## **Supporting Information for**

# Roles of carboxylate donors in O-O bond scission of peroxodiiron(III) to high-spin oxodiiron(IV) with a new carboxylate-containing dinucleating ligand

Masahito Kodera,\*<sup>a</sup> Tomokazu Tsuji,<sup>a</sup> Tomohiro Yasunaga,<sup>a</sup> Yuka Kawahara,<sup>a</sup> Tomoya Hirano,<sup>a</sup> Yutaka Hitomi,<sup>a</sup> Takashi Nomura,<sup>b</sup> Takashi Ogura,<sup>b</sup> Yoshio Kobayashi,<sup>c</sup> P. K. Sajith,<sup>d</sup> Yoshihito Shiota<sup>d</sup> and Kazunari Yoshizawa<sup>d</sup>

<sup>c</sup>Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofugaoka 1-5-1, Chofu, Tokyo 182-8585, Japan. Fax: (+81) 42-443-5555; Tel: (+81) 42-443-5555; E-mail: kyoshio@pc.uec.ac.jp

<sup>&</sup>lt;sup>a</sup>Department of Molecular Chemistry and Biochemistry, Doshisha University, Tatara Miyakotani 1-3, Kyotanabe Kyoto 610-0321, Japan. Fax: (+81) 774-65-6848; Tel: (+81) 774-65-6652; E-mail: mkodera@mail.doshisha.ac.jp

<sup>&</sup>lt;sup>b</sup>Department of Life Science, University of Hyogo, Kouto 2-1, Ako-gun Kamigori-cho Hyogo 678-1297, Japan. Fax: (+81) 791-58-0181; Tel: (+81) 791-58-0181; Tel: (+81) 791-58-0181; E-mail: ogura@sci.u-hyogo.ac.jp

<sup>&</sup>lt;sup>d</sup>Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan. Fax: (+81) 92-802-2529; Tel: (+81) 92-802-2528; E-mail: kazunari@ms.ifoc.kyushu-u.ac.jp

#### **Contents:**

#### **Crystal structure analysis**

#### X-ray structure report for [Fe<sub>2</sub>(µ-O)(H<sub>2</sub>O)<sub>2</sub>(BPG<sub>2</sub>E)](ClO<sub>4</sub>)<sub>2</sub> · 3H<sub>2</sub>O (2a)

Table S1. Summary of Crystal Data, Data Collection Parameters, and Structure Refinement for 2a.

**Table S2.** Fractional Atomic Coordinates Including Hydrogen Atoms and Isotropic Thermal Parameters of 2a.

Table S2a. Atomic coordinates and B<sub>iSO</sub> involving hydrogen atoms of 2a.

 Table S3. Anisotropic Thermal Parameters for Non-hydrogen Atoms in 2a.

**Table S4.** Fragment Analysis of **2a**.

Table S5. Bond Distances and Bond Angles of 2a.

Figure S1. ORTEP view of 2a.

Figure S2. Crystal structure of the unit cell of 2a.

#### X-ray structure report for [Fe<sub>2</sub>(µ-O)(H<sub>2</sub>O)<sub>2</sub>(BPG<sub>2</sub>E)](TfO)<sub>2</sub> · 2H<sub>2</sub>O (2b)

Table S6. Summary of Crystal Data, Data Collection Parameters, and Structure Refinement for 2b.

**Table S7.** Fractional Atomic Coordinates Including Hydrogen Atoms and Isotropic Thermal Parameters of **2b**.

Table S7a. Atomic coordinates and B<sub>iso</sub> involving hydrogen atoms of 2b.

 Table S8. Anisotropic Thermal Parameters for Non-hydrogen Atoms in 2b.

Table S9. Fragment Analysis of 2b.

Table S10. Bond Distances and Bond Angles of 2b.

Figure S3. ORTEP view of 2b.

Figure S4. Crystal structure of the unit cell of 2b.

**Figure S5.** ORTEP view (70% probability) of the cationic portion of **2b**. Selected bond distances [Å] and angle [°]: Fe1···Fe2 3.559 Å,  $O_{aq}$ ··· $O_{aq}$  3.926 Å, Fe1-O1 1.7897(12), Fe1-O2 2.0259(9), Fe1-O4 2.0658(12), Fe1-N1 2.2500(15), Fe1-N2 2.1183(14), Fe1-N3 2.1764(12), Fe2-O1 1.7849(13), Fe2-O5 2.0195(11), Fe2-O7 2.0461(13), Fe2-N4 2.2514(15), Fe2-N5 2.1625(11), Fe2-N6 2.1863(11); Fe1-O1-Fe2 169.12(6).

### Spectral data

**Figure S6.** ESI mass spectrum of  $[Fe_2(\mu-O)(H_2O)_2(BPG_2E)](OTf)_2$  (**2b**) in MeCN/H<sub>2</sub>O (10:1, v/v) at room temperature.

**Figure S7.** ESI mass spectrum of  $[Fe_2(\mu^{-18}O)(H_2^{18}O)_2(BPG_2E)](OTf)_2$  (<sup>18</sup>O-labeled **2b**) in MeCN/H<sub>2</sub>O (10:1, v/v) at room temperature. Inset shows the isotope pattern of molecular ion peak, where the red line shows theoretical isotope pattern calculated for a 14 : 86 mixture of **2b** and <sup>18</sup>O-labeled **2b**.

**Figure S8.** The Mössbauer spectra of starting material **2b** (A) and decomposed product (B) of **3** at 77 K.

Temperature-dependent kinetic data: Arrhenius plot

Figure S9. Arrhenius plot for thermal decomposition of 3.

**Product Analysis** 

Table S11. Oxidation of Alkenes with H<sub>2</sub>O<sub>2</sub> Catalyzed by 2b.

**DFT studies** 

## X-ray Structure Report

for

 $[Fe_2(\mu-O)(H_2O)_2(BPG_2E)](ClO_4)_2 \cdot 3H_2O(2a).$ 

#### Experimental

#### Data Collection

A red block crystal of  $C_{30}H_{40}Cl_2Fe_2N_6O_{18}$  having approximate dimensions of 0.286 x 0.151 x 0.090 mm was mounted on a glass fiber. All measurements were made on a Rigaku R-AXIS RAPID diffractometer using multi-layer mirror monochromated Mo-K $\alpha$  radiation.

The crystal-to-detector distance was 127.40 mm.

Cell constants and an orientation matrix for data collection corresponded to a primitive triclinic cell with dimensions:

| a = | 11.4730(4) Å               | $\alpha =$       | 113.070(8)0 |
|-----|----------------------------|------------------|-------------|
| b = | 12.9171(4) Å               | $\beta =$        | 100.094(7)0 |
| c = | 14.4931(4) Å               | $\gamma \; = \;$ | 90.982(6)0  |
| V = | 1936.75(17) Å <sup>3</sup> |                  |             |

For Z = 2 and F.W. = 955.28, the calculated density is 1.638 g/cm<sup>3</sup>. Based on a statistical analysis of intensity distribution, and the successful solution and refinement of the structure, the space group was determined to be:

P-1 (#2)

The data were collected at a temperature of  $-180 \pm 1^{\circ}$ C to a maximum 20 value of 54.9°. A total of 44 oscillation images were collected. A sweep of data was done using w scans from 130.0 to 190.0° in 5.00° step, at  $\chi$ =45.0° and  $\phi$  = 0.0°. The exposure rate was 60.0 [sec./°]. A second sweep was performed using w scans from 0.0 to 160.0° in 5.00° step, at  $\chi$ =45.0° and  $\phi$  = 180.0°. The exposure rate was 60.0 [sec./°]. The crystal-to-detector distance was 127.40 mm. Readout was performed in the 0.100 mm pixel mode.

#### Data Reduction

Of the 19147 reflections were collected, where 8757 were unique ( $R_{int} = 0.0180$ ); equivalent reflections were merged.

The linear absorption coefficient,  $\mu$ , for Mo-K $\alpha$  radiation is 9.705 cm<sup>-1</sup>. An empirical absorption correction was applied which resulted in transmission factors ranging from 0.736 to 0.916. The data were corrected for Lorentz and polarization effects.

#### Structure Solution and Refinement

The structure was solved by direct methods<sup>1</sup> and expanded using Fourier techniques. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined using the riding model. The final cycle of full-matrix least-squares refinement<sup>2</sup> on F<sup>2</sup> was based on 8757 observed reflections and 599 variable parameters and converged (largest parameter shift was 0.00 times its esd) with unweighted and weighted agreement factors of:

$$R1 = \Sigma ||Fo| - |Fc|| / \Sigma |Fo| = 0.0281$$

wR2 = 
$$[\Sigma (w (Fo^2 - Fc^2)^2) / \Sigma w (Fo^2)^2]^{1/2} = 0.0757$$

The standard deviation of an observation of unit weight<sup>3</sup> was 1.06. Unit weights were used. The maximum and minimum peaks on the final difference Fourier map corresponded to 0.50 and -0.39 e<sup>-</sup>/Å<sup>3</sup>, respectively.

Neutral atom scattering factors were taken from Cromer and Waber<sup>4</sup>. Anomalous dispersion effects were included in Fcalc<sup>5</sup>; the values for  $\Delta f'$  and  $\Delta f''$  were those of Creagh and McAuley<sup>6</sup>. The values for the mass attenuation coefficients are those of Creagh and Hubbell<sup>7</sup>. All calculations were performed using the CrystalStructure<sup>8</sup> crystallographic software package except for refinement, which was performed using SHELXL-97<sup>9</sup>.

#### References

(1) <u>SIR2004</u>: M.C. Burla, R. Caliandro, M. Camalli, B. Carrozzini, G.L. Cascarano, L. De Caro, C. Giacovazzo, G. Polidori, R. Spagna (2005)

(2) Least Squares function minimized: (SHELXL97)

 $\Sigma w (F_0^2 - F_c^2)^2$  where w = Least Squares weights.

(3) Standard deviation of an observation of unit weight:

$$[\Sigma w (F_0^2 - F_c^2)^2 / (N_0 - N_v)]^{1/2}$$

where:  $N_0$  = number of observations  $N_V$  = number of variables

(4) Cromer, D. T. & Waber, J. T.; "International Tables for X-ray Crystallography", Vol. IV, The Kynoch Press, Birmingham, England, Table 2.2 A (1974).

(5) Ibers, J. A. & Hamilton, W. C.; Acta Crystallogr., 17, 781 (1964).

(6) Creagh, D. C. & McAuley, W.J.; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.6.8, pages 219-222 (1992).

(7) Creagh, D. C. & Hubbell, J.H..; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.4.3, pages 200-206 (1992).

(8) <u>CrystalStructure 4.1</u>: Crystal Structure Analysis Package, Rigaku Corporation (2000-2013). Tokyo 196-8666, Japan.

(9) SHELX97: Sheldrick, G.M. (2008). Acta Cryst. A64, 112-122.

**Table S1.** Summary of Crystal Data, Data Collection Parameters, and Structure Refinement for**2a**.

A. Crystal Data

| Empirical Formula    | C <sub>30</sub> H <sub>40</sub> Cl <sub>2</sub> Fe <sub>2</sub> N <sub>6</sub> O <sub>18</sub>                                                                                                      |  |  |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Formula Weight       | 955.28                                                                                                                                                                                              |  |  |
| Crystal Color, Habit | red, block                                                                                                                                                                                          |  |  |
| Crystal Dimensions   | 0.286 X 0.151 X 0.090 mm                                                                                                                                                                            |  |  |
| Crystal System       | triclinic                                                                                                                                                                                           |  |  |
| Lattice Type         | Primitive                                                                                                                                                                                           |  |  |
| Lattice Parameters   | a = 11.4730(4)  Å<br>b = 12.9171(4)  Å<br>c = 14.4931(4)  Å<br>$\alpha = 113.070(8) \text{ O}$<br>$\beta = 100.094(7) \text{ O}$<br>$\gamma = 90.982(6) \text{ O}$<br>$V = 1936.75(17) \text{ Å}^3$ |  |  |
| Space Group          | P-1 (#2)                                                                                                                                                                                            |  |  |
| Z value              | 2                                                                                                                                                                                                   |  |  |
| D <sub>calc</sub>    | 1.638 g/cm <sup>3</sup>                                                                                                                                                                             |  |  |
| F000                 | 984.00                                                                                                                                                                                              |  |  |
| μ(ΜοΚα)              | 9.705 cm <sup>-1</sup>                                                                                                                                                                              |  |  |

## B. Intensity Measurements

| Diffractometer                                       | R-AXIS RAPID                                                              |
|------------------------------------------------------|---------------------------------------------------------------------------|
| Radiation                                            | MoK $\alpha$ ( $\lambda$ = 0.71075 Å)<br>multi-layer mirror monochromated |
| Voltage, Current                                     | 50kV, 24mA                                                                |
| Temperature                                          | -180.0°C                                                                  |
| Detector Aperture                                    | 280 x 256 mm                                                              |
| Data Images                                          | 44 exposures                                                              |
| $ω$ oscillation Range ( $\chi$ =45.0, $\phi$ =0.0)   | 130.0 - 190.00                                                            |
| Exposure Rate                                        | 60.0 sec./ <sup>o</sup>                                                   |
| $ω$ oscillation Range ( $\chi$ =45.0, $\phi$ =180.0) | 0.0 - 160.00                                                              |
| Exposure Rate                                        | 60.0 sec./ <sup>0</sup>                                                   |
| Detector Position                                    | 127.40 mm                                                                 |
| Pixel Size                                           | 0.100 mm                                                                  |
| 20 <sub>max</sub>                                    | 54.90                                                                     |
| No. of Reflections Measured                          | Total: 19147<br>Unique: 8757 (R <sub>int</sub> = 0.0180)                  |
| Corrections                                          | Lorentz-polarization<br>Absorption<br>(trans. factors: 0.736 - 0.916)     |

## C. Structure Solution and Refinement

| Structure Solution                 | Direct Methods                                                                                           |
|------------------------------------|----------------------------------------------------------------------------------------------------------|
| Refinement                         | Full-matrix least-squares on F <sup>2</sup>                                                              |
| Function Minimized                 | $\Sigma \mathrm{w} (\mathrm{Fo}^2 - \mathrm{Fc}^2)^2$                                                    |
| Least Squares Weights              | w = 1/ [ $\sigma^2(Fo^2) + (0.0370 \cdot P)^2$<br>+ 1.3514 \cdot P]<br>where P = (Max(Fo^2,0) + 2Fc^2)/3 |
| 2θ <sub>max</sub> cutoff           | 54.90                                                                                                    |
| Anomalous Dispersion               | All non-hydrogen atoms                                                                                   |
| No. Observations (All reflections) | 8757                                                                                                     |
| No. Variables                      | 599                                                                                                      |
| Reflection/Parameter Ratio         | 14.62                                                                                                    |
| Residuals: R1 (I>2.00o(I))         | 0.0281                                                                                                   |
| Residuals: R (All reflections)     | 0.0333                                                                                                   |
| Residuals: wR2 (All reflections)   | 0.0757                                                                                                   |
| Goodness of Fit Indicator          | 1.060                                                                                                    |
| Max Shift/Error in Final Cycle     | 0.001                                                                                                    |
| Maximum peak in Final Diff. Map    | 0.50 e <sup>-</sup> /Å <sup>3</sup>                                                                      |
| Minimum peak in Final Diff. Map    | -0.39 e <sup>-</sup> /Å <sup>3</sup>                                                                     |

**Table S2.** Fractional Atomic Coordinates Including Hydrogen Atoms and Isotropic Thermal Parameters of **2a**.

| atom | X            | у            | Z            | Beq       | occ      |
|------|--------------|--------------|--------------|-----------|----------|
| Fe1  | 0.812106(19) | 0.287435(18) | 0.183206(16) | 0.889(5)  | 1        |
| Fe2  | 0.614594(18) | 0.112766(18) | 0.238188(16) | 0.816(5)  | 1        |
| Cl1  | 0.76767(4)   | -0.30482(4)  | 0.07362(3)   | 1.831(7)  | 1        |
| Cl2  | 0.75806(8)   | 0.18779(12)  | 0.63523(12)  | 1.745(19) | 0.756(4) |
| Cl2a | 0.7497(3)    | 0.2222(4)    | 0.6760(4)    | 2.14(6)   | 0.244(4) |
| 01   | 0.71998(9)   | 0.20492(9)   | 0.22153(8)   | 1.098(17) | 1        |
| O2   | 0.96508(10)  | 0.26345(10)  | 0.26249(9)   | 1.305(18) | 1        |
| O3   | 1.16279(10)  | 0.27334(10)  | 0.29240(9)   | 1.504(19) | 1        |
| O4   | 0.68430(10)  | 0.34115(11)  | 0.09693(9)   | 1.252(18) | 1        |
| 05   | 0.59538(10)  | -0.01861(9)  | 0.10178(8)   | 1.098(17) | 1        |
| O6   | 0.48917(10)  | -0.17698(10) | -0.01066(8)  | 1.365(18) | 1        |
| O7   | 0.46054(10)  | 0.16010(10)  | 0.17474(9)   | 1.231(17) | 1        |
| 08   | 0.66378(13)  | -0.28832(13) | 0.11950(12)  | 2.79(3)   | 1        |
| 09   | 0.87258(13)  | -0.27705(12) | 0.15200(11)  | 2.48(2)   | 1        |
| O10  | 0.76926(16)  | -0.23651(15) | 0.01646(14)  | 3.54(3)   | 1        |
| 011  | 0.76507(15)  | -0.42310(13) | 0.00634(11)  | 3.31(3)   | 1        |
| 012  | 0.81037(17)  | 0.17612(16)  | 0.54945(14)  | 2.34(4)   | 0.756(4) |
| O12a | 0.6902(10)   | 0.2318(7)    | 0.7534(8)    | 6.9(3)    | 0.244(4) |
| 013  | 0.8169(2)    | 0.1224(3)    | 0.6865(2)    | 4.15(6)   | 0.756(4) |
| O13a | 0.8535(9)    | 0.1701(9)    | 0.6840(8)    | 4.6(2)    | 0.244(4) |
| O14  | 0.6345(3)    | 0.1496(5)    | 0.6011(5)    | 3.35(10)  | 0.756(4) |
| O14a | 0.6624(15)   | 0.1452(14)   | 0.5824(13)   | 5.7(4)    | 0.244(4) |
| 015  | 0.7730(4)    | 0.3076(4)    | 0.7030(3)    | 3.96(10)  | 0.756(4) |
| O15a | 0.7702(14)   | 0.3293(14)   | 0.6776(13)   | 4.7(4)    | 0.244(4) |
| 016  | 0.37957(12)  | 0.35263(11)  | 0.28154(10)  | 1.69(2)   | 1        |
| O17  | 0.36314(12)  | 0.51567(13)  | 0.19413(11)  | 2.12(2)   | 1        |
| 018  | 0.60467(13)  | 0.54234(12)  | 0.19271(11)  | 1.90(2)   | 1        |
| N1   | 0.94949(12)  | 0.36992(11)  | 0.13249(10)  | 1.12(2)   | 1        |
| N2   | 0.83982(12)  | 0.15941(11)  | 0.04219(10)  | 1.06(2)   | 1        |
| N3   | 0.83336(12)  | 0.46169(11)  | 0.29652(10)  | 1.23(2)   | 1        |
| N4   | 0.50408(12)  | -0.01884(11) | 0.26136(10)  | 1.07(2)   | 1        |
| N5   | 0.74570(12)  | 0.03683(11)  | 0.30769(10)  | 1.07(2)   | 1        |
| N6   | 0.55754(12)  | 0.20313(11)  | 0.38270(10)  | 1.09(2)   | 1        |
| C1   | 1.06882(14)  | 0.34568(14)  | 0.17366(13)  | 1.36(3)   | 1        |
| C2   | 1.06666(14)  | 0.29060(13)  | 0.24952(12)  | 1.16(2)   | 1        |
| C3   | 0.92279(15)  | 0.31925(14)  | 0.01921(12)  | 1.30(2)   | 1        |
| C4   | 0.89687(14)  | 0.19295(14)  | -0.01705(12) | 1.18(2)   | 1        |

| atom | Х           | У            | Z            | Beq     | occ |
|------|-------------|--------------|--------------|---------|-----|
| C5   | 0.92706(15) | 0.11608(15)  | -0.10568(13) | 1.50(3) | 1   |
| C6   | 0.89507(15) | 0.00165(15)  | -0.13543(13) | 1.52(3) | 1   |
| C7   | 0.83540(14) | -0.03275(14) | -0.07490(12) | 1.34(2) | 1   |
| C8   | 0.81002(14) | 0.04840(13)  | 0.01344(12)  | 1.21(2) | 1   |
| C9   | 0.93652(15) | 0.49239(13)  | 0.17621(13)  | 1.37(3) | 1   |
| C10  | 0.91486(14) | 0.52874(13)  | 0.28355(12)  | 1.26(2) | 1   |
| C11  | 0.96902(16) | 0.62821(14)  | 0.36198(14)  | 1.81(3) | 1   |
| C12  | 0.93669(17) | 0.66125(15)  | 0.45671(14)  | 2.01(3) | 1   |
| C13  | 0.84643(17) | 0.59745(15)  | 0.46786(14)  | 1.83(3) | 1   |
| C14  | 0.79412(15) | 0.49803(14)  | 0.38544(13)  | 1.43(3) | 1   |
| C15  | 0.68843(15) | 0.43260(14)  | 0.39318(13)  | 1.43(3) | 1   |
| C16  | 0.72054(15) | 0.35584(14)  | 0.45013(13)  | 1.43(3) | 1   |
| C17  | 0.60689(15) | 0.30290(14)  | 0.45854(12)  | 1.36(3) | 1   |
| C18  | 0.55147(16) | 0.35774(14)  | 0.54061(13)  | 1.59(3) | 1   |
| C19  | 0.44779(16) | 0.30849(15)  | 0.54786(13)  | 1.65(3) | 1   |
| C20  | 0.39943(15) | 0.20504(15)  | 0.47183(13)  | 1.55(3) | 1   |
| C21  | 0.45631(14) | 0.15498(13)  | 0.39046(12)  | 1.12(2) | 1   |
| C22  | 0.40598(14) | 0.04299(14)  | 0.30573(12)  | 1.22(2) | 1   |
| C23  | 0.46014(15) | -0.11170(14) | 0.16024(12)  | 1.43(3) | 1   |
| C24  | 0.51953(14) | -0.10233(13) | 0.07743(12)  | 1.06(2) | 1   |
| C25  | 0.57803(14) | -0.05733(14) | 0.33483(13)  | 1.34(2) | 1   |
| C26  | 0.70915(14) | -0.04444(13) | 0.33521(12)  | 1.15(2) | 1   |
| C27  | 0.78871(15) | -0.10787(14) | 0.36894(12)  | 1.41(3) | 1   |
| C28  | 0.90950(15) | -0.08419(15) | 0.37791(13)  | 1.53(3) | 1   |
| C29  | 0.94729(15) | 0.00144(14)  | 0.35138(13)  | 1.46(3) | 1   |
| C30  | 0.86345(14) | 0.05891(14)  | 0.31552(12)  | 1.27(2) | 1   |

Table S2. Atomic coordinates and  $\mathrm{B}_{iSO}/\mathrm{B}_{eq}$  and occupancy (continued).

 $B_{eq} = 8/3 \pi^2 (U_{11}(aa^*)^2 + U_{22}(bb^*)^2 + U_{33}(cc^*)^2 + 2U_{12}(aa^*bb^*)\cos\gamma + 2U_{13}(aa^*cc^*)\cos\beta + 2U_{23}(bb^*cc^*)\cos\alpha)$ 

| atom | Х          | У          | Z          | Biso   | occ |
|------|------------|------------|------------|--------|-----|
| H1A  | 1.12127    | 0.41726    | 0.20806    | 1.629  | 1   |
| H1B  | 1.10337    | 0.29504    | 0.11599    | 1.629  | 1   |
| H2   | 0.6593(19) | 0.4033(19) | 0.1272(16) | 1.5025 | 1   |
| H3A  | 0.99160    | 0.33603    | -0.00711   | 1.559  | 1   |
| H3B  | 0.85313    | 0.35146    | -0.00657   | 1.559  | 1   |
| H4   | 0.633(2)   | 0.2957(19) | 0.0687(17) | 1.5025 | 1   |
| Н5   | 0.96885    | 0.14119    | -0.14533   | 1.799  | 1   |
| H6   | 0.91369    | -0.05253   | -0.19638   | 1.825  | 1   |
| H7   | 0.81257    | -0.11053   | -0.09397   | 1.608  | 1   |
| H8   | 0.77022    | 0.02501    | 0.05523    | 1.454  | 1   |
| H9A  | 0.86907    | 0.50948    | 0.13324    | 1.643  | 1   |
| H9B  | 1.00964    | 0.53482    | 0.17702    | 1.643  | 1   |
| H10  | 0.615(2)   | 0.577(2)   | 0.1661(19) | 2.2747 | 1   |
| H11  | 1.02732    | 0.67320    | 0.35130    | 2.170  | 1   |
| H12  | 0.97603    | 0.72676    | 0.51304    | 2.414  | 1   |
| H13  | 0.82016    | 0.62094    | 0.53100    | 2.190  | 1   |
| H14  | 0.541(2)   | 0.537(2)   | 0.1915(18) | 2.2747 | 1   |
| H15A | 0.64425    | 0.38563    | 0.32323    | 1.713  | 1   |
| H15B | 0.63463    | 0.48690    | 0.42858    | 1.713  | 1   |
| H16A | 0.76818    | 0.29626    | 0.41234    | 1.712  | 1   |
| H16B | 0.76832    | 0.40058    | 0.51920    | 1.712  | 1   |
| H17  | 0.4699(19) | 0.1597(18) | 0.1199(17) | 1.4773 | 1   |
| H18  | 0.58521    | 0.42924    | 0.59171    | 1.904  | 1   |
| H19  | 0.41019    | 0.34499    | 0.60413    | 1.982  | 1   |
| H20  | 0.32848    | 0.16895    | 0.47533    | 1.856  | 1   |
| H21  | 0.4367(19) | 0.2200(19) | 0.2047(17) | 1.4773 | 1   |
| H22A | 0.36284    | -0.00221   | 0.33292    | 1.463  | 1   |
| H22B | 0.34907    | 0.05530    | 0.25201    | 1.463  | 1   |
| H23A | 0.37315    | -0.11097   | 0.14060    | 1.714  | 1   |
| H23B | 0.47502    | -0.18481   | 0.16517    | 1.714  | 1   |
| H24  | 0.370(2)   | 0.391(2)   | 0.2499(18) | 2.0237 | 1   |
| H25A | 0.55307    | -0.13777   | 0.31673    | 1.608  | 1   |
| H25B | 0.56399    | -0.01303   | 0.40449    | 1.608  | 1   |
| H26  | 0.312(2)   | 0.3283(19) | 0.2809(17) | 2.0237 | 1   |
| H27  | 0.76077    | -0.16672   | 0.38565    | 1.686  | 1   |
| H28  | 0.96558    | -0.12581   | 0.40180    | 1.837  | 1   |
| H29  | 1.02965    | 0.02001    | 0.35790    | 1.749  | 1   |

Table S2a. Atomic coordinates and  $\mathrm{B}_{\mathrm{iSO}}$  involving hydrogen atoms of 2a.

 $\label{eq:s2a} \textbf{Table S2a.} \ Atomic \ coordinates \ and \ B_{iso} \ involving \ hydrogens/B_{eq} \ and \ occupancy \ (continued).$ 

| atom | Х        | У        | Ζ          | Beq    | occ |
|------|----------|----------|------------|--------|-----|
| H30  | 0.88926  | 0.11595  | 0.29563    | 1.521  | 1   |
| H31  | 0.327(2) | 0.573(2) | 0.2278(19) | 2.5456 | 1   |
| H32  | 0.331(2) | 0.491(2) | 0.136(2)   | 2.5456 | 1   |

 Table S3. Anisotropic Thermal Parameters for Non-hydrogen Atoms in 2a.

| atom | U11         | U22         | U33         | U12         | U13         | U23         |
|------|-------------|-------------|-------------|-------------|-------------|-------------|
| Fe1  | 0.01143(11) | 0.01033(10) | 0.01173(11) | -0.00149(8) | 0.00331(8)  | 0.00379(8)  |
| Fe2  | 0.01059(11) | 0.01012(10) | 0.01052(11) | -0.00042(8) | 0.00301(8)  | 0.00406(8)  |
| Cl1  | 0.0276(2)   | 0.0219(2)   | 0.0260(2)   | 0.00856(16) | 0.01267(17) | 0.01252(17) |
| Cl2  | 0.0133(3)   | 0.0293(5)   | 0.0300(6)   | 0.0001(3)   | 0.0015(3)   | 0.0197(5)   |
| Cl2a | 0.0230(11)  | 0.0281(18)  | 0.036(2)    | 0.0073(11)  | 0.0101(12)  | 0.0173(16)  |
| O1   | 0.0139(5)   | 0.0132(5)   | 0.0143(5)   | -0.0026(4)  | 0.0049(4)   | 0.0044(4)   |
| O2   | 0.0150(5)   | 0.0191(6)   | 0.0176(6)   | -0.0015(4)  | 0.0026(4)   | 0.0100(5)   |
| 03   | 0.0148(6)   | 0.0249(6)   | 0.0170(6)   | 0.0019(5)   | 0.0021(4)   | 0.0084(5)   |
| 04   | 0.0139(6)   | 0.0121(5)   | 0.0193(6)   | -0.0004(4)  | 0.0012(4)   | 0.0048(5)   |
| 05   | 0.0153(5)   | 0.0124(5)   | 0.0131(5)   | -0.0017(4)  | 0.0034(4)   | 0.0040(4)   |
| 06   | 0.0206(6)   | 0.0150(5)   | 0.0130(6)   | -0.0038(4)  | 0.0005(4)   | 0.0036(4)   |
| 07   | 0.0160(6)   | 0.0176(6)   | 0.0153(6)   | 0.0041(4)   | 0.0046(4)   | 0.0080(5)   |
| 08   | 0.0294(8)   | 0.0422(9)   | 0.0512(9)   | 0.0114(6)   | 0.0213(7)   | 0.0305(8)   |
| O9   | 0.0307(7)   | 0.0275(7)   | 0.0310(8)   | -0.0025(6)  | 0.0063(6)   | 0.0064(6)   |
| O10  | 0.0519(10)  | 0.0552(10)  | 0.0607(11)  | 0.0292(8)   | 0.0371(9)   | 0.0467(9)   |
| 011  | 0.0559(10)  | 0.0278(8)   | 0.0253(8)   | 0.0148(7)   | -0.0096(7)  | -0.0003(6)  |
| 012  | 0.0298(10)  | 0.0294(10)  | 0.0253(10)  | -0.0074(7)  | 0.0052(7)   | 0.0067(8)   |
| O12a | 0.100(8)    | 0.047(5)    | 0.110(8)    | -0.018(5)   | 0.087(7)    | -0.002(5)   |
| 013  | 0.0229(12)  | 0.087(2)    | 0.0846(19)  | 0.0067(13)  | 0.0045(11)  | 0.0756(19)  |
| O13a | 0.042(5)    | 0.064(6)    | 0.097(7)    | 0.030(4)    | 0.022(5)    | 0.056(5)    |
| O14  | 0.0147(10)  | 0.057(2)    | 0.077(3)    | -0.0025(11) | 0.0007(13)  | 0.054(2)    |
| O14a | 0.117(15)   | 0.034(5)    | 0.034(6)    | -0.004(8)   | -0.042(9)   | 0.007(4)    |
| 015  | 0.0334(16)  | 0.049(3)    | 0.0417(19)  | 0.0032(17)  | 0.0178(14)  | -0.0134(18) |
| O15a | 0.025(4)    | 0.068(7)    | 0.099(11)   | -0.006(4)   | -0.006(5)   | 0.054(7)    |
| 016  | 0.0164(6)   | 0.0227(6)   | 0.0260(7)   | 0.0028(5)   | 0.0046(5)   | 0.0106(5)   |
| 017  | 0.0258(7)   | 0.0317(7)   | 0.0200(7)   | 0.0013(6)   | 0.0023(5)   | 0.0081(6)   |
| O18  | 0.0222(7)   | 0.0215(7)   | 0.0321(7)   | 0.0039(5)   | 0.0095(6)   | 0.0129(6)   |
| N1   | 0.0148(6)   | 0.0135(6)   | 0.0147(7)   | 0.0000(5)   | 0.0037(5)   | 0.0062(5)   |
| N2   | 0.0141(6)   | 0.0138(6)   | 0.0130(6)   | 0.0010(5)   | 0.0046(5)   | 0.0053(5)   |

| N3 | 0.0161(7) | 0.0127(6) | 0.0157(7) | -0.0022(5) | 0.0031(5) | 0.0033(5) |
|----|-----------|-----------|-----------|------------|-----------|-----------|
| N4 | 0.0140(6) | 0.0145(6) | 0.0132(6) | 0.0006(5)  | 0.0039(5) | 0.0063(5) |
| N5 | 0.0147(6) | 0.0133(6) | 0.0127(6) | 0.0007(5)  | 0.0030(5) | 0.0050(5) |
| N6 | 0.0155(6) | 0.0146(6) | 0.0124(6) | 0.0019(5)  | 0.0039(5) | 0.0061(5) |
| C1 | 0.0134(7) | 0.0197(8) | 0.0213(8) | 0.0005(6)  | 0.0043(6) | 0.0108(7) |
| C2 | 0.0158(7) | 0.0120(7) | 0.0123(7) | 0.0009(6)  | 0.0025(6) | 0.0008(6) |
| C3 | 0.0192(8) | 0.0173(8) | 0.0147(8) | -0.0004(6) | 0.0055(6) | 0.0077(6) |
| C4 | 0.0143(7) | 0.0173(8) | 0.0143(7) | -0.0001(6) | 0.0029(6) | 0.0075(6) |

 Table S3. Anisotropic displacement parameters (continued).

| atom | U11       | U22       | U33        | U12        | U13       | U23        |
|------|-----------|-----------|------------|------------|-----------|------------|
| C5   | 0.0203(8) | 0.0226(8) | 0.0154(8)  | -0.0007(6) | 0.0066(6) | 0.0079(7)  |
| C6   | 0.0207(8) | 0.0203(8) | 0.0135(8)  | 0.0006(6)  | 0.0056(6) | 0.0024(6)  |
| C7   | 0.0165(8) | 0.0142(7) | 0.0174(8)  | -0.0000(6) | 0.0028(6) | 0.0037(6)  |
| C8   | 0.0141(7) | 0.0161(7) | 0.0167(8)  | 0.0001(6)  | 0.0047(6) | 0.0068(6)  |
| C9   | 0.0190(8) | 0.0132(7) | 0.0217(8)  | -0.0017(6) | 0.0062(6) | 0.0083(6)  |
| C10  | 0.0142(7) | 0.0134(7) | 0.0196(8)  | 0.0001(6)  | 0.0031(6) | 0.0060(6)  |
| C11  | 0.0210(9) | 0.0148(8) | 0.0286(10) | -0.0054(6) | 0.0043(7) | 0.0048(7)  |
| C12  | 0.0248(9) | 0.0164(8) | 0.0251(9)  | -0.0052(7) | 0.0001(7) | -0.0001(7) |
| C13  | 0.0296(9) | 0.0179(8) | 0.0174(8)  | -0.0007(7) | 0.0045(7) | 0.0026(7)  |
| C14  | 0.0203(8) | 0.0150(7) | 0.0182(8)  | 0.0020(6)  | 0.0030(6) | 0.0059(6)  |
| C15  | 0.0189(8) | 0.0169(8) | 0.0171(8)  | 0.0035(6)  | 0.0044(6) | 0.0050(6)  |
| C16  | 0.0196(8) | 0.0171(8) | 0.0151(8)  | 0.0005(6)  | 0.0013(6) | 0.0048(6)  |
| C17  | 0.0211(8) | 0.0156(7) | 0.0159(8)  | 0.0029(6)  | 0.0043(6) | 0.0071(6)  |
| C18  | 0.0277(9) | 0.0173(8) | 0.0145(8)  | 0.0037(7)  | 0.0065(6) | 0.0045(6)  |
| C19  | 0.0254(9) | 0.0251(9) | 0.0167(8)  | 0.0103(7)  | 0.0107(7) | 0.0101(7)  |
| C20  | 0.0182(8) | 0.0253(9) | 0.0202(8)  | 0.0055(7)  | 0.0094(6) | 0.0118(7)  |
| C21  | 0.0150(7) | 0.0165(7) | 0.0141(8)  | 0.0032(6)  | 0.0032(6) | 0.0091(6)  |
| C22  | 0.0126(7) | 0.0181(8) | 0.0169(8)  | -0.0000(6) | 0.0047(6) | 0.0077(6)  |
| C23  | 0.0206(8) | 0.0147(7) | 0.0167(8)  | -0.0051(6) | 0.0053(6) | 0.0035(6)  |
| C24  | 0.0131(7) | 0.0132(7) | 0.0145(8)  | 0.0014(6)  | 0.0011(5) | 0.0068(6)  |
| C25  | 0.0167(8) | 0.0195(8) | 0.0203(8)  | 0.0028(6)  | 0.0064(6) | 0.0127(7)  |
| C26  | 0.0160(8) | 0.0154(7) | 0.0118(7)  | 0.0010(6)  | 0.0045(6) | 0.0044(6)  |
| C27  | 0.0223(8) | 0.0171(8) | 0.0172(8)  | 0.0037(6)  | 0.0073(6) | 0.0089(6)  |
| C28  | 0.0205(8) | 0.0210(8) | 0.0176(8)  | 0.0070(6)  | 0.0035(6) | 0.0086(7)  |
| C29  | 0.0147(8) | 0.0215(8) | 0.0183(8)  | 0.0018(6)  | 0.0026(6) | 0.0073(7)  |
| C30  | 0.0158(8) | 0.0162(7) | 0.0161(8)  | -0.0008(6) | 0.0033(6) | 0.0065(6)  |

| The general | temperature | factor | expression: | $exp(-2\pi^2(a^*$ | $2_{U_{11}h^2}$ - | ⊦ b*2U | $22k^2 +$ | $c^{*2}U_{33}l^{2}$ | +   |
|-------------|-------------|--------|-------------|-------------------|-------------------|--------|-----------|---------------------|-----|
| 2a*b*U12hk  |             | +      | 2a*         | c*U13hl           | -                 | +      | 2         | 2b*c*U23k           | l)) |

## **Table S4.** Fragment Analysis of **2a**.

| fragment: | 1          |        |             |             |        |
|-----------|------------|--------|-------------|-------------|--------|
|           | Fe(1)      | Fe(2)  | O(1)        | O(2)        | O(3)   |
|           | O(4)       | O(5)   | O(6)        | O(7)        | N(1)   |
|           | N(2)       | N(3)   | N(4)        | N(5)        | N(6)   |
|           | C(1)       | C(2)   | C(3)        | C(4)        | C(5)   |
|           | C(6)       | C(7)   | C(8)        | C(9)        | C(10)  |
|           | C(11)      | C(12)  | C(13)       | C(14)       | C(15)  |
|           | C(16)      | C(17)  | C(18)       | C(19)       | C(20)  |
|           | C(21)      | C(22)  | C(23)       | C(24)       | C(25)  |
|           | C(26)      | C(27)  | C(28)       | C(29)       | C(30)  |
| fragment: | 2<br>Cl(1) | O(8)   | O(9)        | O(10)       | O(11)  |
|           |            |        |             |             |        |
| fragment: | 3          |        |             |             |        |
|           | Cl(2)      | O(12)  | O(13)       | O(14)       | O(15)  |
| C (       | 4          |        |             |             |        |
| tragment: | 4          | O(12)  | $O(12_{-})$ | $O(14_{-})$ | O(15)  |
|           | CI(2a)     | O(12a) | O(13a)      | O(14a)      | U(15a) |
| fragment: | 5<br>O(16) |        |             |             |        |
| fragment: | 6          |        |             |             |        |
|           | O(17)      |        |             |             |        |
|           |            |        |             |             |        |

## fragment: 7

O(18)

| Table S5. | Bond D | istances | and B | ond A | Angles | of <b>2a</b> . |
|-----------|--------|----------|-------|-------|--------|----------------|
|-----------|--------|----------|-------|-------|--------|----------------|

| Bond Distances (Å) |  |
|--------------------|--|
|                    |  |

| atom | atom | distance   | atom | atom | distance   |
|------|------|------------|------|------|------------|
| Fe1  | 01   | 1.7869(13) | Fe1  | O2   | 2.0217(12) |
| Fe1  | O4   | 2.0657(14) | Fe1  | N1   | 2.2632(16) |
| Fe1  | N2   | 2.1471(13) | Fe1  | N3   | 2.1833(12) |
| Fe2  | 01   | 1.7932(13) | Fe2  | 05   | 2.0105(10) |
| Fe2  | O7   | 2.0619(12) | Fe2  | N4   | 2.2656(16) |
| Fe2  | N5   | 2.1291(15) | Fe2  | N6   | 2.1837(14) |
| C11  | 08   | 1.4435(17) | Cl1  | 09   | 1.4333(14) |
| C11  | O10  | 1.429(2)   | Cl1  | 011  | 1.4514(15) |
| Cl2  | O12  | 1.430(3)   | C12  | 013  | 1.435(4)   |
| Cl2  | O14  | 1.427(4)   | C12  | 015  | 1.460(4)   |
| Cl2a | O12a | 1.380(14)  | Cl2a | O13a | 1.387(11)  |
| Cl2a | O14a | 1.504(15)  | Cl2a | O15a | 1.39(2)    |
| O2   | C2   | 1.277(2)   | 03   | C2   | 1.237(2)   |
| O5   | C24  | 1.270(2)   | 06   | C24  | 1.2445(16) |
| N1   | C1   | 1.484(2)   | N1   | C3   | 1.481(2)   |
| N1   | C9   | 1.477(2)   | N2   | C4   | 1.354(3)   |
| N2   | C8   | 1.346(2)   | N3   | C10  | 1.350(2)   |
| N3   | C14  | 1.349(2)   | N4   | C22  | 1.483(2)   |
| N4   | C23  | 1.4776(17) | N4   | C25  | 1.488(2)   |
| N5   | C26  | 1.345(3)   | N5   | C30  | 1.352(2)   |
| N6   | C17  | 1.3551(18) | N6   | C21  | 1.351(2)   |
| C1   | C2   | 1.529(3)   | C3   | C4   | 1.511(2)   |
| C4   | C5   | 1.387(2)   | C5   | C6   | 1.390(3)   |
| C6   | C7   | 1.393(3)   | C7   | C8   | 1.383(2)   |
| C9   | C10  | 1.506(3)   | C10  | C11  | 1.3819(19) |
| C11  | C12  | 1.389(3)   | C12  | C13  | 1.383(3)   |
| C13  | C14  | 1.399(2)   | C14  | C15  | 1.511(3)   |
| C15  | C16  | 1.532(3)   | C16  | C17  | 1.508(3)   |
| C17  | C18  | 1.393(2)   | C18  | C19  | 1.379(3)   |
| C19  | C20  | 1.383(2)   | C20  | C21  | 1.386(2)   |
| C21  | C22  | 1.5049(19) | C23  | C24  | 1.522(3)   |
| C25  | C26  | 1.510(2)   | C26  | C27  | 1.388(3)   |
| C27  | C28  | 1.386(2)   | C28  | C29  | 1.391(3)   |
| C29  | C30  | 1.378(3)   |      |      |            |

## Bond lengths involving hydrogens (Å)

| O4  | H2   | 0.83(2) | O4  | H4   | 0.76(2) |
|-----|------|---------|-----|------|---------|
| O7  | H17  | 0.82(3) | O7  | H21  | 0.80(2) |
| 016 | H24  | 0.79(3) | O16 | H26  | 0.82(3) |
| O17 | H31  | 0.87(2) | O17 | H32  | 0.79(3) |
| O18 | H10  | 0.72(3) | O18 | H14  | 0.73(3) |
| C1  | H1A  | 0.990   | C1  | H1B  | 0.990   |
| C3  | H3A  | 0.990   | C3  | H3B  | 0.990   |
| C5  | H5   | 0.950   | C6  | Н6   | 0.950   |
| C7  | H7   | 0.950   | C8  | H8   | 0.950   |
| C9  | H9A  | 0.990   | C9  | H9B  | 0.990   |
| C11 | H11  | 0.950   | C12 | H12  | 0.950   |
| C13 | H13  | 0.950   | C15 | H15A | 0.990   |
| C15 | H15B | 0.990   | C16 | H16A | 0.990   |
| C16 | H16B | 0.990   | C18 | H18  | 0.950   |
| C19 | H19  | 0.950   | C20 | H20  | 0.950   |
| C22 | H22A | 0.990   | C22 | H22B | 0.990   |
| C23 | H23A | 0.990   | C23 | H23B | 0.990   |
| C25 | H25A | 0.990   | C25 | H25B | 0.990   |
| C27 | H27  | 0.950   | C28 | H28  | 0.950   |
| C29 | H29  | 0.950   | C30 | H30  | 0.950   |
|     |      |         |     |      |         |

## Bond angles (0)

| atom | atom | atom | angle     | atom | atom | atom | angle      |
|------|------|------|-----------|------|------|------|------------|
| 01   | Fe1  | O2   | 94.30(6)  | 01   | Fe1  | O4   | 100.31(5)  |
| 01   | Fe1  | N1   | 170.64(5) | 01   | Fe1  | N2   | 99.54(5)   |
| 01   | Fe1  | N3   | 108.27(5) | O2   | Fe1  | O4   | 165.23(6)  |
| O2   | Fe1  | N1   | 78.56(6)  | O2   | Fe1  | N2   | 92.18(5)   |
| O2   | Fe1  | N3   | 87.63(5)  | O4   | Fe1  | N1   | 87.14(6)   |
| O4   | Fe1  | N2   | 87.59(5)  | O4   | Fe1  | N3   | 85.72(5)   |
| N1   | Fe1  | N2   | 74.94(5)  | N1   | Fe1  | N3   | 77.72(5)   |
| N2   | Fe1  | N3   | 152.13(6) | 01   | Fe2  | 05   | 99.55(5)   |
| 01   | Fe2  | 07   | 98.66(6)  | 01   | Fe2  | N4   | 171.59(5)  |
| 01   | Fe2  | N5   | 94.73(6)  | 01   | Fe2  | N6   | 108.72(5)  |
| 05   | Fe2  | 07   | 85.36(5)  | 05   | Fe2  | N4   | 78.13(5)   |
| 05   | Fe2  | N5   | 91.99(5)  | 05   | Fe2  | N6   | 151.03(5)  |
| O7   | Fe2  | N4   | 89.25(5)  | O7   | Fe2  | N5   | 166.60(6)  |
| O7   | Fe2  | N6   | 84.28(5)  | N4   | Fe2  | N5   | 77.35(6)   |
| N4   | Fe2  | N6   | 74.76(5)  | N5   | Fe2  | N6   | 91.89(5)   |
| 08   | Cl1  | O9   | 109.52(9) | 08   | Cl1  | O10  | 109.91(11) |

| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 08   | Cl1  | O11  | 109.24(10) | 09   | Cl1  | O10  | 110.76(10) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|------------|------|------|------|------------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 09   | Cl1  | O11  | 107.66(9)  | O10  | Cl1  | O11  | 109.72(10) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 012  | Cl2  | O13  | 109.34(17) | O12  | C12  | O14  | 109.6(3)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 012  | Cl2  | O15  | 107.3(2)   | O13  | C12  | O14  | 110.0(3)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 013  | Cl2  | O15  | 110.7(2)   | O14  | Cl2  | O15  | 109.8(3)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | O12a | Cl2a | O13a | 111.6(8)   | O12a | Cl2a | O14a | 102.0(9)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | O12a | Cl2a | O15a | 108.3(9)   | O13a | Cl2a | O14a | 109.0(8)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | O13a | Cl2a | O15a | 112.6(9)   | O14a | Cl2a | O15a | 112.9(11)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Fe1  | 01   | Fe2  | 170.43(6)  | Fe1  | O2   | C2   | 121.75(13) |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Fe2  | 05   | C24  | 120.81(11) | Fe1  | N1   | C1   | 108.06(12) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Fe1  | N1   | C3   | 106.66(10) | Fe1  | N1   | C9   | 106.37(11) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C1   | N1   | C3   | 111.42(13) | C1   | N1   | C9   | 111.05(11) |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C3   | N1   | C9   | 112.93(15) | Fe1  | N2   | C4   | 117.36(10) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Fe1  | N2   | C8   | 123.49(13) | C4   | N2   | C8   | 119.03(14) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Fe1  | N3   | C10  | 113.53(10) | Fe1  | N3   | C14  | 125.59(12) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C10  | N3   | C14  | 119.13(12) | Fe2  | N4   | C22  | 103.81(11) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Fe2  | N4   | C23  | 107.94(12) | Fe2  | N4   | C25  | 109.09(10) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C22  | N4   | C23  | 111.99(12) | C22  | N4   | C25  | 110.75(14) |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C23  | N4   | C25  | 112.80(13) | Fe2  | N5   | C26  | 118.29(11) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Fe2  | N5   | C30  | 122.46(14) | C26  | N5   | C30  | 118.89(16) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Fe2  | N6   | C17  | 127.39(13) | Fe2  | N6   | C21  | 113.68(9)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C17  | N6   | C21  | 118.74(14) | N1   | C1   | C2   | 113.40(15) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | O2   | C2   | O3   | 124.56(19) | O2   | C2   | C1   | 117.43(15) |
| N2C4C3115.30(13)N2C4C5121.87(16)C3C4C5122.82(18)C4C5C6118.80(19)C5C6C7119.29(15)C6C7C8118.79(16)N2C8C7122.21(18)N1C9C10109.99(16)N3C10C9115.60(12)N3C10C11122.19(17)C9C10C11122.07(17)C10C11C12118.82(18)C11C12C13119.05(14)C12C13C14119.47(18)N3C14C13120.85(18)N3C14C15118.91(12)C13C14C15120.17(17)C14C15C16114.32(15)C15C16C17108.42(14)N6C17C16118.60(15)N6C17C18120.78(16)C16C17C18120.57(13)C17C18C19120.16(14)C18C19C20118.90(17)C19C20C21118.84(17)N6C21C20122.51(13)N6C21C22C21109.45(12)N4C23C24112.47(14)O5C24O6124.06(18)O5C24C23118.38(12)O6C24C23117.56(15)N4C25C26112.51(17)N5C26C27121.61(18)C26C27C28119.91(19)C27C28C29 <t< td=""><td>03</td><td>C2</td><td>C1</td><td>117.99(16)</td><td>N1</td><td>C3</td><td>C4</td><td>108.55(16)</td></t<> | 03   | C2   | C1   | 117.99(16) | N1   | C3   | C4   | 108.55(16) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N2   | C4   | C3   | 115.30(13) | N2   | C4   | C5   | 121.87(16) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C3   | C4   | C5   | 122.82(18) | C4   | C5   | C6   | 118.80(19) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C5   | C6   | C7   | 119.29(15) | C6   | C7   | C8   | 118.79(16) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N2   | C8   | C7   | 122.21(18) | N1   | C9   | C10  | 109.99(16) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N3   | C10  | C9   | 115.60(12) | N3   | C10  | C11  | 122.19(17) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C9   | C10  | C11  | 122.07(17) | C10  | C11  | C12  | 118.82(18) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C11  | C12  | C13  | 119.05(14) | C12  | C13  | C14  | 119.47(18) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N3   | C14  | C13  | 120.85(18) | N3   | C14  | C15  | 118.91(12) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C13  | C14  | C15  | 120.17(17) | C14  | C15  | C16  | 114.32(15) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C15  | C16  | C17  | 108.42(14) | N6   | C17  | C16  | 118.60(15) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N6   | C17  | C18  | 120.78(16) | C16  | C17  | C18  | 120.57(13) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C17  | C18  | C19  | 120.16(14) | C18  | C19  | C20  | 118.90(17) |
| N6C21C22 $117.01(14)$ C20C21C22 $120.48(15)$ N4C22C21 $109.45(12)$ N4C23C24 $112.47(14)$ O5C24O6 $124.06(18)$ O5C24C23 $118.38(12)$ O6C24C23 $117.56(15)$ N4C25C26 $112.51(17)$ N5C26C25 $116.43(16)$ N5C26C27 $121.82(16)$ C25C26C27 $121.61(18)$ C26C27C28 $119.11(19)$ C27C28C29 $118.97(18)$ C28C29C30 $118.98(16)$                                                                                                                                                                                                                                                                                                                                                                                                                                            | C19  | C20  | C21  | 118.84(17) | N6   | C21  | C20  | 122.51(13) |
| N4C22C21 $109.45(12)$ N4C23C24 $112.47(14)$ O5C24O6 $124.06(18)$ O5C24C23 $118.38(12)$ O6C24C23 $117.56(15)$ N4C25C26 $112.51(17)$ N5C26C25 $116.43(16)$ N5C26C27 $121.82(16)$ C25C26C27 $121.61(18)$ C26C27C28 $119.11(19)$ C27C28C29 $118.97(18)$ C28C29C30 $118.98(16)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N6   | C21  | C22  | 117.01(14) | C20  | C21  | C22  | 120.48(15) |
| O5C24O6124.06(18)O5C24C23118.38(12)O6C24C23117.56(15)N4C25C26112.51(17)N5C26C25116.43(16)N5C26C27121.82(16)C25C26C27121.61(18)C26C27C28119.11(19)C27C28C29118.97(18)C28C29C30118.98(16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N4   | C22  | C21  | 109.45(12) | N4   | C23  | C24  | 112.47(14) |
| O6         C24         C23         117.56(15)         N4         C25         C26         112.51(17)           N5         C26         C25         116.43(16)         N5         C26         C27         121.82(16)           C25         C26         C27         121.61(18)         C26         C27         C28         119.11(19)           C27         C28         C29         118.97(18)         C28         C29         C30         118.98(16)                                                                                                                                                                                                                                                                                                                  | 05   | C24  | 06   | 124.06(18) | 05   | C24  | C23  | 118.38(12) |
| N5C26C25116.43(16)N5C26C27121.82(16)C25C26C27121.61(18)C26C27C28119.11(19)C27C28C29118.97(18)C28C29C30118.98(16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 06   | C24  | C23  | 117.56(15) | N4   | C25  | C26  | 112.51(17) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N5   | C26  | C25  | 116.43(16) | N5   | C26  | C27  | 121.82(16) |
| C27 C28 C29 118.97(18) C28 C29 C30 118.98(16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C25  | C26  | C27  | 121.61(18) | C26  | C27  | C28  | 119.11(19) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C27  | C28  | C29  | 118.97(18) | C28  | C29  | C30  | 118.98(16) |

N5 C30

## 122.19(19)

C29

Bond angles involving hydrogens (<sup>0</sup>)

| atom | atom | atom | angle     | atom | atom | atom | angle     |
|------|------|------|-----------|------|------|------|-----------|
| Fe1  | O4   | H2   | 116.8(15) | Fe1  | O4   | H4   | 111(2)    |
| H2   | O4   | H4   | 111(2)    | Fe2  | O7   | H17  | 107.1(15) |
| Fe2  | 07   | H21  | 120.7(15) | H17  | O7   | H21  | 106(3)    |
| H24  | 016  | H26  | 106(3)    | H31  | 017  | H32  | 109(3)    |
| H10  | O18  | H14  | 108(3)    | N1   | C1   | H1A  | 108.9     |
| N1   | C1   | H1B  | 108.9     | C2   | C1   | H1A  | 108.9     |
| C2   | C1   | H1B  | 108.9     | H1A  | C1   | H1B  | 107.7     |
| N1   | C3   | H3A  | 110.0     | N1   | C3   | H3B  | 110.0     |
| C4   | C3   | H3A  | 110.0     | C4   | C3   | H3B  | 110.0     |
| H3A  | C3   | H3B  | 108.4     | C4   | C5   | Н5   | 120.6     |
| C6   | C5   | H5   | 120.6     | C5   | C6   | H6   | 120.4     |
| C7   | C6   | H6   | 120.4     | C6   | C7   | H7   | 120.6     |
| C8   | C7   | H7   | 120.6     | N2   | C8   | H8   | 118.9     |
| C7   | C8   | H8   | 118.9     | N1   | C9   | H9A  | 109.7     |
| N1   | C9   | H9B  | 109.7     | C10  | C9   | H9A  | 109.7     |
| C10  | C9   | H9B  | 109.7     | H9A  | C9   | H9B  | 108.2     |
| C10  | C11  | H11  | 120.6     | C12  | C11  | H11  | 120.6     |
| C11  | C12  | H12  | 120.5     | C13  | C12  | H12  | 120.5     |
| C12  | C13  | H13  | 120.3     | C14  | C13  | H13  | 120.3     |
| C14  | C15  | H15A | 108.7     | C14  | C15  | H15B | 108.7     |
| C16  | C15  | H15A | 108.7     | C16  | C15  | H15B | 108.7     |
| H15A | C15  | H15B | 107.6     | C15  | C16  | H16A | 110.0     |
| C15  | C16  | H16B | 110.0     | C17  | C16  | H16A | 110.0     |
| C17  | C16  | H16B | 110.0     | H16A | C16  | H16B | 108.4     |
| C17  | C18  | H18  | 119.9     | C19  | C18  | H18  | 119.9     |
| C18  | C19  | H19  | 120.5     | C20  | C19  | H19  | 120.6     |
| C19  | C20  | H20  | 120.6     | C21  | C20  | H20  | 120.6     |
| N4   | C22  | H22A | 109.8     | N4   | C22  | H22B | 109.8     |
| C21  | C22  | H22A | 109.8     | C21  | C22  | H22B | 109.8     |
| H22A | C22  | H22B | 108.2     | N4   | C23  | H23A | 109.1     |
| N4   | C23  | H23B | 109.1     | C24  | C23  | H23A | 109.1     |
| C24  | C23  | H23B | 109.1     | H23A | C23  | H23B | 107.8     |
| N4   | C25  | H25A | 109.1     | N4   | C25  | H25B | 109.1     |
| C26  | C25  | H25A | 109.1     | C26  | C25  | H25B | 109.1     |
| H25A | C25  | H25B | 107.8     | C26  | C27  | H27  | 120.4     |
| C28  | C27  | H27  | 120.4     | C27  | C28  | H28  | 120.5     |
| C29  | C28  | H28  | 120.5     | C28  | C29  | H29  | 120.5     |
| C30  | C29  | H29  | 120.5     | N5   | C30  | H30  | 118.9     |

## C29 C30 H30 118.9



Figure S1. ORTEP view of  $[Fe_2(\mu-O)(H_2O)_2(BPG_2E)](ClO_4)_2 \cdot 3H_2O$  (2a).



Figure S2. Crystal structure of the unit cell of 2a.

# X-ray Structure Report

for

 $[Fe_2(\mu-O)(H_2O)_2(BPG_2E)](TfO)_2 \cdot 2H_2O$  (2b).

#### Experimental

#### Data Collection

A red block crystal of  $C_{32}H_{38}F_6Fe_2N_6O_{15}S_2$  having approximate dimensions of 0.389 x 0.145 x 0.122 mm was mounted in a loop. All measurements were made on a Rigaku R-AXIS RAPID diffractometer using multi-layer mirror monochromated Mo-K $\alpha$  radiation.

The crystal-to-detector distance was 127.00 mm.

Cell constants and an orientation matrix for data collection corresponded to a primitive triclinic cell with dimensions:

For Z = 2 and F.W. = 1036.49, the calculated density is 1.700 g/cm<sup>3</sup>. Based on a statistical analysis of intensity distribution, and the successful solution and refinement of the structure, the space group was determined to be:

P-1 (#2)

The data were collected at a temperature of  $-180 \pm 1^{\circ}$ C to a maximum 20 value of 54.9°. A total of 44 oscillation images were collected. A sweep of data was done using  $\omega$  scans from 130.0 to 190.0° in 5.00° step, at  $\chi$ =45.0° and  $\phi$  = 0.0°. The exposure rate was 60.0 [sec./°]. A second sweep was performed using  $\omega$  scans from 0.0 to 160.0° in 5.00° step, at  $\chi$ =45.0° and  $\phi$  = 180.0°. The exposure rate was 60.0 [sec./°]. The crystal-to-detector distance was 127.00 mm. Readout was performed in the 0.100 mm pixel mode.

#### Data Reduction

Of the 20161 reflections were collected, where 9218 were unique ( $R_{int} = 0.0303$ ); equivalent reflections were merged.

The linear absorption coefficient,  $\mu$ , for Mo-K $\alpha$  radiation is 9.227 cm<sup>-1</sup>. An empirical absorption correction was applied which resulted in transmission factors ranging from 0.682 to 0.894. The data were corrected for Lorentz and polarization effects.

#### Structure Solution and Refinement

The structure was solved by direct methods<sup>1</sup> and expanded using Fourier techniques. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined using the riding model. The final cycle of full-matrix least-squares refinement<sup>2</sup> on F<sup>2</sup> was based on 9218 observed reflections and 592 variable parameters and converged (largest parameter shift was 0.00 times its esd) with unweighted and weighted agreement factors of:

$$R1 = \Sigma ||Fo| - |Fc|| / \Sigma |Fo| = 0.0257$$

wR2 = 
$$[\Sigma (w (Fo^2 - Fc^2)^2) / \Sigma w (Fo^2)^2]^{1/2} = 0.0814$$

The standard deviation of an observation of unit weight<sup>3</sup> was 1.10. Unit weights were used. The maximum and minimum peaks on the final difference Fourier map corresponded to 0.54 and -0.41 e<sup>-</sup>/Å<sup>3</sup>, respectively.

Neutral atom scattering factors were taken from Cromer and Waber<sup>4</sup>. Anomalous dispersion effects were included in Fcalc<sup>5</sup>; the values for  $\Delta f'$  and  $\Delta f''$  were those of Creagh and McAuley<sup>6</sup>. The values for the mass attenuation coefficients are those of Creagh and Hubbell<sup>7</sup>. All calculations were performed using the CrystalStructure<sup>8</sup> crystallographic software package except for refinement, which was performed using SHELXL-97<sup>9</sup>.

#### References

(1) <u>SIR2004</u>: M.C. Burla, R. Caliandro, M. Camalli, B. Carrozzini, G.L. Cascarano, L. De Caro, C. Giacovazzo, G. Polidori, R. Spagna (2005)

(2) Least Squares function minimized: (SHELXL97)

 $\Sigma w (F_0^2 - F_c^2)^2$  where w = Least Squares weights.

(3) Standard deviation of an observation of unit weight:

$$[\Sigma w (F_0^2 - F_c^2)^2 / (N_0 - N_V)]^{1/2}$$

where:  $N_0$  = number of observations  $N_V$  = number of variables

(4) Cromer, D. T. & Waber, J. T.; "International Tables for X-ray Crystallography", Vol. IV, The Kynoch Press, Birmingham, England, Table 2.2 A (1974).

(5) Ibers, J. A. & Hamilton, W. C.; Acta Crystallogr., 17, 781 (1964).

(6) Creagh, D. C. & McAuley, W.J.; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.6.8, pages 219-222 (1992).

(7) Creagh, D. C. & Hubbell, J.H..; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.4.3, pages 200-206 (1992).

(8) <u>CrystalStructure 4.1</u>: Crystal Structure Analysis Package, Rigaku Corporation (2000-2013). Tokyo 196-8666, Japan.

(9) SHELX97: Sheldrick, G.M. (2008). Acta Cryst. A64, 112-122.

Table S6. Summary of Crystal Data, Data Collection Parameters, and Structure Refinement for 2b.

| A. | Crystal | Data |
|----|---------|------|
|----|---------|------|

| Empirical Formula    | C <sub>32</sub> H <sub>38</sub> F <sub>6</sub> Fe <sub>2</sub> N <sub>6</sub> O <sub>15</sub> S <sub>2</sub>                                                                                       |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Formula Weight       | 1036.49                                                                                                                                                                                            |
| Crystal Color, Habit | red, block                                                                                                                                                                                         |
| Crystal Dimensions   | 0.389 X 0.145 X 0.122 mm                                                                                                                                                                           |
| Crystal System       | triclinic                                                                                                                                                                                          |
| Lattice Type         | Primitive                                                                                                                                                                                          |
| Lattice Parameters   | a = 11.5827(3)  Å<br>b = 13.4954(3)  Å<br>c = 14.5372(3)  Å<br>$\alpha = 114.729(8) \text{ o}$<br>$\beta = 99.954(7) \text{ o}$<br>$\gamma = 90.485(6) \text{ o}$<br>$V = 2024.60(17) \text{ Å}^3$ |
| Space Group          | P-1 (#2)                                                                                                                                                                                           |
| Z value              | 2                                                                                                                                                                                                  |
| D <sub>calc</sub>    | 1.700 g/cm <sup>3</sup>                                                                                                                                                                            |
| F000                 | 1060.00                                                                                                                                                                                            |
| μ(ΜοΚα)              | 9.227 cm <sup>-1</sup>                                                                                                                                                                             |

## B. Intensity Measurements

| Diffractometer                                       | R-AXIS RAPID                                                              |
|------------------------------------------------------|---------------------------------------------------------------------------|
| Radiation                                            | MoK $\alpha$ ( $\lambda$ = 0.71075 Å)<br>multi-layer mirror monochromated |
| Voltage, Current                                     | 50kV, 24mA                                                                |
| Temperature                                          | -180.0°C                                                                  |
| Detector Aperture                                    | 280 x 256 mm                                                              |
| Data Images                                          | 44 exposures                                                              |
| $ω$ oscillation Range ( $\chi$ =45.0, $\phi$ =0.0)   | 130.0 - 190.00                                                            |
| Exposure Rate                                        | 60.0 sec./ <sup>o</sup>                                                   |
| $ω$ oscillation Range ( $\chi$ =45.0, $\phi$ =180.0) | 0.0 - 160.0 <sup>o</sup>                                                  |
| Exposure Rate                                        | 60.0 sec./ <sup>o</sup>                                                   |
| Detector Position                                    | 127.00 mm                                                                 |
| Pixel Size                                           | 0.100 mm                                                                  |
| 20 <sub>max</sub>                                    | 54.90                                                                     |
| No. of Reflections Measured                          | Total: 20161<br>Unique: 9218 (R <sub>int</sub> = 0.0303)                  |
| Corrections                                          | Lorentz-polarization<br>Absorption<br>(trans. factors: 0.682 - 0.894)     |

## C. Structure Solution and Refinement

| Structure Solution                 | Direct Methods                                                                                                                |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Refinement                         | Full-matrix least-squares on F <sup>2</sup>                                                                                   |
| Function Minimized                 | $\Sigma \mathrm{w} (\mathrm{Fo}^2 - \mathrm{Fc}^2)^2$                                                                         |
| Least Squares Weights              | w = 1/ [ $\sigma^2(Fo^2) + (0.0415 \cdot P)^2$<br>+ 0.8127 · P ]<br>where P = (Max(Fo <sup>2</sup> ,0) + 2Fc <sup>2</sup> )/3 |
| 2θ <sub>max</sub> cutoff           | 54.90                                                                                                                         |
| Anomalous Dispersion               | All non-hydrogen atoms                                                                                                        |
| No. Observations (All reflections) | 9218                                                                                                                          |
| No. Variables                      | 592                                                                                                                           |
| Reflection/Parameter Ratio         | 15.57                                                                                                                         |
| Residuals: R1 (I>2.00σ(I))         | 0.0257                                                                                                                        |
| Residuals: R (All reflections)     | 0.0281                                                                                                                        |
| Residuals: wR2 (All reflections)   | 0.0814                                                                                                                        |
| Goodness of Fit Indicator          | 1.098                                                                                                                         |
| Max Shift/Error in Final Cycle     | 0.002                                                                                                                         |
| Maximum peak in Final Diff. Map    | 0.54 e <sup>-</sup> /Å <sup>3</sup>                                                                                           |

Minimum peak in Final Diff. Map  $-0.41 \text{ e}^{-}/\text{Å}^3$ 

Table S7. Fractional Atomic Coordinates Including Hydrogen Atoms and Isotropic Thermal Parameters of 2b.

| atom       | Х            | у            | Z            | Beq       |
|------------|--------------|--------------|--------------|-----------|
| Fe1        | 0.388055(17) | 0.380488(15) | 0.754242(15) | 0.731(5)  |
| Fe2        | 0.193960(17) | 0.217699(15) | 0.811441(15) | 0.744(5)  |
| <b>S</b> 1 | 0.73343(3)   | 0.07060(3)   | 0.96735(3)   | 1.268(6)  |
| S2         | 0.23509(3)   | 0.34776(3)   | 0.38376(3)   | 1.076(6)  |
| F1         | 0.66289(10)  | 0.23844(9)   | 1.11353(8)   | 2.57(2)   |
| F2         | 0.84314(11)  | 0.20755(10)  | 1.15061(9)   | 3.34(3)   |
| F3         | 0.79494(11)  | 0.28216(9)   | 1.04543(10)  | 3.22(2)   |
| F4         | 0.24822(10)  | 0.13694(8)   | 0.27657(8)   | 2.55(2)   |
| F5         | 0.10642(9)   | 0.20369(8)   | 0.21099(7)   | 1.822(16) |
| F6         | 0.28405(10)  | 0.23692(10)  | 0.19920(8)   | 2.74(2)   |
| 01         | 0.28258(9)   | 0.29472(8)   | 0.77087(8)   | 0.970(16) |
| O2         | 0.40253(9)   | 0.51045(8)   | 0.89335(8)   | 1.059(16) |
| O3         | 0.50390(9)   | 0.66618(8)   | 1.00845(8)   | 1.216(17) |
| O4         | 0.54039(9)   | 0.33840(9)   | 0.82114(9)   | 1.144(17) |
| 05         | 0.04137(9)   | 0.23831(8)   | 0.73300(8)   | 1.073(16) |
| 06         | -0.15399(9)  | 0.23526(9)   | 0.71280(8)   | 1.211(17) |
| 07         | 0.32368(10)  | 0.17622(9)   | 0.90027(9)   | 1.106(17) |
| 08         | 0.67810(11)  | 0.00660(10)  | 1.00880(10)  | 2.00(2)   |
| 09         | 0.65488(11)  | 0.08721(10)  | 0.88648(9)   | 1.96(2)   |
| O10        | 0.84914(10)  | 0.04405(9)   | 0.94774(9)   | 1.713(19) |
| 011        | 0.16622(11)  | 0.31457(9)   | 0.44120(9)   | 1.709(19) |
| 012        | 0.36042(10)  | 0.36575(9)   | 0.42236(9)   | 1.531(18) |
| 013        | 0.18668(10)  | 0.42891(9)   | 0.35120(10)  | 1.715(19) |
| O14        | 0.63549(11)  | 0.15353(10)  | 0.72540(9)   | 1.588(18) |
| 015        | 0.42055(11)  | -0.01458(10) | 0.82481(10)  | 1.79(2)   |
| N1         | 0.50152(11)  | 0.50460(10)  | 0.73587(9)   | 0.974(18) |
| N2         | 0.26165(11)  | 0.45695(10)  | 0.68855(9)   | 0.955(18) |
| N3         | 0.44445(11)  | 0.28919(10)  | 0.60860(9)   | 0.937(18) |
| N4         | 0.06240(11)  | 0.14066(9)   | 0.86498(9)   | 0.890(18) |
| N5         | 0.16368(10)  | 0.34583(10)  | 0.95412(9)   | 0.911(18) |
| N6         | 0.17698(11)  | 0.04625(10)  | 0.69906(9)   | 0.948(18) |
| C1         | 0.54739(13)  | 0.59212(12)  | 0.84000(11)  | 1.24(2)   |
| C2         | 0.47925(12)  | 0.58986(11)  | 0.91983(11)  | 0.94(2)   |
| C3         | 0.43040(13)  | 0.54616(12)  | 0.66586(12)  | 1.21(2)   |
| C4         | 0.30047(13)  | 0.53606(12)  | 0.66505(11)  | 1.09(2)   |
| C5         | 0.22300(15)  | 0.59989(13)  | 0.63469(12)  | 1.43(2)   |
| C6         | 0.10287(15)  | 0.57947(13)  | 0.62563(12)  | 1.62(3)   |

| atom | Х            | У            | Z           | Beq     |
|------|--------------|--------------|-------------|---------|
| C7   | 0.06335(14)  | 0.49637(13)  | 0.64843(12) | 1.50(2) |
| C8   | 0.14499(13)  | 0.43759(12)  | 0.68013(11) | 1.22(2) |
| C9   | 0.59632(13)  | 0.44270(12)  | 0.68714(11) | 1.20(2) |
| C10  | 0.54452(13)  | 0.33459(12)  | 0.60023(11) | 1.07(2) |
| C11  | 0.59919(14)  | 0.28447(13)  | 0.51681(12) | 1.40(2) |
| C12  | 0.54998(14)  | 0.18460(13)  | 0.43848(12) | 1.52(2) |
| C13  | 0.44685(14)  | 0.13836(12)  | 0.44621(11) | 1.33(2) |
| C14  | 0.39428(13)  | 0.19268(12)  | 0.53109(11) | 1.06(2) |
| C15  | 0.28411(13)  | 0.14169(12)  | 0.54129(11) | 1.11(2) |
| C16  | 0.31768(13)  | 0.07030(12)  | 0.59985(11) | 1.12(2) |
| C17  | 0.21533(13)  | 0.00822(12)  | 0.60887(11) | 1.09(2) |
| C18  | 0.16508(15)  | -0.09024(13) | 0.52683(12) | 1.51(2) |
| C19  | 0.07652(15)  | -0.15111(13) | 0.53826(13) | 1.78(3) |
| C20  | 0.04363(14)  | -0.11576(12) | 0.63384(12) | 1.46(2) |
| C21  | 0.09679(13)  | -0.01763(11) | 0.71292(11) | 1.05(2) |
| C22  | 0.07616(13)  | 0.02168(11)  | 0.82159(11) | 1.08(2) |
| C23  | -0.05661(12) | 0.16288(12)  | 0.82569(11) | 1.07(2) |
| C24  | -0.05760(13) | 0.21571(11)  | 0.75057(10) | 0.92(2) |
| C25  | 0.09112(13)  | 0.19225(11)  | 0.97943(11) | 0.99(2) |
| C26  | 0.11336(12)  | 0.31438(11)  | 1.01619(11) | 0.95(2) |
| C27  | 0.08608(13)  | 0.38967(12)  | 1.10769(11) | 1.18(2) |
| C28  | 0.11294(13)  | 0.50068(12)  | 1.13710(12) | 1.31(2) |
| C29  | 0.16490(13)  | 0.53280(12)  | 1.07367(12) | 1.21(2) |
| C30  | 0.18883(13)  | 0.45354(12)  | 0.98271(11) | 1.09(2) |
| C31  | 0.75971(15)  | 0.20690(14)  | 1.07477(14) | 1.91(3) |
| C32  | 0.21828(14)  | 0.22522(13)  | 0.26176(11) | 1.40(2) |
|      |              |              |             |         |

| Table S7. Atomic | coordinates | and $\mathrm{B}_{iso}/\mathrm{B}_{eq}$ | (continued) |
|------------------|-------------|----------------------------------------|-------------|
|                  |             |                                        |             |

 $B_{eq} = 8/3 \pi^2 (U_{11}(aa^*)^2 + U_{22}(bb^*)^2 + U_{33}(cc^*)^2 + 2U_{12}(aa^*bb^*)cos \gamma + 2U_{13}(aa^*cc^*)cos \beta + 2U_{23}(bb^*cc^*)cos \alpha)$ 

| atom | Х        | у        | Ζ       | Biso  |
|------|----------|----------|---------|-------|
| H1A  | 0.54294  | 0.66415  | 0.83738 | 1.484 |
| H1B  | 0.63121  | 0.58365  | 0.86147 | 1.484 |
| H2   | 0.56133  | 0.27982  | 0.78952 | 1.373 |
| H3A  | 0.44419  | 0.50451  | 0.59485 | 1.454 |
| H3B  | 0.45701  | 0.62406  | 0.68819 | 1.454 |
| H4   | 0.53130  | 0.34471  | 0.87963 | 1.373 |
| H5   | 0.25200  | 0.65688  | 0.62031 | 1.716 |
| H6   | 0.04860  | 0.62162  | 0.60420 | 1.943 |
| H7   | -0.01839 | 0.48033  | 0.64230 | 1.799 |
| H8   | 0.11806  | 0.38145  | 0.69662 | 1.464 |
| H9A  | 0.65367  | 0.42999  | 0.73920 | 1.443 |
| H9B  | 0.63837  | 0.48576  | 0.66019 | 1.443 |
| H10  | 0.37300  | 0.22338  | 0.93200 | 1.327 |
| H11  | 0.66963  | 0.31819  | 0.51335 | 1.680 |
| H12  | 0.58614  | 0.14852  | 0.38062 | 1.830 |
| H13  | 0.41199  | 0.06959  | 0.39359 | 1.593 |
| H14  | 0.34837  | 0.12113  | 0.87758 | 1.327 |
| H15A | 0.23677  | 0.09600  | 0.47195 | 1.330 |
| H15B | 0.23614  | 0.19975  | 0.57939 | 1.330 |
| H16A | 0.37156  | 0.01724  | 0.56415 | 1.349 |
| H16B | 0.36130  | 0.11805  | 0.67016 | 1.349 |
| H17  | 0.69955  | 0.17567  | 0.72440 | 1.906 |
| H18  | 0.19167  | -0.11543 | 0.46323 | 1.810 |
| H19  | 0.03873  | -0.21607 | 0.48169 | 2.132 |
| H20  | -0.01410 | -0.15800 | 0.64470 | 1.749 |
| H21  | 0.64768  | 0.13310  | 0.76766 | 1.906 |
| H22A | 0.00433  | -0.01851 | 0.82172 | 1.292 |
| H22B | 0.14353  | 0.00704  | 0.86484 | 1.292 |
| H23A | -0.09060 | 0.21190  | 0.88497 | 1.283 |
| H23B | -0.10758 | 0.09311  | 0.79038 | 1.283 |
| H24  | 0.48586  | 0.00315  | 0.83380 | 2.151 |
| H25A | 0.16196  | 0.16287  | 1.00397 | 1.191 |
| H25B | 0.02488  | 0.17588  | 1.00725 | 1.191 |
| H26  | 0.40266  | -0.03196 | 0.87060 | 2.151 |
| H27  | 0.04966  | 0.36585  | 1.14958 | 1.417 |
| H28  | 0.09590  | 0.55381  | 1.19984 | 1.574 |
| H29  | 0.18385  | 0.60824  | 1.09238 | 1.450 |

Table S7a. Atomic coordinates and  $\mathrm{B}_{\mathrm{iSO}}$  involving hydrogen atoms of 2b.

 $\label{eq:stable} \textbf{Table S7a.} \ Atomic \ coordinates \ and \ B_{iso} \ involving \ hydrogens/B_{eq} \ (continued).$ 

| atom | Х | У | Z       | Beq     |         |       |
|------|---|---|---------|---------|---------|-------|
| H30  |   |   | 0.22402 | 0.47576 | 0.93918 | 1.307 |

**Table S8.** Anisotropic Thermal Parameters for Non-hydrogen Atoms in 2b.

| atom | U11         | U22         | U33         | U12          | U13         | U23         |
|------|-------------|-------------|-------------|--------------|-------------|-------------|
| Fe1  | 0.00812(10) | 0.01063(10) | 0.00908(10) | -0.00074(7)  | 0.00125(8)  | 0.00446(8)  |
| Fe2  | 0.00886(10) | 0.00984(10) | 0.00899(10) | -0.00148(7)  | 0.00107(8)  | 0.00374(8)  |
| S1   | 0.01464(18) | 0.01883(18) | 0.01720(18) | 0.00156(13)  | 0.00397(14) | 0.00975(15) |
| S2   | 0.01250(17) | 0.01435(16) | 0.01452(17) | -0.00070(13) | 0.00142(13) | 0.00710(14) |
| F1   | 0.0324(6)   | 0.0373(6)   | 0.0289(6)   | 0.0186(5)    | 0.0132(5)   | 0.0120(5)   |
| F2   | 0.0377(7)   | 0.0383(6)   | 0.0278(6)   | 0.0149(5)    | -0.0096(5)  | -0.0024(5)  |
| F3   | 0.0454(7)   | 0.0199(5)   | 0.0559(8)   | -0.0000(5)   | 0.0169(6)   | 0.0125(5)   |
| F4   | 0.0440(7)   | 0.0185(5)   | 0.0242(5)   | 0.0083(4)    | -0.0059(5)  | 0.0041(4)   |
| F5   | 0.0197(5)   | 0.0272(5)   | 0.0191(5)   | -0.0062(4)   | -0.0057(4)  | 0.0105(4)   |
| F6   | 0.0305(6)   | 0.0489(7)   | 0.0195(5)   | -0.0062(5)   | 0.0104(4)   | 0.0076(5)   |
| 01   | 0.0122(5)   | 0.0124(5)   | 0.0119(5)   | -0.0011(4)   | 0.0033(4)   | 0.0045(4)   |
| O2   | 0.0134(5)   | 0.0135(5)   | 0.0118(5)   | -0.0030(4)   | 0.0015(4)   | 0.0043(4)   |
| O3   | 0.0176(5)   | 0.0145(5)   | 0.0113(5)   | -0.0038(4)   | -0.0004(4)  | 0.0041(4)   |
| O4   | 0.0131(5)   | 0.0190(5)   | 0.0130(5)   | 0.0034(4)    | 0.0024(4)   | 0.0084(4)   |
| 05   | 0.0121(5)   | 0.0168(5)   | 0.0131(5)   | -0.0011(4)   | 0.0010(4)   | 0.0080(4)   |
| 06   | 0.0133(5)   | 0.0186(5)   | 0.0137(5)   | 0.0021(4)    | 0.0009(4)   | 0.0071(4)   |
| O7   | 0.0117(5)   | 0.0116(5)   | 0.0159(5)   | -0.0018(4)   | -0.0017(4)  | 0.0048(4)   |
| 08   | 0.0239(6)   | 0.0297(6)   | 0.0313(6)   | 0.0018(5)    | 0.0101(5)   | 0.0199(6)   |
| 09   | 0.0238(6)   | 0.0319(7)   | 0.0224(6)   | 0.0030(5)    | 0.0013(5)   | 0.0164(5)   |
| O10  | 0.0170(6)   | 0.0223(6)   | 0.0249(6)   | 0.0026(4)    | 0.0072(5)   | 0.0080(5)   |
| 011  | 0.0255(6)   | 0.0224(6)   | 0.0170(5)   | -0.0054(5)   | 0.0063(5)   | 0.0077(5)   |
| O12  | 0.0142(5)   | 0.0207(6)   | 0.0206(5)   | -0.0009(4)   | -0.0024(4)  | 0.0085(5)   |
| O13  | 0.0159(5)   | 0.0212(6)   | 0.0330(6)   | 0.0031(4)    | 0.0030(5)   | 0.0169(5)   |
| O14  | 0.0149(6)   | 0.0264(6)   | 0.0222(6)   | 0.0023(5)    | 0.0028(5)   | 0.0138(5)   |
| 015  | 0.0195(6)   | 0.0257(6)   | 0.0240(6)   | 0.0031(5)    | 0.0051(5)   | 0.0113(5)   |
| N1   | 0.0112(6)   | 0.0152(6)   | 0.0105(5)   | -0.0008(4)   | 0.0017(5)   | 0.0055(5)   |
| N2   | 0.0119(6)   | 0.0138(6)   | 0.0105(5)   | 0.0010(4)    | 0.0015(5)   | 0.0053(5)   |
| N3   | 0.0118(6)   | 0.0142(6)   | 0.0107(5)   | 0.0018(4)    | 0.0022(5)   | 0.0063(5)   |
| N4   | 0.0114(6)   | 0.0113(6)   | 0.0106(5)   | -0.0008(4)   | 0.0002(5)   | 0.0050(5)   |
| N5   | 0.0099(5)   | 0.0132(6)   | 0.0111(5)   | -0.0004(4)   | 0.0007(5)   | 0.0053(5)   |
| N6   | 0.0115(6)   | 0.0119(6)   | 0.0121(6)   | -0.0003(4)   | 0.0012(5)   | 0.0050(5)   |
| C1   | 0.0148(7)   | 0.0163(7)   | 0.0127(7)   | -0.0052(5)   | 0.0010(6)   | 0.0039(6)   |
| C2   | 0.0106(6)   | 0.0129(6)   | 0.0126(6)   | 0.0007(5)    | -0.0006(5)  | 0.0070(5)   |
| C3   | 0.0159(7)   | 0.0172(7)   | 0.0159(7)   | -0.0012(5)   | 0.0022(6)   | 0.0103(6)   |
| C4   | 0.0163(7)   | 0.0152(7)   | 0.0094(6)   | 0.0014(5)    | 0.0028(5)   | 0.0047(5)   |
| C5   | 0.0241(8)   | 0.0177(7)   | 0.0162(7)   | 0.0049(6)    | 0.0050(6)   | 0.0102(6)   |
| C6   | 0.0218(8)   | 0.0238(8)   | 0.0173(7)   | 0.0092(6)    | 0.0035(6)   | 0.0100(6)   |

| U11       | U22                                                                                                                                                                                                                                                                                                                                                                                                                                    | U33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | U13                                                  | U23                                                  |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| 0.0140(7) | 0.0246(8)                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0170(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0050(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0027(6)                                            | 0.0076(6)                                            |
| 0.0139(7) | 0.0179(7)                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0136(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0004(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0018(6)                                            | 0.0062(6)                                            |
| 0.0111(7) | 0.0199(7)                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0157(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.0005(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0044(6)                                            | 0.0079(6)                                            |
| 0.0117(7) | 0.0184(7)                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0135(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0027(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0025(5)                                            | 0.0097(6)                                            |
| 0.0151(7) | 0.0240(8)                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0190(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0045(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0080(6)                                            | 0.0120(6)                                            |
| 0.0222(8) | 0.0234(8)                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0170(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0097(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0096(6)                                            | 0.0106(6)                                            |
| 0.0211(8) | 0.0158(7)                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0136(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0049(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0039(6)                                            | 0.0061(6)                                            |
| 0.0148(7) | 0.0141(7)                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0124(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0031(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0013(5)                                            | 0.0071(6)                                            |
| 0.0143(7) | 0.0146(7)                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0114(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0003(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0000(5)                                            | 0.0047(5)                                            |
| 0.0143(7) | 0.0151(7)                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0138(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0022(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0038(6)                                            | 0.0062(6)                                            |
| 0.0145(7) | 0.0137(7)                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0131(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0027(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0019(6)                                            | 0.0058(6)                                            |
| 0.0226(8) | 0.0175(7)                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0134(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.0002(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0034(6)                                            | 0.0030(6)                                            |
| 0.0249(8) | 0.0159(7)                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0172(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.0051(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0001(6)                                            | -0.0004(6)                                           |
| 0.0175(7) | 0.0154(7)                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0194(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.0043(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0015(6)                                            | 0.0052(6)                                            |
| 0.0126(7) | 0.0121(6)                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0147(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0001(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0017(5)                                            | 0.0057(6)                                            |
| 0.0148(7) | 0.0106(6)                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0150(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.0021(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0022(6)                                            | 0.0054(5)                                            |
| 0.0096(6) | 0.0178(7)                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0148(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.0004(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0004(5)                                            | 0.0092(6)                                            |
| 0.0136(7) | 0.0102(6)                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0084(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0001(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0012(5)                                            | 0.0015(5)                                            |
| 0.0144(7) | 0.0138(6)                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0095(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.0012(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0006(5)                                            | 0.0056(5)                                            |
| 0.0097(6) | 0.0150(7)                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0113(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.0001(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.0003(5)                                           | 0.0063(5)                                            |
| 0.0156(7) | 0.0175(7)                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0121(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0007(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0030(6)                                            | 0.0065(6)                                            |
| 0.0166(7) | 0.0168(7)                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0133(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0022(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0025(6)                                            | 0.0036(6)                                            |
| 0.0138(7) | 0.0135(7)                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0170(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0005(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0018(6)                                            | 0.0054(6)                                            |
| 0.0119(7) | 0.0147(7)                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0153(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.0006(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0015(5)                                            | 0.0073(6)                                            |
| 0.0218(8) | 0.0228(8)                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0261(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0072(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0041(7)                                            | 0.0086(7)                                            |
| 0.0181(7) | 0.0214(7)                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0129(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.0005(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0002(6)                                            | 0.0075(6)                                            |
|           | $\begin{array}{c} U_{11}\\ 0.0140(7)\\ 0.0139(7)\\ 0.0111(7)\\ 0.0117(7)\\ 0.0151(7)\\ 0.0222(8)\\ 0.0222(8)\\ 0.0211(8)\\ 0.0148(7)\\ 0.0143(7)\\ 0.0143(7)\\ 0.0143(7)\\ 0.0143(7)\\ 0.0145(7)\\ 0.0226(8)\\ 0.0249(8)\\ 0.0175(7)\\ 0.0226(8)\\ 0.0249(8)\\ 0.0175(7)\\ 0.0126(7)\\ 0.0126(7)\\ 0.0126(7)\\ 0.0148(7)\\ 0.097(6)\\ 0.0136(7)\\ 0.0156(7)\\ 0.0156(7)\\ 0.0138(7)\\ 0.0119(7)\\ 0.0218(8)\\ 0.0181(7)\\ \end{array}$ | $U_{11}$ $U_{22}$ $0.0140(7)$ $0.0246(8)$ $0.0139(7)$ $0.0179(7)$ $0.0111(7)$ $0.0199(7)$ $0.0111(7)$ $0.0199(7)$ $0.0117(7)$ $0.0184(7)$ $0.0151(7)$ $0.0240(8)$ $0.0222(8)$ $0.0234(8)$ $0.0222(8)$ $0.0234(8)$ $0.0211(8)$ $0.0158(7)$ $0.0148(7)$ $0.0141(7)$ $0.0143(7)$ $0.0146(7)$ $0.0143(7)$ $0.0151(7)$ $0.0143(7)$ $0.0151(7)$ $0.0145(7)$ $0.0157(7)$ $0.0226(8)$ $0.0175(7)$ $0.0249(8)$ $0.0159(7)$ $0.0126(7)$ $0.0154(7)$ $0.0126(7)$ $0.0121(6)$ $0.0148(7)$ $0.0106(6)$ $0.0096(6)$ $0.0178(7)$ $0.0136(7)$ $0.0126(6)$ $0.0144(7)$ $0.0138(6)$ $0.0097(6)$ $0.0150(7)$ $0.0166(7)$ $0.0168(7)$ $0.0138(7)$ $0.0135(7)$ $0.0119(7)$ $0.0147(7)$ $0.0218(8)$ $0.0228(8)$ $0.0181(7)$ $0.0214(7)$ | $U_{11}$ $U_{22}$ $U_{33}$ $0.0140(7)$ $0.0246(8)$ $0.0170(7)$ $0.0139(7)$ $0.0179(7)$ $0.0136(7)$ $0.0111(7)$ $0.0199(7)$ $0.0157(7)$ $0.0111(7)$ $0.0199(7)$ $0.0157(7)$ $0.0117(7)$ $0.0184(7)$ $0.0135(7)$ $0.0151(7)$ $0.0240(8)$ $0.0190(7)$ $0.0222(8)$ $0.0234(8)$ $0.0170(7)$ $0.0211(8)$ $0.0158(7)$ $0.0136(7)$ $0.0148(7)$ $0.0141(7)$ $0.0124(6)$ $0.0143(7)$ $0.0146(7)$ $0.0136(7)$ $0.0143(7)$ $0.0151(7)$ $0.0138(6)$ $0.0145(7)$ $0.0157(7)$ $0.0131(7)$ $0.0226(8)$ $0.0175(7)$ $0.0134(7)$ $0.0249(8)$ $0.0159(7)$ $0.0172(7)$ $0.0126(7)$ $0.0121(6)$ $0.0147(7)$ $0.0148(7)$ $0.0106(6)$ $0.0150(7)$ $0.0148(7)$ $0.0102(6)$ $0.0084(6)$ $0.0144(7)$ $0.0138(6)$ $0.0095(6)$ $0.0097(6)$ $0.0150(7)$ $0.0113(6)$ $0.0156(7)$ $0.0150(7)$ $0.0113(6)$ $0.0138(7)$ $0.0135(7)$ $0.0133(7)$ $0.0138(7)$ $0.0135(7)$ $0.0133(7)$ $0.018(7)$ $0.0147(7)$ $0.0129(7)$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |

 Table S8. Anisotropic displacement parameters (continued).

| The general | temperature | factor | expression: | $\exp(-2\pi^2(a^{*2}U_{11}h))$ | 2 + | $b^{*2}U_{22}k^2$ | $+ c^{2}U_{3}$ | $3l^2 +$ |
|-------------|-------------|--------|-------------|--------------------------------|-----|-------------------|----------------|----------|
| 2a*b*U12hk  |             | +      | 2a*         | c*U13hl                        | +   |                   | 2b*c*U2        | 23kl))   |

## **Table S9.** Fragment Analysis of **2b**.

| fragment: 1 | l     |       |       |       |       |
|-------------|-------|-------|-------|-------|-------|
|             | Fe(1) | Fe(2) | O(1)  | O(2)  | O(3)  |
|             | O(4)  | O(5)  | O(6)  | O(7)  | N(1)  |
|             | N(2)  | N(3)  | N(4)  | N(5)  | N(6)  |
|             | C(1)  | C(2)  | C(3)  | C(4)  | C(5)  |
|             | C(6)  | C(7)  | C(8)  | C(9)  | C(10) |
|             | C(11) | C(12) | C(13) | C(14) | C(15) |
|             | C(16) | C(17) | C(18) | C(19) | C(20) |
|             | C(21) | C(22) | C(23) | C(24) | C(25) |
|             | C(26) | C(27) | C(28) | C(29) | C(30) |
| fragment: 2 | 2     |       |       |       |       |
| e           | S(1)  | F(1)  | F(2)  | F(3)  | O(8)  |
|             | O(9)  | O(10) | C(31) |       |       |
| fragment: 3 | 3     |       |       |       |       |
|             | S(2)  | F(4)  | F(5)  | F(6)  | O(11) |
|             | O(12) | O(13) | C(32) |       | ~ /   |
| fragment: 4 | 1     |       |       |       |       |
| C           | O(14) |       |       |       |       |

fragment: 5

O(15)

Table S10. Bond Distances and Bond Angles of 2b.

## Bond Distances (Å)

| atom       | atom | distance   | atom | atom | distance   |
|------------|------|------------|------|------|------------|
| Fe1        | O1   | 1.7897(12) | Fe1  | O2   | 2.0259(9)  |
| Fe1        | O4   | 2.0658(12) | Fe1  | N1   | 2.2500(15) |
| Fe1        | N2   | 2.1183(14) | Fe1  | N3   | 2.1764(12) |
| Fe2        | O1   | 1.7849(13) | Fe2  | O5   | 2.0195(11) |
| Fe2        | 07   | 2.0461(13) | Fe2  | N4   | 2.2514(15) |
| Fe2        | N5   | 2.1625(11) | Fe2  | N6   | 2.1863(11) |
| <b>S</b> 1 | O8   | 1.4420(17) | S1   | O9   | 1.4540(14) |
| <b>S</b> 1 | O10  | 1.4355(12) | S1   | C31  | 1.8269(15) |
| S2         | O11  | 1.4392(16) | S2   | O12  | 1.4421(12) |
| S2         | O13  | 1.4457(15) | S2   | C32  | 1.8274(13) |
| F1         | C31  | 1.335(2)   | F2   | C31  | 1.331(2)   |
| F3         | C31  | 1.340(3)   | F4   | C32  | 1.335(2)   |
| F5         | C32  | 1.3384(18) | F6   | C32  | 1.338(2)   |
| O2         | C2   | 1.2676(18) | O3   | C2   | 1.2489(15) |
| 05         | C24  | 1.278(2)   | O6   | C24  | 1.2377(18) |
| N1         | C1   | 1.4779(16) | N1   | C3   | 1.491(2)   |
| N1         | C9   | 1.481(2)   | N2   | C4   | 1.345(2)   |
| N2         | C8   | 1.349(2)   | N3   | C10  | 1.354(2)   |
| N3         | C14  | 1.3552(16) | N4   | C22  | 1.4809(18) |
| N4         | C23  | 1.4813(19) | N4   | C25  | 1.4830(18) |
| N5         | C26  | 1.354(2)   | N5   | C30  | 1.348(2)   |
| N6         | C17  | 1.350(2)   | N6   | C21  | 1.358(2)   |
| C1         | C2   | 1.522(2)   | C3   | C4   | 1.508(2)   |
| C4         | C5   | 1.391(3)   | C5   | C6   | 1.389(2)   |
| C6         | C7   | 1.390(3)   | C7   | C8   | 1.380(2)   |
| C9         | C10  | 1.5052(17) | C10  | C11  | 1.384(2)   |
| C11        | C12  | 1.3844(19) | C12  | C13  | 1.386(3)   |
| C13        | C14  | 1.393(2)   | C14  | C15  | 1.503(2)   |
| C15        | C16  | 1.543(3)   | C16  | C17  | 1.501(2)   |
| C17        | C18  | 1.3956(18) | C18  | C19  | 1.383(3)   |
| C19        | C20  | 1.391(3)   | C20  | C21  | 1.3864(17) |
| C21        | C22  | 1.505(2)   | C23  | C24  | 1.532(3)   |
| C25        | C26  | 1.509(2)   | C26  | C27  | 1.3862(19) |
| C27        | C28  | 1.391(2)   | C28  | C29  | 1.386(3)   |
| C29        | C30  | 1.385(2)   |      |      |            |
|            |      |            |      |      |            |

Bond lengths involving hydrogens (Å)

| atom | atom | distance | atom | atom | distance |
|------|------|----------|------|------|----------|
| O4   | H2   | 0.796    | O4   | H4   | 0.844    |
| O7   | H10  | 0.775    | O7   | H14  | 0.758    |
| O14  | H17  | 0.802    | O14  | H21  | 0.765    |
| 015  | H24  | 0.764    | O15  | H26  | 0.848    |
| C1   | H1A  | 0.990    | C1   | H1B  | 0.990    |
| C3   | H3A  | 0.990    | C3   | H3B  | 0.990    |
| C5   | Н5   | 0.950    | C6   | H6   | 0.950    |
| C7   | H7   | 0.950    | C8   | H8   | 0.950    |
| C9   | H9A  | 0.990    | C9   | H9B  | 0.990    |
| C11  | H11  | 0.950    | C12  | H12  | 0.950    |
| C13  | H13  | 0.950    | C15  | H15A | 0.990    |
| C15  | H15B | 0.990    | C16  | H16A | 0.990    |
| C16  | H16B | 0.990    | C18  | H18  | 0.950    |
| C19  | H19  | 0.950    | C20  | H20  | 0.950    |
| C22  | H22A | 0.990    | C22  | H22B | 0.990    |
| C23  | H23A | 0.990    | C23  | H23B | 0.990    |
| C25  | H25A | 0.990    | C25  | H25B | 0.990    |
| C27  | H27  | 0.950    | C28  | H28  | 0.950    |
| C29  | H29  | 0.950    | C30  | H30  | 0.950    |

## Bond angles (0)

| atom | atom | atom | angle     | atom | atom | atom | angle     |
|------|------|------|-----------|------|------|------|-----------|
| 01   | Fe1  | O2   | 98.00(5)  | 01   | Fe1  | O4   | 99.21(5)  |
| 01   | Fe1  | N1   | 172.12(5) | 01   | Fe1  | N2   | 95.26(5)  |
| 01   | Fe1  | N3   | 108.95(5) | O2   | Fe1  | O4   | 85.03(4)  |
| O2   | Fe1  | N1   | 78.31(5)  | O2   | Fe1  | N2   | 89.72(4)  |
| O2   | Fe1  | N3   | 152.54(5) | O4   | Fe1  | N1   | 87.48(5)  |
| O4   | Fe1  | N2   | 165.16(5) | O4   | Fe1  | N3   | 85.55(5)  |
| N1   | Fe1  | N2   | 77.86(5)  | N1   | Fe1  | N3   | 75.55(5)  |
| N2   | Fe1  | N3   | 92.90(5)  | 01   | Fe2  | 05   | 94.02(5)  |
| 01   | Fe2  | 07   | 99.22(5)  | 01   | Fe2  | N4   | 171.05(5) |
| 01   | Fe2  | N5   | 100.10(5) | 01   | Fe2  | N6   | 108.10(5) |
| 05   | Fe2  | O7   | 166.76(5) | 05   | Fe2  | N4   | 79.16(5)  |
| 05   | Fe2  | N5   | 91.18(4)  | 05   | Fe2  | N6   | 88.95(4)  |
| O7   | Fe2  | N4   | 87.69(5)  | O7   | Fe2  | N5   | 86.75(5)  |
| O7   | Fe2  | N6   | 86.74(5)  | N4   | Fe2  | N5   | 74.48(5)  |
| N4   | Fe2  | N6   | 77.79(5)  | N5   | Fe2  | N6   | 151.73(6) |

| 08         | <b>S</b> 1 | O9  | 113.65(8)  | 08         | <b>S</b> 1 | O10 | 115.69(8)  |
|------------|------------|-----|------------|------------|------------|-----|------------|
| 08         | <b>S</b> 1 | C31 | 102.91(9)  | 09         | <b>S</b> 1 | O10 | 115.29(8)  |
| 09         | <b>S</b> 1 | C31 | 103.52(8)  | O10        | <b>S</b> 1 | C31 | 103.44(7)  |
| 011        | S2         | O12 | 115.79(8)  | 011        | S2         | O13 | 115.29(8)  |
| 011        | S2         | C32 | 102.47(7)  | 012        | S2         | O13 | 114.42(8)  |
| 012        | S2         | C32 | 103.75(7)  | 013        | S2         | C32 | 102.49(8)  |
| Fe1        | 01         | Fe2 | 169.12(6)  | Fe1        | O2         | C2  | 119.94(10) |
| Fe2        | 05         | C24 | 120.89(11) | Fe1        | N1         | C1  | 107.57(11) |
| Fe1        | N1         | C3  | 109.19(9)  | Fe1        | N1         | C9  | 104.62(10) |
| C1         | N1         | C3  | 112.78(12) | C1         | N1         | C9  | 112.17(11) |
| C3         | N1         | C9  | 110.13(13) | Fe1        | N2         | C4  | 118.07(10) |
| Fe1        | N2         | C8  | 122.35(13) | C4         | N2         | C8  | 119.18(15) |
| Fe1        | N3         | C10 | 113.75(8)  | Fe1        | N3         | C14 | 127.42(12) |
| C10        | N3         | C14 | 118.75(13) | Fe2        | N4         | C22 | 107.04(10) |
| Fe2        | N4         | C23 | 107.90(11) | Fe2        | N4         | C25 | 106.83(9)  |
| C22        | N4         | C23 | 111.36(10) | C22        | N4         | C25 | 111.90(13) |
| C23        | N4         | C25 | 111.52(11) | Fe2        | N5         | C26 | 116.99(9)  |
| Fe2        | N5         | C30 | 124.07(12) | C26        | N5         | C30 | 118.91(12) |
| Fe2        | N6         | C17 | 125.44(12) | Fe2        | N6         | C21 | 113.40(9)  |
| C17        | N6         | C21 | 119.08(11) | N1         | C1         | C2  | 112.35(12) |
| O2         | C2         | O3  | 123.89(16) | O2         | C2         | C1  | 118.52(11) |
| O3         | C2         | C1  | 117.58(13) | N1         | C3         | C4  | 112.48(16) |
| N2         | C4         | C3  | 116.55(15) | N2         | C4         | C5  | 121.34(15) |
| C3         | C4         | C5  | 121.97(17) | C4         | C5         | C6  | 119.35(18) |
| C5         | C6         | C7  | 118.93(17) | C6         | C7         | C8  | 118.80(15) |
| N2         | C8         | C7  | 122.38(17) | N1         | C9         | C10 | 109.84(12) |
| N3         | C10        | C9  | 117.09(13) | N3         | C10        | C11 | 122.37(12) |
| C9         | C10        | C11 | 120.53(15) | C10        | C11        | C12 | 119.20(16) |
| C11        | C12        | C13 | 118.63(15) | C12        | C13        | C14 | 120.05(12) |
| N3         | C14        | C13 | 120.95(15) | N3         | C14        | C15 | 118.63(13) |
| C13        | C14        | C15 | 120.32(12) | C14        | C15        | C16 | 109.32(13) |
| C15        | C16        | C17 | 114.69(13) | N6         | C17        | C16 | 118.95(11) |
| N6         | C17        | C18 | 120.79(16) | C16        | C17        | C18 | 120.18(14) |
| C17        | C18        | C19 | 119.91(16) | C18        | C19        | C20 | 119.00(13) |
| C19        | C20        | C21 | 118.66(17) | N6         | C21        | C20 | 122.13(15) |
| N6         | C21        | C22 | 115.27(11) | C20        | C21        | C22 | 122.47(16) |
| N4         | C22        | C21 | 109.90(14) | N4         | C23        | C24 | 113.57(13) |
| 05         | C24        | O6  | 124.73(16) | 05         | C24        | C23 | 117.62(13) |
| 06         | C24        | C23 | 117.64(14) | N4         | C25        | C26 | 108.46(14) |
| N5         | C26        | C25 | 115.28(12) | N5         | C26        | C27 | 121.95(14) |
| C25        | C26        | C27 | 122.77(16) | C26        | C27        | C28 | 118.86(17) |
| C27        | C28        | C29 | 119.15(13) | C28        | C29        | C30 | 119.17(15) |
| N5         | C30        | C29 | 121.96(17) | <b>S</b> 1 | C31        | F1  | 111.64(11) |
| <b>S</b> 1 | C31        | F2  | 110.30(13) | <b>S</b> 1 | C31        | F3  | 111.43(13) |
|            |            |     |            |            |            |     |            |

| F1<br>F2<br>S2<br>F4<br>F5 | C31<br>C31<br>C32<br>C32<br>C32<br>C32 | F2<br>F3<br>F5<br>F5<br>F6 | 107.72(16)<br>107.91(14)<br>110.96(11)<br>107.04(13)<br>107.09(13) | F1<br>S2<br>S2<br>F4 | C31<br>C32<br>C32<br>C32 | F3<br>F4<br>F6<br>F6 | 107.68(15)<br>111.71(11)<br>111.73(11)<br>108.07(14) |
|----------------------------|----------------------------------------|----------------------------|--------------------------------------------------------------------|----------------------|--------------------------|----------------------|------------------------------------------------------|
|                            |                                        | ]                          | Bond angles invo                                                   | lving hydro          | ogens ( <sup>0</sup> )   |                      |                                                      |
| atom                       | atom                                   | atom                       | angle                                                              | atom                 | atom                     | atom                 | angle                                                |
| Fe1                        | O4                                     | H2                         | 117.3                                                              | Fe1                  | O4                       | H4                   | 107.2                                                |
| H2                         | O4                                     | H4                         | 110.1                                                              | Fe2                  | O7                       | H10                  | 112.6                                                |
| Fe2                        | O7                                     | H14                        | 120.1                                                              | H10                  | O7                       | H14                  | 111.9                                                |
| H17                        | O14                                    | H21                        | 103.4                                                              | H24                  | O15                      | H26                  | 113.7                                                |
| N1                         | C1                                     | H1A                        | 109.1                                                              | N1                   | C1                       | H1B                  | 109.1                                                |
| C2                         | C1                                     | H1A                        | 109.1                                                              | C2                   | C1                       | H1B                  | 109.1                                                |
| H1A                        | C1                                     | H1B                        | 107.9                                                              | N1                   | C3                       | H3A                  | 109.1                                                |
| N1                         | C3                                     | H3B                        | 109.1                                                              | C4                   | C3                       | H3A                  | 109.1                                                |
| C4                         | C3                                     | H3B                        | 109.1                                                              | H3A                  | C3                       | H3B                  | 107.8                                                |
| C4                         | C5                                     | Н5                         | 120.3                                                              | C6                   | C5                       | Н5                   | 120.3                                                |
| C5                         | C6                                     | H6                         | 120.5                                                              | C7                   | C6                       | H6                   | 120.5                                                |
| C6                         | C7                                     | H7                         | 120.6                                                              | C8                   | C7                       | H7                   | 120.6                                                |
| N2                         | C8                                     | H8                         | 118.8                                                              | C7                   | C8                       | H8                   | 118.8                                                |
| N1                         | C9                                     | H9A                        | 109.7                                                              | N1                   | C9                       | H9B                  | 109.7                                                |
| C10                        | C9                                     | H9A                        | 109.7                                                              | C10                  | C9                       | H9B                  | 109.7                                                |
| H9A                        | C9                                     | H9B                        | 108.2                                                              | C10                  | C11                      | H11                  | 120.4                                                |
| C12                        | C11                                    | H11                        | 120.4                                                              | C11                  | C12                      | H12                  | 120.7                                                |
| C13                        | C12                                    | H12                        | 120.7                                                              | C12                  | C13                      | H13                  | 120.0                                                |
| C14                        | C13                                    | H13                        | 120.0                                                              | C14                  | C15                      | H15A                 | 109.8                                                |
| C14                        | C15                                    | H15B                       | 109.8                                                              | C16                  | C15                      | H15A                 | 109.8                                                |
| C16                        | C15                                    | H15B                       | 109.8                                                              | H15A                 | C15                      | H15B                 | 108.3                                                |
| C15                        | C16                                    | H16A                       | 108.6                                                              | C15                  | C16                      | H16B                 | 108.6                                                |
| C17                        | C16                                    | H16A                       | 108.6                                                              | C17                  | C16                      | H16B                 | 108.6                                                |
| H16A                       | C16                                    | H16B                       | 107.6                                                              | C17                  | C18                      | H18                  | 120.0                                                |
| C19                        | C18                                    | H18                        | 120.0                                                              | C18                  | C19                      | H19                  | 120.5                                                |
| C20                        | C19                                    | H19                        | 120.5                                                              | C19                  | C20                      | H20                  | 120.7                                                |
| C21                        | C20                                    | H20                        | 120.7                                                              | N4                   | C22                      | H22A                 | 109.7                                                |
| N4                         | C22                                    | H22B                       | 109.7                                                              | C21                  | C22                      | H22A                 | 109.7                                                |
| C21                        | C22                                    | H22B                       | 109.7                                                              | H22A                 | C22                      | H22B                 | 108.2                                                |
| N4                         | C23                                    | H23A                       | 108.9                                                              | N4                   | C23                      | H23B                 | 108.9                                                |
| C24                        | C23                                    | H23A                       | 108.8                                                              | C24                  | C23                      | H23B                 | 108.8                                                |
| H23A                       | C23                                    | H23B                       | 107.7                                                              | N4                   | C25                      | H25A                 | 110.0                                                |
| N4                         | C25                                    | H25B                       | 110.0                                                              | C26                  | C25                      | H25A                 | 110.0                                                |
| C26                        | C25                                    | H25B                       | 110.0                                                              | H25A                 | C25                      | H25B                 | 108.4                                                |

| C26 | C27 | H27 | 120.6 | C28 | C27 | H27 | 120.6 |
|-----|-----|-----|-------|-----|-----|-----|-------|
| C27 | C28 | H28 | 120.4 | C29 | C28 | H28 | 120.4 |
| C28 | C29 | H29 | 120.4 | C30 | C29 | H29 | 120.4 |
| N5  | C30 | H30 | 119.0 | C29 | C30 | H30 | 119.0 |







Figure S4. Crystal structure of the unit cell of 2b.



**Figure S5.** ORTEP view (70% probability) of the cationic portion of **2b**. Selected bond distances [Å] and angle [°]: Fe1…Fe2 3.559 Å, O<sub>aq</sub>…O<sub>aq</sub> 3.926 Å, Fe1-O1 1.7897(12), Fe1-O2 2.0259(9), Fe1-O4 2.0658(12), Fe1-N1 2.2500(15), Fe1-N2 2.1183(14), Fe1-N3 2.1764(12), Fe2-O1 1.7849(13), Fe2-O5 2.0195(11), Fe2-O7 2.0461(13), Fe2-N4 2.2514(15), Fe2-N5 2.1625(11), Fe2-N6 2.1863(11); Fe1-O1-Fe2 169.12(6).



**Figure S6.** ESI mass spectrum of  $[Fe_2(\mu-O)(H_2O)_2(BPG_2E)](OTf)_2$  (**2b**) in MeCN/H<sub>2</sub>O (10:1, v/v) at room temperature.



**Figure S7.** ESI mass spectrum of  $[Fe_2(\mu^{-18}O)(H_2^{18}O)_2(BPG_2E)](OTf)_2$  (<sup>18</sup>O-labeled **2b**) in MeCN/H<sub>2</sub>O (10:1, v/v) at room temperature. Inset shows the isotope pattern of molecular ion peak, where the red line shows theoretical isotope pattern calculated for a 14 : 86 mixture of **2b** and <sup>18</sup>O-labeled **2b**.



**Figure S8.** The Mössbauer spectra of starting material **2b** (A) and decomposed product (B) of **3** at 77 K.



Figure S9. Arrhenius plot for thermal decomposition of 3.

|                            | Yield               | <sup>[a]</sup> [%]   | turn               | over nu           | mber               |                    |  |
|----------------------------|---------------------|----------------------|--------------------|-------------------|--------------------|--------------------|--|
|                            | epoxide             | benzald              | ehyde              |                   |                    |                    |  |
| <i>trans</i> -β-methylstyr | ene                 | 99                   | 0                  |                   | 9.9 <sup>[b]</sup> |                    |  |
|                            | 99                  | 0                    | >120               | )[c]              |                    |                    |  |
|                            | 70                  | 0                    | 7[d]               | ]                 |                    |                    |  |
|                            | 6                   | 98                   | 10.4               | 4[e]              |                    |                    |  |
| <i>cis</i> -β-methylstyren | e 37                | (trans) and          | d 6 ( <i>cis</i> ) | 0                 |                    | 4.3 <sup>[b]</sup> |  |
| 0.7                        | ( <i>trans</i> ) an | d 0.3 ( <i>cis</i> ) | 40                 |                   | 4.1 <sup>[e]</sup> |                    |  |
| cyclooctene                | 15                  | 0                    |                    | 1.5 <sup>[b</sup> | ]                  |                    |  |

Table S11. Oxidation of alkenes with  $H_2O_2$  catalyzed by 2b.

[a] Yield based on the  $H_2O_2$  used. [b] 10 equiv of  $H_2O_2$  were added using syringe pump over 5 h under the conditions described in the experimental section. [c] More than 120 equiv of  $H_2O_2$  were added over 60 h under the conditions described in the experimental section. [d] The reaction was carried out at -10°C under the same conditions as [b]. [e] The reaction was carried out under  $O_2$ -atmosphere using 10 equiv of  $H_2O_2$ .

### **DFT Studies**

#### (S1) Complete reference of Gaussian09 (Reference 1)

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, *Gaussian09, Revision C.01*, Gaussian Inc., Wallingford, CT, 2010.

| (S2) Cartesian coordinate (in Å) of 3<br>SCF Energy (ZPE corrected) = -4540.504673 au |               |              |              |  |  |
|---------------------------------------------------------------------------------------|---------------|--------------|--------------|--|--|
| <mark>Ato</mark><br>Nun                                                               | mic X<br>nber | Y            | Z            |  |  |
|                                                                                       |               |              |              |  |  |
| <mark>26</mark>                                                                       | 1.368211000   | -0.645561000 | -0.184644000 |  |  |
| 26                                                                                    | -1.662988000  | -0.120370000 | 0.138702000  |  |  |
| 8                                                                                     | -0.010608000  | -0.193771000 | 0.874609000  |  |  |
| 8                                                                                     | 1.806720000   | -2.583411000 | 0.077799000  |  |  |
| 8                                                                                     | 0.313710000   | -0.739556000 | -1.730747000 |  |  |
| 8                                                                                     | -2.570684000  | 0.602488000  | 1.765685000  |  |  |
| 8                                                                                     | -0.949952000  | -0.136547000 | -1.632876000 |  |  |
| 7                                                                                     | 3.439336000   | -0.948157000 | -1.178293000 |  |  |
| 7                                                                                     | 2.859503000   | -0.148727000 | 1.423496000  |  |  |
| 7                                                                                     | 2.249702000   | 1.596165000  | -0.813880000 |  |  |
| 7                                                                                     | -3.994074000  | -0.508069000 | -0.256332000 |  |  |
| 7                                                                                     | -2.034845000  | -2.297413000 | 0.183633000  |  |  |
| 7                                                                                     | -2.603512000  | 1.934457000  | -0.713937000 |  |  |
| 6                                                                                     | 3.201785000   | -2.250652000 | -1.821361000 |  |  |
| 6                                                                                     | 2.495088000   | -3.203539000 | -0.830071000 |  |  |
| 6                                                                                     | 4.479945000   | -1.046443000 | -0.146022000 |  |  |
| 6                                                                                     | 4.152002000   | -0.344636000 | 1.153272000  |  |  |

| <mark>6</mark> | 5.148363000  | 0.002409000          | 2.065299000         |
|----------------|--------------|----------------------|---------------------|
| 6              | 4.775748000  | 0.542074000          | <u>3.291799000</u>  |
| 6              | 3.423714000  | 0.722918000          | 3.572734000         |
| 6              | 2.494735000  | 0.366355000          | 2.602266000         |
| 6              | 3.673273000  | 0.150812000          | -2.110769000        |
| 6              | 3.418999000  | 1.489638000          | -1.461536000        |
| 6              | 4.314627000  | 2.548738000          | -1.571779000        |
| 6              | 3.974292000  | 3.767218000          | -0.990688000        |
| 6              | 2.744803000  | 3.888546000          | -0.358839000        |
| 6              | 1.887973000  | 2.782429000          | -0.299085000        |
| 6              | 0.486256000  | 2.904850000          | 0.226783000         |
| 6              | -0.460262000 | 3.027975000          | -0.984693000        |
| 6              | -1.933124000 | 3.092733000          | <u>-0.685845000</u> |
| 6              | -4.595165000 | 0.613677000          | -0.974377000        |
| 6              | -4.081825000 | -1.764903000         | -0.992092000        |
| 6              | -1.112250000 | -3.147587000         | 0.649805000         |
| 1              | 4.124299000  | -2.715601000         | -2.195784000        |
| 1              | 2.525965000  | -2.095285000         | -2.670697000        |
| 1              | 5.448821000  | -0.691804000         | -0.530721000        |
| 1              | 4.617817000  | -2.107998000         | 0.093919000         |
| 1              | 6.195147000  | -0.156416000         | 1.818070000         |
| 1              | 5.533895000  | 0.817497000          | 4.021097000         |
| 1              | 1.420668000  | 0.478966000          | 2.738220000         |
| 1              | 2.956038000  | 0.037898000          | -2.932737000        |
| 1              | 4.686888000  | 0.118051000          | -2.543300000        |
| 1              | 5.255156000  | 2.417299000          | -2.099810000        |
| 1              | 4.655605000  | 4.613269000          | -1.042256000        |
| 1              | 2.433466000  | 4.831396000          | 0.082525000         |
| 1              | 0.396735000  | 3.782198000          | 0.878010000         |
| 1              | 0.228045000  | 2.009383000          | 0.804098000         |
| 1              | -0.185142000 | 3.923745000          | -1.557444000        |
| 1              | -0.306820000 | 2.154449000          | -1.628577000        |
| 1              | -4.454792000 | 0.442047000          | -2.049308000        |
| 1              | -0.252043000 | -2.700727000         | 1.131587000         |
| 8              | 2.619424000  | -4.409420000         | -0.966084000        |
| 1              | 3.091752000  | 1.134124000          | 4.521244000         |
| 6              | -3.124524000 | -2.784853000         | -0.429594000        |
| 6              | -1.223758000 | -4.525494000         | 0.500347000         |
| 6              | -2.355445000 | -5.034998000         | -0.123709000        |
| 6              | -3.329334000 | -4.151584000         | -0.583243000        |
| 1              | -0.421766000 | -5.165660000         | 0.853167000         |
| 1              | -2.483180000 | <b>-6</b> .106964000 | -0.253336000        |
| 1              | -4.232299000 | -4.512419000         | -1.068914000        |
| 6              | -2.600510000 | 4.307281000          | -0.492113000        |

| -3.982075000 | 4.308692000                                                                                                                                                                                                                  | -0.360146000                                                                                                                                                                                                                                                                                                                            |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -4.673999000 | 3.105753000                                                                                                                                                                                                                  | -0.478939000                                                                                                                                                                                                                                                                                                                            |
| -3.940744000 | 1.940112000                                                                                                                                                                                                                  | -0.667104000                                                                                                                                                                                                                                                                                                                            |
| -2.034834000 | 5.234853000                                                                                                                                                                                                                  | <u>-0.461605000</u>                                                                                                                                                                                                                                                                                                                     |
| -4.520083000 | 5.238716000                                                                                                                                                                                                                  | -0.193403000                                                                                                                                                                                                                                                                                                                            |
| -5.758395000 | 3.070765000                                                                                                                                                                                                                  | -0.426105000                                                                                                                                                                                                                                                                                                                            |
| -5.680494000 | 0.671693000                                                                                                                                                                                                                  | -0.794693000                                                                                                                                                                                                                                                                                                                            |
| -3.786006000 | -1.566522000                                                                                                                                                                                                                 | -2.031138000                                                                                                                                                                                                                                                                                                                            |
| -5.105176000 | -2.176206000                                                                                                                                                                                                                 | -1.013681000                                                                                                                                                                                                                                                                                                                            |
| -3.809156000 | 0.388439000                                                                                                                                                                                                                  | 2.068835000                                                                                                                                                                                                                                                                                                                             |
| -4.517257000 | -0.596649000                                                                                                                                                                                                                 | 1.114538000                                                                                                                                                                                                                                                                                                                             |
| -4.429196000 | 0.832328000                                                                                                                                                                                                                  | 3.022268000                                                                                                                                                                                                                                                                                                                             |
| -5.603655000 | -0.433538000                                                                                                                                                                                                                 | 1.145493000                                                                                                                                                                                                                                                                                                                             |
| -4.322521000 | -1.603521000                                                                                                                                                                                                                 | 1.500490000                                                                                                                                                                                                                                                                                                                             |
|              | -3.982075000<br>-4.673999000<br>-3.940744000<br>-2.034834000<br>-4.520083000<br>-5.758395000<br>-5.680494000<br>-3.786006000<br>-3.786006000<br>-3.809156000<br>-4.517257000<br>-4.429196000<br>-5.603655000<br>-4.322521000 | -3.9820750004.308692000-4.6739990003.105753000-3.9407440001.940112000-2.0348340005.234853000-4.5200830005.238716000-5.7583950003.070765000-5.6804940000.671693000-3.786006000-1.566522000-5.105176000-2.176206000-3.8091560000.388439000-4.517257000-0.596649000-4.4291960000.832328000-5.603655000-0.433538000-4.322521000-1.603521000 |

## (S3) Cartesian coordinate (in Å) of TS<sub>3-4</sub>

| SCF Energy (ZPE corrected) = -4540.469824 au |             |         |              |                             |  |
|----------------------------------------------|-------------|---------|--------------|-----------------------------|--|
| Ato<br>Nur                                   | mic<br>nber | X       | Y            | Z                           |  |
|                                              |             |         |              |                             |  |
| <mark>26</mark>                              | 1.38        | 6313000 | -0.595426000 | <mark>) -0.356032000</mark> |  |
| <mark>26</mark>                              | -1.68       | 6297000 | -0.08686000  | <mark>) -0.052944000</mark> |  |
| 8                                            | -0.030      | )917000 | -0.110088000 | 0.596342000                 |  |
| 8                                            | 1.700       | 216000  | -2.614044000 | -0.173189000                |  |
| 8                                            | 2.565       | 423000  | -4.361032000 | -1.316072000                |  |
| 8                                            | 0.581       | 265000  | -0.546353000 | -1.831918000                |  |
| 8                                            | -2.312      | 2393000 | 0.513636000  | 1.706936000                 |  |
| 8                                            | -4.080      | )309000 | 0.887212000  | <u>3.054952000</u>          |  |
| 8                                            | -1.210      | )447000 | -0.381529000 | -1.639349000                |  |
| 7                                            | 3.379       | 271000  | -0.898596000 | -1.196793000                |  |
| 7                                            | 2.563       | 938000  | -0.392805000 | 1.375948000                 |  |
| 7                                            | 2.387       | 667000  | 1.683178000  | -0.686517000                |  |
| 7                                            | -3.874      | 1597000 | -0.352589000 | -0.314431000                |  |
| 7                                            | -2.120      | )226000 | -2.291737000 | 0.216715000                 |  |
| 7                                            | -2.440      | )120000 | 2.047672000  | -0.687609000                |  |
| <mark>6</mark>                               | 3.180       | 838000  | -2.143867000 | -1.966036000                |  |
| <mark>6</mark>                               | 2.423       | 693000  | -3.169029000 | -1.089163000                |  |
| <mark>6</mark>                               | 4.343       | 099000  | -1.120830000 | -0.096381000                |  |
| 6                                            | 3.877       | 173000  | -0.607905000 | 1.242480000                 |  |
| 6                                            | 4.751       | 483000  | -0.441854000 | 2.314877000                 |  |
| 6                                            | 4.233       | 747000  | -0.067217000 | <u>3.550244000</u>          |  |

| <mark>6</mark> | 2.861822000                 | 0.133167000  | <u>3.681347000</u>  |
|----------------|-----------------------------|--------------|---------------------|
| <mark>6</mark> | 2.057704000                 | -0.035579000 | 2.561276000         |
| <mark>6</mark> | 3.757301000                 | 0.247205000  | -2.029462000        |
| <mark>6</mark> | 3.573986000                 | 1.549580000  | -1.288821000        |
| <mark>6</mark> | 4.537846000                 | 2.554154000  | -1.272428000        |
| 6              | 4.238911000                 | 3.741133000  | -0.608069000        |
| <mark>6</mark> | 2.989573000                 | 3.891725000  | -0.019572000        |
| 6              | 2.068962000                 | 2.839108000  | -0.087123000        |
| <mark>6</mark> | 0.649875000                 | 2.979360000  | 0.389900000         |
| <mark>6</mark> | -0.256727000                | 3.078763000  | -0.852085000        |
| <mark>6</mark> | -1.736599000                | 3.181812000  | -0.604578000        |
| <mark>6</mark> | -2.380613000                | 4.409273000  | -0.410238000        |
| <mark>6</mark> | -3.766552000                | 4.446022000  | -0.340267000        |
| <mark>6</mark> | -4.487342000                | 3.267035000  | -0.520531000        |
| <mark>6</mark> | -3.776364000                | 2.087439000  | -0.703537000        |
| <mark>6</mark> | -4.426748000                | 0.776049000  | -1.070121000        |
| <mark>6</mark> | -4.418587000                | -0.373599000 | <u>1.061311000</u>  |
| <mark>6</mark> | -3.559083000                | 0.441789000  | 2.045171000         |
| <mark>6</mark> | -4.076854000                | -1.627255000 | -1.013648000        |
| <mark>6</mark> | -3.232442000                | -2.713396000 | -0.395153000        |
| <mark>6</mark> | -3.548212000                | -4.063537000 | -0.504550000        |
| <mark>6</mark> | -2.652316000                | -4.999442000 | 0.007147000         |
| <mark>6</mark> | -1.485432000                | -4.556660000 | 0.619133000         |
| <mark>6</mark> | -1.261910000                | -3.186178000 | 0.711661000         |
| 1              | 4.130868000                 | -2.568373000 | -2.317885000        |
| 1              | 2.551402000                 | -1.910900000 | -2.830921000        |
| 1              | 5.323847000                 | -0.692265000 | <u>-0.347517000</u> |
| 1              | 4.497396000                 | -2.201722000 | 0.007333000         |
| 1              | 5.816751000                 | -0.612273000 | 2.181972000         |
| 1              | 4.896053000                 | 0.065026000  | 4.402489000         |
| 1              | 2.418453000                 | 0.418832000  | 4.630312000         |
| 1              | 0.977443000                 | 0.108615000  | 2.562355000         |
| 1              | 3.081121000                 | 0.251533000  | -2.892476000        |
| 1              | 4.787841000                 | 0.150809000  | -2.405820000        |
| 1              | 5.493952000                 | 2.409251000  | -1.768296000        |
| 1              | 4.969826000                 | 4.545127000  | -0.562152000        |
| 1              | 2.716706000                 | 4.815715000  | 0.483032000         |
| 1              | 0.544052000                 | 3.866346000  | 1.025173000         |
| 1              | 0.357379000                 | 2.091363000  | 0.961843000         |
| 1              | 0.050426000                 | 3.949658000  | -1.447047000        |
| 1              | -0.088938000                | 2.186018000  | -1.464600000        |
| 1              | -1.793589000                | 5.320869000  | -0.334398000        |
| 1              | - <mark>4.28542900</mark> 0 | 5.387370000  | -0.176730000        |
| 1              | -5.573652000                | 3.263117000  | -0.522126000        |

| 1 | -5.519757000 | 0.834204000  | -0.955645000 |
|---|--------------|--------------|--------------|
| 1 | -4.212206000 | 0.602790000  | -2.131927000 |
| 1 | -4.411719000 | -1.405915000 | 1.425964000  |
| 1 | -5.458716000 | -0.025000000 | 1.081985000  |
| 1 | -3.745630000 | -1.492433000 | -2.051183000 |
| 1 | -5.138868000 | -1.919602000 | -1.030730000 |
| 1 | -4.468956000 | -4.373251000 | -0.992460000 |
| 1 | -2.863881000 | -6.062592000 | -0.077674000 |
| 1 | -0.746771000 | -5.249900000 | 1.008328000  |
| 1 | -0.361455000 | -2.784848000 | 1.162646000  |

## (S4) Cartesian coordinate (in Å) of 4.

| SCF Energy (ZPE corrected) = -4540.503340 au |             |           |              |                           |  |
|----------------------------------------------|-------------|-----------|--------------|---------------------------|--|
| Ato<br>Nur                                   | mic<br>nber | X         | Y            | Z                         |  |
|                                              |             |           |              |                           |  |
| <mark>26</mark>                              | 1.6         | 627274000 | -0.463262000 | -0.832352000              |  |
| <mark>26</mark>                              | -1.         | 809953000 | -0.134692000 | -0.535297000              |  |
| 8                                            | -0.0        | 42311000  | -0.132526000 | -0.377058000              |  |
| 8                                            | 1.8         | 36384000  | -2.474192000 | -0.782347000              |  |
| 8                                            | 1.6         | 57140000  | -0.191954000 | -2.424917000              |  |
| 8                                            | -1.8        | 49378000  | 0.245906000  | 1.432612000               |  |
| 8                                            | -2.0        | 79103000  | -0.327336000 | -2.120863000              |  |
| 7                                            | 3.8         | 42426000  | -0.758396000 | -0.823861000              |  |
| 7                                            | 2.1         | 14596000  | -0.587239000 | 1.306958000               |  |
| 7                                            | 2.5         | 84689000  | 1.696965000  | -0.400771000              |  |
| 7                                            | -4.0        | 14739000  | -0.270611000 | -0.065291000              |  |
| 7                                            | -2.1        | 85441000  | -2.267788000 | -0.166012000              |  |
| 7                                            | -2.4        | 91526000  | 2.020656000  | -0.662027000              |  |
| <mark>6</mark>                               | 3.9         | 51484000  | -1.934783000 | -1.706088000              |  |
| <mark>6</mark>                               | 2.9         | 16539000  | -2.994708000 | -1.272518000              |  |
| <mark>6</mark>                               | 4.3         | 64863000  | -1.061234000 | 0.520747000               |  |
| <mark>6</mark>                               | 3.3         | 92434000  | -0.789822000 | 1.641862000               |  |
| <mark>6</mark>                               | 3.8         | 07285000  | -0.814731000 | 2.972647000               |  |
| <mark>6</mark>                               | 2.8         | 59959000  | -0.640504000 | <u>3.975622000</u>        |  |
| <mark>6</mark>                               | 1.5         | 29057000  | -0.445913000 | <u>3.619121000</u>        |  |
| 6                                            | 1.1         | 96782000  | -0.422100000 | 2.2 <mark>69575000</mark> |  |
| 6                                            | 4.4         | 08693000  | 0.461991000  | -1.395639000              |  |
| 6                                            | 3.8         | 91877000  | 1.696755000  | -0.698796000              |  |
| 6                                            | 4.7         | 18944000  | 2.785817000  | -0.438240000              |  |

\_\_\_\_

\_\_\_\_

| <mark>6</mark> | 4.159075000  | 3.920260000  | 0.139061000         |
|----------------|--------------|--------------|---------------------|
| <mark>6</mark> | 2.801619000  | 3.924453000  | 0.426987000         |
| <mark>6</mark> | 2.028933000  | 2.791372000  | 0.144673000         |
| <mark>6</mark> | 0.547444000  | 2.795884000  | 0.399034000         |
| 6              | -0.241562000 | 2.954132000  | -0.915688000        |
| 6              | -1.720678000 | 3.117180000  | -0.700448000        |
| <mark>6</mark> | -4.613603000 | 0.869684000  | -0.756406000        |
| <mark>6</mark> | -4.437083000 | -1.555213000 | -0.629081000        |
| <mark>6</mark> | -1.231560000 | -3.183420000 | 0.029747000         |
| 1              | 4.962438000  | -2.362650000 | <u>-1.702925000</u> |
| 1              | 3.696238000  | -1.620208000 | <u>-2.722408000</u> |
| 1              | 5.303353000  | -0.517755000 | 0.700814000         |
| 1              | 4.620601000  | -2.127877000 | 0.557743000         |
| 1              | 4.855631000  | -0.974747000 | <u>3.212631000</u>  |
| 1              | 3.159673000  | -0.656651000 | <u>5.020938000</u>  |
| 1              | 0.174614000  | -0.257733000 | 1.930227000         |
| 1              | 4.074175000  | 0.506043000  | -2.438446000        |
| 1              | 5.509820000  | 0.446782000  | <u>-1.387058000</u> |
| 1              | 5.776050000  | 2.739934000  | -0.685623000        |
| 1              | 4.774439000  | 4.788626000  | 0.362179000         |
| 1              | 2.329891000  | 4.794197000  | 0.875768000         |
| 1              | 0.303599000  | 3.619378000  | 1.080732000         |
| 1              | 0.234578000  | 1.860817000  | 0.871077000         |
| 1              | 0.125145000  | 3.836629000  | -1.455081000        |
| 1              | -0.057141000 | 2.077433000  | <u>-1.544371000</u> |
| 1              | -4.597405000 | 0.647233000  | <u>-1.830179000</u> |
| 1              | -0.204070000 | -2.828759000 | 0.037275000         |
| 8              | 3.169469000  | -4.180806000 | -1.412051000        |
| 1              | 0.749293000  | -0.304879000 | 4.361566000         |
| <mark>6</mark> | -3.466107000 | -2.648311000 | -0.256431000        |
| 6              | -1.531653000 | -4.535810000 | 0.170891000         |
| 6              | -2.861879000 | -4.934938000 | 0.116556000         |
| 6              | -3.848900000 | -3.976139000 | -0.100902000        |
| 1              | -0.725449000 | -5.248749000 | 0.313041000         |
| 1              | -3.132281000 | -5.981552000 | 0.234050000         |
| 1              | -4.898522000 | -4.252028000 | -0.162225000        |
| 6              | -2.287079000 | 4.390915000  | -0.569627000        |
| 6              | -3.658529000 | 4.520474000  | -0.409028000        |
| 6              | -4.448100000 | 3.374792000  | -0.420087000        |
| 6              | -3.823193000 | 2.141665000  | -0.566382000        |
| 1              | -1.643972000 | 5.266158000  | -0.602058000        |
| 1              | -4.111774000 | 5.501976000  | -0.293541000        |
| 1              | -5.529042000 | 3.431926000  | -0.327695000        |
| 1              | -5.661712000 | 1.021703000  | -0.455653000        |

| 1 | -4.416475000 | -1.459425000 | -1.721307000 |
|---|--------------|--------------|--------------|
| 1 | -5.462038000 | -1.820189000 | -0.326984000 |
| 6 | -2.928219000 | 0.269770000  | 2.142735000  |
| 6 | -4.189198000 | -0.203231000 | 1.397946000  |
| 8 | -3.027397000 | 0.574261000  | 3.321455000  |
| 1 | -5.036772000 | 0.438074000  | 1.668049000  |
| 1 | -4.417541000 | -1.204553000 | 1.779656000  |