Supporting Information

Multistate Electrically Controlled Photoluminescence Switching

Hongxi Gu,^a Lihua Bi,^b Yu Fu,^a Nan Wang,^a Shaoqin Liu^{*a}, Zhiyong Tang^{*c}

^a Key Laboratory of Microsystems and Micronanostructures Manufacturing (Harbin Institute of Technology), Ministry of Education, Harbin Institute of Technology, Harbin 150080, P. R. China

^b College of Chemistry, Jilin University, Changchun, 130012, P. R. China

^c National Center for Nanotechnology and Science, Beijing 100090, China

Part S1 Chemicals and Instrumentation

Chemicals

Sodium citrate dihydrate, cadmium perchlorate hexahydrate, thioacetamide and *N*, *N*-dimethylselenourea were purchased from Alfa Aesar. Polyethyleneimine and (3-aminopropyl)trimethoxysilane were purchased from Sigma-Aldrich. Other chemicals are commercially available with the highest purity, and Milli-Q-deionized water was used for all the experiments.

Methods

UV-vis spectra were collected using a U-4100 UV/vis spectrophotometer (HITACHI). Luminescence measurements were carried out on a Fluoromax-4 spectrofluorometer (Horiba Jobin Yvon Inc., France) with excitation and emission slit widths of 5 nm. Electroswitched luminescence experiments were performed with CHI860 electrochemical workstation (Shanghai Chenhua Instrument Corporation, China) and a Fluoromax-4 spectrometer using ITO working electrode (with a geometric area of ~1×5 cm) coated with CdSe@CdS QDs/POM thin film, an Ag/AgCl reference electrode (saturated KCl) and a Pt wire counter electrode.

Part S2: Synthesis and the property of P₈W₄₈ POMs and citrate-stabilized CdSe@CdS QDs

Synthesis of citrate-stabilized CdSe@CdS QDs. Different-sized citrate-capped CdSe@CdS QDs were synthesized according to reference.^{S1} 0.1 g of sodium citrate dihydrate (Aldrich) and 4 mL of 4×10^{-2} M cadmium perchlorate hexahydrate were added to 90 mL water, and the pH was adjusted to 9.0 with 0.5 M NaOH. After the solution had been bubbled with nitrogen for 10 min, 4 mL of 1×10^{-2} M *N*, *N*-dimeth-ylselenourea was added, and the mixture was heated in a conventional 900 W (Sharp) microwave oven for 50 s. 4 mL thioacetamide solution (4×10^{-2} M) was added into prepared CdSe NPs solution to synthesize CdSe@CdS core-shell NPs. The mixture was then heated in a sealed round-bottom flask inside a silicon oil bath to 70 °C for 24 h.

The CdSe@CdS QD solution had a rather strong emission at 600 nm, 571 nm and 546 nm, respectively. The diameters of these three QDs were estimated to be 5.51 nm (red QDs), 5.17 nm (yellow QDs) and 4.70 nm (green QDs) upon statistical measurement of NPs by their TEM images.

Synthesis of P_8W_{48} POM. $K_{28}Li_5H_7P_8W_{48}O_{184}$ ·92H₂O was synthesized according to literature procedures.^{S2} The preparation of P_8W_{48} POMs followed a classic three-step pathway including assembly, partial disassembly and reassembly.

a) Synthesis of $K_{12}H_2[\alpha-P2W_{12}O_{48}]\cdot 24H_2O$. $K_{12}H_2[\alpha-P_2W_{12}O_{48}]\cdot 24H_2O$ was synthesized according to the literature method.^{S3} (NH₄)₆[α -P₂W₁₈O₆₂]·11H₂O (20.22 g, 4.33 mmol) and tris(hydroxymethyl)aminomethane (12.1 g, 0.1 mol) were

dissolved in 75 mL and 50 mL H₂O, respectively. Two solutions were mixed and stirred for 40 minutes. NH₄Cl (14.35 g, 0.27 mol) was then added and stirring continued for a further 5 minutes before addition of $(NH_4)_2CO_3$ (9.59 g, 0.1 mol in 50 mL H₂O). A white precipitate began to form after ~ 15 minutes stirring. The precipitate was filtered and dried overnight in a dessicator.

b) Synthesis of K₂₈Li₅H₇P₈W₄₈O₁₈₄·92H₂O. K₁₂H₂[P₂W₁₂O₄₈]·24H₂O (28 g, 7.1

mmol) was dissolved in 1 L of a mixture of lithium chloride (0.5 mol), lithium acetate (0.5 mol), and acetic acid (0.5 mol) in water. After 5 minutes stirring, the solution was left to crystallize. After 1 day fine white radiating needles appeared, and crystallization continued for several days. The products were collected and dried overnight in a dessicator.

Fig. S1 (a) CVs_of 1 mM P₈W₄₈ POMs in 0.10 M PBS (pH 7.4) at the ITO electrode.
Scan rate: 10 mV s⁻¹. (b) UV-Vis spectra of 1 mM P₈W₄₈ POMs at different potential.
(c) UV-Vis spectra and photoluminescence spectra of different-sized citrate-stabilized
CdSe@CdS QDs. The emission maxima of CdSe@CdS QDs are 600 nm (red curve),

571 nm (yellow curve) and 546 nm (green curve), and their average particle sizes are

estimated to be 5.51 nm, 5.17 nm and 4.70 nm, respectively.

Part S3. Fabrication of the hybridized nanostructured films of [(PEI/P₈W₄₈)_x/ PEI/CdSe@CdS_z]_y

ITO-coated glass (on one side, about 30 Ω , 10 × 50 mm²) substrates were cleaned according to a literature procedure.^{S4, S5} Before assembly, the cleaned ITO-coated glass electrodes were functionalized with (3-aminopropyl)trimethoxysilane to yield an amine-functionalized surface. Other substrates (glass or silicon) were immersed into the mixed solution (H₂O₂:H₂SO₄ =1:3) at the temperature 70 °C. After 30 min, the substrates were picked and washed by deionized water and dried under N₂ flow. The [(PEI/P₈W₄₈)_x/PEI/CdSe@CdS)_z]_y films were alternatively deposited from 1 mg/mL PEI (Mw 50 000, Aldrich) solution, 1 mg/mL aqueous solution of P₈W₄₈, and 3.0 × 10⁻⁶ M CdSe@CdS, using an immersion time of 5 min, and then rinsed with pure water and dried under N₂ flow.

Fig. S2 (a) UV-Vis absorption spectra of $[(PEI/P_8W_{48})_3/PEI/CdSe@CdS_{600}]_y$ multilayers as a function of the number of layers, *y*. (b) Relationship of the absorbance at 200 nm as a function of the number of layers, *y*. (c) Relationship of the

absorbance at 560 nm as a function of the number of layers, y, confirming linear and uniform thin-film growth.

Fig. S3 (a) Photoluminescence spectra of $[(PEI/P_8W_{48})_3/PEI/CdSe@CdS_{600}]_y$ multilayers as a function of the number of layers, *y*. (b) The relationship of the photoluminescence intensity at 600 nm as a function of the number of layers, *y*.

Fig. S4 UV-Vis absorption spectra of $[(PEI/P_8W_{48})_6/PEI/CdSe@CdS_{571}]_{10}$ multilayers (dark yellow line), $[(PEI/P_8W_{48})_6/PEI/CdSe@CdS_{546}]_{10}$ multilayers (green line) and $[(PEI/P_8W_{48})_3/PEI/CdSe@CdS_{546}]_4/(PEI/P_8W_{48})_2/[(PEI/P_8W_{48})_4/PEI/CdSe@CdS_{571}]_4$ /(PEI/P_8W_{48})_3/[(PEI/P_8W_{48})_6/PEI/CdSe@CdS_{600}]_4 multilayers (black line).

QD multilayers

Fig. S5 (a) CVs of ITO electrode coated with $(PEI/P_8W_{48})_{10}$ multilayer in 0.10 M PBS (pH 7.4). Scan rate: 10 mV s⁻¹. (b) Absorption spectra (black curves) and photoluminescence spectra (blue curves) of ITO electrode coated with $(PEI/P_8W_{48})_{10}$ multilayer before (dashed curves, 0 V versus Ag/AgCl) and after reduction (solid curves, -0.90 V versus Ag/AgCl).

Fig. S6 (a) CVs of ITO electrode coated with (PEI/CdSe@CdS QD_{600})₁₀ multilayer in 0.10 M PBS (pH 7.4). Scan rate: 10 mV s⁻¹. (b) Absorption spectra (black curves) and photoluminescence spectra (blue curves) of ITO electrode coated with (PEI/CdSe@CdS QD_{600})₁₀ multilayer before (dashed curves, 0 V versus Ag/AgCl) and after reduction (solid curves, -0.90 V versus Ag/AgCl).

Fig. S7 (a) Absorption of $[(PEI/P_8W_{48})_3/PEI/ CdSe@CdS_{571}]_{10}$ at 0.4 V (black curves), -0.6 V (red curves), -0.8 V (blue curves), -0.9 V (dark yellow curves), respectively. Each spectrum is obtained after the potential is held for 4 min. Reversible photoluminescence switching of (b) $[(PEI/P_8W_{48})_3/PEI/CdSe@CdS_{571}]_{10}$ and (c) $[(PEI/P_8W_{48})_6/PEI/CdSe@CdS_{571}]_{10}$ multilayers at open circuit (black curve), to a potential of -0.90 V (blue curve), to a potential of 0.40 V (yellow curve) in 0.10 M PBS (pH 7.4). (d) Photoluminescence switching response of ITO electrode coated with $[(PEI/P_8W_{48})_3/PEI/CdSe@CdS_{571}]_{10}$ multilayer monitored at 571 nm under applied step potential of -0.90 to 0.40 V with a step duration time for 80s. Blue and red curves stand for 1st and 200th cycles, respectively. The response time for "luminescence on" and "luminescence off" is 41s and 17 s, respectively.

Fig. S8 (a) Absorption of $[(PEI/P_8W_{48})_3/PEI/CdSe@CdS_{546}]_{10}$ at 0.4 V (black curves), -0.6 V (red curves), -0.8 V (blue curves), -0.9 V (dark yellow curves), respectively. Each spectrum is obtained after the potential is held for 4 min. Reversible photoluminescence switching of (b) $[(PEI/P_8W_{48})_3/PEI/CdSe@CdS_{546}]_{10}$ and (c) $[(PEI/P_8W_{48})_6/PEI/CdSe@CdS_{546}]_{10}$ multilayers at open circuit (black curve), to a potential of -0.90 V (blue curve), to a potential of 0.40 V (green curve) in 0.10 M PBS (pH 7.4). (d) Photoluminescence switching response of ITO electrode coated with $[(PEI/P_8W_{48})_6/PEI/CdSe@CdS_{546}]_{10}$ multilayer monitored at 546 nm under applied step potential of -0.90 to 0.40 V with a step duration time for 80s. Blue and red curves stand for 1st and 200th cycles, respectively. The response time for "luminescence on" and "luminescence off" is 41s and 22 s, respectively.

Fig. S9 Absorption of $[(PEI/P_8W_{48})_3/PEI/CdSe@CdS_{546}]_4/(PEI/P_8W_{48})_2/[(PEI/P_8W_{48})_3/PEI/CdSe@CdS_{600}]_4$ at 0.4 V (black curves), -0.6 V (red curves), -0.8 V (blue curves), -0.8 V (dark yellow) respectively. Each spectrum is obtained after the potential is held for 4 min.

Table S1 Switching parameters of some photoswitching or electrofluorescent

systems.

Active components	External Stimuli	Max. on/off	Response	Stability	Year/
		contrast	time		reference
Photoswitching systems					
9,10-anthracenedinaphthalen	Visible light $\lambda \ge 500 \text{ nm}$	90%	90s (on)	less than 5% decrease of	2005[S6]
e and benzothiazole	(on)		90s (off)	FL intensity change	
diarylethene as the FL dye	340 nm UV light (off)			after 10 cycles	
and the PC compound					
bisthienylethene-bridged	Visible light $\lambda \ge 510 \text{ nm}$	85:1	5min (on)	the film could keep a	2005[S7]
naphthalimide dimer	(on)		5min (off)	relatively high contrast	
	365 nm UV light (off)			(>35:1) during 1h of	
				continuous reading	
FL benzofurazan and PC	562 nm Visible light (on)	15%	830s (on)		2005[S8]
spiropyran	341 nm UV light (off)		360s (off)		
the supramolecular assembly	Visible light (on)	~90%	160min (on)	The PL maxima	2007[S9]
between	365 nm UV light (off)		160min (off)	decreased by 30% after	
1,2-bis[2-methyl-5-(4-pyridy				6 cycles	
l)-3-thienyl]cyclopentene					
(BTEPy) and					
3,4,5-tris(dodecyloxy)benzoi					
c acid					
(1,3)-di(N,N-dimethyl-4-ben	393nm UV light (on)	3:1	10min (on)	There is little	2008[S10]
zenamino)-(2,4)-di(2-benzox	254 nm UV light (off)		2 min (off)	attenuation in FL	
azolyl)-cyclobutane in				intensity after 16 cycles	
PMMA film					
РС	Visible light $\lambda \ge 450 \text{ nm}$	~96%	1800s (on)	the luminescent switch	2008[S11]
diarylethene/up-conversion	(on)		1000 (50	had good reversibility	
LaF ₃ :Yb,Ho	365 nm UV light (off)		1800s (off)	for many cycles	
nanophosphors-loaded					
PMMA film					
composite films from	70 °C in O_2 (on)	100%	15min (on)	The PL maxima	2009[S12]
$[Eu(SiW_{10}MoO_{39})_2] \text{ and }$	UV light λ <365 nm (off)		120s (off)	decreased by 12% after	

agarose				7 cycles	
multilayers of	Visible light (on)	90%	1h (on)	The PL maxima	2010[S13]
$K_{14}[Na(H_2O)P_5W_{30}O_{110}]$ and	UV light (off)			decreased by 20% after	
CdSe@CdS nanoparticle			30s (off)	10 cycles	
Electrofluorescent systems					
the tetrazine polymer film	2V (on)	3:1	2s (on)	The PL maxima	2006[S14]
	-2V (off)		2s (off)	decreased by 10% after	
				35 cycles	
Copolymer of s-triazine and	-1.5V (on)	~2:1	10s (on)	The PL maxima	2008[S15]
p-phenylene vinylene	1.5V (off)		10s (off)	decreased by 13.8%	
				after 50 cycles	
the tetrazine polymer film	2V (on)	4:1	10s (on)	The PL maxima	2009[S16]
	-2V (off)		10s (off)	decreased by 18% after	
				22 cycles	
multilayer of	0.7V (on)	3	60s (on)	the changes of the FL	2010[S17]
$[Eu(GeW_{11}O_{39})(H_2O)_2]_2^{10-}$	-0.7V (off)		60s (off)	intensities are less than	
and P_2W_{18}				4% in 7 cycles	
methylene anthracene	-2V (on)	3.86	4s (on)	The electrochemical FL	2010[S18]
polymer film	2V (off)		4s (off)	switching was longer	
				than 1,000 cycles	
composite material	Open circuit (on)	3000	15min (on)	The PL maxima	2011[S19]
containing europium (III)	2.2V (off)		5s (off)	decreased by 22% after	
complex and diheptyl				4 cycles	
viologen					
multilayer of	0.9V (on)	4.4	120s (on)	The changes of the FL	2011[S20]
tris(2,2'-bipyridine)	-0.9V (off)		120s (off)	intensities are less than	
ruthenium and $P_2W_{18}O_{62}^{-6-}$				2% after 9 cycles	
hybrid film of CdTe QDs	-0.4V (on)	2.5	60s (on)	Noticeable changes	2011[S21]
and poly(methylene blue)	0V (off)		60s (off)	were observed	
				in 20 cycle	
A patternable	1.8V (on)	2.5	10s (on)	a cyclability longer	2011[S22]
poly(1,3,4-oxadiazole) thin	-1.8V (off)		10s (off)	than 1000 cycles	
film			with contrast		
			ratio 1.2		
Eu (hfa) ₃ (TPPO) ₂ , HV^{2+} and	1.4V (on)	100%	10s (on)	The emission intensity	2012[S23]

Prussian blue	0.8V (off)		10s (off)	was nearly completely	
				maintained after 250	
				cycles	
hybrid film of poly	0.6V (on)	3:1	60s (on)	The PL maxima	2012[S24]
(3,4-ethylenedioxythiophene	-0.6V (off)		60s (off)	decreased by 5% after	
), $PMo_{12}O_{40}^{3-}$ and Pyronin				20 cycles	
Y-doped silica nanoparticles					
multilayer of Au nanocluster	0V (on)	3:1	60s (on)	The PL maxima	2013[S25]
and Prussian blue	0.5V (off)		60s (off)	decreased by 5% after	
				15 cycles	
multilayer of CdSe@CdS	0.4V (on)	Quenching 91%	38s (on)	The PL maxima	This
QDs and P ₈ W ₄₈	-0.9V (off)		17s (off)	decreased by 19% after	manuscript
				200 cycles	

Abbreviation: PL: fluorescence; PC: photochromic; PMMA, poly(methyl methacrylate)

Reference

- S1. Y. Wang, Z. Y. Tang, M. A. Correa-Duarte, I. Pastoriza-Santos, M. Giersig, N. A. Kotov and L. M. Liz-Marzan, *J. Phys. Chem. B*, 2004, **108**, 15461.
- S2. R. Contant and A. Teze, Inorg. Chem., 1985, 24, 4610.
- S3 R. Contant, Inorg. Synth., 1990, 27, 104.
- S4 D. G. Kurth and T. Bein, Langmuir 1995, 11, 3061.
- S5 S. A. Evenson, J. P. S. Badyal, C. Pearson, M. C. Petty, J. Phys. Chem. 1996, 100, 11672.
- S6. Y. Chen and N. Xie, J. Mater. Chem., 2005, 15, 3229.
- S7 G. Jiang, S. Wang, W. Yuan, L. Jiang, Y. Song, H. Tian and D. Zhu, Chem. Mater., 2005, 18, 235.
- S8 M. Tomasulo, S. Giordani and F. M. Raymo, Adv. Funct. Mater., 2005, 15, 787.
- S9 S. Xiao, Y. Zou, J. Wu, Y. Zhou, T. Yi, F. Li and C. Huang, *J. Mater. Chem.*, 2007, **17**, 2483.
- S10 F. Li, J. Zhuang, G. Jiang, H. Tang, A. Xia, L. Jiang, Y. Song, Y. Li and D. Zhu, *Chem. Mater.*, 2008, 20, 1194.
- S11 Z. Zhou, H. Hu, H. Yang, T. Yi, K. Huang, M. Yu, F. Li and C. Huang, *Chem. Commun.*, 2008, 4786.
- S12 Z. L. Wang, Y. Ma, R. L. Zhang, A. D. Peng, Q. Liao, Z. W. Cao, H. B. Fu and J. N. Yao, *Adv. Mater.*, 2009, **21**, 1737.
- S13 B. Qin, H. Y. Chen, H. Liang, L. Fu, X. F. Liu, X. H. Qiu, S. Q. Liu, R. Song and Z. Y. Tang, J. Am. Chem. Soc., 2010, 132, 2886.
- S14 Y. Kim, E. Kim, G. Clavier and P. Audebert, Chem. Commun. (Camb), 2006, 3612.
- S15 J. Yoo, P. Jadhav and E. Kim, Mol. Cry. Liq. Cry., 2008, 491, 114.

- S16 Y. Kim, J. Do, E. Kim, G. Clavier, L. Galmiche and P. Audebert, *J. Electroanal. Chem.*, 2009, **632**, 201.
- S17 B. Wang, Z. D. Yin, L. H. Bi and L. X. Wu, *Chem. Commun. (Camb)*, 2010, 46, 7163.
- S18 J. You, Y. Kim and E. Kim, Mol. Cry. Liq. Cry., 2010, 520, 128.
- S19 K. Nakamura, K. Kanazawa and N. Kobayashi, *Chem. Commun. (Camb)*, 2011, 47, 10064.
- S20 B. Wang, L.-H. Bi and L.-X. Wu, J. Mater. Chem., 2011, 21, 69.
- S21 L. H. Jin, Y. X. Fang, D. Wen, L. Wang, E. K. Wang and S. J. Dong, Acs Nano, 2011, 5, 5249.
- S22 S. Seo, Y. Kim, J. You, B. D. Sarwade, P. P. Wadgaonkar, S. K. Menon, A. S. More and E. Kim, *Macromole. Rapid Commun.*, 2011, **32**, 637-643.
- S23 K. Kanazawa, K. Nakamura and N. Kobayashi, Chem. Asian J., 2012, 7, 2551.
- S24 Y. Zhai, L. Jin, C. Zhu, P. Hu, L. Han, E. Wang and S. Dong, *Nanoscale*, 2012, 4, 7676.
- S25 L. Jin, Y. Fang, L. Shang, Y. Liu, J. Li, L. Wang, P. Hu and S. Dong, Chem. Commun., 2013, 49, 243.