.8, 15.0.

HRMS (ESI): calculated for C₂₃H₁₉ClOH (M+H⁺) 347.1203, found 347.1199. **FTIR (cm⁻¹):** *v* 2921, 1451, 1389, 1010, 762.

5-chloro-4, 6-dimethyl-3-(naphthalen-1-yl)-2-phenylbenzofuran 3pm

Prepared according to General Procedure using **1p** (46.8 mg, 0.30 mmol), **2m** (22.8 mg, 0.10 mmol); flash chromatography on silica gel (petroleum ether) provided the title compound (22.5 mg, 59% yield) as a colorless oil.

¹**H NMR (400 MHz, CDCl₃):** δ 7.97 (t, *J* = 8.4 Hz, 2H), 7.69-7.67 (d, *J* = 8.4 Hz, 1H), 7.56-7.49 (m, 3H), 7.39-7.34 (m, 4H), 7.14-7.12 (m, 3H), 2.52 (s, 3H), 1.73 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 152.1, 151.2, 133.7, 133.3, 133.1, 131.8, 130.4, 129.7, 129.6, 128.7, 128.6, 128.4, 128.4, 128.3, 128.0, 126.7, 126.3, 126.1, 125.9, 125.8, 115.9, 110.5, 21.9, 15.2.

HRMS (ESI): calculated for C₂₆H₁₉ClOH (M+H⁺) 383.1203, found 383.1208. **FTIR (cm⁻¹):** *v* 3056, 1444, 1072, 934, 778.

5-chloro-4, 6-dimethyl-2-(naphthalen-1-yl)-3-phenylbenzofuran 3pm'

Prepared according to General Procedure using **1p** (46.8 mg, 0.30 mmol), **2m** (22.8 mg, 0.10 mmol); flash chromatography on silica gel (petroleum ether) provided the title compound (6.7 mg, 18% yield) as a colorless oil.

¹**H NMR (400 MHz, CDCl₃):** δ 7.99-7.97 (m, 1H), 7.86-7.81 (m, 2H), 7.51-7.45 (m, 2H), 7.37 (s, 1H), 7.34-7.25 (m, 8H), 2.54 (s, 3H), 2.24 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 152.6, 152.3, 133.6, 133.3, 132.8, 132.3, 130.8, 129.8, 129.6, 129.5, 128.3, 128.1, 127.7, 127.4, 126.7, 126.5, 126.0, 126.0, 124.9, 120.9, 110.6, 21.8, 16.7. HRMS (ESI): calculated for C₂₆H₁₉ClOH (M+H⁺) 383.1203, found 383.1208. FTIR (cm⁻¹): *v* 2918, 1387, 1066, 1011, 775.

5-t-butyl-2, 3-bis(4-methoxyphenyl)benzofuran 3af

Prepared according to General Procedure using **1a** (45.0 mg, 0.30 mmol), **2f** (20.7 mg, 0.10 mmol); flash chromatography on silica gel (petroleum ether: ethyl acetate = 50:1) provided the title compound (16.8 mg, 44% yield) as a white solid.

¹**H NMR (400 MHz, CDCl₃):** δ 7.58-7.56 (d, J = 8.8 Hz, 2H), 7.46-7.35 (m, 5H), 7.03-7.01 (d, J = 8.8, 2H), 6.85-6.83 (d, J = 8.8, 2H), 3.89 (s, 3H), 3.81 (s, 3H), 1.35 (s, 9H).

¹³C NMR (100 MHz, CDCl₃): δ 159.5, 158.9, 152.0, 150.7, 145.9, 130.9, 130.1, 128.3, 125.3, 123.7, 122.1, 115.8, 115.7, 114.4, 113.8, 110.2, 55.3, 55.2, 34.8, 31.9.

HRMS (ESI): calculated for C₂₆H₂₆O₃H (M+H⁺) 387.1960, found 387.1966. **FTIR (cm⁻¹):** *v* 2960, 1518, 1251, 1174, 1033.

5-t-butyl-2, 3-bis(4-fluorophenyl)benzofuran 3ah

Prepared according to General Procedure using **1a** (45.0 mg, 0.30 mmol), **2h** (21.4 mg, 0.10 mmol); flash chromatography on silica gel (petroleum ether) provided the title compound (26.3 mg, 73% yield) as a white solid.

¹**H NMR (400 MHz, CDCl₃):** δ 7.59-7.55 (dd, J = 6.4, 8.8 Hz, 2H), 7.48-7.40 (m, 5H), 7.18 (t, J = 8.8, 2H), 7.00 (t, J = 8.8, 2H), 1.35 (s, 9H).

¹³C NMR (100 MHz, CDCl₃): δ 163.8-163.6 (d, *J* = 24.8 Hz), 161.4-161.1 (d, *J* = 22.9 Hz), 152.1, 150.0, 146.4, 131.5-131.4 (d, *J* = 7.9 Hz), 129.6, 128.8-128.7 (d, *J* = 8.1 Hz), 126.9 (d, *J* = 3.2 Hz), 122.9, 116.4, 116.3, 116.1, 115.7, 115.5, 110.5, 34.8, 31.8.

HRMS (ESI): calculated for $C_{24}H_{20}F_2O(M^+)$ 362.1482, found 362.1487.

FTIR (cm⁻¹): *v* 2963, 1515, 1223, 1157, 831.

5-chloro-4, 6-dimethyl-2-(perfluorophenyl)-3-(thiophen-2-yl)benzofuran 3pn

Prepared according to General Procedure using **1p** (46.8 mg, 0.30 mmol), **2n** (27.4 mg, 0.10 mmol); flash chromatography on silica gel (petroleum ether) provided the title compound (24.7 mg, 58% yield) as a white solid.

¹**H NMR (400 MHz, CDCl₃):** δ 7.39 (t, *J* = 3.2 Hz, 1H), 7.32 (s, 1H), 7.07-7.06 (m, 2H), 2.52 (s, 3H), 2.28 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 153.4, 134.6, 131.1, 130.5, 130.2, 129.5, 127.3, 127.2, 125.9, 118.0, 110.8, 21.8, 16.0.

HRMS (ESI): calculated for C₂₀H₁₀ClF₅OSH (M+H⁺) 429.0139, found 429.0143. **FTIR (cm⁻¹):** *v* 2922, 1514, 1497, 1008, 988.

6-(5-chloro-4, 6-dimethyl-2-phenylbenzofuran-3-yl)-2, 3-dihydrobenzo[b][1, 4]dioxine 3po

Prepared according to General Procedure using **1p** (46.8 mg, 0.30 mmol), **2o** (29.6 mg, 0.12 mmol); flash chromatography on silica gel (petroleum ether: ethyl acetate = 5:1) provided the title compound (38.3 mg, 82% yield) as a yellow oil.

¹**H NMR (400 MHz, CDCl₃):** δ 7.53-7.51 (m, 2H), 7.28-7.23 (m, 4H), 6.96-6.94 (d, *J* = 8.0 Hz, 1H), 6.90 (d, *J* = 1.6 Hz, 1H), 6.87-6.84 (dd, *J* = 8.4 Hz, *J* = 2.0, 1H), 4.36-4.32 (m, 4H), 2.49 (s, 3H), 2.13 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 151.8, 150.6, 143.8, 143.5, 132.8, 130.8, 130.7, 129.6, 128.9, 128.3, 127.9, 127.8, 127.1, 126.3, 123.9, 119.4, 117.7, 110.3, 64.4, 64.3, 21.8, 16.0. HRMS (ESI): calculated for C₂₄H₁₉ClO₃H (M+H⁺) 391.1101, found 391.1106.

FTIR (cm⁻¹): *v* 2924, 1508, 1282, 1251, 1068.

5-(tert-butyl)-3-phenyl-2-propylbenzofuran 3pq

Prepared according to General Procedure using 1a (180.0 mg, 1.20 mmol), 2q (57.6 mg, 0.40 mmol); flash chromatography on silica gel (petroleum ether) provided the title compound (10.7 mg, 10% yield) as a colorless oil.

¹H NMR (400 MHz, CDCl₃): δ 7.53-7.52 (m, 1H), 7.49-7.47 (m, 4H), 7.40-7.36 (m, 2H),

7.34-7.32 (m, 1H), 2.81 (t, J = 7.2 Hz, 2H), 1.83-1.74 (m, 2H), 1.35 (s, 9H), 0.96 (t, J = 7.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 155.4, 152.2, 145.7, 133.1, 129.2, 128.7, 128.5, 126.9, 121.4, 117.1, 115.5, 110.1, 34.8, 31.9, 28.7, 21.8, 13.9.

HRMS (ESI): calculated for $C_{24}H_{24}OH (M+H^+)$ 293.1905, found 293.1900.

FTIR (cm⁻¹): *v* 2968, 2900, 1393, 1066, 1027.

Mechanistic Experiments

Competition Experiments: with electronically different alkynes General Procedure for the Competition Experiments

1p (0.30 mmol, 45.0 mg), diphenylacetylene **2a** (0.10 mmol, 17.8 mg), **2f** (0.10 mmol, 23.8 mg) or **2h** (0.10 mmol, 21.4 mg), [Cp*Rh(MeCN)₃](SbF₆)₂ (5 mol%, 0.005 mmol, 4.2 mg), acetanilide (0.20 equiv, 0.02 mmol, 2.7 mg), DTAC (dodecyl trimethyl ammonium chloride) (0.5 equiv, 0.05 mmol, 13.2 mg) were weighed in the air and Cu(OTf)₂ (1.0 equiv, 0.10 mmol, 36.2 mg), AgPF₆ (2.5 equiv, 0.25 mmol, 63.2 mg) were weighed in the glovebox and charged into an oven-dried 50 mL Schlenk tube. The tube was evacuated and refilled with N₂, which was repeated for 3 times. After addition of 0.5 mL of decalin under a positive pressure of N₂ *via* syringe, the sealed tube was placed in a 120 °C parallel synthesizer and stirred for 3 h. After completion, the reaction mixture was cooled down to room temperature and directly purified by flash column chromatography. After purification, the mixture was analyzed by ¹H NMR.

I) Using 2f as another alkyne:

The two products were purified by flash column chromatography to get product **3pa** (eluent: petroleum ether a) with 24% yield and product **3pf** (eluent: petroleum ether : ethyl acetate = 50:1) with 81% yield. The ratio of product **3pa** to product **3pf** was 1.0:3.4.

II) Using 2h as another alkyne:

The two products were inseparable mixtures which were analyzed by ¹H NMR (Figure 1). The result showed that the ratio of product **3pa** to product **3ph** was 1.0:1.2

ppm (t1)

Figure 1

Competition Experiments: with electronically different phenols General Procedure for the Competition Experiments

1a (0.15 mmol, 22.5 mg), **1g** (0.15 mmol, 27.0 mg), diphenylacetylene **2a** (0.10 mmol, 17.8 mg), $[Cp*Rh(MeCN)_3](SbF_6)_2$ (5 mol%, 0.005 mmol, 4.2 mg), acetanilide (0.20 equiv, 0.02 mmol, 2.7 mg), DTAC (dodecyl trimethyl ammonium chloride) (0.5 equiv, 0.05 mmol, 13.2 mg) were weighed in the air and Cu(OTf)₂ (1.0 equiv, 0.10 mmol, 36.2 mg), AgPF₆ (2.5 equiv, 0.25 mmol, 63.2 mg) were weighed in the glovebox and charged into an oven-dried 50 mL Schlenk tube. The tube was evacuated and refilled with N₂, which was repeated for 3 times. After addition of 0.5 mL of decalin under a positive pressure of N₂ *via* syringe, the sealed tube was placed in a 120 °C parallel synthesizer and stirred for 3 h. After completion, the reaction mixture was cooled down to room temperature and directly purified by flash column chromatography. After purification, the mixture was analyzed by ¹H NMR. The result showed that the ratio of **3aa** to **3fa** was 1.5:1.

Figure 2

Radical Trapping Experiment General Procedures for the Radical Trapping Experiment

1p (0.30 mmol, 46.8 mg), diphenylacetylene **2a** (0.10 mmol, 17.8 mg), $[Cp*Rh(MeCN)_3](SbF_6)_2$ (5 mol%, 0.005 mmol, 4.2 mg), acetanilide (0.20 equiv, 0.02 mmol, 2.7 mg), DTAC (dodecyl trimethyl ammonium chloride) (0.5 equiv, 0.05 mmol, 13.2 mg), **TEMPO** (1.0 equiv, 0.10 mmol, 15.6 mg) were weighed in the air and Cu(OTf)₂ (1.0 equiv, 0.10 mmol, 36.2 mg), AgPF₆ (2.5 equiv, 0.25 mmol, 63.2 mg) were weighed in the glovebox and charged into an oven-dried 50 mL Schlenk tube. The tube was evacuated and refilled with N₂, which was repeated for 3 times. After addition of 0.5 mL of decalin under a positive pressure of N₂ *via* syringe, the sealed tube was placed in a 120 °C parallel synthesizer and stirred for 3 h. After completion, the reaction mixture was cooled down to room temperature and directly purified by flash column chromatography. After purification, 0.086 mmol (6.0 µL) CH₂Br₂ was added as an internal standard, the mixture was analyzed by ¹H NMR. The result showed that **3pa** was obtained with 29% yield (NMR).

Figure 3

Deuterium-Labeling Experiments

General Procedures for the Synthesis of [D]-1c

To a solution of 2-bromo-4-methylphenol (561 mg, 3.0 mmol, 0.36 mL) in 2.0 mL freshly distilled THF, *n*BuLi (7.5 mmol, 4.7 mL, 1.6 M in hexane) was added dropwise to the solution at -78 °C, the solution was stirred for 12 h, then 3 mL D₂O was added dropwise to the solution at 0 °C, after that the solution was stirred for 2 h. The mixture was extracted with Et_2O , organic layer was dried with Na_2SO_4 , concentrated and the mixture was purified by flash chromatography (petroleum ether : ethyl acetate = 10 : 1) to give [D]-**1c** with 71% yield and 90% (D%).

General Procedures for the Intramolecular Kinetic Isotopic Effect

[D]-1c (90% D-substituted) (0.30 mmol, 32.7 mg, 31.6 µL), diphenylacetylene **2a** (0.10 mmol, 17.8 mg), [Cp*Rh(MeCN)₃](SbF₆)₂ (5 mol%, 0.005 mmol, 4.2 mg), acetanilide (0.20 equiv, 0.02 mmol, 2.7 mg), DTAC (dodecyl trimethyl ammonium chloride) (0.5 equiv, 0.05 mmol, 13.2 mg) were weighed in the air and Cu(OTf)₂ (1.0 equiv, 0.10 mmol, 36.2 mg), AgPF₆ (2.5 equiv, 0.25 mmol, 63.2 mg) were weighed in the glovebox and charged into an oven-dried 50 mL Schlenk tube. The tube was evacuated and refilled with N₂, which was repeated for 3 times. After addition of 0.5 mL of decalin under a positive pressure of N₂ *via* syringe, the sealed tube was placed in a 120 °C parallel synthesizer and stirred for 3 h. After completion, the reaction mixture was cooled down to room temperature and directly purified by flash column chromatography with petroleum ether as eluent to get product with 59% yield. The result was analyzed by ¹H NMR (Figure 4). The result showed that $k_{\rm H}/k_{\rm D} = 0.23$. Then the reaction was stirred for 10 min, however, no detectable deuterium incorporation was observed. Both results indicated the existence of H/D exchange.

ppm (t1)

Figure 4

General Procedures for the Deuterium-Labeling Experiment

1c (0.30 mmol, 32.4 mg), diphenylacetylene **2a** (0.10 mmol, 17.8 mg), $[Cp*Rh(MeCN)_3](SbF_6)_2$ (5 mol%, 0.005 mmol, 4.2 mg), acetanilide (0.20 equiv, 0.02 mmol, 2.7 mg), DTAC (dodecyl trimethyl ammonium chloride) (0.5 equiv, 0.05 mmol, 13.2 mg) were weighed in the air and $Cu(OTf)_2$ (1.0 equiv, 0.10 mmol, 36.2 mg), AgPF₆ (2.5 equiv, 0.25 mmol, 63.2 mg) were weighed in the glovebox and charged into an oven-dried 50 mL Schlenk tube. The tube was evacuated and refilled with N₂, which was repeated for 3 times. After addition of 0.5 mL of decalin and 0.1 mL **D**₂**O** under a positive pressure of N₂ *via* syringe, the sealed tube was placed in a 120 °C parallel synthesizer and stirred for 3 h. After completion, the reaction mixture was cooled down to room temperature and directly purified by flash column chromatography eluting with petroleum ether. 20.1 mg product was obtained with 71% yield. The result showed that the existence of H/D exchange (Figure 5).

Figure 5

Figure 6

Figure 7

General Procedures for the Deuterium-Labeling Experiment

3aa (0.10 mmol, 32.6 mg), $[Cp*Rh(MeCN)_3](SbF_6)_2$ (5 mol%, 0.005 mmol, 4.2 mg), acetanilide (0.20 equiv, 0.02 mmol, 2.7 mg), DTAC (dodecyl trimethyl ammonium chloride) (0.5 equiv, 0.05 mmol, 13.2 mg) were weighed in the air and Cu(OTf)₂ (1.0 equiv, 0.10 mmol, 36.2 mg), AgPF₆ (2.5 equiv, 0.25 mmol, 63.2 mg) were weighed in the glovebox and charged into an oven-dried 50 mL Schlenk tube. The tube was evacuated and refilled with N₂, which was repeated for 3 times. After addition of 0.5 mL of decalin and 0.1 mL **D**₂**O** under a positive pressure of N₂ *via* syringe, the sealed tube was placed in a 120 °C parallel synthesizer and stirred for 3 h. After completion, the reaction mixture was cooled down to room temperature and directly purified by flash column chromatography eluting with petroleum ether. The result showed that no detectable deuterium incorporation was observed (Figure 8).

Figure 8

Catalytic Reaction Gerneral Procedures for Catalytic Reaction

1p (0.30 mmol, 46.8 mg), diphenylacetylene **2a** (0.10 mmol, 17.8 mg), acetanilide (0.20 equiv, 0.02 mmol, 2.7 mg), DTAC (dodecyl trimethyl ammonium chloride) (0.5 equiv, 0.05 mmol, 13.2 mg) were weighed in the air and Cu(OTf)₂ (0.2 equiv, 0.02 mmol, 7.6 mg), AgPF₆ (2.5 equiv, 0.25 mmol, 63.2 mg) were weighed in the glovebox and charged into an oven-dried 50 mL Schlenk tube. The tube was evacuated and refilled with N₂, which was repeated for 3 times. After addition of 0.5 mL of decalin under a positive pressure of N₂ *via* syringe, the sealed tube was placed in a 120 °C parallel synthesizer and stirred for 18 h. After completion, the reaction mixture was cooled down to room temperature and directly purified by flash column chromatography. 11.4 mg of **3pa** was obtained, the isolated yield was 34%.

Control Experiment

References

[1] Y. Li, B.-J. Li, W.-H. Wang, W.-P. Huang, X.-S. Zhang, K. Chen, Z.-J. Shi, *Angew. Chem. Int. Ed.* **2011**, *50*, 2115.

[2] M. J. Mio, L. C. Kopel, J. B. Braun, T. L. Gadzikwa, K. L. Hull, R. G. Brisbois, C. J. Markworth, P. A. Grieco, *Org. Lett.* **2002**, *4*, 3199.

[3] S.-Y. Shi, Y.-H. Zhang, Synlett. 2007, 12, 1843.

[4] G. Raffa, M. Rusch, G. Balme, N. Monteiro, Org. Lett. 2009, 11, 5254.

¹H NMR and ¹³C NMR Spectra of Products

ppm (t1)

ppm (t1)

Supporting Information

ppm (t1)

100

50

150

ppm (t1)

47

-0

-1000

Supporting Information

Supporting Information

ppm(t1)

Supporting Information

Supporting Information

ppm (t1)

Supporting Information

73