The Ugi four-component reaction enables expedient synthesis and comparison of photoaffinity probes

Jacob T. Bush, ${ }^{\text {a }}$ Louise J. Walport, ${ }^{\text {a }}$ Joanna F. McGouran, ${ }^{\text {b }}$ Ivanhoe K. H. Leung, ${ }^{\text {a }}$ Georgina Berridge, ${ }^{\text {a }}$ Sander S. van Berkel, ${ }^{\text {a }}$ Amit Basak, ${ }^{\text {c }}$ Benedikt M. Kessler, ${ }^{\text {b }}$ Christopher J. Schofield ${ }^{\text {a }}$ *
${ }^{\text {a }}$ Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
${ }^{\mathrm{b}}$ Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, United Kingdom
${ }^{c}$ Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
Email: christopher.schofield@chem.ox.ac.uk

Experimental procedures 2
Production of PHD $2_{181-426}$. 25
K_{D} determinations by NMR 25
Protein Electrospray Ionization Mass Spectrometry 27
PHD2 crosslinking time-course 28
Limited trypsin digests and MALDI MS 35
Trypsin digests and LC-MS/MS 35
Crystal structure analysis 37
References 38

Experimental procedures

Materials and methods

Reagents and solvents were obtained, unless otherwise stated, from Sigma Aldrich UK, Alfa Aesar or Acros. Bicyclononyne-succinimidyl ester (BCN-OSu) was from SynAffix B.V., Nijmegen, The Netherlands. Solvents were removed under reduced pressure using a Buchi ${ }^{\mathrm{TM}}$ rotary evaporator. Water was purified using an Elix ${ }^{\circledR}$ UV-10 system. Analytical thin layer chromatography (TLC) was carried out using Merck silica gel 60 F254 aluminium supported thin layer chromatography sheets. Visualisation was by absorption of UV light ($\lambda_{\text {max }} 254 \mathrm{~nm}$) and/or staining by KMnO_{4} stain. Column chromatography was carried out using a Biotage SP1 automated flash column chromatography platform, eluting with solvents under a positive pressure of compressed air. Melting points were determined using a Leica Galen III hot stage melting point apparatus and microscope. Infrared spectra were obtained as thin films. The spectra were recorded on a Bruker Tensor 27 spectrometer and a representative number of absorption maxima are reported in wavenumbers ($v_{\text {max }}$). ${ }^{1}$ H NMR spectra were recorded on a Bruker DPX400 (400 MHz) using CDCl_{3} (unless indicated otherwise) as a reference for internal deuterium lock. The chemical shift data for each signal are given as δ_{H} in units of parts per million (ppm) relative to tetramethylsilane (TMS) where $\delta(\mathrm{TMS})=0.00 \mathrm{ppm}$. The multiplicity of each signal is indicated by: s (singlet); br s (broad singlet); d (doublet); t (triplet); q (quartet); dd (doublet of doublets) or m (multiplet). The number of protons (n) for a given resonance signal is indicated by nH . Coupling constants (J) are expressed in Hz and are recorded to the nearest 0.5 Hz . J-values for the same couplings are averaged in each spectrum and reported to the nearest $0.5 \mathrm{~Hz} .{ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker AV500 (125.8 MHz) spectrometer using the PENDANT or DEPT Q pulse sequences with broadband proton decoupling and internal deuterium lock. The chemical shift data for each signal are given as δ in units of parts per million (ppm) relative to tetramethylsilane (TMS) where $\delta_{\mathrm{C}}(\mathrm{TMS})=0.00 \mathrm{ppm} .{ }^{19} \mathrm{~F}$ NMR spectra were recorded on a Bruker AV500 and chemical shift data for each signal are given as δ in units of parts per million (ppm) relative to CFCl_{3} where $\delta_{\mathrm{F}}\left(\mathrm{CFCl}_{3}\right)=0.00 \mathrm{ppm},{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ spectra were assigned using 2D NMR experiments including COSY and HSQC, and by comparison with related compounds. The presence of conformational isomers (rotamers) was verified by variable temperature ${ }^{1} \mathrm{H}$ NMR experiments, which demonstrated coalescence of the peaks for the conformational isomers at elevated temperatures. Integrated values for rotamers are approximate. Mass spectra were acquired on an Agilent technologies 6120 quadrupole liquid chromatography mass spectrometer using electrospray ionization, operating in positive or negative mode, from methanolic solutions. m / z values are reported in Daltons and followed by their percentage abundance in parentheses. High resolution mass spectra (HRMS) were recorded using Bruker MicroTOF internally calibrated with polyalanine.

Reaction schemes

Scheme S1

Scheme S2

Scheme S3

Scheme $\mathbf{S 4}$

Scheme S5

Scheme S6

General procedure A - Ugi reaction

The isocyanide (1 equiv.) was added to the carboxylic acid (1 equiv.), amine (1 equiv.) and paraformaldehyde (1.5 equiv.) in ethanol ($4 \mathrm{~mL} \mathrm{mmol}^{-1}$) and the resulting mixture was heated in the microwave ($20 \mathrm{~min}, 100$ $\left.{ }^{\circ} \mathrm{C}\right)$. The volatiles were evaporated under reduced pressure and the residue purified by column chromatography (eluent 20-100\% $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ methanol / $\mathrm{NH}_{3}(\mathrm{aq})-90: 10: 1$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).

General procedure B - Ester hydrolysis of Ugi products

Sodium hydroxide (1.5 equiv.) in water ($2 \mathrm{~mL} \mathrm{mmol}^{-1}$) was added to a solution of the ethyl ester (1 equiv.) in methanol ($5 \mathrm{~mL} \mathrm{mmol}^{-1}$) and stirred for 12 h . Water $\left(50 \mathrm{~mL} \mathrm{mmol}^{-1}\right)$ was added and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{x}$ $50 \mathrm{~mL} \mathrm{mmol}{ }^{-1}$). The aqueous layer was acidified to pH 1 with 1 M HCl and extracted with CHCl_{3} / isopropylalcohol (4:1) (3 x $50 \mathrm{~mL} \mathrm{mmol}{ }^{-1}$). Combined organics were dried over MgSO_{4}, filtered and concentrated in vacuo to afford the desired acid.

General procedure C-Amide coupling of inhibitor and photoreactive scaffold

O-Benzotriazole- $N, N, N^{\prime}, N^{\prime}$-tetramethyl-uronium-hexafluoro-phosphate (HBTU) (1 equiv.) was added to a solution of carboxylic acid (1 equiv.) and triethylamine (2 equiv.) in DMF ($50 \mathrm{~mL} \mathrm{mmol}{ }^{-1}$). The resulting mixture was stirred for 15 min before being added dropwise to a solution of amine (1 equiv.) and triethylamine (1 equiv.) in DMF ($50 \mathrm{~mL} \mathrm{mmol}{ }^{-1}$). After stirring for 12 h the solvent was removed in vacuo. The residue was purified by flash column chromatography (eluent $0-15 \%$ methanol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford the desired product.
tert-Butyl (2-(2-(2-aminoethoxy)ethoxy)ethyl)carbamate, ${ }^{1} 13$

$$
\mathrm{N}_{2} \mathrm{NBOC}
$$

Di-tert-butyldicarbonate ($1.26 \mathrm{~g}, 5.78 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(80 \mathrm{~mL})$ was added dropwise to a solution of 2,2'-(ethylenedioxy)-bis-(ethylamine) $(8.00 \mathrm{~mL}, 54.0 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(80 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The reaction was allowed to warm to room temperature and stirred overnight. The solvent was evaporated, water (80 mL) added and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 60 \mathrm{~mL})$. Combined organics were dried over MgSO_{4}, filtered and concentrated in vacuo to afford 13 as a colourless oil (1.42 g, 99\%); $\delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.45\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.89(2$ $\left.\mathrm{H}, \mathrm{t}, \mathrm{J}=5.0 \mathrm{~Hz}, \mathrm{NH}_{2} \mathrm{CH}_{2}\right), 3.32\left(2 \mathrm{H}, \mathrm{m}, \mathrm{J}=14.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NHBoc}\right), 3.48-3.58\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.62(4$ $\left.\mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$; LRMS: $m / z\left(\mathrm{ESI}^{+}\right) 271\left([\mathrm{M}+\mathrm{Na}]^{+}, 5 \%\right), 249\left([\mathrm{M}+\mathrm{H}]^{+}, 100 \%\right)$.
tert-Butyl (2-(2-(2-(5-((S,S,R)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanamido) ethoxy)ethoxy)ethyl)carbamate, ${ }^{1} 14$

HBTU ($2.41 \mathrm{~g}, 6.36 \mathrm{mmol}$) was added to a solution of D-biotin ($1.43 \mathrm{~g}, 6.36 \mathrm{mmol}$) and diisopropylethyl amine (DIPEA, $1.15 \mathrm{~mL}, 6.94 \mathrm{mmol}$) in DMF (50 mL) and stirred for 20 min before being added dropwise to a solution of $\mathbf{1 3}(1.05 \mathrm{~g}, 4.24 \mathrm{mmol})$ in DMF $(50 \mathrm{~mL})$. The reaction mixture was stirred for 2 h at room temperature after which time the solvent was removed in vacuo. Purification by flash column chromatography (eluent $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ methanol, $95: 5$) afforded $14(1.62 \mathrm{~g}, 81 \%)$ as a colourless gum; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 1.32-$ $1.53\left(11 \mathrm{H}, \mathrm{m}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{SCHCH}_{2} \mathrm{CH}_{2}\right), 1.54-1.84\left(4 \mathrm{H}, \mathrm{m}, \mathrm{SCHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.23(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}$, $\left.\mathrm{NC}(\mathrm{O}) \mathrm{CH}_{2}\right), 2.72(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.5 \mathrm{~Hz}, \mathrm{SCHH}), 2.94(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.5,4.0 \mathrm{~Hz}, \mathrm{SCHH}), 3.23(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}$,
$\mathrm{SCH}), 3.34-3.42\left(4 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.48-3.59\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{x} \mathrm{NCH} 2 \mathrm{CH}_{2} \mathrm{O}\right), 3.62\left(4 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$, 4.31-4.35 (1 H, m, NC(O)NHCH), 4.50-4.54 (1 H, m, CHNHC(O)N); LRMS: m/z (ESI $\left.{ }^{+}\right) 497\left([M+N a]^{+}\right.$, 100%).
N-(2-(2-(2-Aminoethoxy)ethoxy)ethyl)-5-((S,S,R)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4yl)pentanamide, ${ }^{1} \mathrm{~F}$

Trifluoroacetic acid (5 mL) was added to a solution of $\mathbf{1 4}(2.11 \mathrm{~g}, 4.45 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ and the resulting mixture was stirred overnight. The solvent was removed in vacuo and "azeotroped" with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x 25 mL). The resulting trifluoroacetic acid salt was dissolved in methanol and loaded onto an strong cation exchange chromatography column (TELOS® SCX SPE tube) eluting with methanol (5 column volumes) followed by methanol / NH_{3} (aq) 9:1 (5 column volumes). The basic eluent was concentrated in vacuo to afford \mathbf{F} as a colourless gum $(1.37 \mathrm{~g}, 80 \%) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 1.46\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{SCHCH}_{2} \mathrm{CH}_{2}\right)$, 1.53-1.83 (4 H, m, SCHCH2 $\mathrm{CH}_{2} \mathrm{CH}_{2}$), $2.23\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{NC}(\mathrm{O}) \mathrm{CH}_{2}\right), 2.72(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.5 \mathrm{~Hz}, \mathrm{SCHH})$, $2.87\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, \mathrm{NH}_{2} \mathrm{CH}_{2}\right), 2.94(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12 ., 4.9 \mathrm{~Hz}, \mathrm{SCHH}), 3.17-3.26(1 \mathrm{H}, \mathrm{m}, \mathrm{SCH}), 3.38(2 \mathrm{H}, \mathrm{t}$, $\left.\mathrm{J}=5.5 \mathrm{~Hz}, \mathrm{C}(\mathrm{O}) \mathrm{NHCH}_{2}\right), 3.52-3.60\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.65\left(4 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 4.32(1 \mathrm{H}, \mathrm{m}$, CHNHC(O)N), $4.51(1 \mathrm{H}, \mathrm{m}, \mathrm{NC}(\mathrm{O}) \mathrm{NHCH}) ; \mathrm{LRMS}: m / z\left(\mathrm{ESI}^{+}\right) 375\left([\mathrm{M}+\mathrm{H}]^{+}, 100 \%\right)$.

2-(3,6-Bis(diethylamino) xanthylium-9-yl)-5-(N-(3-((tertbutoxycarbonyl)amino)propyl)sulfamoyl)benzenesulfonate, 15

Triethylamine ($36 \mu \mathrm{~L}, 0.26 \mathrm{mmol}$) was added to a solution of lissamine rhodamine B sulfonyl chloride (100 $\mathrm{mg}, 0.18 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(5 \mathrm{~mL})$. tert-Butyl (3-aminopropyl)carbamate was added and the resulting solution stirred for 16 h . The reaction mixture was extracted with $\mathrm{H}_{2} \mathrm{O}(6 \times 25 \mathrm{~mL})$ and concentrated in vacuo. Purification by flash column chromatography (eluent $0-5 \%$ methanol in dichloromethane) afforded $\mathbf{1 5}$ as a dark purple solid ($85 \mathrm{mg}, 66 \%$); $\mathrm{mp}>350^{\circ} \mathrm{C}$; $v_{\text {max }}$ (thin film) 2982, 2922, 2850, 1739, 1592; $\delta_{\mathrm{H}}(500 \mathrm{MHz}$, DMSO- d_{6}) $1.22\left(12 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, 4 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.37\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.58(2 \mathrm{H}$, quin, $J=7.0 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NHBoc}$), 2.86, $2.95\left(2 \mathrm{H}, 2 \times \mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NHBoc}\right), 3.60-3.72\left(8 \mathrm{H}, \mathrm{m}, 4 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $6.84(1 \mathrm{H}$, br. s. NH), $6.95(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}, 2 \times \mathrm{C}(\mathrm{Ar}) H), 6.98(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.5 \mathrm{~Hz}, 2 \times \mathrm{C}(\mathrm{Ar}) H), 7.05(2 \mathrm{H}$, dd, $\mathrm{J}=9.5,2.5 \mathrm{~Hz}, 2 \times \mathrm{C}(\mathrm{Ar}) H), 7.48(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{C}(\mathrm{Ar}) H), 7.89-7.91(1 \mathrm{H}, \mathrm{m}, \mathrm{N} H), 7.93(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0$, $2.0 \mathrm{~Hz}, \mathrm{C}(\mathrm{Ar}) H), 8.42(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz}, \mathrm{C}(\mathrm{Ar}) H) ; \delta_{\mathrm{C}}\left(126 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) 12.5\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 28.2\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $29.8\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 37.4,40.5\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 45.2\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $77.5\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 95.4$, 113.5, 113.6, 125.7, $126.5,130.6,132.7,133.0,141.4,148.0,155.0,155.6,157.1,157.5$ (aromatic and carbonyl carbons); HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{C}_{35} \mathrm{H}_{46} \mathrm{~N}_{4} \mathrm{NaO}_{8} \mathrm{~S}_{2}{ }^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$calculated 737.2649; found 737.2656.

5-(N-(3-Aminopropyl)sulfamoyl)-2-(3,6-bis(diethylamino)xanthylium-9-yl)benzenesulfonate, H

Trifluoroacetic acid (0.3 mL) was added to $\mathbf{1 5}(50 \mathrm{mg}, 0.07 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and the resulting solution stirred for 16 h . The reaction mixture was concentrated in vacuo and purified by strong cation exchange chromatography (TELOS® SCX SPE tube, eluting with methanol, then 5% aqueous ammonia in methanol) to afford \mathbf{H} as a dark purple solid ($40 \mathrm{mg}, 93 \%$); mp $>350^{\circ} \mathrm{C}$; $\mathrm{v}_{\text {max }}$ (thin film) 2984, 2919, 2850, $1720,1602,1592,1496 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 1.32\left(12 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, 4 \mathrm{x} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $1.81(2 \mathrm{H}$, quin, $J=7.0$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right), 2.88,3.13\left(2 \mathrm{H}, 2 \mathrm{xt}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.70\left(8 \mathrm{H}, \mathrm{q}, J=7.0 \mathrm{~Hz}, 4 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 6.96$ $(2 \mathrm{H}, \mathrm{d}, J=2.5 \mathrm{~Hz}, 2 \times \mathrm{C}(\mathrm{Ar}) H), 7.03(2 \mathrm{H}, \mathrm{dd}, J=9.5,2.5 \mathrm{~Hz}, 2 \times \mathrm{C}(\mathrm{Ar}) H), 7.13(2 \mathrm{H}, \mathrm{d}, J=9.5 \mathrm{~Hz}, 2 \times$ $\mathrm{C}(\mathrm{Ar}) H), 7.54(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{C}(\mathrm{Ar}) H), 8.13(1 \mathrm{H}, \mathrm{dd}, J=8.0,2.0 \mathrm{~Hz}, \mathrm{C}(\mathrm{Ar}) H), 8.66(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}$, $\mathrm{C}(\mathrm{Ar}) \mathrm{H})$; $\delta_{\mathrm{H}}\left(126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 12.8\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 32.1\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 39.2,41.6\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 46.8$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 97.0,115.1,115.3,127.7,129.3,132.6,133.6,135.5,143.9,147.3,157.2,157.8,159.4$ (aromatic carbons); HRMS (ESI $\left.{ }^{+}\right) \mathrm{C}_{30} \mathrm{H}_{39} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}_{2}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$calculated 615.2306; found 615.2307.
tert-Butyl 4-(2,2,2-trifluoroacetyl)benzoate, ${ }^{2} 16$

4-(2,2,2-Trifluoroacetyl)benzoic acid ($1.0 \mathrm{~g}, 4.59 \mathrm{mmol}$) was added to tert-butyl acetate $(4 \mathrm{~mL})$ in a pressure vial. Concentrated sulfuric acid ($0.04 \mathrm{~mL}, 0.37 \mathrm{mmol}$) was added and the vial sealed with a screw cap. The reaction mixture was stirred at room temperature for 48 h before being quenched by addition of sat. aqueous $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. Combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo to afford $\mathbf{1 6}$ as a colourless oil ($904 \mathrm{mg}, 72 \%$); $v_{\text {max }}$ (thin film) 2981, 2936 (C-H), 2360, 2341, $1717(\mathrm{C}=\mathrm{O}), 1180,1112\left(\mathrm{CF}_{3}\right) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.61\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 8.14(4 \mathrm{H}, \mathrm{s}$, $4 \times \mathrm{C}(\mathrm{Ar}) H) ; \delta_{\mathrm{C}}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 28.1\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 82.4\left(C\left(\mathrm{CH}_{3}\right)_{3}\right), 116.5\left(\mathrm{q}, \mathrm{J}=290.0 \mathrm{~Hz}, C \mathrm{~F}_{3}\right), 129.9(4 \mathrm{x}$ $\mathrm{C}(\mathrm{Ar})), 132.5,137.9(2 \times \mathrm{C}(\mathrm{ipso})), 164.2\left(\mathrm{CO}_{2}\right), 180.2\left(\mathrm{q}, \mathrm{J}=35.5 \mathrm{~Hz}, C(\mathrm{O}) \mathrm{CF}_{3}\right) ; \delta_{\mathrm{F}}\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-71.6$ $\left(\mathrm{CF}_{3}\right)$; LRMS: $m / z\left(\mathrm{FI}^{+}\right) 274\left([\mathrm{M}]^{+}, 100 \%\right)$; HRMS $\left(\mathrm{FI}^{+}\right) \mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{O}_{3}{ }^{+}\left([\mathrm{M}]^{+}\right)$calculated 274.0817; found 274.0815.
tert-Butyl 4-(2,2,2-trifluoro-1-(hydroxyimino)ethyl)benzoate, ${ }^{2} 17$

tert-Butyl 4-(2,2,2-trifluoroacetyl)benzoate, 16, ($904 \mathrm{mg}, 3.30 \mathrm{mmol}$) in ethanol (5 mL) was added dropwise to a refluxing solution of hydroxylamine hydrochloride ($1.01 \mathrm{~g}, 14.7 \mathrm{mmol}$) and $\mathrm{NaOH}(588 \mathrm{mg}, 14.7 \mathrm{mmol})$ in ethanol (7 mL). The resulting solution was stirred at reflux for 16 h before being cooled to room temperature. Ethyl acetate (50 mL) was added and washed with 0.1 N aqueous $\mathrm{HCl}(2 \times 20 \mathrm{~mL})$ and brine (20 mL). The organic layer was dried over MgSO_{4}, filtered and concentrated in vacuo to provide $\mathbf{1 7}$ (924 mg , 97%) as a colourless oil; $v_{\text {max }}$ (thin film) $3367(\mathrm{O}-\mathrm{H}), 2982,2936(\mathrm{C}-\mathrm{H}), 2360,2342,1718(\mathrm{C}=\mathrm{O}), 1182,1115$ $\left(\mathrm{CF}_{3}\right) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.61\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 7.57(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, 2 \times \mathrm{C}(\mathrm{Ar}) \mathrm{H}), 8.10(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5$ $\mathrm{Hz}, 2 \times \mathrm{C}(\mathrm{Ar}) H) ; \delta_{\mathrm{C}}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 28.1\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 81.8\left(C\left(\mathrm{CH}_{3}\right)_{3}\right), 120.4\left(\mathrm{q}, \mathrm{J}=280.5 \mathrm{~Hz}, C \mathrm{~F}_{3}\right), 128.6(2$ x $C(\mathrm{Ar})$), $129.5(2 \times C(\mathrm{Ar})), 129.9,133.7(2 \times C(\mathrm{ipso})), 147.2\left(\mathrm{q}, \mathrm{J}=33.5 \mathrm{~Hz}, C \mathrm{CF}_{3}\right), 165.0\left(\mathrm{CO}_{2}\right) ; \delta_{\mathrm{F}}(470$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right)-66.6\left(\mathrm{CF}_{3}\right) ; \mathrm{HRMS}\left(\mathrm{ESI}^{+}\right) \mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{NNaO}_{3}{ }^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$calculated 312.0818; found 312.0813.
tert-Butyl 4-(2,2,2-trifluoro-1-((tosyloxy)imino)ethyl)benzoate, ${ }^{2} 18$

p-Toluenesulfonyl chloride ($684 \mathrm{mg}, 3.58 \mathrm{mmol}$) was added portionwise to a solution of tert-butyl 4-(2,2,2-trifluoro-1-(hydroxyimino)ethyl)benzoate $\mathbf{1 7}(900 \mathrm{mg}, 3.11 \mathrm{mmol}), N, N$-dimethylpyridin- 4 -amine (38 mg , 0.31 mmol) and triethylamine ($0.52 \mathrm{~mL}, 3.73 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The resulting mixture was allowed to warm to room temperature and stirred overnight. The solvent was removed in vacuo and the residue dissolved in diethyl ether (60 mL). The organic solution was washed with water ($3 \times 10 \mathrm{~mL}$) and brine $(10 \mathrm{~mL})$, dried over MgSO_{4}, filtered and concentrated in vacuo to afford $\mathbf{1 8}(1.19 \mathrm{~g}, 87 \%)$ as a colourless oil, which was found to be a mixture of E and Z isomers; $v_{\text {max }}$ (thin film) 2980, 2934 (C-H), 2359, 1716 (C=O), $1195,1180,1118\left(\mathrm{CF}_{3}\right) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.60,1.61\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, E\right.$ and Z-isomers), 2.47, $2.49(3 \mathrm{H}$, s, $\mathrm{C}(\mathrm{Ar}) \mathrm{CH}_{3}, E$ and Z isomers $), 7.33-7.53(4 \mathrm{H}, \mathrm{m}, 4 \times \mathrm{C}(\mathrm{Tos}) H), 7.83-8.21(4 \mathrm{H}, \mathrm{m}, 4 \times \mathrm{C}(\mathrm{Ar}) H)$; $\delta_{\mathrm{F}}(470$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right)-66.8,-61.5\left(\mathrm{CF}_{3}\right)$; LRMS: $m / z\left(\mathrm{FI}^{+}\right) 443\left([\mathrm{M}]^{+}, 100 \%\right) ;$ HRMS $\left(\mathrm{FI}^{+}\right) \mathrm{C}_{20} \mathrm{H}_{10} \mathrm{NF}_{3} \mathrm{O}_{5} \mathrm{~S}^{+}\left([\mathrm{M}]^{+}\right)$ calculated 443.1014; found 443.1010.
tert-Butyl 4-(3-(trifluoromethyl)diaziridin-3-yl)benzoate, ${ }^{2} 19$

A solution of tert-butyl 4-(2,2,2-trifluoro-1-((tosyloxy)imino)ethyl)benzoate $\mathbf{1 8}$ ($1.16 \mathrm{~g}, 2.61 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(6 \mathrm{~mL})$ at $-60{ }^{\circ} \mathrm{C}$ was added dropwise to liquid ammonia (1.5 mL) at $-78{ }^{\circ} \mathrm{C}$. The resulting mixture was allowed to warm to $-60^{\circ} \mathrm{C}$ and stirred for 12 h . The ammonia was allowed to evaporate and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and water (15 mL) added. The organic layer was dried over MgSO_{4}, filtered and concentrated in vacuo. Purification by flash column chromatography (eluent: $100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded $\mathbf{1 9}$ ($585 \mathrm{mg}, 74 \%$) as a colourless oil; $v_{\text {max }}$ (thin film) 3251 (N-H), 2980, 2936 (C-H), 2361, 2342, 1712 (C=O), 1151, $1102\left(\mathrm{CF}_{3}\right) ; \delta_{\mathrm{H}}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $1.60(9 \mathrm{H}, \mathrm{s}, \mathrm{C}(\mathrm{CH} 3) 3), 7.68(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, 2 \times \mathrm{C}(\mathrm{Ar}) H), 8.04(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, 2 \mathrm{x}$ $\mathrm{C}(\mathrm{Ar}) H) ; \delta_{\mathrm{C}}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 28.1\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 57.8\left(\mathrm{q}, \mathrm{J}=36.0 \mathrm{~Hz}, \mathrm{CCF}_{3}\right), 81.6\left(C\left(\mathrm{CH}_{3}\right)_{3}\right), 123.3(\mathrm{q}, \mathrm{J}=280.0$ $\mathrm{Hz}, \mathrm{CF}_{3}$), $128.0\left(2 \times C(\mathrm{Ar})\right.$), $129.8(2 \times C(\mathrm{Ar})), 133.7,135.6(2 \times C(\mathrm{ipso})), 164.8\left(\mathrm{CO}_{2}\right) ; \delta_{\mathrm{F}}\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $-74.8\left(\mathrm{CF}_{3}\right)$; $\mathrm{HRMS}\left(\mathrm{ESI}^{+}\right) \mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{NaO}_{2}{ }^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$calculated 311.0978; found 311.0969.
tert-Butyl 4-(3-(trifluoromethyl)-3H-diazirin-3-yl)benzoate, ${ }^{2} 20$

tert-Butyl 4-(3-(trifluoromethyl)diaziridin-3-yl)benzoate 19 ($565 \mathrm{mg}, 1.96 \mathrm{mmol}$) and triethylamine (0.80 mL , 5.88 mmol) were added to $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. Iodine ($1.50 \mathrm{~g}, 5.88 \mathrm{mmol}$) was added portionwise until a brown colour persisted. The resulting mixture was stirred for 2 h and then washed with 1 M aqueous $\mathrm{NaOH}(10 \mathrm{~mL})$, water (10 mL) and brine (10 mL). The organic layer was dried over MgSO_{4}, filtered and concentrated in vacuo. Purification by flash column chromatography (eluent cyclohexane / ethyl acetate, 99:1) afforded $\mathbf{2 0}$ ($524 \mathrm{mg}, 93 \%$) as a colourless oil; $\delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.60\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 7.23(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, 2 \mathrm{x}$ $\mathrm{C}(\mathrm{Ar}) \mathrm{H}), 8.01(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, 2 \times \mathrm{C}(\mathrm{Ar}) H)$; LRMS: $m / z\left(\mathrm{ESI}^{+}\right) 287\left([\mathrm{M}+\mathrm{H}]^{+}\right.$.

4-(3-(Trifluoromethyl)-3H-diazirin-3-yl)benzoic acid, ${ }^{2} \mathrm{C}$

Trifluoroacetic acid (0.50 mL) was added to a solution of tert-butyl 4-(3-(trifluoromethyl)-3H-diazirin-3yl)benzoate, 48, ($524 \mathrm{mg}, 1.83 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The reaction mixture was stirred for 2 h before the
solvent was removed in vacuo and the residual trifluoroacetic acid azeotroped with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 25 \mathrm{~mL}$). $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ and sat. aqueous $\mathrm{NaHCO}_{3}(25 \mathrm{~mL})$ were added. The layers were separated and the aqueous layer acidified to pH 3 with 1 M aqueous HCl and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 25 \mathrm{~mL})$. Combined organics were dried over MgSO_{4}, filtered and concentrated in vacuo to afford $\mathbf{C}(364 \mathrm{mg}, 86 \%)$ as a white foam; δ_{H} ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $7.30(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \times \mathrm{C}(\mathrm{Ar}) H$), $8.15(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \times \mathrm{C}(\mathrm{Ar}) H)$; LRMS: m / z (ESI) 299 ([M-H $\left.{ }^{-}, 100 \%\right)$.

Methyl 4-azido-2,3,5,6-tetrafluorobenzoate, ${ }^{3} 21$

Sodium azide ($0.65 \mathrm{~g}, 10.0 \mathrm{mmol}$) was added to a solution of methyl pentafluorobenzoate ($1.50 \mathrm{~g}, 6.64 \mathrm{mmol}$) in acetone (12 mL) and water (4 mL). The reaction mixture was heated at reflux for 2 h and then cooled to room temperature before addition of water $(30 \mathrm{~mL})$ and diethyl ether $(30 \mathrm{~mL})$. The layers were separated and the aqueous layer extracted with diethyl ether ($2 \times 30 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo to afford $21(1.55 \mathrm{~g}, 94 \%)$ as a white solid; $\mathrm{mp} 53-55^{\circ} \mathrm{C}\left\{\mathrm{lit} .{ }^{3} \mathrm{mp}\right.$ $\left.54-55{ }^{\circ} \mathrm{C}\right\} . \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.94\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 53.10\left(\mathrm{CH}_{3}\right), 107.52(\mathrm{t}$, $\left.\mathrm{J}=16.0 \mathrm{~Hz}, C \mathrm{~N}_{3}\right), 123.35\left(\mathrm{CCO}_{2} \mathrm{CH}_{3}\right), 138.61-142.06(\mathrm{~m}, 2 \times \mathrm{FF}), 143.67-146.81(\mathrm{~m}, 2 \times \mathrm{CF}), 159.69$ $\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{F}}\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-151.6$ to $-150.8(2 \mathrm{~F}, \mathrm{~m}),-139.4$ to -138.7 ($2 \mathrm{~F}, \mathrm{~m}$); LRMS: $\mathrm{m} / \mathrm{z}\left(\mathrm{ESI}^{+}\right)$ $250\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.

4-Azido-2,3,5,6-tetrafluorobenzoic acid, ${ }^{3}$ B

Methyl 4-azido-2,3,5,6-tetrafluorobenzoate ($1.56 \mathrm{~g}, 6.27 \mathrm{mmol}$) was added to methanol (6 mL), $20 \% \mathrm{w} / \mathrm{w}$ aqueous $\mathrm{NaOH}(0.6 \mathrm{~mL})$ and water (1.2 mL) and stirred overnight. 1 M aqueous $\mathrm{HCl}(20 \mathrm{~mL})$ was added and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 20 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo to afford B(1.37 g, 93%) as a white solid; mp 134-138 ${ }^{\circ} \mathrm{C}\left\{\right.$ lit. $\left.{ }^{3} \mathrm{mp} 140-141^{\circ} \mathrm{C}\right\} ; \delta_{\mathrm{F}}$ (377 MHz , DMSO-d6) -151.6 to -151.5 ($2 \mathrm{~F}, \mathrm{~m}$), -141.4 to -141.2 ($2 \mathrm{~F}, \mathrm{~m}$); LRMS: m / z (ESГ) 234 ($\left[\mathrm{M}^{-} \mathrm{H}^{-}\right.$, 100%).
tert-Butyl (3-aminopropyl)carbamate, ${ }^{4} 22$

$$
\mathrm{H}_{2} \mathrm{~N}
$$

A solution of di-tert-butyl dicarbonate $(1.10 \mathrm{~g}, 5.05 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(5 \mathrm{~mL})$ was added dropwise over 30 min to a solution of propane-1,3-diamine $(4.20 \mathrm{~mL}, 50 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The resulting solution was allowed to warm to room temperature and stirred for 12 h . The solvent was removed in vacuo and the residue dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL), washed with water (30 mL), brine (30 mL), dried over MgSO_{4} and concentrated in vacuo to give 22 as a colourless oil ($658 \mathrm{mg}, 76 \%$); $\delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.45(9 \mathrm{H}, \mathrm{s}$,
$\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.62\left(2 \mathrm{H}\right.$, quin, $\left.J=6.5 \mathrm{~Hz}, \mathrm{NHCH}_{2} \mathrm{CH}_{2}\right), 2.77\left(2 \mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz}, \mathrm{NH}_{2} \mathrm{CH}_{2}\right), 3.22(2 \mathrm{H}, \mathrm{q}, J=6.5 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{NHBoc}\right)$; LRMS: $m / z\left(\mathrm{ESI}^{+}\right) 175\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.
tert-Butyl (3-isocyanopropyl)carbamate, J

tert-Butyl (3-aminopropyl)carbamate, $\mathbf{2 2}$, ($1.00 \mathrm{~g}, 5.75 \mathrm{mmol}$) was dissolved in ethyl formate (6 mL) and heated at reflux for 18 h . The reaction mixture was cooled to room temperature and the solvent removed in vacuo to afford the crude N-(3-((tert-butoxycarbonyl)amino)propyl)formimidate as a pale yellow oil, which was used directly in the next step. Phosphoryl trichloride ($0.59 \mathrm{~mL}, 6.35 \mathrm{mmol}$) in tetrahydrofuran (5 mL) was added dropwise over 30 min to the crude ethyl N-(3-((tert-butoxycarbonyl)amino)propyl)formimidate (5.75 $\mathrm{mmol})$ and triethylamine $(3.98 \mathrm{~mL}, 28.8 \mathrm{mmol})$ in tetrahydrofuran $(35 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred for 2 h at $0{ }^{\circ} \mathrm{C}$ and then at room temperature for 1 h . Water (50 mL) was added, the layers separated and the aqueous layer extracted with diethyl ether ($3 \times 50 \mathrm{~mL}$). Combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. The crude product was passed through a silica plug (eluent EtOAc / Hexane, 1:1) to afford \mathbf{J} ($947 \mathrm{mg}, 90 \%$ over two steps) as a yellow oil; $v_{\text {max }}$ (thin film) 3338 (N-H), 2977, 2934 (C-H), 2149, (NC), $1686(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.45\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.79-2.02\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ $\mathrm{CH}_{2} \mathrm{CH}_{2}$), $3.28\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.47\left(2 \mathrm{H}, \mathrm{tt}, \mathrm{J}=6.5,1.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NC}\right), 4.54-4.81(1 \mathrm{H}, \mathrm{s}$, $\mathrm{N} H) ; \delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 28.3\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $77.1\left(\mathrm{C}_{\left(\mathrm{CH}_{3}\right)_{3}, 30.0\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 37.0,39.0\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) \text {, }}\right.$ $156.0\left(\mathrm{CH}_{2} \mathrm{NC}\right), 161.6\left(\mathrm{CO}_{2}{ }^{\dagger} \mathrm{Bu}\right) ; \mathrm{HRMS}\left(\mathrm{FI}^{+}\right) \mathrm{C}_{9} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}\left([\mathrm{M}]^{+}\right)$calculated 184.1212; found 184.1216.

8-Hydroxyquinoline-5-carboxylic acid, ${ }^{5}$ IOX1

Acrolein ($0.65 \mathrm{~mL}, 9.73 \mathrm{mmol}$) was added dropwise to a refluxing solution of 3-amino-4-hydroxybenzoic acid $(1.00 \mathrm{~g}, 6.53 \mathrm{mmol})$ in $6 \mathrm{~N} \mathrm{HCl}(15 \mathrm{~mL})$ and stirred at reflux for 2 h . The reaction mixture was cooled to room temperature, diluted with water (15 mL), adjusted to pH 8 with aqueous ammonia and filtered. The filtrate was acidified to pH 4 with acetic acid and the resulting precipitate isolated by filtration and dried under vacuum. Purification by reverse phase chromatography afforded IOX1 as a pale brown powder (563 mg , 46%) ; mp 275-277 ${ }^{\circ} \mathrm{C}$ (decomposition) \{lit. $\left.{ }^{6} \mathrm{mp} 278-280^{\circ} \mathrm{C}\right\} ; \delta_{\mathrm{H}}(200 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6) 7.14(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0$ $\mathrm{Hz}, \mathrm{C}(\mathrm{Ar}) H), 7.71(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.0,4.0 \mathrm{~Hz}, \mathrm{C}(\mathrm{Ar}) H), 8.27(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{C}(\mathrm{Ar}) H), 8.93(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(\mathrm{Ar}) H)$, $9.49(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.0,1.0 \mathrm{~Hz}, \mathrm{C}(\mathrm{Ar}) H)$; LRMS: $m / z\left(\mathrm{ESI}^{+}\right) 190\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.
tert-Butyl (3-(8-hydroxyquinoline-5-carboxamido)propyl)carbamate, ${ }^{5} 23$

HBTU (441 mg, 1.16 mmol) was added to a solution of 8-hydroxyquinoline-5-carboxylic acid, IOX1, (200 $\mathrm{mg}, 1.06)$ and triethylamine $(0.29 \mathrm{~mL}, 2.10 \mathrm{mmol})$ in DMF $(10 \mathrm{~mL})$ and stirred for 15 min before being added dropwise to a solution of tert-butyl (3-aminopropyl)carbamate (276 mg .1 .59 mmol) and triethylamine (0.29 $\mathrm{mL}, 2.10 \mathrm{mmol})$ in DMF $(10 \mathrm{~mL})$. The resulting mixture was stirred for 12 h before the solvent was removed in vacuo and the residue purified by column chromatography (eluent $2-15 \%$ methanol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford $\mathbf{2 3}$ $(238 \mathrm{mg}, 66 \%)$ as a white solid; mp $152-154{ }^{\circ} \mathrm{C}\left\{\right.$ lit. $\left.{ }^{6} \mathrm{mp} 162-164{ }^{\circ} \mathrm{C}\right\} ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.43(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.75\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.25\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.53\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 7.09(1 \mathrm{H}, \mathrm{d}$, $\mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{C}(\mathrm{Ar}) H), 7.50(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.5,4.0 \mathrm{~Hz}, \mathrm{C}(\mathrm{Ar}) H), 7.72(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{C}(\mathrm{Ar}) H), 8.78(1 \mathrm{H}, \mathrm{dd}$, $\mathrm{J}=4.0,1.5 \mathrm{~Hz}, \mathrm{C}(\mathrm{Ar}) H), 8.96\left(1 \mathrm{H}\right.$, app. d, J=8.5 Hz, C(Ar)H); LRMS: m/z (ESI ${ }^{+} 346\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.
N-(3-Aminopropyl)-8-hydroxyquinoline-5-carboxamide trifluoroacetic acid salt, ${ }^{5} 24$

Trifluoroacetic acid (0.4 mL) was added to tert-butyl (3-(8-hydroxyquinoline-5carboxamido)propyl)carbamate, $(\mathbf{2 3}, 71 \mathrm{mg}, 0.21 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$. The reaction mixture was stirred for 2 h before the solvent was removed in vacuo and the residual trifluoroacetic acid azeotroped with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 25 \mathrm{~mL})$ to afford $24(72 \mathrm{mg}, 97 \%)$ as a sticky brown oil; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 2.07(2 \mathrm{H}$, quin, J=7.0 $\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $3.13\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CONHCH}_{2}\right), 3.61\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{+}\right), 7.44(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0$ $\mathrm{Hz}, \mathrm{C}(\mathrm{Ar}) H), 8.00-8.15(2 \mathrm{H}, \mathrm{m}, \mathrm{C}(\mathrm{Ar}) H), 9.09(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.5 \mathrm{~Hz}, \mathrm{C}(\mathrm{Ar}) H), 9.59(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{C}(\mathrm{Ar}) H)$; LRMS: $m / z\left(\mathrm{ESI}^{+}\right) 246\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.

Ethyl 6-(4-azidobenzoyl)-4,16-dioxo-20-((S,S,R)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)-9,12-dioxa-3,6,15-triazaicosan-1-oate, 6a

According to general procedure A: 4-azidobenzoic acid ($86 \mathrm{mg}, 0.53 \mathrm{mmol}$), ethyl 2-isocyanoacetate ($97 \mu \mathrm{~L}$, $0.53 \mathrm{mmol})$, paraformaldehyde ($24 \mathrm{mg}, 0.80 \mathrm{mmol}$) and compound $\mathbf{F}(200 \mathrm{mg}, 0.53 \mathrm{mmol})$ were reacted to afford $\mathbf{6 a}(283 \mathrm{mg}, 62 \%)$ as a colourless gum; $v_{\max }$ (thin film) $3291(\mathrm{~N}-\mathrm{H}), 2929(\mathrm{C}-\mathrm{H}), 2868(\mathrm{C}-\mathrm{H}), 2127$, $2097\left(\mathrm{~N}_{3}\right), 1747\left(\mathrm{C}=\mathrm{O}\right.$, ester), , 1690, 1644, $1604\left(\mathrm{C}=\mathrm{O}\right.$, amides and urea); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 1.30(3 \mathrm{H}$,
$\left.\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.37-1.48\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{N}\right), 1.53-1.81\left(4 \mathrm{H}, \mathrm{m}, \mathrm{SCHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.21(2 \mathrm{H}$, $\left.\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{N}\right), 2.72(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.5 \mathrm{~Hz}, \mathrm{SCH} H), 2.94(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.5,5.0 \mathrm{~Hz}, \mathrm{SCHH}), 3.15-$ $3.25(1 \mathrm{H}, \mathrm{m}, \mathrm{SCH}), 3.35-3.42\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}(\mathrm{O}) \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.53-3.72\left(8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OCH} \mathrm{CH}_{2} \mathrm{CHCH}_{2}\right), 3.72-$ $3.86\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NRR}\right.$ '), 3.96-4.07 ($2 \mathrm{H}, \mathrm{m}, \mathrm{NHCH}_{2} \mathrm{CO}_{2} \mathrm{Et}$), 4.18, 4.33 ($2 \mathrm{H}, 2 \mathrm{x}$ br. s, $\mathrm{NCH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{NH}$, 2 rotamers), $4.22\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{C}(\mathrm{O}) \mathrm{OCH}_{2}\right), 4.28-4.32(1 \mathrm{H}, \mathrm{m}, \mathrm{SCHRCH}), 4.50(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.5,5.0 \mathrm{~Hz}$, $\left.\mathrm{SCH}_{2} \mathrm{CH}\right), 7.17(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \times \mathrm{C}(\mathrm{Ar}) H), 7.51-7.67(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{C}(\mathrm{Ar}) \mathrm{H}) . \delta_{\mathrm{C}}\left(126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ $14.58\left(\mathrm{CH}_{3}\right), 26.86,29.51,29.79\left(\mathrm{SCHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 36.76\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CONH}\right), 40.36\left(\mathrm{C}(\mathrm{O}) \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$, $41.11\left(\mathrm{SCH}_{2}\right), 42.15\left(\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 48.2$, $51.6\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NRR}\right.$, 2 rotamers), 50.1, $54.7\left(\mathrm{NRR}^{\prime} \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{N}, 2\right.$ rotamers), $57.05\left(\mathrm{SCHRR}\right.$ '), $61.65\left(\mathrm{SCH}_{2} \mathrm{C}\right), 62.43\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 63.39$ (SCHRC), 69.36, 69.92, 70.72, 71.35, $71.46\left(\mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2}\right.$, extra signals as a result of rotamers), 120.06, 120.25 ($2 \mathrm{x} \mathrm{C}(\mathrm{Ar}), 2$ rotamers), $130.03,130.52(2 \times C(\mathrm{Ar}), 2$ rotamers $), 133.48(C(\mathrm{Ar})), 143.26,143.49(2 \times C(\mathrm{Ar}), 2$ rotamers $), 166.11$ $(\mathrm{N} C(\mathrm{O}) \mathrm{N}), 171.21,171.37(\mathrm{CC}=\mathrm{O}, 2$ rotamers $), 171.73(\mathrm{C} C=\mathrm{O}), 174.20,174.33(\mathrm{CC}=\mathrm{O}, 2$ rotamers $), 176.19$ (CC=O); HRMS (ESI $) \mathrm{C}_{29} \mathrm{H}_{42} \mathrm{~N}_{8} \mathrm{NaO}_{8} \mathrm{~S}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$calculated 685.2739; found 685.2730.

Ethyl 6-(4-azido-2,3,5,6-tetrafluorobenzoyl)-4,16-dioxo-20-((S,S,R)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)-9,12-dioxa-3,6,15-triazaicosan-1-oate, 6b

According to general procedure A: 4-azido-2,3,5,6-tetrafluorobenzoic acid ($126 \mathrm{mg}, 0.53 \mathrm{mmol}$), ethyl 2isocyanoacetate ($97 \mu \mathrm{~L}, 0.53 \mathrm{mmol}$), paraformaldehyde ($24 \mathrm{mg}, 0.80 \mathrm{mmol}$) and $\mathbf{F}(200 \mathrm{mg}, 0.53 \mathrm{mmol})$ were reacted to afford $\mathbf{6 b}(231 \mathrm{mg}, 59 \%)$ as a colourless gum; $v_{\max }$ (thin film) $3306(\mathrm{~N}-\mathrm{H}), 2929,2868(\mathrm{C}-\mathrm{H}), 2128$ $\left(\mathrm{N}_{3}\right), 1745\left(\mathrm{C}=\mathrm{O}\right.$ ester), 1686, $1647\left(\mathrm{C}=\mathrm{O}\right.$, amides and urea); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 1.30(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}\right), 1.45\left(2 \mathrm{H}\right.$, quin, $\left.\mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{N}\right), 1.53-1.82\left(4 \mathrm{H}, \mathrm{m}, \mathrm{SCHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.24(2 \mathrm{H}, \mathrm{t}$, $\left.\mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{N}\right), 2.72(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.5 \mathrm{~Hz}, \mathrm{SCHH}), 2.94(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.5,5.0 \mathrm{~Hz}, \mathrm{SCHH}), 3.18-3.27$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{SCH}$), $3.38\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.0 \mathrm{~Hz}, \mathrm{C}(\mathrm{O}) \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.49-3.71\left(8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2}\right), 3.73-$ $3.86\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NRR}\right.$ '), 3.90, $4.03\left(2 \mathrm{H}, 2 \mathrm{x} \mathrm{s}, \mathrm{NHCH}_{2} \mathrm{CO}_{2} \mathrm{Et}, 2\right.$ rotamers $), 4.14-4.26(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CO}_{2} \mathrm{CH}_{2}$), 4.21, $4.38\left(2 \mathrm{H}, 2 \mathrm{x} \mathrm{s}, \mathrm{NCH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{NH}, 2\right.$ rotamers $), 4.32(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0,4.5 \mathrm{~Hz}, \mathrm{SCHRCH}), 4.47-$ $4.55\left(1 \mathrm{H}, \mathrm{m}, \mathrm{SCH}_{2} \mathrm{CH}\right) ; \delta_{\mathrm{C}}\left(126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 14.5\left(\mathrm{CH}_{3}\right), 26.9,29.5,29.8\left(\mathrm{SCHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 36.7$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CONH}\right), 40.3\left(\mathrm{C}(\mathrm{O}) \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 41.1\left(\mathrm{SCH}_{2}\right), 42.0,42.3\left(\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 50.1,51.5,53.3,54.8$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NRR}{ }^{\prime}, 2\right.$ rotamers, NRR' $\mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{N}, 2$ rotamers $), 57.0\left(\mathrm{SCHRR}\right.$ '), $61.7\left(\mathrm{SCH}_{2} \mathrm{C}\right), 62.4\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $63.4(\mathrm{SCHRC}), 69.2,69.9,70.3,70.7,71.2,71.4,71.4,71.5\left(\mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2}\right.$, extra signals as a result of rotamers), (aromatic signals not observed due to coupling to F), $166.1(\mathrm{NC}(\mathrm{O}) \mathrm{N}), 170.5,170.6,171.0,171.3$, 176.2 ($4 \times \mathrm{C}=\mathrm{O}$, extra signals as a result of rotamers). $\delta_{\mathrm{F}}\left(470 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)-153.0$ to -152.9 ($2 \mathrm{~F}, \mathrm{~m}$, major rotamer), -143.1 to -142.9 ($2 \mathrm{~F}, \mathrm{~m}$, major rotamer); HRMS (ESI^{+}) $\mathrm{C}_{29} \mathrm{H}_{38} \mathrm{~F}_{4} \mathrm{~N}_{8} \mathrm{NaO}_{8} \mathrm{~S}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$ calculated 757.2362; found 757.2346.

Ethyl 4,16-dioxo-20-((S,S,R)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)-6-(4-(3-(trifluoromethyl)-3H-diazirin-3-yl)benzoyl)-9,12-dioxa-3,6,15-triazaicosan-1-oate, 6c

According to general procedure A: 4-(3-(trifluoromethyl)-3H-diazirin-3-yl)benzoic acid \mathbf{C} ($122 \mathrm{mg}, 0.53$ mmol), ethyl 2-isocyanoacetate ($97 \mu \mathrm{~L}, 0.53 \mathrm{mmol}$), paraformaldehyde ($24 \mathrm{mg}, 0.80 \mathrm{mmol}$) and \mathbf{F} (200 mg , $0.53 \mathrm{mmol})$ were reacted to afford $\mathbf{6 c}(254 \mathrm{mg}, 66 \%)$ as a colourless gum; $v_{\max }$ (thin film) $3306(\mathrm{~N}-\mathrm{H}), 2928$ $(\mathrm{C}-\mathrm{H}), 1744\left(\mathrm{C}=\mathrm{O}\right.$, ester), 1680, $1633\left(\mathrm{C}=\mathrm{O}\right.$, amides and urea); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 1.30(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0$ $\left.\mathrm{Hz}, \mathrm{CH}_{3}\right), 1.37-1.50\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{N}\right), 1.53-1.84\left(4 \mathrm{H}, \mathrm{m}, \mathrm{SCHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.21(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{N}\right), 2.72(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.5 \mathrm{~Hz}, \mathrm{SCHH}), 2.93(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.5,4.5 \mathrm{~Hz}, \mathrm{SCH} H), 3.16-3.24(1 \mathrm{H}$, $\mathrm{m}, \mathrm{SCH}), 3.35-3.40\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}(\mathrm{O}) \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.48-3.71\left(8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2}\right), 3.75-3.83(2 \mathrm{H}, \mathrm{m}$, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NRR}^{\prime}$), 3.97, 4.04 ($2 \mathrm{H}, 2 \mathrm{x} \mathrm{s}, \mathrm{NHCH}_{2} \mathrm{CO}_{2} \mathrm{Et}, 2$ rotamers), 4.12, $4.35(2 \mathrm{H}, 2 \mathrm{x} \mathrm{s}, \mathrm{NCH} 2 \mathrm{C}(\mathrm{O}) \mathrm{NH}, 2$ rotamers), $4.22\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.31(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.5,4.5 \mathrm{~Hz}, \mathrm{SCHRCH}), 4.50(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.5,5.0$ $\left.\mathrm{Hz}, \mathrm{SCH}_{2} \mathrm{CH}\right), 7.32-7.37(2 \mathrm{H}, \mathrm{m}, \mathrm{Hz}, 2 \times \mathrm{C}(\mathrm{Ar}) H), 7.53-7.73(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{C}(\mathrm{Ar}) H) ; \delta \mathrm{C}(126 \mathrm{MHz}, \mathrm{CD} 3 \mathrm{OD})$ $14.6\left(\mathrm{CH}_{3}\right), 26.9,29.5,29.8\left(\mathrm{SCHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 29.5\left(\mathrm{q}, J=41.0 \mathrm{~Hz}, \mathrm{CN}_{2}\right), 36.8\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{NH}\right), 40.4$ $\left(\mathrm{C}(\mathrm{O}) \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$, $41.1\left(\mathrm{SCH}_{2}\right)$, 42.1, $42.2\left(\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}, 2\right.$ rotamers), 48.1, 49.9, 51.5, 54.4 $\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NRR}\right.$ ', 2 rotamers, NRR' $\mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{N}, 2$ rotamers), $57.0(\mathrm{SCHRR})$, $61.6\left(\mathrm{SCH}_{2} \mathrm{C}\right), 62.4\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 63.4 (SCHRC), 69.2, 69.9, 70.7, 71.3, $71.4\left(\mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2}\right.$, extra signals as a result of rotamers), 123.5 (q, $\left.J=273.0 \mathrm{~Hz}, C \mathrm{~F}_{3}\right), 127.8,128.0,128.8,129.3,131.4,131.7,138.7,138.8(6 \mathrm{x} \mathrm{C}(\mathrm{Ar})$, extra signals as a result of rotamers), $166.1(\mathrm{~N} C(\mathrm{O}) \mathrm{N}), 171.2,171.4,171.5,173.6,173.8,176.2(4 \times \mathrm{CC}=\mathrm{O}$ extra signals as a result of rotamers); $\delta_{\mathrm{F}}\left(470 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)-66.8$ ($3 \mathrm{~F}, \mathrm{~s}$.); $\mathrm{HRMS}\left(\mathrm{ESI}^{+}\right) \mathrm{C}_{31} \mathrm{H}_{42} \mathrm{~F}_{3} \mathrm{~N}_{7} \mathrm{NaO}_{8} \mathrm{~S}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$ calculated 752.2660; found 752.2659.

Ethyl 6-(3-(3-methyl-3H-diazirin-3-yl)propanoyl)-4,16-dioxo-20-((S,S,R)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)-9,12-dioxa-3,6,15-triazaicosan-1-oate, 6d

According to general procedure A: 3-(3-methyl-3H-diazirin-3-yl)propanoic acid, E, ($67.8 \mathrm{mg}, 0.53 \mathrm{mmol}$), ethyl 2-isocyanoacetate ($97 \mu \mathrm{~L}, 0.53 \mathrm{mmol}$), paraformaldehyde ($24 \mathrm{mg}, 0.80 \mathrm{mmol}$) and \mathbf{F} ($200 \mathrm{mg}, 0.53$ mmol) were reacted to afford $\mathbf{6 d}(208 \mathrm{mg}, 63 \%)$ as a colourless gum; $v_{\text {max }}$ (thin film) $3304(\mathrm{~N}-\mathrm{H}), 2928(\mathrm{C}-\mathrm{H})$, $1746\left(\mathrm{C}=\mathrm{O}\right.$, ester), 1697, $1636\left(\mathrm{C}=\mathrm{O}\right.$, amides, urea); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 1.03,1.05\left(3 \mathrm{H}, 2 \mathrm{x} \mathrm{s}, \mathrm{CH}_{3}, 2\right.$ rotamers), $1.29\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}\right), 1.46\left(2 \mathrm{H}\right.$, quin, $\left.\mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{N}\right), 1.54-1.82$ (6 H , m, $\left.\mathrm{SCHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{CN}_{2} \mathrm{CH}_{2}\right), 2.25\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{N}\right), 2.29,2.45(2 \mathrm{H}, 2 \mathrm{x} \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}$, $\mathrm{CN}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, 2$ rotamers), $2.73(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.5 \mathrm{~Hz}, \mathrm{SCHH}), 2.95(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.5,5.0 \mathrm{~Hz}, \mathrm{SCHH}), 3.19-3.27$ $(1 \mathrm{H}, \quad \mathrm{m}, \quad \mathrm{SCH}), \quad 3.38 \quad\left(2 \mathrm{H}, \quad \mathrm{t}, \quad \mathrm{J}=5.0 \mathrm{~Hz}, \quad \mathrm{C}(\mathrm{O}) \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), \quad 3.50-3.72 \quad(10 \quad \mathrm{H}, \quad \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NRR}^{\prime}$), 3.97, $4.01\left(2 \mathrm{H}, 2 \mathrm{x} \mathrm{s}, \mathrm{NHCH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 4.15,4.26(2 \mathrm{H}, 2 \mathrm{x} \mathrm{s}, \mathrm{NCH} 2 \mathrm{C}(\mathrm{O}) \mathrm{NH}$, 2 rotamers), 4.16-4.24 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CO}_{2} \mathrm{CH}_{2}$), $4.33(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0,4.5 \mathrm{~Hz}, \mathrm{SCHRCH}), 4.51(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0,5.0$ $\left.\mathrm{Hz}, \mathrm{SCH}_{2} \mathrm{CH}\right) ; \delta_{\mathrm{C}}\left(126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 14.5\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 19.9,20.0\left(\mathrm{CN}_{2} \mathrm{CH}_{3}, 2\right.$ rotamers $)$, 26.4, 26.5
$\left(\mathrm{CH}_{2} \mathrm{CN}_{2}\right.$, 2 rotamers $)$, 26.9, 29.5, $29.8\left(\mathrm{SCHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, 28.2, $28.4\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}_{2}\right), 30.8,30.9\left(\mathrm{CN}_{2}, 2\right.$ rotamers), $36.8\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CONH}\right), 40.3\left(\mathrm{C}(\mathrm{O}) \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 41.1\left(\mathrm{SCH}_{2}\right), 42.1\left(\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 50.2,50.7$, 53.2, $54.9\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NRR}\right.$ ', 2 rotamers, NRR' $\mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{N}, 2$ rotamers), 57.1 (SCHRR'), $61.7\left(\mathrm{SCH}_{2} \mathrm{C}\right), 62.4$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 63.4(\mathrm{SCHRC}), 69.8,70.2,70.7,71.3,71.4,71.7\left(\mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2}\right.$, extra signals as a result of rotamers), $166.1(\mathrm{~N} C(\mathrm{O}) \mathrm{N}), 171.2,171.3,171.9,172.2,175.1,175.2,176.2(4 \mathrm{x} \mathrm{C} C=\mathrm{O}$, extra signals as a result of rotamers); HRMS (ESI $) \mathrm{C}_{27} \mathrm{H}_{45} \mathrm{~N}_{7} \mathrm{NaO}_{8} \mathrm{~S}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$calculated 650.2943; found 650.2932.

Ethyl 6-(4-benzoylbenzoyl)-4,16-dioxo-20-((S,S,R)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)-9,12-dioxa-3,6,15-triazaicosan-1-oate, 6e

According to general procedure A: 4-benzoylbenzoic acid ($120 \mathrm{mg}, 0.53 \mathrm{mmol}$), ethyl 2-isocyanoacetate (97 $\mu \mathrm{L}, 0.53 \mathrm{mmol})$, paraformaldehyde ($24 \mathrm{mg}, 0.80 \mathrm{mmol}$) and $\mathbf{F}(200 \mathrm{mg}, 0.53 \mathrm{mmol})$ were reacted to afford $\mathbf{6 e}$ ($238 \mathrm{mg}, 62 \%$) as a colourless gum; $v_{\max }(t h i n ~ f i l m) 3293(\mathrm{~N}-\mathrm{H}), 2931,2870(\mathrm{C}-\mathrm{H}), 1743(\mathrm{C}=\mathrm{O}$ ester), 1687, $1648\left(\mathrm{C}=\mathrm{O}\right.$, amides, urea and ketone); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 1.30(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{CH}), 1.33-1.49(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{N}\right), 1.50-1.81\left(4 \mathrm{H}, \mathrm{m}, \mathrm{SCHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.13-2.24\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{N}\right), 2.70(1$ $\mathrm{H}, \mathrm{d}, \mathrm{J}=12.5 \mathrm{~Hz}, \mathrm{SCH} H), 2.91(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.5,5.0 \mathrm{~Hz}, \mathrm{SCHH}), 3.12-3.21(1 \mathrm{H}, \mathrm{m}, \mathrm{SCH}), 3.35-3.40(2 \mathrm{H}, \mathrm{m}$, $\mathrm{C}(\mathrm{O}) \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 3.51-3.75 ($8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2}$), 3.77-3.88 ($2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NRR}$ '), 3.98, 4.05 ($2 \mathrm{H}, 2 \mathrm{x} \mathrm{s}, \mathrm{NHCH}_{2} \mathrm{CO}_{2} \mathrm{Et}, 2$ rotamers), 4.15-4.25 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CO}_{2} \mathrm{CH}_{2}$), 4.20, $4.38\left(2 \mathrm{H}, 2 \mathrm{x} \mathrm{s}, \mathrm{NCH} \mathrm{N}_{2} \mathrm{C}(\mathrm{O}) \mathrm{NH}, 2\right.$ rotamers), $4.29(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.5,4.5 \mathrm{~Hz}, \mathrm{SCHRCH}), 4.44-4.52\left(1 \mathrm{H}, \mathrm{m}, \mathrm{SCH}_{2} \mathrm{CH}\right), 7.43-8.06(9 \mathrm{H}, \mathrm{m}, 9 \mathrm{x}$ $\mathrm{C}(\mathrm{Ar}) H) ; \delta_{\mathrm{C}}\left(126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 14.7\left(\mathrm{CH}_{3}\right), 26.9,29.5,29.8\left(\mathrm{SCHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 36.8\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CONH}\right), 40.4$ $\left(\mathrm{C}(\mathrm{O}) \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 41.2\left(\mathrm{SCH}_{2}\right), 42.2,42.3\left(\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}, 2\right.$ rotamers $), 48.0,50.0,51.5,54.4$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NRR}\right.$ ', 2 rotamers, NRR' $\mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{N}, 2$ rotamers), $57.0(\mathrm{SCHRR})$, $61.6\left(\mathrm{SCH}_{2} \mathrm{C}\right), 62.5\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 63.3 (SCHRC), 69.3, 69.9, 70.8, 71.3, $71.5\left(\mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2}\right.$, extra signals as a result of rotamers), 128.1, $128.6,129.8,131.2,134.2,138.4,139.7,139.9,140.9,141.1(12 \times \mathrm{C}(\mathrm{Ar})$, extra signals as a result of rotamers), $166.0(\mathrm{~N} C(\mathrm{O}) \mathrm{N}), 171.2,171.5,173.8,173.9,176.1(4 \mathrm{x} \mathrm{CC=O}$ extra signals as a result of rotamers), $196.5(\mathrm{ArC}(\mathrm{O}) \mathrm{Ph})$; $\mathrm{HRMS}\left(\mathrm{ESI}^{+}\right) \mathrm{C}_{36} \mathrm{H}_{47} \mathrm{~N}_{5} \mathrm{NaO}_{9} \mathrm{~S}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$calculated 748.2987; found 748.2964.

6-(4-Azidobenzoyl)-4,16-dioxo-20-((S,S,R)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)-9,12-dioxa-3,6,15-triazaicosan-1-oic acid, 12a

According to general procedure B: sodium hydroxide ($15 \mathrm{mg}, 0.38 \mathrm{mmol}$) and $\mathbf{6 a}(166 \mathrm{mg}(0.25 \mathrm{mmol})$ were reacted to afford $\mathbf{1 2 a}(126 \mathrm{mg}, 79 \%)$ as a colourless gum; $v_{\max }($ thin film) $3288(\mathrm{~N}-\mathrm{H}), 2924(\mathrm{C}-\mathrm{H}), 2127$, $2097\left(\mathrm{~N}_{3}\right), 1680,1624\left(\mathrm{C}=\mathrm{O}\right.$, amides and urea), $1541\left(\mathrm{C}=\mathrm{C}\right.$ aromatic); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 1.41(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{N}\right), 1.50-1.80\left(4 \mathrm{H}, \mathrm{m}, \mathrm{SCHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.17-2.21\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{N}\right), 2.71(1 \mathrm{H}, \mathrm{d}$,
$\mathrm{J}=12.5 \mathrm{~Hz}, \mathrm{SCH} H), 2.85-2.99(1 \mathrm{H}, \mathrm{m}, \mathrm{SCHH}), 3.14-3.23(1 \mathrm{H}, \mathrm{m}, \mathrm{SCH}), 3.34-3.40(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}(\mathrm{O}) \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), \quad 3.47-3.84\left(10 \mathrm{H}, \quad \mathrm{m}, \quad \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NRR}\right.$ '), $3.93-4.02(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{NHCH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{OH}\right)$, 4.14, $4.31\left(2 \mathrm{H}, 2 \mathrm{x}\right.$ br. s., $\mathrm{NCH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{NH}, 2$ rotamers), 4.27-4.34 ($1 \mathrm{H}, \mathrm{m}, \mathrm{SCHRCH}$), 4.46-4.52 (1 H, m, SCH $2 \mathrm{C} H)$) $7.11-7.18(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{C}(\mathrm{Ar}) H), 7.53-7.64\left(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{C}(\mathrm{Ar}) H\right.$); $\delta_{\mathrm{H}}(500$ $\mathrm{MHz}, \mathrm{T}=363 \mathrm{~K}, \mathrm{DMSO}-d_{6}$) 1.31-1.42 ($\left.2 \mathrm{H}, \mathrm{m} . \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{N}\right), 1.44-1.73\left(4 \mathrm{H}, \mathrm{m}, \mathrm{SCHCH} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $2.10\left(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{N}\right), 2.63(1 \mathrm{H}, \mathrm{d}, J=12.5 \mathrm{~Hz}, \mathrm{SCH} H), 2.86(1 \mathrm{H}, \mathrm{dd}, J=12.5,5.0 \mathrm{~Hz}$, $\mathrm{SCHH}), 3.10-3.17(1 \mathrm{H}, \mathrm{m}, \mathrm{SCH}), 3.23\left(2 \mathrm{H}, \mathrm{q}, J=6.0 \mathrm{~Hz}, \mathrm{C}(\mathrm{O}) \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.45(2 \mathrm{H}, \mathrm{t}, J=6.0 \mathrm{~Hz}$, $\mathrm{C}(\mathrm{O}) \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), $3.53\left(6 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NRR}\right.$ '), 3.58-3.64 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NRR}$), 3.82 (2 H , d, $J=6.0 \mathrm{~Hz}, \mathrm{NHCH}_{2} \mathrm{CO}_{2} \mathrm{H}$), $4.07\left(2 \mathrm{H}\right.$, br. s., $\left.\mathrm{NCH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{NH}\right), 4.15-4.18(1 \mathrm{H}, \mathrm{m}, \mathrm{SCHRCH}), 4.31-4.36(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{SCH}_{2} \mathrm{CH}\right), 6.06(1 \mathrm{H}$, br. s., $\mathrm{N} H), 6.07(1 \mathrm{H}$, br. s., $\mathrm{N} H), 7.15(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, 2 \times \mathrm{C}(\mathrm{Ar}) H), 7.44(1 \mathrm{H}, \mathrm{br}$. s., NH), $7.49(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, 2 \times \mathrm{C}(\mathrm{Ar}) H), 7.97(1 \mathrm{H}$, br. s., $\mathrm{N} H)$; $\delta_{\mathrm{C}}\left(126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 27.0,29.6,29.9$ $\left(\mathrm{SCHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 36.9\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CONH}\right), 40.5\left(\mathrm{C}(\mathrm{O}) \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 41.2\left(\mathrm{SCH}_{2}\right), 42.0\left(\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}\right), 48.3$, $51.8\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NRR}\right.$ ' 2 rotamers), 50.3, $54.9\left(\mathrm{NCH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{NH}, 2\right.$ rotamers), 57.1 (SCHRR'), $61.8\left(\mathrm{SCH}_{2} \mathrm{C}\right)$, 63.5 (SCHRC), $69.4,70.0,70.8,71.5,71.6\left(\mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2}\right.$, extra signals as a result of rotamers), 120.2, $120.3,130.2,130.6,133.6,143.4,143.7$ ($6 \times C(\mathrm{Ar})$, extra signals as a result of rotamers), $166.3(\mathrm{NHC}(\mathrm{O}) \mathrm{NH})$, $171.8(\mathrm{CC}(\mathrm{O}) \mathrm{N}), 173.1,174.4\left(\mathrm{CC}(\mathrm{O}) \mathrm{N}, 2 \mathrm{x}\right.$ rotamers), $176.4(\mathrm{CC}(\mathrm{O}) \mathrm{N}) ; \mathrm{HRMS}\left(\mathrm{ESI}^{+}\right) \mathrm{C}_{27} \mathrm{H}_{38} \mathrm{~N}_{8} \mathrm{NaO}_{8} \mathrm{~S}^{+}$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$calculated 657.2426; found 657.2428 .

6-(4-Azido-2,3,5,6-tetrafluorobenzoyl)-4,16-dioxo-20-((S,S,R)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)-9,12-dioxa-3,6,15-triazaicosan-1-oic acid, 12b

According to general procedure B: sodium hydroxide ($12 \mathrm{mg}, 0.30 \mathrm{mmol}$) and $\mathbf{6 b}(143 \mathrm{mg}, 0.19 \mathrm{mmol})$ were reacted to afford 12b ($114 \mathrm{mg}, 85 \%$) as a colourless gum; $\boldsymbol{v}_{\max }($ thin film $) 2929,2868(\mathrm{C}-\mathrm{H}), 2128,\left(\mathrm{~N}_{3}\right), 1646$ ($\mathrm{C}=\mathrm{O}$, amides, urea, acid); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right.$) $1.37-1.51\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{N}\right), 1.53-1.83(4 \mathrm{H}$, $\mathrm{m}, \mathrm{SCHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 2.18-2.30 ($\left.2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{N}\right), 2.72(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.5 \mathrm{~Hz}, \mathrm{SCHH}), 2.94$ ($1 \mathrm{H}, \mathrm{d}$, $\mathrm{J}=12.5 \mathrm{~Hz}, \mathrm{SCHH}), 3.14-3.26(1 \mathrm{H}, \mathrm{m}, \mathrm{SCH}), 3.34-3.41\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}(\mathrm{O}) \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.49-3.69(8 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2}$), $3.72-3.79,3.79-3.85\left(2 \mathrm{H}, 2 \mathrm{x} \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NRR}\right.$ ', 2 rotamers), 3.88, 4.01 ($1 \mathrm{H}, 2 \mathrm{x}$ br. s., $\left.\mathrm{NHCH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{OH}\right), 4.20,4.37\left(2 \mathrm{H}, 2 \mathrm{x}\right.$ br. s., $\mathrm{NCH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{NH}, 2$ rotamers), $4.28-4.35(1 \mathrm{H}, \mathrm{m}, \mathrm{SCHRCH})$, 4.48-4.54 ($1 \mathrm{H}, \mathrm{m}, \mathrm{SCH}_{2} \mathrm{CH}$); $\delta_{\mathrm{C}}\left(126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 27.0,29.6,29.9\left(\mathrm{SCHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 36.8$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CONH}\right), 40.4\left(\mathrm{C}(\mathrm{O}) \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 41.2\left(\mathrm{C}(\mathrm{O}) \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 41.8\left(\mathrm{SCH}_{2}\right), 42.1\left(\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}\right), 50.3$, 51.6, $53.5\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NRR}\right.$ ', NRR' $\mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{N}$, extra signals as a result of rotamers), 57.1 (SCHRR'), 61.8 $\left(\mathrm{SCH}_{2} \mathrm{C}\right), 63.5(\mathrm{SCHRC}), 69.2,69.9,70.8,71.3,71.4,71.6\left(\mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2}\right.$, extra signals as a result of rotamers), $166.2(\mathrm{~N} C(\mathrm{O}) \mathrm{N}), 170.4,170.6,172.7,173.0,176.3(4 \times \mathrm{CC}=\mathrm{O}$, extra signals as a result of rotamers); $\delta_{\mathrm{F}}\left(470 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right.$) -153.1 to $-152.9,-152.8$ to -152.6 ($2 \mathrm{~F}, 2 \mathrm{x} \mathrm{m}, 2$ rotamers), -143.4 to -143.2 , -143.1 to -142.8 ($2 \mathrm{~F}, 2 \mathrm{x} \mathrm{m}, 2$ rotamers); $\mathrm{HRMS}\left(\mathrm{ESI}^{+}\right) \mathrm{C}_{27} \mathrm{H}_{34} \mathrm{~F}_{4} \mathrm{~N}_{8} \mathrm{NaO}_{8} \mathrm{~S}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$calculated 729.2049; found 729.2062.

4,16-Dioxo-20-((S,S,R)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)-6-(4-(3-
(trifluoromethyl)-3H-diazirin-3-yl)benzoyl)-9,12-dioxa-3,6,15-triazaicosan-1-oic acid, 12c

According to general procedure B: sodium hydroxide ($20 \mathrm{mg}, 0.50 \mathrm{mmol}$) and $\mathbf{6 c}(208 \mathrm{mg}, 0.29 \mathrm{mmol})$ were reacted to afford 12c (206 mg, quantitative) as a colourless gum. $v_{\max }$ (thin film) $3296(\mathrm{~N}-\mathrm{H}), 2930(\mathrm{C}-\mathrm{H})$, $1628\left(\mathrm{C}=\mathrm{O}\right.$, amides, urea), $1151\left(\mathrm{CF}_{3}\right) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 1.34-1.50\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{N}\right)$ 1.52-1.81 (4 H, m, SCHCH2 $\mathrm{CH}_{2} \mathrm{CH}_{2}$), $2.20\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{N}\right), 2.71(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.0 \mathrm{~Hz}$, $\mathrm{SCH} H), 2.86-2.98(1 \mathrm{H}, \mathrm{m}, \mathrm{SCHH}), 3.14-3.26(1 \mathrm{H}, \mathrm{m}, \mathrm{SCH}), 3.34-3.41\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}(\mathrm{O}) \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.51-$ $3.69\left(8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2}\right), 3.73-3.85\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NRR}\right.$ '), $3.95,4.02(2 \mathrm{H}, 2 \mathrm{x}$ br. s., $\mathrm{NHCH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{OH}, 2$ rotamers $), 4.12,4.35\left(2 \mathrm{H}, 2 \mathrm{x}\right.$ br. s., $\mathrm{NCH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{NH}, 2$ rotamers), 4.27-4.33(1 H, m, SCHRCH), 4.45-4.54 (1 H, m, $\mathrm{SCH}_{2} \mathrm{CH}$), 7.33-7.39 (2 H, m, $2 \times \mathrm{C}(\mathrm{Ar}) H$), 7.57-7.71 (2 H, m, $2 \times \mathrm{C}(\mathrm{Ar}) H$); $\delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 26.9$, 29.5, $29.8\left(\mathrm{SCHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 29.5$ (app. d, $\left.J=39.9 \mathrm{~Hz}, C \mathrm{~N}_{2}\right), 36.8$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CONH}\right), 40.4\left(\mathrm{C}(\mathrm{O}) \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 41.2\left(\mathrm{SCH}_{2}\right), 42.0,42.1\left(\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}, 2\right.$ rotamers $), 48.1,51.6$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NRR}{ }^{\prime} 2\right.$ rotamers $50.1,54.5\left(\mathrm{NCH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{NH}, 2\right.$ rotamers), 57.1 (SCHRR'), $61.7\left(\mathrm{SCH}_{2} \mathrm{C}\right), 63.4$ (SCHRC), 69.2, 69.9, 70.7, 70.8, 71.3, $71.5\left(\mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2}\right.$, extra signals as a result of rotamers), 123.2 (app. d, $J=273.2 \mathrm{~Hz}, C F_{3}$), 127.8, 128.0, 128.9, 129.4, 131.4, 131.7, 138.7, 138.9 ($6 \mathrm{x} \mathrm{C}(\mathrm{Ar}$), extra signals as a result of rotamers), $166.1(\mathrm{~N} C(\mathrm{O}) \mathrm{N}), 171.4,172.9,173.1,173.6,173.7,176.2(4 \times \mathrm{C} C=\mathrm{O}$ extra signals as a result of rotamers); $\delta_{\mathrm{F}}\left(470 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)-66.9\left(3 \mathrm{~F}, \mathrm{~s}\right.$.); HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{C}_{29} \mathrm{H}_{39} \mathrm{~F}_{3} \mathrm{~N}_{7} \mathrm{O}_{8} \mathrm{~S}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$calculated 702.2527; found 702.2527

6-(3-(3-Methyl-3H-diazirin-3-yl)propanoyl)-4,16-dioxo-20-((S,S,R)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)-9,12-dioxa-3,6,15-triazaicosan-1-oic acid, 12d

According to general procedure B: sodium hydroxide ($20 \mathrm{mg}, 0.50 \mathrm{mmol}$) and $\mathbf{6 d}(243 \mathrm{mg}, 0.39 \mathrm{mmol})$ were reacted to afford $\mathbf{1 2 d}(237 \mathrm{mg}, 100 \%)$ as a colourless gum; $v_{\max }$ (thin film) $3293(\mathrm{~N}-\mathrm{H}), 2928(\mathrm{C}-\mathrm{H}), 1635$ $\left(\mathrm{C}=\mathrm{O}\right.$, amides, urea); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 1.00-1.06\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}\right), 1.38-1.52(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{N}\right), 1.53-1.82\left(6 \mathrm{H}, \mathrm{m}, \mathrm{SCHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{CN}_{2} \mathrm{CH}_{2}\right), 2.19-2.37\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH} 2 \mathrm{C}(\mathrm{O}) \mathrm{N}\right)$ $2.29,2.44\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{CN}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.73(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.5 \mathrm{~Hz}, \mathrm{SCHH}), 2.90-3.00(1 \mathrm{H}, \mathrm{m}, \mathrm{SCHH})$ 3.18-3.27 (1 H, m, SCH), 3.34-3.41 (2 H, m, $\left.\mathrm{C}(\mathrm{O}) \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$, 3.50-3.72 (10 H, m, $\mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NRR}^{\prime}$), 3.95, 3.99 (2 H, 2 x br. s., $\mathrm{NHCH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{OH}, 2$ rotamers), 4.14, 4.25 ($2 \mathrm{H}, 2 \mathrm{x}$ br. s., $\mathrm{NCH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{NH}, 2$ rotamers $)$, 4.30-4.37 ($1 \mathrm{H}, \mathrm{m}, \mathrm{SCHRCH}$), 4.48-4.55 (1 H, m, SCH ${ }_{2} \mathrm{CH}$); $\delta_{\mathrm{C}}(101$ $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta \mathrm{ppm} 19.8,19.9\left(\mathrm{CN}_{2} \mathrm{CH}_{3}, 2\right.$ rotamers $)$, 26.3, $26.4\left(\mathrm{CH}_{2} \mathrm{CN}_{2}, 2\right.$ rotamers $)$, 26.7, 29.4, 29.6 $\left(\mathrm{SCHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), \quad 28.1, \quad 28.3 \quad\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}_{2}\right), \quad 30.6, \quad 30.8 \quad\left(\mathrm{CN}_{2}\right), \quad 36.6 \quad\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CONH}\right), \quad 40.2$ $\left(\mathrm{C}(\mathrm{O}) \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 41.0\left(\mathrm{SCH}_{2}\right), 41.7\left(\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}\right), 50.0\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NRR}^{\prime}\right)$, 50.6, $53.1\left(\mathrm{NRR}^{\prime} \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{N}, 2\right.$ rotamers), 56.9 (SCHRR'), $61.5\left(\mathrm{SCH}_{2} \mathrm{C}\right), 63.2$ (SCHRC), 69.6, 70.0, 70.5, 70.6, 71.1, 71.2, 71.5
$\left(\mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2}\right.$, extra signals as a result of rotamers), $165.9(\mathrm{NC}(\mathrm{O}) \mathrm{N}), 171.5,171.8,172.7,172.8$, $174.9,174.9,176.0\left(4 \times \mathrm{CC}=\mathrm{O}\right.$, extra signals as a result of rotamers); $\mathrm{HRMS}\left(\mathrm{ESI}^{+}\right) \mathrm{C}_{25} \mathrm{H}_{42} \mathrm{~N}_{7} \mathrm{O}_{8} \mathrm{~S}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ calculated 600.2810 ; found 600.2830 .

6-(4-Benzoylbenzoyl)-4,16-dioxo-20-((S,S,R)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)-9,12-dioxa-3,6,15-triazaicosan-1-oic acid, 12e

According to general procedure B: sodium hydroxide ($38 \mathrm{mg}, 0.95 \mathrm{mmol}$) and $\mathbf{6 e}(458 \mathrm{mg}, 0.63 \mathrm{mmol})$ were reacted to afford 12e ($419 \mathrm{mg}, 95 \%$) as a colourless gum; $\mathrm{v}_{\text {max }}$ (thin film) 3305 (N-H), 2929, 2868 (C-H), 1643 ($\mathrm{C}=\mathrm{O}$, amides, urea, ketone); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 1.28-1.44\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{N}\right), 1.47-1.79$ $\left(4 \mathrm{H}, \mathrm{m}, \mathrm{SCHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.09-2.25\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{N}\right), 2.68(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.5 \mathrm{~Hz}, \mathrm{SCHH}), 2.81-2.95$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{SCHH}$), 3.07-3.20 ($1 \mathrm{H}, \mathrm{m}, \mathrm{SCH}$), 3.34-3.42 ($2 \mathrm{H}, \mathrm{m}, \mathrm{C}(\mathrm{O}) \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 3.47-3.71 ($8 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2}$), 3.75-3.86 ($2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NRR}$), 3.97, 4.04 ($2 \mathrm{H}, 2 \times$ br.s., $\mathrm{NHCH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{OH}, 2$ rotamers), $4.20,4.38$ ($2 \mathrm{H}, 2 \mathrm{x}$ br. s., $\mathrm{NCH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{NH}, 2$ rotamers), $4.22-4.31(1 \mathrm{H}, \mathrm{m}, \mathrm{SCHRCH}), 4.42-4.52$ (1 $\left.\mathrm{H}, \mathrm{m}, \mathrm{SCH}_{2} \mathrm{CH}\right), 7.43-8.03(9 \mathrm{H}, \mathrm{m}, 9 \mathrm{x} \mathrm{C}(\mathrm{Ar}) \mathrm{H}) ; \delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 26.9$, 29.5, 29.8 $\left(\mathrm{SCHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 36.8\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CONH}\right), 40.4\left(\mathrm{C}(\mathrm{O}) \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 41.2\left(\mathrm{SCH}_{2}\right), 42.1\left(\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}\right), 48.0$, $51.6\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NRR}\right.$ ' 2 rotamers) 50.1, $54.4\left(\mathrm{NCH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{NH}, 2\right.$ rotamers), 57.0 (SCHRR'), $61.6\left(\mathrm{SCH}_{2} \mathrm{C}\right)$, 63.3 (SCHRC), 69.2, 69.8, 70.7, 71.3, $71.4\left(\mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2}\right.$, extra signals as a result of rotamers), 128.1, 128.6, 129.8, 131.2, 134.2, 138.3, 139.6, 139.8, 140.9, 141.0 ($12 \times \mathrm{C}(\mathrm{Ar})$, extra signals as a result of rotamers), $166.0(\mathrm{~N} C(\mathrm{O}) \mathrm{N}), 171.3,172.8,173.0,173.7,173.9,176.0,(4 \times \mathrm{CC}=\mathrm{O}$ extra signals as a result of rotamers), $196.5(\mathrm{ArC}(\mathrm{O}) \mathrm{Ph})$; $\mathrm{HRMS}\left(\mathrm{ESI}^{+}\right) \mathrm{C}_{34} \mathrm{H}_{44} \mathrm{~N}_{5} \mathrm{O}_{9} \mathrm{~S}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$calculated 698.2854; found 698.2856.
N-(10-(4-Azidobenzoyl)-5,8,20-trioxo-24-((S,S,R)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)-13,16-dioxa-4,7,10,19-tetraazatetracosyl)-8-hydroxyquinoline-5-carboxamide, 1

According to general procedure C: 12a ($65 \mathrm{mg}, 0.10 \mathrm{mmol}$), $\mathrm{HBTU}(39 \mathrm{mg}, 0.10 \mathrm{mmol})$ and $23(37 \mathrm{mg}, 0.10$ $\mathrm{mmol})$ were reacted to afford $\mathbf{1}(47 \mathrm{mg}, 55 \%)$ as a pale yellow gum; $\mathrm{v}_{\max }$ (thin film) $3272(\mathrm{~N}-\mathrm{H}), 2932(\mathrm{C}-\mathrm{H})$, 2129, $2099\left(\mathrm{~N}_{3}\right), 1662$ ($\mathrm{C}=\mathrm{O}$, amides and urea); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 1.35-1.43(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{N}\right), 1.50-1.77\left(4 \mathrm{H}, \mathrm{m}, \mathrm{SCHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.80-1.92\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 2.18(2 \mathrm{H}$, $\left.\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH} \mathrm{H}_{2} \mathrm{C}(\mathrm{O}) \mathrm{N}\right), 2.70(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.5 \mathrm{~Hz}, \mathrm{SCH} H), 2.87-2.94(1 \mathrm{H}, \mathrm{m}, \mathrm{SCHH}), 3.12-3.21(1 \mathrm{H}$, $\mathrm{m}, \mathrm{SCH})$, 3.35-3.80 ($16 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 3.90-3.97 ($2 \mathrm{H}, \mathrm{m}$, $\mathrm{NHCH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{NH}$), 4.18-4.33 ($3 \mathrm{H}, \mathrm{m}, \mathrm{NRR}{ }^{\prime} \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{NH}, \mathrm{SCHRCH}$), 4.43-4.52 ($1 \mathrm{H}, \mathrm{m}, \mathrm{SCH}_{2} \mathrm{CH}$), $7.00-$ $7.10(3 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{C}(\mathrm{Ar}) H$, C(quinoline ring) $)$), 7.49-7.54 ($2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{C}(\mathrm{Ar}) H)$, 7.57-7.65 (1 H, m,

C (quinoline ring) H), $7.65-7.80\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(\right.$ quinoline ring) $H), 8.82-8.89(2 \mathrm{H}, \mathrm{m}, \mathrm{C}$ (quinoline ring) $H)$; $\delta_{\mathrm{C}}(126$ $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 26.9,29.5,29.8\left(\mathrm{SCHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 30.0\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 36.8\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CONH}\right), 37.6,37.9$ $\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 40.3\left(\mathrm{C}(\mathrm{O}) \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 41.1\left(\mathrm{SCH}_{2}\right), 43.9\left(\mathrm{CH}_{2} \mathrm{CONHCH}_{2} \mathrm{CH}_{2}\right), 48.0,51.2,52.0,54.7$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NRR}\right.$ ', 2 rotamers, NRR' $\mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{N}, 2$ rotamers), 57.0 (SCHRR '), $61.6\left(\mathrm{SCH}_{2} \mathrm{C}\right), 63.4$ (SCHRC), 69.7, 70.7, 71.3, $71.4\left(\mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2}\right)$, 110.9 (C (quinoline), 119.4, (CN_{3}), $123.7 C$ (quinoline), 128.2, $129.4(2 \times C($ quinoline $)), 130.4(2 \times C(\mathrm{Ar}) \mathrm{H}), 133.1(2 \times C(\mathrm{Ar}) \mathrm{H}), 136.2,139.5(2 \times C($ quinoline $)), 143.3$ ($C(\mathrm{Ar}) \mathrm{C}(\mathrm{O}) \mathrm{NRR}$ '), 149.5, 156.6 ($2 \times C(q u i n o l i n e)$), $166.1(\mathrm{NC}(\mathrm{O}) \mathrm{N}), 171.1,171.9,172.1,174.7,176.2$ (5 x $\mathrm{C}(\mathrm{O}) \mathrm{N})$; $\mathrm{HRMS}\left(\mathrm{ESI}^{+}\right) \mathrm{C}_{40} \mathrm{H}_{51} \mathrm{~N}_{11} \mathrm{NaO}_{9} \mathrm{~S}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$calculated 884.3484; found 884.3478 .
N-(10-(4-Azido-2,3,5,6-tetrafluorobenzoyl)-5,8,20-trioxo-24-((S,S,R)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)-13,16-dioxa-4,7,10,19-tetraazatetracosyl)-8-hydroxyquinoline-5carboxamide, 2

According to general procedure C: 12b ($73 \mathrm{mg}, 0.10 \mathrm{mmol}$), HBTU ($39 \mathrm{mg}, 0.10 \mathrm{mmol}$) and $23(37 \mathrm{mg}, 0.10$ $\mathrm{mmol})$ were reacted to afford $2(63 \mathrm{mg}, 68 \%)$ as a pale yellow gum; $v_{\max }($ thin film) $3293(\mathrm{~N}-\mathrm{H}), 2931,2865$ $(\mathrm{C}-\mathrm{H}), 2128,\left(\mathrm{~N}_{3}\right), 1638\left(\mathrm{C}=\mathrm{O}\right.$, amides and urea); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 1.36-1.49(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{N}\right), 1.50-1.91\left(6 \mathrm{H}, \mathrm{m}, \mathrm{SCHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 2.21(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{N}\right), 2.70(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.5 \mathrm{~Hz}, \mathrm{SCHH}), 2.92(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.5,5.0 \mathrm{~Hz}, \mathrm{SCHH}), 3.12-3.24(1 \mathrm{H}, \mathrm{m}$, $\mathrm{SCH}), 3.35-3.65\left(14 \mathrm{H}, \mathrm{m}, \mathrm{C}(\mathrm{O}) \mathrm{NH}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{2} \mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 3.67-3.99\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NRR}^{\prime}\right.$, $\left.\mathrm{NHCH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{NH}\right)$, 4.23-4.36 (3 H, m, NRR' $\left.\mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{NH}, \mathrm{SCHRCH}\right), 4.44-4.53\left(1 \mathrm{H}, \mathrm{m}, \mathrm{SCH}_{2} \mathrm{CH}\right)$, 7.07, $7.14(1 \mathrm{H}, 2 \mathrm{x} \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{C}$ (quinoline ring) H, 2 rotamers), $7.60(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.0,4.0 \mathrm{~Hz}), 7.70,7.78(1 \mathrm{H}, \mathrm{d}$, $\mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{C}$ (quinoline ring) H, 2 rotamers), $8.76-8.90\left(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{C}\right.$ (quinoline ring) H); $\delta_{\mathrm{C}}(126 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \quad 26.9, \quad 29.5, \quad 29.8 \quad\left(\mathrm{SCHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), \quad 29.9, \quad 30.3 \quad\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}, 2\right.$ rotamers $), \quad 36.8$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CONH}\right), 37.6,37.9\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 40.2,40.4\left(\mathrm{C}(\mathrm{O}) \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{O}, 2\right.$ rotamers $), 41.1\left(\mathrm{SCH}_{2}\right)$, 43.7, $43.9\left(\mathrm{CH}_{2} \mathrm{CONHCH}_{2} \mathrm{CH}_{2}, 2\right.$ rotamers $)$, 47.9, 51.3, 51.9, $53.6\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NRR}\right.$, 2 rotamers, $\mathrm{NRR}^{\prime} \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{N}, 2$ rotamers $), 57.1$ (SCHRR '), $61.6\left(\mathrm{SCH}_{2} C\right), 63.4$ (SCHRC), 69.1, 69.8, 70.7, 71.1, 71.3, $71.5,71.6\left(\mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2}\right.$ extra signals as a result of rotamers), 110.5 (C (quinoline)), $111.8\left(\mathrm{~m}, C\left(\mathrm{~N}_{3}\right)\right)$, 123.1 (m, $C(\mathrm{O}) \mathrm{NRR}^{\prime}$), 123.7, 125.2, 128.1, 128.3, 129.2, 129.4, 135.8, 139.7, 139.8 (6 x C (quinoline) extra signals as a result of rotamers), 141.0, 143.0, 145.1 ($3 \mathrm{x} \mathrm{m}, 4 \times C \mathrm{~F}$), 149.7, 156.8 ($2 \times C$ (quinoline)), 166.1 $(\mathrm{NC}(\mathrm{O}) \mathrm{N}), 170.6,170.9,171.1,171.2,171.3,171.7,176.2(5 \mathrm{xC}(\mathrm{O}) \mathrm{N}$, extra signals as a result of rotamers); $\delta_{\mathrm{F}}\left(470 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)-152.8$ to $-152.6(2 \mathrm{~F}, \mathrm{~m}),-143.3$ to $-143.1,-143.1$ to $-142.9(2 \mathrm{~F}, 2 \mathrm{x} \mathrm{m}$, as a result of rotamers); HRMS (ESI') $\mathrm{C}_{40} \mathrm{H}_{47} \mathrm{~F}_{4} \mathrm{~N}_{11} \mathrm{NaO}_{9} \mathrm{~S}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$calculated 956.3107; found 956.3092.

8-Hydroxy- N-(5,8,20-trioxo-24-((S,S,R)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)-10-(4-(3-(trifluoromethyl)-3H-diazirin-3-yl)benzoyl)-13,16-dioxa-4,7,10,19-
tetraazatetracosyl)quinoline-5-carboxamide, 3

According to general procedure C: 12c ($130 \mathrm{mg}, 0.19 \mathrm{mmol}$), $\mathrm{HBTU}(70 \mathrm{mg}, 0.19 \mathrm{mmol})$ and $23(68 \mathrm{mg}, 0.19$ mmol) were reacted to afford $3(56 \mathrm{mg}, 60 \%)$ as a pale yellow gum; $v_{\max }$ (thin film) $3294(\mathrm{~N}-\mathrm{H}), 2932,2871$ (C-H), 2129, 2099 (azide), $1631\left(\mathrm{C}=\mathrm{O}\right.$, amides and urea); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 1.33-1.47$ ($2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{N}\right), 1.48-1.76\left(4 \mathrm{H}, \mathrm{m}, \mathrm{SCHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.80-1.87\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 2.18(2 \mathrm{H}$, $\left.\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{N}\right), 2.70(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.5 \mathrm{~Hz}, \mathrm{SCHH}), 2.91(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.5,4.5 \mathrm{~Hz}, \mathrm{SCHH}), 3.13-$ $3.20(1 \mathrm{H}, \mathrm{m}, \mathrm{SCH}), 3.35-3.79\left(16 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 3.90,3.96(2 \mathrm{H}, 2 \mathrm{x}$ br. s., $\mathrm{NHCH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{NH}, 2$ rotamers), 4.17, 4.31 (2 H , br. s., NRR' $\mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{NH}, 2$ rotamers), 4.25-4.29 (1 H, $\mathrm{m}, \mathrm{SCHRCH}), 4.47-4.51\left(1 \mathrm{H}, \mathrm{m}, \mathrm{SCH}_{2} \mathrm{CH}\right), 7.08,7.12(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{C}$ (quinoline ring) H, 2 rotamers), 7.26-7.34 (2 H, m, $2 \mathrm{X} \mathrm{C}(\mathrm{Ar}) H), 7.50-7.80(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{C}(\mathrm{Ar}) H, 2 \times \mathrm{C}$ (quinoline ring) H), 8.75-8.89 (2 H, m, $2 \times \mathrm{C}(q u i n o l i n e ~ r i n g) H) ; \delta_{\mathrm{C}}\left(126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 26.8,29.5,29.8\left(\mathrm{SCHCH}_{2} \mathrm{CH}_{2} C \mathrm{H}_{2}\right), 29.4(\mathrm{q}, J=42.0 \mathrm{~Hz}$, $\left.C_{C F}\right)_{3}$, $30.1 \quad\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), \quad 36.8 \quad\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CONH}\right), \quad 37.7, \quad 38.0 \quad\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), \quad 40.3$ $\left(\mathrm{C}(\mathrm{O}) \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 41.1\left(\mathrm{SCH}_{2}\right), 43.6,43.9\left(\mathrm{CH}_{2} \mathrm{CONHCH}_{2} \mathrm{CH}_{2}, 2\right.$ rotamers $), 47.9,50.9,51.9,54.5$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NRR}\right.$ ', 2 rotamers, NRR' $\mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{N}, 2$ rotamers), 57.0 (SCHRR'), $61.6\left(\mathrm{SCH}_{2} \mathrm{C}\right), 63.4$ (SCHRC), $69.3,69.8,70.7,71.3,71.4\left(\mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2}\right.$ extra signals as a result of rotamers), 110.6 (C (quinoline)), $123.5\left(\mathrm{q}, J=275.6 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 123.7$ (C (quinoline)), 125.2 (C (quinoline)), 127.7, 127.9 ($C(\mathrm{Ar}), 2$ rotamers), 128.2 (C (quinoline) $)$, 128.7, $128.8(C(\mathrm{Ar}), 2 \mathrm{x}$ rotamers), 129.3 (C (quinoline)), $131.5(C(\mathrm{Ar})), 135.7$ (C (quinoline)), 138.6, 138.8 ($((\mathrm{Ar}), 2$ rotamers), 139.8 (C (quinoline)), 149.7 (C (quinoline)), 156.8 (C (quinoline)), $166.1(\mathrm{NC}(\mathrm{O}) \mathrm{N}), 171.2,171.4,171.5,171.8,173.6,174.0,176.2(5 \mathrm{x}(\mathrm{O}) \mathrm{N}$, extra signals as a result of rotamers); $\delta_{\mathrm{F}}\left(470 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)-66.81(3 \mathrm{~F}, \mathrm{~s}) ; \mathrm{HRMS}^{\left(\mathrm{ESI}^{+}\right)} \mathrm{C}_{42} \mathrm{H}_{51} \mathrm{~F}_{3} \mathrm{~N}_{10} \mathrm{NaO}_{9} \mathrm{~S}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$ calculated 951.3405; found 951.3408.

8-Hydroxy-N-(10-(3-(3-methyl-3H-diazirin-3-yl)propanoyl)-5,8,20-trioxo-24-((S,S,R)-2-
oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)-13,16-dioxa-4,7,10,19-
tetraazatetracosyl)quinoline-5-carboxamide, 4

According to general procedure C: 12d ($51 \mathrm{mg}, 0.09 \mathrm{mmol}$), HBTU ($32 \mathrm{mg}, 0.09 \mathrm{mmol}$) and $23(32 \mathrm{mg}, 0.09$ $\mathrm{mmol})$ were reacted to afford $4(43 \mathrm{mg}, 58 \%)$ as a pale yellow gum; $v_{\max }$ (thin film) $3277(\mathrm{~N}-\mathrm{H}), 2926,2858$ $(\mathrm{C}-\mathrm{H}), 1635\left(\mathrm{C}=\mathrm{O}\right.$, amides and urea); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 0.94-1.02\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}\right), 1.37-1.48(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{N}\right), 1.50-1.78\left(6 \mathrm{H}, \mathrm{m}, \mathrm{SCHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{CN}_{2} \mathrm{CH}_{2}\right), 1.80-1.94\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right)$, 2.16-2.26 ($\left.2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{N}\right)$, 2.36-2.47 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CN}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $2.70(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.5 \mathrm{~Hz}, \mathrm{SCHH}), 2.91$ (1 H, dd, J=12.5, $5.0 \mathrm{~Hz}, \quad \mathrm{SCH} H), \quad 3.12-3.26(1 \mathrm{H}, \quad \mathrm{m}, \quad \mathrm{SCH}), \quad 3.35-3.71 \quad(16 \mathrm{H}, \mathrm{m}$,
$\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 3.84-3.98\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NHCH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{NH}\right), 4.07,4.29(2 \mathrm{H}, 2 \mathrm{x}$ br. s., NRR' $\mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{NH}, 2$ rotamers $)$, $4.25-4.32(1 \mathrm{H}, \mathrm{m}, \mathrm{SCHRCH}), 4.42-4.55\left(1 \mathrm{H}, \mathrm{m}, \mathrm{SCH}_{2} \mathrm{CH}\right)$; $\delta_{\mathrm{C}}(126$ $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 19.9$, $20.0\left(\mathrm{CN}_{2} \mathrm{CH}_{3}, 2\right.$ rotamers $)$, 26.4, $26.5\left(\mathrm{CH}_{2} \mathrm{CN}_{2}, 2\right.$ rotamers $)$, 26.9, 29.5, 29.8 $\left(\mathrm{SCHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), \quad 28.3, \quad 28.4\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}_{2}\right), \quad 30.1 \quad\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), \quad 30.7, \quad 30.8 \quad\left(C \mathrm{~N}_{2}\right), \quad 36.8$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CONH}\right)$, 37.5 , $37.7\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CONH}, 2\right.$ rotamers $), 37.9,38.1\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right.$, 2 rotamers $)$, 40.2, $40.3\left(\mathrm{C}(\mathrm{O}) \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{O}, 2\right.$ rotamers $), 41.1\left(\mathrm{SCH}_{2}\right), 43.7,43.8\left(\mathrm{CH}_{2} \mathrm{CONHCH}_{2} \mathrm{CH}_{2}, 2\right.$ rotamers $), 47.9$, 50.5, 51.9, $53.3\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NRR}\right.$ ', 2 rotamers, NRR' $\mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{N}, 2$ rotamers), 57.0 (SCHRR '), $61.6\left(\mathrm{SCH}_{2} \mathrm{C}\right), 63.4$ (SCHRC), 69.8, 70.2, 70.7, 71.3, $71.7\left(\mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2}\right.$ extra signal as a result of rotamers), 110.6, 123.7, $125.4,128.2$, 129.3, 135.8, 139.9, 149.7, 156.8 (9 x C (quinoline)), 166.1 ($\mathrm{NC}(\mathrm{O}) \mathrm{N}), 171.3,171.4,171.5$, $171.9,172.5,175.1,175.6,176.2\left(5 \times \mathrm{C}(\mathrm{O}) \mathrm{N}\right.$, extra signals as a result of rotamers); HRMS (ESI $\left.{ }^{+}\right)$ $\mathrm{C}_{38} \mathrm{H}_{54} \mathrm{~N}_{10} \mathrm{NaO}_{9} \mathrm{~S}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$calculated 849.3688; found 849.3679.
N-(10-(4-Benzoylbenzoyl)-5,8,20-trioxo-24-((S,S,R)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-$4-\mathrm{yl})-13,16$-dioxa-4,7,10,19-tetraazatetracosyl)-8-hydroxyquinoline-5-carboxamide, 5

According to general procedure C: 12e ($57 \mathrm{mg}, 0.08 \mathrm{mmol}$), HBTU ($31 \mathrm{mg}, 0.08 \mathrm{mmol}$) and $23(29 \mathrm{mg}, 0.08$ mmol) were reacted to afford $5(47 \mathrm{mg}, 64 \%)$ as a pale yellow gum; $v_{\text {max }}$ (thin film) $3290(\mathrm{~N}-\mathrm{H}), 2936(\mathrm{C}-\mathrm{H})$, $1643\left(\mathrm{C}=\mathrm{O}\right.$, amides and urea); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 1.31-1.44\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{N}\right)$, 1.47-1.75 (4 $\mathrm{H}, \mathrm{m}, \mathrm{SCHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.77-1.92 ($2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), $2.17\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{N}\right), 2.68$ (1 H, d, J=12.5 Hz, SCHH), 2.89 (1 H, dd, J=12.5, 5.0 Hz, SCHH), 3.10-3.18 (1 H, m, SCH), 3.35-3.82 (16 $\mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 3.88-4.01 ($2 \mathrm{H}, \mathrm{m}, \mathrm{NHCH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{NH}$), 4.20-4.37 (3 H, m, NRR' $\left.\mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{NH}, \mathrm{SCHRCH}\right), 4.46\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.5,5.0 \mathrm{~Hz}, \mathrm{SCH}_{2} \mathrm{CH}\right.$), 7.04-7.09 (1 H, m, C(quinoline ring) H), 7.47-7.84 (11 H, m, $9 \times \mathrm{C}$ (benzophenone) H, $2 \times \mathrm{C}$ (quinoline ring) H), 8.76-8.86 (2 $\mathrm{H}, \mathrm{m}, 2 \times$ C (quinoline ring) H); $\delta_{\mathrm{C}}\left(126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 26.8,29.5,29.8\left(\mathrm{SCHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 30.1\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right)$, $36.7\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CONH}\right)$, 37.7, $38.0\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 40.3\left(\mathrm{C}(\mathrm{O}) \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$, $41.1\left(\mathrm{SCH}_{2}\right)$, 43.7, 43.9 $\left(\mathrm{CH}_{2} \mathrm{CONHCH}_{2} \mathrm{CH}_{2}, 2\right.$ rotamers $), 47.9,51.0,51.9,54.5\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NRR}\right.$, 2 rotamers, $\mathrm{NRR}^{\prime} \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{N}, 2$ rotamers), $57.0\left(\mathrm{SCHRR}\right.$ '), $61.6\left(\mathrm{SCH}_{2} \mathrm{C}\right), 63.4(\mathrm{SCHRC}), 69.3,69.8,70.7,71.3,71.5\left(\mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2}\right.$ extra signals as a result of rotamers), 110.6 (C (quinoline)), 123.7 (C (quinoline)), 125.3 (C (quinoline)), 128.0 (C (benzophenone)), $128.2 \quad(C$ (quinoline)), $\quad 128.5 \quad(C$ (benzophenone)), $129.2 \quad$ (C (quinoline)), 129.7 (C (benzophenone)), 131.1 (C (benzophenone)), 134.1 (C (benzophenone)), 135.7 (C (quinoline)), 138.4 (C (benzophenone)), 139.8, 139.9 (C (quinoline), C (benzophenone)), 140.7 (C (benzophenone)), 149.7 (C (quinoline)), $156.8(C($ quinoline $)$), $166.1(\mathrm{NC}(\mathrm{O}) \mathrm{N}), 171.2,171.8,171.9,174.4,176.2(5 \times \mathrm{C}(\mathrm{O}) \mathrm{N}$, extra signals as a result of rotamers), $197.5(\mathrm{ArC}(\mathrm{O}) \mathrm{Ph})$; $\mathrm{HRMS}\left(\mathrm{ESI}^{+}\right) \mathrm{C}_{47} \mathrm{H}_{56} \mathrm{~N}_{8} \mathrm{NaO}_{10} \mathrm{~S}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$calculated 947.3732; found 947.3739.

5-(N-(3-(4-Azido-N-(2-((2-methoxy-2-oxoethyl)amino)-2-
oxoethyl)benzamido) propyl)sulfamoyl)-2-(6-(diethylamino)-3-(diethyliminio)-3H-xanthen-9yl)benzenesulfonate, 7

A solution of $\mathbf{H}(33 \mathrm{mg}, 0.054 \mathrm{mmol}), 4$-azidobenzoic acid $(8.8 \mathrm{mg}, 0.054 \mathrm{mmol})$, paraformaldehyde (2.4 mg , 0.081 mmol) and methyl 2-isocyanoacetate ($10 \mu \mathrm{~L}, 0.054 \mathrm{mmol}$) in methanol (1 mL) was heated in the microwave $\left(100{ }^{\circ} \mathrm{C}, 20 \mathrm{~min}\right)$. The solvent was removed in vacuo and the resulting residue purified by flash column chromatography (eluent $0-10 \%$ methanol in dichloromethane) to afford 7 as a dark purple solid (27 $\mathrm{mg}, 56 \%) ; \mathrm{mp}>350^{\circ} \mathrm{C}$; $v_{\text {max }}$ (thin film) 3069, 2971, $2930(\mathrm{C}-\mathrm{H}), 2110,2102\left(\mathrm{~N}_{3}\right), 1750,1592 . \delta_{\mathrm{H}}(500 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}-d_{4}\right) 1.31\left(12 \mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz}, 4 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.79-1.86$, $1.88-1.97\left(2 \mathrm{H}, 2 \mathrm{x} \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, 2\right.$ rotamers), 2.86-2.95, 3.09-3.16 ($2 \mathrm{H}, 2 \mathrm{x} \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$, 2 rotamers), 3.42-3.50, 3.55-3.62(2 H, 2 x m , $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, 2$ rotamers), $3.64-3.72\left(8 \mathrm{H}, \mathrm{m}, 4 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.97,4.02\left(2 \mathrm{H}, 2 \mathrm{x}\right.$ br. s, $\mathrm{NCH}_{2} \mathrm{C}(\mathrm{O}), 2$ rotamers), 4.06, $4.27\left(2 \mathrm{H}, 2 \mathrm{x}\right.$ br. s, $\mathrm{NCH}_{2} \mathrm{C}(\mathrm{O}), 2$ rotamers $), 6.88-8.72(13 \mathrm{H}, \mathrm{m}, 13 \times \mathrm{C}(\mathrm{Ar}) H) . \delta_{\mathrm{C}}(126$ $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 12.8\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 28.1,29.6\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, 2\right.$ rotamers $), 41.5,42.0\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$, 2 rotamers $)$, $41.9\left(\mathrm{NCH}_{2} \mathrm{C}(\mathrm{O})\right), 46.0\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 46.8\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 54.8\left(\mathrm{NCH}_{2} \mathrm{C}(\mathrm{O})\right), 97.0,115.1,115.3,119.9$, 120.3, $127.8,129.5,130.0,132.6,133.8,135.5,143.3,143.7,146.0,147.3,157.2,157.9,159.4$ (aromatic carbons), $169.5,171.3,171.8,173.9,174.2$ (3 x C=O, 2 rotamers). HRMS (ESI^{+}) $\mathrm{C}_{42} \mathrm{H}_{48} \mathrm{~N}_{8} \mathrm{NaO}_{10} \mathrm{~S}_{2}{ }^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$ calculated 911.2827; found 911.2846.

Methyl 2-(2-(4-azido-N-(but-3-yn-1-yl)benzamido)acetamido)acetate 8

A solution of but-3-yn-1-amine ($43 \mu \mathrm{~L}, 0.52 \mathrm{mmol}$), 4-azidobenzoic acid ($84 \mathrm{mg}, 0.52 \mathrm{mmol}$), paraformaldehyde ($23 \mathrm{mg}, 0.77 \mathrm{mmol}$) and methyl 2-isocyanoacetate ($47 \mu \mathrm{~L}, 0.52 \mathrm{mmol}$) in methanol (1.5 mL) was heated in the microwave $\left(100{ }^{\circ} \mathrm{C}, 20 \mathrm{~min}\right)$. The solvent was removed in vacuo and the resulting residue purified by flash column chromatography (eluent $0-5 \%$ methanol in dichloromethane) to afford $\mathbf{8}$ as a pale yellow gum (131 mg, 73\%); $v_{\text {max }}$ (thin film) $3293(\mathrm{~N}-\mathrm{H}), 2928(\mathrm{C}-\mathrm{H}), 2127,2119\left(\mathrm{~N}_{3}\right), 1747,1625 . \delta_{\mathrm{H}}$ ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $2.38\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=2.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CCH}\right), 2.45-2.55,2.58-2.69\left(1 \mathrm{H}, 2 \mathrm{x} \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 3.53-$ 3.60, 3.64-3.73(1 H, $2 \mathrm{x} \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), $3.77\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $3.96-4.00$, $4.02-4.04\left(1 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{C}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{~N}\right)$, 4.14-4.18, 4.28-4.36(1 H, $\left.2 \times \mathrm{m}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{~N}\right), 7.10-7.25(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{C}(\mathrm{Ar}) H), 7.47-7.63(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{x}$
$\mathrm{C}(\mathrm{Ar}) H) . \delta_{\mathrm{H}}\left(126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 17.5,18.9\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}, 2\right.$ rotamers $), 41.9\left(\mathrm{C}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{~N}\right), 47.5$, 50.2 $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 49.0,54.0\left(\mathrm{C}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{~N}\right), 52.7\left(\mathrm{CH}_{3}\right), 71.3,72.3\left(\mathrm{CH}_{2} \mathrm{CCH}\right), 81.3,82.2\left(\mathrm{CH}_{2} \mathrm{CCH}\right), 120.2,130.0$, $130.1,133.3,143.5(C(\mathrm{Ar})$'s, rotamer peaks observed), 171.4, 171.6, 171.7, 174.0, 174.2 ($3 \times C=\mathrm{O}$, rotamer peaks observed); HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{NaO}_{4}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$calculated 366.1173; found 366.1172.
tert-Butyl (7-(4-benzoylbenzoyl)-5,17-dioxo-21-((S,S,R)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)-10,13-dioxa-4,7,16-triazahenicosyl)carbamate 9

According to general procedure A: 4-benzoylbenzoic acid ($160 \mathrm{mg}, 0.71 \mathrm{mmol}$), tert-butyl (3isocyanopropyl)carbamate ($130 \mathrm{mg}, 0.71 \mathrm{mmol}$), paraformaldehyde ($32 \mathrm{mg}, 1.06 \mathrm{mmol}$) and \mathbf{F} ($265 \mathrm{mg}, 0.71$ $\mathrm{mmol})$ were reacted to afford $9(334 \mathrm{mg}, 59 \%)$ as a colourless gum; $v_{\max }$ (thin film) $3306(\mathrm{~N}-\mathrm{H}), 2930,2867$ $(\mathrm{C}-\mathrm{H}), 1691,1648\left(\mathrm{C}=\mathrm{O}\right.$, ketone, amides and urea); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 1.32-1.50\left(11 \mathrm{H}, \mathrm{m},\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right.\right.$, $\mathrm{SCHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.52-1.79 (6 H, m, $\mathrm{SCHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$, $\mathrm{BocNHCH}_{2} \mathrm{CH}_{2}$), 2.10-2.25 (2 H, m, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{N}\right), 2.69(1 \mathrm{H}, \mathrm{d}, J=12.5 \mathrm{~Hz}, \mathrm{SCH} H), 2.86-2.95(1 \mathrm{H}, \mathrm{m}, \mathrm{SCHH}), 2.97-3.34(5 \mathrm{H}, \mathrm{m}, \mathrm{SCH}$, $\left.\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 3.35-3.41\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}(\mathrm{O}) \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right.$), $3.47-3.71$ ($8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2}$), 3.74-3.86 ($2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NRR}^{\prime}$), 4.12, $4.29\left(2 \mathrm{H}, 2 \mathrm{x} \mathrm{s}, \mathrm{NCH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{NH}\right)$, 4.23-4.32 (1 H, m, SCHRCH), 4.42-4.52 (1 H, m, $\mathrm{SCH}_{2} \mathrm{CH}$), 7.47-7.89 ($9 \mathrm{H}, \mathrm{m}, 9 \times \mathrm{C}(\mathrm{Ar}) H$); $\delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 25.9,28.5,28.8$ $\left(\mathrm{SCHCH} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 27.0,28.0\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}, 2 \text { rotamers }\right), 29.8,30.0\left(\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}, 2 \text { rotamers }\right), 35.8 ~}^{2}\right.$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CONH}\right), 36.7,36.9,37.5,37.8\left(\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}, 2\right.$ rotamers $), 39.4\left(\mathrm{C}(\mathrm{O}) \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 40.2$ $\left(\mathrm{SCH}_{2}\right), 47.0,50.7\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NRR} ' 2\right.$ rotamers), 49.4, $53.4\left(\mathrm{NCH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{NH}, 2\right.$ rotamers), 56.1 (SCHRR'), $60.6\left(\mathrm{SCH}_{2} \mathrm{C}\right), 62.4(\mathrm{SCHRC}), 68.7,69.0,69.8,70.4,70.6\left(\mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2}\right.$, extra signals as a result of rotamers), $79.0\left(C\left(\mathrm{CH}_{3}\right)_{3}\right), 127.0(C(\mathrm{Ar})), 127.7(C(\mathrm{Ar})), 128.8(C(\mathrm{Ar})), 130.2(C(\mathrm{Ar})), 133.2(C(\mathrm{Ar})), 137.4$ $(C(\mathrm{Ar})), 138.7,138.8(C(\mathrm{Ar}), 2$ rotamers $), 140.1,140.2(C(\mathrm{Ar}), 2$ rotamers $), 165.0(\mathrm{NHC}(\mathrm{O}) \mathrm{NH}), 169.7,169.9$ $(\mathrm{C}(\mathrm{O}) \mathrm{NH}, 2$ rotamers $), 172.7,173.0((\mathrm{C}(\mathrm{O}) \mathrm{NH}, 2$ rotamers $)), 175.0(\mathrm{C}(\mathrm{O}) \mathrm{NH}), 196.4,196.5(\mathrm{CC}(\mathrm{O}) \mathrm{C})$; HRMS (ESI $) \mathrm{C}_{40} \mathrm{H}_{56} \mathrm{~N}_{6} \mathrm{NaO}_{9} \mathrm{~S}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$calculated 819.3722; found 819.3697.
N-(2-((3-Aminopropyl)amino)-2-oxoethyl)-4-benzoyl-N-(2-(2-(2-(5-((S,S,R)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanamido)ethoxy)ethoxy)ethyl)benzamide, 10

Trifluoroacetic acid (0.6 mL) was added to $9(334 \mathrm{mg}, 0.420 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and the reaction mixture was stirred for 2 h . The solvent was removed in vacuo and the residual trifluoroacetic acid was azeotroped with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$ to afford $\mathbf{1 0}$ (340 mg , quant.) as a colourless gum; $v_{\text {max }}$ (thin film) 3286 $(\mathrm{N}-\mathrm{H}), 2931(\mathrm{C}-\mathrm{H}), 1650\left(\mathrm{C}=\mathrm{O}\right.$, ketone, amides and urea) ; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 1.36-1.48(2 \mathrm{H}, \mathrm{m}$,
$\mathrm{SCHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.52-1.77 (4 H, m, SCHCH $\mathrm{SH}_{2} \mathrm{CH}_{2}$), 1.79-1.96 (2 H, m, NHCH $\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{NH}$), 2.20 (2 $\left.\mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{N}\right), 2.71(1 \mathrm{H}, \mathrm{d}, J=13.0 \mathrm{~Hz}, \mathrm{SCHH}), 2.89-3.07(3 \mathrm{H}, \mathrm{m}, \mathrm{SCHH}$, $\left.\mathrm{C}(\mathrm{O}) \mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.14-3.24(1 \mathrm{H}, \mathrm{m}, \mathrm{SCH}), 3.35-3.46\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{+}, \mathrm{C}(\mathrm{O}) \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$, 3.53-3.84 ($10 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NRR}$ '), 4.15, 4.27 ($2 \mathrm{H}, 2 \mathrm{x} \mathrm{s}, \mathrm{NCH} \mathrm{N}_{2} \mathrm{C}(\mathrm{O}) \mathrm{NH}, 2$ rotamers), 4.28$4.33(1 \mathrm{H}, \mathrm{m}, \mathrm{SCHRCH}), 4.50\left(1 \mathrm{H}, \mathrm{dd}, J=7.3,4.9 \mathrm{~Hz}, \mathrm{SCH}_{2} \mathrm{CH}\right), 7.53-7.90(9 \mathrm{H}, \mathrm{m}, 9 \mathrm{H}, \mathrm{m}, 9 \mathrm{x} \mathrm{C}(\mathrm{Ar}) H) ; \delta_{\mathrm{C}}$ ($\left.126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 27.0,29.6,29.9\left(\mathrm{SCHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 29.1\left(\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 36.9\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CONH}\right)$, $37.0,38.3\left(\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 40.4\left(\mathrm{C}(\mathrm{O}) \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 41.2\left(\mathrm{SCH}_{2}\right), 48.1,52.0\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NRR}\right.$, 2 rotamers), 50.7, $54.4\left(\mathrm{NCH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{NH}, 2\right.$ rotamers), 57.2 (SCHRR '), $61.8\left(\mathrm{SCH}_{2} \mathrm{C}\right), 63.5$ (SCHRC), 69.8, 70.2, $70.8,71.5,71.7\left(\mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2}\right.$, extra signals as a result of rotamers), 128.0, 128.7, 129.8, 131.2, 134.3, $138.5,140.1,141.0(12 \times \mathrm{C}(\mathrm{Ar})$), 166.2, 172.2, 174.3, 176.3 (4 x $C(\mathrm{O}) \mathrm{N}), 197.8(\mathrm{CC}(\mathrm{O}) \mathrm{C}) ;$ HRMS (ESI $)$ $\mathrm{C}_{35} \mathrm{H}_{49} \mathrm{~N}_{6} \mathrm{O}_{9} \mathrm{~S}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$calculated 697.3368; found 697.3378.

Bicyclo[6.1.0]non-4-yn-9-ylmethyl
(7-(4-benzoylbenzoyl)-5,17-dioxo-21-((S,S,R)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)-10,13-dioxa-4,7,16-triazahenicosyl)carbamate, 11

Bicyclo[6.1.0]non-4-yn-9-yl (2,5-dioxopyrrolidin-1-yl) carbonate ($25 \mathrm{mg}, 0.086 \mathrm{mmol}$), $\mathbf{1 0}$ ($70 \mathrm{mg}, 0.086$ $\mathrm{mmol})$ and triethylamine ($0.036 \mathrm{~mL}, 0.258 \mathrm{mmol}$) were dissolved in DMF (2 mL) and stirred for 12 h before the solvent was removed in vacuo. The residue was dissolved in $\mathrm{CH}_{3} \mathrm{Cl}(10 \mathrm{~mL})$, washed with aqueous sat. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$, water $(10 \mathrm{~mL})$, dried over MgSO_{4} and concentrated in vacuo. Purification by flash column chromatography (eluent $20-100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ methanol $/ \mathrm{NH}_{3}(\mathrm{aq})-90: 10: 1$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded 11 as a colourless gum (52 mg, 69\%); $v_{\text {max }}$ (thin film) $3295(\mathrm{~N}-\mathrm{H}), 2925,2859(\mathrm{C}-\mathrm{H}), 1692,1649$ (C=O, ketone, amides and urea); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 0.86-0.96(2 \mathrm{H}, \mathrm{m}, \mathrm{C}(3) H \mathrm{C}(4) H), 1.33-1.47$ (3 H, m, $\left.\mathrm{SCHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{C}(2) H\right), 1.48-1.79\left(8 \mathrm{H}, \mathrm{m}, \mathrm{C}(5) \mathrm{H} H, \mathrm{C}(10) \mathrm{H} H, \mathrm{SCHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right)$, 2.15-2.25 ($\left.8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{N}, \mathrm{C}(9) H_{2}, \mathrm{C}(6) H_{2}, \mathrm{C}(5) H \mathrm{H}, \mathrm{C}(10) H \mathrm{H}\right), 2.69(1 \mathrm{H}, \mathrm{d}, J=12.5 \mathrm{~Hz}, \mathrm{SCH} H)$, 2.92 ($1 \mathrm{H}, \mathrm{dd}, J=5.0,12.5 \mathrm{~Hz}, \mathrm{SCHH}), 3.04-3.31\left(5 \mathrm{H}, \mathrm{m}, \mathrm{SCH}, \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 3.36-3.40(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}(\mathrm{O}) \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.52-3.85\left(10 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2}\right.$ NRR'), 4.05-4.33(5 H, m, C(1)H2, $\left.\mathrm{NCH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{NH}, \mathrm{SCHRCH}\right), 4.48\left(1 \mathrm{H}, \mathrm{m}, \mathrm{SCH}_{2} \mathrm{CH}\right), 7.56-7.90(9 \mathrm{H}, \mathrm{m}, 9 \times \mathrm{C}(\mathrm{Ar}) H) ; \delta_{\mathrm{C}}\left(101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ $18.0(\mathrm{C}(1)), 20.4\left(\mathrm{C}(\mathrm{C}(3), \mathrm{C}(4)), 21.0(\mathrm{C}(5), \mathrm{C}(10)), 25.9,28.5,28.8\left(\mathrm{SCHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 29.2(\mathrm{C}(6), \mathrm{C}(9))\right.$, $29.8\left(\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 35.8\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CONH}\right), 36.6,36.8,37.9,38.1\left(\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}, 2\right.$ rotamers), $39.4\left(\mathrm{C}(\mathrm{O}) \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 40.1\left(\mathrm{SCH}_{2}\right), 47.0,50.7\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NRR}\right.$ ' 2 rotamers $)$, 49.4, $53.4\left(\mathrm{NCH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{NH}\right.$, 2 rotamers), $56.0(S C H R R '), 60.6\left(\mathrm{SCH}_{2} C\right), 62.4$ (SCHRC), 62.7 ($\mathrm{C}(1)$), 68.7, 69.0, 69.7, 70.3, 70.5, 70.5 $\left(\mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2}\right.$, extra signals as a result of rotamers), $98.6(\mathrm{C}(8), \mathrm{C}(7)), 126.9,127.6,128.7,130.1$, 133.2, 137.4, 138.7, 140.1 (12 x C(Ar)), $158.3(\mathrm{OC}(\mathrm{O}) \mathrm{NH}), 165.0(\mathrm{NHC}(\mathrm{O}) \mathrm{NH}), 169.9,172.8,175.1$ (3 X $\mathrm{CC}(\mathrm{O}) \mathrm{N}), 196.5(\mathrm{CC}(\mathrm{O}) \mathrm{C}) ; \mathrm{HRMS}\left(\mathrm{ESI}^{+}\right) \mathrm{C}_{46} \mathrm{H}_{60} \mathrm{~N}_{6} \mathrm{NaO}_{9} \mathrm{~S}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$calculated 895.4009; found 895.4053.

Production of PHD2 ${ }_{181-426 .}$

Human PHD ${ }_{181-426}$ (termed PHD2 throughout) was produced in E. coli BL21(DE3) and purified by cation exchange and size exclusion chromatography, as described. ${ }^{7}$ Apo-PHD2 was obtained, after cation exchange chromatography, by incubation with EDTA.

$K_{\text {D }}$ determinations by NMR

Solvent water relaxation experiments were conducted using a Bruker Avance II 500 MHz spectrometer equipped with a 5 mm inverse ${ }^{1} \mathrm{H} /{ }^{19} \mathrm{~F}\left({ }^{13} \mathrm{C}\right)$ TXI probe. All experiments were conducted at 298 K .3 mm MATCH tubes (Bruker) were used and the sample volume was $160 \mu \mathrm{~L}$.

Samples contained $50 \mu \mathrm{M}$ apo-PHD $2_{181-426}, 50 \mu \mathrm{M} \mathrm{MnCl} 2,125 \mathrm{mM} \mathrm{NaCl}, 0.02 \% \mathrm{NaN}_{3}$ and 50 mM Tris-D11 (pH 7.5) dissolved in $12.5 \% \mathrm{H}_{2} \mathrm{O}$ and $87.5 \% \mathrm{D}_{2} \mathrm{O}$. The titratant stock solutions of probes $\mathbf{1 - 5}(25 \mathrm{mM})$ were prepared in DMSO / DMSO-D6, which was then titrated directly into the NMR tube (typically $0.2 \mu \mathrm{~L}$ to 0.5 $\mu \mathrm{L}$ per addition) using a $1 \mu \mathrm{~L}$ plunger-in-needle syringe (SGE). Changes in the bulk water relaxation rate ($1-$ $R_{1} / R_{1(0)}$, in which R_{1} is the longitudinal relaxation rate of the bulk water in the presence of ligands and $R_{1(0)}$ is the longitudinal relaxation rate of the bulk water in the absence of ligands) was plotted against the titrated ligand concentrations to obtain K_{D} 's (Figure S1).

Experimental procedures were carried out as described. ${ }^{8}$

Compound 1, $K_{\mathrm{D}}=19 \mu \mathrm{M}$

Compound 3, $K_{\mathrm{D}}=126 \mu \mathrm{M}$

Compound 2, $K_{\mathrm{D}}=28 \mu \mathrm{M}$

Compound 5, $K_{\mathrm{D}}=25 \mu \mathrm{M}$

Compound 4, $K_{\mathrm{D}}=8 \mu \mathrm{M}$

Figure S1. NMR-based K_{D} value determinations with PHD2 and probes 1-5 using solvent water relaxation. ${ }^{8}$ Data represent mean intensities of all repeats ($n=3$), error bars show 1 standard deviation.

Protein Electrospray Ionization Mass Spectrometry

Intact protein masses were recorded by liquid chromatography / mass spectrometry (LC/MS) using a 6530QTof (Agilent) single quadrupole mass spectrometer, interfaced with a Agilent 1100 liquid chromatography and sample handling system.

The protein sample ($5 \mu \mathrm{M}, 5 \mu \mathrm{~L}$) was injected onto a Chromolith FastGradient RP-18 $2 \times 50 \mathrm{~mm}$ Monolithic reverse phase HPLC column and eluted at $0.4 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$ using a gradient system from Solvent A (water, $0.1 \%(\mathrm{v} / \mathrm{v})$ formic acid) to Solvent B (methanol, $0.1 \%(\mathrm{v} / \mathrm{v})$ formic acid) according to the following conditions:

Time (Min)	$\% \mathrm{~A}$	$\% \mathrm{~B}$	Flow Rate $\left(\mathrm{mL} . \mathrm{min}^{-1}\right)$
$0: 00$	95	5	0.4
$1: 00$	95	5	0.4
4	0	100	0.4
4.5	0	100	1
5	95	5	1
5.1	95	5	1

The eluent was injected directly into the mass spectrometer. The following MS parameters were used: Vcap 3500; Desolvation temperature $-350^{\circ} \mathrm{C}$; Drying gas flow -10 1.hour ${ }^{-1}$; Desolvation gas flow $\left(\mathrm{N}_{2}\right)-20$ 1.hour ${ }^{-1}$. Data acquisition was done in 2 GHz standard high gain mode.

Sodium formate was used to calibrate the instrument. Spectra were processed using Mass Hunter Qualitative analysis ${ }^{\text {TM }}$ B06.00 (Agilent) with the Maximum Entropy method (MaxEnt1) employed.

PHD2 crosslinking time-course

PHD2 $(5 \mu \mathrm{M}), \mathrm{MnCl}_{2}(10 \mu \mathrm{M})$ and probe (at twice K_{D}) in Tris buffer (50 mM Tris, $100 \mathrm{mM} \mathrm{NaCl}[\mathrm{pH} 7.5]$) were incubated at room temperature for 20 min before being irradiated (310 nm or $350 \mathrm{~nm}, 4^{\circ} \mathrm{C}$) for the required time using a CaproBox ${ }^{\mathrm{TM}}$. Irradiation times longer than 5 min were carried out in 5 min pulses separated by 1 min intervals to prevent sample warming. Samples were analysed by liquid chromatographymass spectrometry. Percentage crosslinking was calculated from the ratio of the heights of the modified and unmodified protein peaks in the deconvoluted mass spectrum and plotted against time (Figure 3 (310 nm), Figure S2 (350 nm)).

Figure S2. Percentage of crosslinked PHD2 upon irradiation (350 nm) in the presence of probes 1-5, as determined by ESI mass spectrometry. Data represent mean intensities of all repeats ($n=3$), error bars show 1 standard deviation.

Time-course of PHD2 crosslinking at 310 nm

Tables reporting the intensities of modified and unmodified PHD2 peaks in the deconvoluted mass spectra obtained after irradiation (310 nm) of PHD2 in the presence of $\mathrm{Mn}^{\mathrm{II}}$ and probes $\mathbf{1 - 5}$ (Table S1-5). The heights of the 20 most intense peaks in the range 25000 to 30000 Da were extracted and all others masses assigned a height of zero. Peaks corresponding to crosslinked protein were not observed without irradiation, at $\mathrm{T}=0$.

Table S1. Probe 1. PHD2 mass $=27644 ;$ crosslinked PHD2 mass $=28477\left(\right.$ PHD2 $\left.+\mathbf{1}-\mathrm{N}_{2}\right)$

Time	Run A		Run B		Run C		Mean		Mean
/min	PHD2	PHD2+1	PHD2	PHD2+1	PHD2	PHD2+1	PHD2	PHD2+1	\% crosslinked
1	77033599	6235938	86091948	6137505	92952424	5024645	85359324	5799362.7	6.4
2	62054543	11509134	63768391	11817925	76519094	10773525	67447343	11366861	14.4
5	47475799	15077139	49802718	15920622	58037197	16586288	51771905	15861350	23.5
10	42754510	15671272	44207674	16405514	50982483	18051443	45981556	16709410	26.7
20	40429389	15758190	38969835	15346531	43830170	16626102	41076465	15910274	27.9
40	32545083	13843349	33865921	14252383	37866671	15455552	34759225	14517095	29.5

Table S2. Probe 2. PHD2 mass $=27644 ;$ crosslinked PHD2 mass $=28549\left(\right.$ PHD2 $\left.+\mathbf{2}-\mathrm{N}_{2}\right)$

| Time | Run A | | Run B | | Run C | | Mean | | Mean |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| /min | PHD2 | PHD2+2 | PHD2 | PHD2+2 | PHD2 | PHD2+2 | PHD2 | PHD2+2 | \% crosslinked |
| 1 | 56643851 | 13971203 | 52506926 | 14961637 | 60697565 | 13672316 | 56616114 | 14201719 | 20.1 |
| 2 | 35633148 | 17127552 | 34700882 | 18524283 | 46621037 | 17767219 | 38985022 | 17806351 | 31.4 |
| 5 | 22270087 | 19016506 | 23018368 | 19664533 | 29986984 | 20553594 | 25091813 | 19744878 | 44.0 |
| 10 | 16980192 | 18344998 | 17229725 | 19916389 | 21890124 | 20185896 | 18700014 | 19482428 | 51.0 |
| 20 | 15382503 | 19281739 | 15527540 | 19566129 | 18284290 | 21788822 | 16398111 | 20212230 | 55.2 |
| 40 | 13044445 | 15568728 | 14210907 | 17694043 | 16158892 | 19939752 | 14471415 | 17734174 | 55.0 |

Table S3. Probe 3. PHD2 mass $=27644$; crosslinked PHD2 mass $=28544\left(\right.$ PHD2 $\left.+\mathbf{3}-\mathrm{N}_{2}\right)$

Time	Run A		Run B		Run C		Mean		Mean
/min	PHD2	PHD2+3	PHD2	PHD2+3	PHD2	PHD2+3	PHD2	PHD2+3	\% crosslinked
1	19143505	0	21805689	0	25098962	0	22016052	0	0
2	35509258	0	28109778	0	22988892	0	28869309	0	0
5	32228532	105256	24105134	88544	31009060	51893	29114242	81897	0.3
10	26400919	365991	11922003	40403	27791368	484660	22038097	297018	1.3
20	6357273	117689	26519598	461854	22492697	312072	18456523	297205	1.6
40	16481329	529714	15075757	465833	16392535	558273	15983207	517940	3.1

Table S4. Probe 4. PHD2 mass $=27644 ;$ crosslinked PHD2 mass $=28442\left(\right.$ PHD $\left.2+4-\mathrm{N}_{2}\right)$

Time /min	Run A		Run B		Run C		Mean		Mean \% crosslinked
	PHD2	PHD2+4	PHD2	PHD2+4	PHD2	PHD2+4	PHD2	PHD2+4	
1	100190593		$1.12 \mathrm{E}+08$	3848459	14444481	2473693	75682094	3161076	4.0
2	109111449	3197485	$1.1 \mathrm{E}+08$	4942616	33220718	1880214	84108238	3340105	3.8
5	105795831	8633412	$1.12 \mathrm{E}+08$	8343240	10963314	1484740	76242587	6153797.3	7.5
10	89324457	13975257	88341747	13418798	8676872	1576063	62114359	9656706	13.5
20	72411851	20942422	78626252	18317894	5855393	1154381	52297832	13471566	20.5
40	43179982	23748592	66365538	18384477	6426072	3525429	38657197	15219499	28.2

Table S5. Probe 5. PHD2 mass $=27644 ;$ crosslinked PHD2 mass $=28568($ PHD $2+5)$

Time /min	Run A		Run B		Run C		Mean		Mean
	PHD2	PHD2+5	PHD2	PHD2+5	PHD2	PHD2+5	PHD2	PHD2+5	\% crosslinked
1	53129492	0	70738596	0	73508064	0	65792051	0	0
2	49762652	1131233	58449698	0	86859203	0	65023851	377078	0.6
5	50739525	1874630	69624952	2299397	84257139	2262340	68207205	2145456	3.1
10	46016326	2726497	51489272	2327900	70608989	4245311	56038196	3099903	5.2
20	39085318	3744646	42142189	4253007	64292099	5037361	48506535	4345005	8.2
40	28560425	4105575	31158058	4030993	41794046	5623791	33837510	4586786	11.9

Time-course of PHD2 crosslinking at 350 nm

Tables reporting the intensities of modified and unmodified PHD2 peaks in the deconvoluted mass spectra obtained after irradiation (350 nm) of PHD2 in the presence of $\mathrm{Mn}^{\mathrm{II}}$ and probes $\mathbf{1 - 5}$ (Table S6-10). The heights of the 20 most intense peaks in the range 25000 to 30000 Da were extracted and all others masses assigned a height of zero. Peaks corresponding to crosslinked protein were not observed without irradiation, at $\mathrm{T}=0$.

Table S6. Probe 1. PHD2 mass $=27644 ;$ crosslinked PHD2 mass $=28477\left(\right.$ PHD2 $\left.+1-\mathrm{N}_{2}\right)$

Time	Run A		Run B		Run C		Mean		Mean
/min	PHD2	PHD2+1	PHD2	PHD2+1	PHD2	PHD2+1	PHD2	PHD2+1	\% crosslinked
1	16812316	138888	14653830	385001	16513825	289956	15993324	271282	1.7
2	15116865	406061	13289616	502733	15536668	436422	14647716	448405	3.0
5	12295164	942147	12005202	924818	11756118	853344	12018828	906770	7.0
10	9057162	1140955	8749051	1121262	8497359	1145839	8767857	1136019	11.5
20	8317823	1290106	8163044	1310966	7646308	1268979	8042392	1290017	13.8
40	8126434	1196329	8126434	1196329	7837541	1308804	8030136	1233821	13.3

Table S7. Probe 2. PHD2 mass $=27644 ;$ crosslinked PHD2 mass $=28549\left(\right.$ PHD $\left.2+\mathbf{2}-\mathrm{N}_{2}\right)$

| Time | Run A | | Run B | | Run C | | Mean | | Mean |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| /min | PHD2 | PHD2+2 | PHD2 | PHD2+2 | PHD2 | PHD2+2 | PHD2 | PHD2+2 | \% crosslinked |
| 1 | 8211903 | 609216 | 7923838 | 647520 | 8232816 | 651591 | 8122852 | 636109 | 7.3 |
| 2 | 7331316 | 761363 | 6709374 | 758952 | 7081139 | 779502 | 7040610 | 766606 | 9.8 |
| 5 | 7036098 | 825497 | 6458919 | 827412 | 6378676 | 766962 | 6624564 | 806624 | 10.9 |
| 10 | 7271772 | 782282 | 6511159 | 762414 | 6408374 | 692463 | 6730435 | 745720 | 10.0 |
| 20 | 7430880 | 608948 | 7509881 | 622196 | 6794139 | 649351 | 7244967 | 626832 | 8.0 |
| 40 | 7588098 | 547569 | 7665174 | 541088 | 7544155 | 570170 | 7599142 | 552942 | 6.8 |

Table S8. Probe 3. PHD2 mass $=27644 ;$ crosslinked PHD2 mass $=28544\left(\right.$ PHD2 $\left.+\mathbf{3}-\mathrm{N}_{2}\right)$

Time	Run A		Run B		Run C		Mean		Mean
/min	PHD2	PHD2+3	PHD2	PHD2+3	PHD2	PHD2+3	PHD2	PHD2+3	\% crosslinked
1	10768522	0	16753046	153197	17015629	180297	14845732	111165	0.7
2	9263327	56269	16549733	225892	16996976	292012	14270012	191391	1.3
5	2633086	0	16011537	357493	16058031	371896	11567551	243130	2.1
10	5549984	80017	14834270	359357	14483168	383260	11622474	274211	2.3
20	14600312	324469	14266145	386142	15317667	406746	14728041	372452	2.5
40	14238121	350429	13139176	354079	14804178	381159	14060492	361889	2.5

Table S9. Probe 4. PHD2 mass $=27644 ;$ crosslinked PHD2 mass $=28442\left(\right.$ PHD $\left.2+4-\mathrm{N}_{2}\right)$

Time	Run A		Run B		Run C		Mean		Mean
/min	PHD2	PHD2+4	PHD2	PHD2+4	PHD2	PHD2+4	PHD2	PHD2+4	\%crosslinked
1	17797984	212530	16794764	653236	17551066	507538	17381271	457768	2.6
2	16028543	815918	14522152	1012350	16707998	815921	15752898	881396	5.3
5	14149188	1680832	14974340	1984281	14885125	1690189	14669551	1785101	10.8
10	14021915	2478107	12884050	2364314	14523887	2443946	13809951	2428789	15.0
20	13589883	2787517	13134416	2676636	13126587	2744964	13283629	2736372	17.1
40	13277356	2848601	10908524	2335008	11668740	2574748	11951540	2586119	

Table S10. Probe 5. PHD2 mass $=27644$; crosslinked PHD2 mass $=28568($ PHD2 +5$)$

Time /min	Run A		Run B		Run C		Mean		Mean \% crosslinked
	PHD2	PHD2+5	PHD2	PHD2+5	PHD2	PHD2+5	PHD2	PHD2+5	
1	1254876	0	16579720	0	17161193	286426	11665263	95475	0.8
2	1004346	0	17740185	282245	18919245	323304	12554592	201850	1.6
5	5824683	0	17316928	289503	16705638	291115	13282416	193539	1.4
10	4626984	0	16928664	310836	16263827	269568	12606492	193468	1.5
20	4745577	30752	15728825	354879	15923761	331767	12132721	239133	1.9
40	5000432	67017	14366518	417349	13528612	385231	10965187	289866	2.6

PHD2 crosslinking controls

Tables reporting the intensities of modified and unmodified PHD2 peaks in the deconvoluted mass spectra obtained after irradiation ($310 \mathrm{~nm}, 20 \mathrm{~min}$) of PHD2-Mn ${ }^{\text {II }}$ in the presence either probes $\mathbf{1 - 5}$ with $200 \mu \mathrm{M}$ IOX1 (Table S11) or scaffolds 6a-e (Table S12). The heights of the 20 most intense peaks in the range 25000 to 30000 Da were extracted and all others masses assigned a height of zero. No crosslinking was observed.

Table S11 Crosslinking of PHD2 with 1-5 in the presence of $200 \mu \mathrm{M}$ IOX1

Probe	PHD2	Crosslinked PHD2
$\mathbf{1}$	1035257	0
$\mathbf{2}$	1547122	0
$\mathbf{3}$	1530899	0
$\mathbf{4}$	1326526	0
$\mathbf{5}$	1326526	0

Table S12 Crosslinking of PHD2 with scaffolds 6a-e

Scaffold	PHD2	Crosslinked PHD2
6a	2056724	0
6b	2134435	0
6c	2053258	0
6d	2010009	0
6e	1981418	0

Mass spectrometric analysis of rate of probe activation and resulting products

Mass spectrometric analysis of probes after irradiation ($310 \mathrm{~nm}, 0.5,2.5$ and 10 min) indicates that the rate of activation of the probes increases in the order $\mathbf{4}<\mathbf{1}<\mathbf{3}<\mathbf{2}$ (Figure S3). The rate of activation of $\mathbf{5}$ is unknown since intramolecular reactions and reaction with water afford the same mass as the parent compound. The masses of the species formed when activated probe molecules do not react with PHD2 gives an indication of the mechanisms of quenching. Probe 1 primarily reacts to give a species with a mass that corresponds to loss of N_{2}, which likely arises from intramolecular insertion of the nitrene into a $\mathrm{C}-\mathrm{H}$ or $\mathrm{X}-\mathrm{H}$ bond. The major peak in the mass spectrum of probe 2 after 10 min irradiation has a mass of $\mathbf{2}-\mathrm{N}_{2}+\mathrm{H}_{2}$, which may arise from reduction of the formed nitrene to give the amine. Probe 3 gives predominantly a species resulting from reaction of the carbene with $\mathrm{H}_{2} \mathrm{O}$, while in contrast, diazirine $\mathbf{4}$ appears to give exclusively a species resulting from intramolecular insertion of the carbene, likely $\alpha \mathrm{C}-\mathrm{H}$ insertion to give the alkene. ${ }^{9}$

Figure S3. Mass spectrometric analysis of probes $\mathbf{1 - 5}$ after $0.5,2.5$ and 10 min irradiation $(310 \mathrm{~nm})$ in the presence of PHD2 and Mn^{2+}. Speactra for compound $\mathbf{1}$ are in the absence of PHD2 since $\mathbf{1}$ could not be detected in the presence of PHD2.

Limited trypsin digests and MALDI MS ${ }^{10}$

PHD2 $(20 \mu \mathrm{M}), \mathrm{Mn}^{\mathrm{II}}(20 \mu \mathrm{M})$ and probe $(50 \mu \mathrm{M})$ in $\left.15 \mathrm{mM} \mathrm{NH} 4 \mathrm{OAc}^{(\mathrm{pH}} 7.5\right)$ were incubated at room temperature for 20 min before irradiation ($310 \mathrm{~nm}, 12 \mathrm{~min}, 4^{\circ} \mathrm{C}$). Sequence grade modified trypsin (trypsin / PHD2 1:200 w / w) was added and the digest mixture incubated at room temperature (1 h) and then $37^{\circ} \mathrm{C}(2 \mathrm{~h})$. At regular intervals over a 3 h period, $2 \mu \mathrm{~L}$ samples were removed and quenched by addition of $4 \mu \mathrm{~L}$ quenching buffer ($\mathrm{H}_{2} \mathrm{O} /$ methanol / $\mathrm{HCO}_{2} \mathrm{H}, 90: 10: 0.1$). $1 \mu \mathrm{~L}$ sample was mixed with $1 \mu \mathrm{~L}$ sinapinic acid (SA) or α-cyano-4-hydroxycinnamic acid (CHCA) matrix (both Laser BioLabs) and pippetted onto a 96 spot MALDI target. Spots were allowed to air dry and analysed using a MALDI micro MX mass spectrometer (Waters) in linear positive ion mode with laser energy 220 , pulse voltage 1250 V , detector voltage 2750 V and mass suppression 1000 Da . Data were analysed using MassLynx v4.0. Spectra were smoothed using the mean method (smooth windows $=200$; number of smooths $=2$).

Trypsin digests and LC-MS/MS

PHD2 $(20 \mu \mathrm{M}), \mathrm{MnCl}_{2}(20 \mu \mathrm{M})$ and probe ($50 \mu \mathrm{M}$) in Tris buffer (50 mM Tris, $\left.100 \mathrm{mM} \mathrm{NaCl}[\mathrm{pH} 7.5]\right)$ were incubated at room temperature for 20 min before being irradiated ($310 \mathrm{~nm}, 12 \mathrm{~min}, 4^{\circ} \mathrm{C}$). The protein was subjected to reductive acetylation and trypsin digest according to standard procedures. ${ }^{11}$

The analysis of digested material was performed by LC-MS/MS using a Waters Q-Tof Premier mass spectrometer (Waters) coupled to a nano-UPLC system (NanoAcquity, Waters) using a reversed phase $75 \mu \mathrm{~m} \times 250 \mathrm{~mm}$ column as previously described. ${ }^{11}$

Table S13. Crosslinked trypsin derived peptides observes in MS/MS analysis

Peptide sequence	Expected Mass	Expected mass of peptide $+318-\mathrm{N}_{2}$	MS of crosslinked PHD2 Obs/charge $/ \mathbf{M r}$
AMVACYPGNGTGYVR	$\mathbf{1 6 1 4 . 7 3}$	$\mathbf{2 4 1 3 . 1 0}$	$805.38 / 2+/ \mathbf{2 4 1 3 . 1 1}$
AMVACYPGNGTGYVR + M. Ox.	$\mathbf{1 6 3 0 . 7 2}$	$\mathbf{2 4 2 9 . 1 0}$	$81207.56 / 3+/ \mathbf{2 4 1 3 . 1 1}$
TKAMVACYPGNGTGYVR	$\mathbf{1 8 4 3 . 8 7}$	$\mathbf{2 6 4 2 . 2 4}$	$1215.58 / 2+/ \mathbf{2 4 2 9 . 1 4}$

Figure S4. MS/MS analysis of trypsin derived peptide ${ }_{298}$ AMVACYPGNGTGYVR ${ }_{312}$ crosslinked to 4. Analysis by LC-MS/MS reveals a mass corresponding to compound $\mathbf{4}\left(-\mathrm{N}_{2}\right)$ on residue Y_{310} of PHD2. The MS/MS spectrum of the modified tryptic peptide ${ }_{298}$ AMVACYPGNGTGYVR ${ }_{312}+4-\mathrm{N}_{2}[\mathrm{M}+2 \mathrm{H}]^{2+} 1215.58 \mathrm{Da}(\mathrm{MW}$ 2429.14 Da) is shown. Fragment ions are indicated as b and y ions. Loss of NH_{3} is represented by *, loss of $\mathrm{H}_{2} \mathrm{O}$ by 0 , and doubly charged ions by ++ .

Crystal structure analysis

The binding mode of probes $\mathbf{1 - 5}$ was modelled by manual docking of the selectivity function (derived from IOX1) with PHD2. Docking was guided by crystal structures of PHD2 in complex with a bidentate isoquinoline inhibitor $\{[(4-$-hydroxy-8-iodoisoquinolin-3-yl)carbonyl]amino \}acetic acid (PDB ID: 2G1M), and the structurally related 2-oxoglutarate dependent histone demethylase KDM4A in complex with 4-carboxy-8-hydroxyquinoline (PDB ID: 4BIS) (Figure S5).

Figure S5. Top left: view derived from a crystal structure of KDM4A in complex with 4-carboxy-8hydroxyquinoline (PDB ID: 4BIS), top right: view derived from a crystal structure of PHD2 in complex with a bidentate isoquinoline inhibitor (PDB ID: 2G1M). Below: View derived from a PHD2 crystal structure (PDB ID: 3 HQU) docked with diazirine 4.

References

(1) Gnaccarini, C.; Ben-Tahar, W.; Lubell, W. D.; Pelletier, J. N.; Keillor, J. W. Bioorg. Med. Chem. 2009, 17, 6354.
(2) Jiao, C. Y.; Alves, I. D.; Point, V.; Lavielle, S.; Sagan, S.; Chassaing, G. Bioconjugate Chem. 2010, 21, 352.
(3) Keana, J. F. W.; Cai, S. X. J. Fluorine Chem. 1989, 43, 151.
(4) Zhang, C.; De, C. K.; Mal, R.; Seidel, D. J. Am. Chem. Soc. 2008, 130, 416.
(5) Rotili, D.; Altun, M.; Kawamura, A.; Wolf, A.; Fischer, R.; Leung, I. K.; Mackeen, M. M.; Tian, Y. M.; Ratcliffe, P. J.; Mai, A.; Kessler, B. M.; Schofield, C. J. Chem. Biol. 2011, 18, 642.
(6) Rotili, D.; Altun, M.; Kawamura, A.; Wolf, A.; Fischer, R.; Leung, I. K. H.; Mackeen, M. M.; Tian, Y. M.; Ratcliffe, P. J.; Mai, A.; Kessler, B. M.; Schofield, C. J. Chem. Biol. 2011, 18, 642.
(7) McNeill, L. A.; Flashman, E.; Buck, M. R.; Hewitson, K. S.; Clifton, I. J.; Jeschke, G.; Claridge, T. D.; Ehrismann, D.; Oldham, N. J.; Schofield, C. J. Mol. BioSyst. 2005, 1, 321.
(8) Leung, I. K.; Flashman, E.; Yeoh, K. K.; Schofield, C. J.; Claridge, T. D. J. Med. Chem. 2010, $53,867$.
(9) Das, J. Chem Rev 2011, 111, 4405.
(10) Stubbs, C. J.; Loenarz, C.; Mecinovic, J.; Yeoh, K. K.; Hindley, N.; Lienard, B. M.; Sobott, F.; Schofield, C. J.; Flashman, E. J. Med. Chem. 2009, 52, 2799.
(11) Mackeen, M. M.; Kramer, H. B.; Chang, K. H.; Coleman, M. L.; Hopkinson, R. J.; Schofield, C. J.; Kessler, B. M. J. Proteome Res. 2010, 9, 4082.

