Supporting Information II

Pd(II)-Catalyzed Alkylation of Unactivated C(sp³)–H Bonds : Efficient Synthesis of Optically Active Unnatural α-Amino Acids

Kai Chen,^{*a*} Fang Hu,^{*b*} Shuo-Qing Zhang,^{*a*} Bing-Feng Shi^{**a,b*} ^{*a*}Department of Chemistry, ZhejiangUniversity, Hangzhou 310027, China ^{*b*}State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China ^{*}To whom correspondence should be addressed. Email: bfshi@zju.edu.cn

NMR Spectra

11.0

10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 5.5 5. fl (ppm) 5.0 4.5 4.0 3.5 2.0 1.5 1.0 0.5 6.5 6.0 3.0 2.5

0.0

-0.5

¹H NMR (400 MHz, CDCl₃) δ 10.31 (s, 1H), 8.69 (dd, J = 5.3, 3.6 Hz, 1H), 8.66 (dd, J = 4.2, 1.7 Hz, 1H), 8.08 (dd, J = 8.3, 1.6 Hz, 1H), 7.87 (dd, J = 5.4, 3.0 Hz, 2H), 7.72 (dd, J = 5.4, 3.0 Hz, 2H), 7.49 – 7.42 (m, 2H), 7.37 (dd, J =8.3, 4.2 Hz, 1H), 5.23 (dd, J = 11.3, 4.9 Hz, 1H), 2.70 – 2.60 (m, 1H), 2.16 – 2.07 (m, 1H), 1.68 – 1.58 (m, 1H), 1.03 (dd, J = 10.6, 6.6 Hz, 6H).

-1000

-900

-800

-700

2:6134 2.1027 2.0906 2.0906

\$409

 \cap

547

0=

622

6077 5803

6223

.0370 .0272 .0105

0535

$ \begin{array}{c} & -168.198 \\ & -167.166 \\ & -148.402 \\ & -138.356 \\ & -131.895 \\ & -131.895 \\ & -127.328 \\ & -127.328 \\ & -116.729 \\ & -116.729 \\ & -116.729 \\ \end{array} $	 <28.8617 <28.5298 <28.5246 <13.9940 	
¹³ C NMR (101 MHz, CDCl ₃) δ 168.20, 167.17, 148.40, 138.55,		
136.33, 134.29, 134.00, 131.90, 127.91, 127.33, 123.65, 121.97, 121.69, 116.73, 55.34, 28.86, 28.53, 22.25, 13.99.	NH II	
	1	

1113						
1113	- 168.1672	-148.3865	 138.4922 136.3197 134.3076 133.9295 131.8207 	-127.2836	-123.6332	√121.6813
	17	I	וורר	1	1 r	- 1

-55.2571

45.1097

8.8578 8.6971 8.6418 6.7360 6.5657

32.5280

-15000

