One Pathway, Many Compounds: Heterologous Expression of a Fungal Biosynthetic Pathway Reveals its Intrinsic Potential for Diversity.

Zahida Wasil,^{1a} Khomaizon A. K. Pahirulzaman,^{2a} Craig Butts,¹ Colin M. Lazarus,² Thomas J. Simpson¹ and Russell J. Cox^{1,3}

- 1. School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
- 2. School of Biological Sciences, University of Bristol, Woodland Road, Bristol, BS8 1UG, UK.
- Institut f
 ür Organische Chemie, Leibniz Universit
 ät Hannover, Schneiderberg 1B, 30167 Hannover, Germany.
- a These authors contributed equally

Electronic Supplementary Information

Gene	Primer Name	DNA Sequence (5'> 3')	Template
tenA	adh/asc-F	ACGTGAACCATCACCCAAATCAAGTTTTTTAAGTGCTTATGCGCCATCGT	pTAYAargPageTen ellin
	trp0rf1-R	TTCAGTGTCGAAAGATCCACTAGAGTAAATCCGTCTTTGTGAAGGACAGT	
P_{adh}	adh/asc-F	ACGTGAACCATCACCCAAATCAAGTTTTTTAAGTGCTTATGCGCCATCGT	A. oryzae gDNA
	adh/asc-R	GTAAATCTG GGCGCGCC CTTACAGGCATCATTTGACTTTGGGATCTTGTG	
n	newgpdA-F	TGATGCCTGTAAGGGCGCGCCCAGATTTACTCTAGTGGATCTTTCGACAC	A. oryzae gDNA
F gpdA	newgpdA-R	GCGTAGTTA GGCGCGCC ATATACCTCTTACGGTGATGTCTGCTCAAGCGG	
P _{eno}	eno/asc-Page-F	c-Page-F GTAAGAGGTATATGGCGCGCCTAACTACGCGTCTCATTACTAGTCTACTA	
	eno/asc-Page-R	eno/asc-Page-R ATACGTCAAAGCAACCATAGTAGGCGCGCCTTTGACGAGCTGCGGAATTG	
apdE	adh-apdE-F	TTTCTTTCAACACAAGATCCCAAAGTCAAAATGAGTCTGGCCAGCACGCT	A. nidulans gDNA
	adh-apdE-R	ACGTATTTCAGTGTCGAAAGATCCACTAGAAGCTCAGTAAGCTCTTGA	
andC	gpdA-apdC-F	A-apdC-F AACAGCTACCCCGCTTGAGCAGACATCACCATGATCCCTCCC	
upuG	gpdA-apdC-R	ACAGAGTTACTAGTAGACTAGTAATGAGACCGCTGCTCGGGAAATACGTT	n. muuluns goitti
andB	eno-apdB-F	GTCGACTGACCAATTCCGCAGCTCGTCAAAATGGGTTTCGTTAATACTCT	A. nidulans gDNA
upub	eno-apdB-R	TTCACACCGCATACGTCAAAGCAACCATAGTGAATGACACATTTGCAGAG	
Pc+har	YA-TrpC-F	GCTGAAGATCAGTTGGGCCTCATTTGACTACAGAAGATGATATTGAAGGA	nCB1530-G
P _{trpC} +Dur	Bar-YA-R	CTATATATTTAAATGGAAGCCTGGTTATATAGCTTACCTAAATCTCGGTG	peb1330-d
ble	Ble-YA-R	CTATATATTTAAATGGAAGCCTGGTTATATTCAGTCCTGCTCCTCGGCCA	pBleamyBGSA2
	trpC-Ble-R	CTACCCAAGCGCTTCGATTAGGAAGTAACCATGGCCAAGTTGACCAGTGC	
apdG	apdG-F	AACAGCTACCCCGCTTGAGCAGACATCACCATGGCCGAGATTTCCAGCGT	A. nidulans gDNA
	apdG-R	ACAGAGTTACTAGTAGACTAGTAATGAGACAACTGATAAAGCGGCCGACC	
apdD	apdD-F	GTCGACTGACCAATTCCGCAGCTCGTCAAAATGCCTACCGAAAGCCTCAA	A nidulans aDNA
	apdD-R	apdD-R TTCACACCGCATACGTCAAAGCAACCATAGAGTGTTTATTTGGATGAGGT	

Table S1. Primers used during this study

apdA	apdA1-F	apdA1-F TTGTACAAAAAAGCAGGCTCCGCGGCCGCCATGCAGGACTTGATCGCCAT	
	apdA1-R ATGGGATGTTGTCCACTGCG		A. nidulans gDNA
	apdA2-F GTTTCTGAAGTGACCAGCCG		
	apdA2-R TCTGGAGATCCCAAACTCGA		
	apdA3-F GGAAATCTTCCTGCTTCACG		
	apdA3-R	apdA3-R GGTGAACAGCTCCTCGCCCTTGCTCACCATAAGAGACCCCGCTTCCCCCA	

qRT-PCR Primers					
apdA	egfp/Q-F	TACCTGAGCACCCAGTCCGC	A. oryzae cDNA		
	P1P2egfp rev	TTAATTAATTACTTGTACAGCTCGTCCA			
apdB	apdB-Q-F	CCTGTCGTTATAGACGCCAA			
	apdB-Q-R	GAAGGTGGGATATCCCGAAA	A. Oryzae CDNA		
apdC	apdC-Q-F	TTTAAACGGGATGCGTGTCC	4 oruga cDNA		
	apdC-Q-R	TTCACATCCGATGTATGCGG	A. Oryzde CDNA		
apdE	apdE-Q-F	GATGTCGTCCAGGTCAACAA	A. oryzae cDNA		
	apdE-Q-R	TTCCAGTAGGGCCGCAAATT			
eGFP	egfp/Q-F	TACCTGAGCACCCAGTCCGC	A. oryzae cDNA		
	P1P2egfp rev	TTAATTAATTACTTGTACAGCTCGTCCA			
β-tubulin	AObeta-tub-F	AGCCCTACAACGCCACTCTT			
	AObeta-tub-R	GTGCGCATGCAAATGTCATA	A. Oryzue CDNA		

qRT-PCR

In order to confirm all the genes in the pTAYAargASP were expressed, qRT-PCR was performed on one of the transformant with the primers shown in the Table. RevertAid H Minus First Strand cDNA Synthesis Kit and SYBR green PCR mix (Fermentas) was used to synthesise cDNA and to perform qRT-PCR respectively according to manufacturer's protocol. PCR was carried out in a Mx3005 Real-Time PCR System (Stratagene) using program: 95 °C for 10 min, (1 cycle) 95 °C for 30 sec, 55 °C for 30 sec and 72 °C for 60 sec (40 cycles). Table S2 shows the activity of each promoter compared to the control gene. The results showed that *apd*A expressed at the highest level by P*amy*B, followed by *apd*E (P*adh*), *apd*C (P*gpd*A) and *apd*B (P*eno*) respectively.

Sample	Gene (promoter)	ΔCt ^a	ΔΔCt ^b	Fold difference ^c
	apdA (P _{amyB})	14.55	-5.63	49.52
	apdB (Peno)	19.13	-1.05	2.07
pTAYAargASP	$apdC (P_{gpdA})$	17.35	-2.83	7.11
	apdE (P _{adh})	16.46	-3.72	13.18
	β-tubulin	20.18		

Table S2: Results of the qRT-PCR experiments on the pTAYAargASP transformant

 a The ΔC_t was determined by the average Ct cycle.

^b The $\Delta\Delta$ Ct value was determined by subtracting the Δ Ct value of control gene from the Δ Ct value of a sample.

^c Assuming the efficiency is 100%, the $\Delta\Delta C_t$ was described as $2^{-\Delta\Delta Ct}$.

Media

50 gram of Czapek Dox agar was dissolved in 1 litre of deionized water. The solution was made with constant stirring and divided in three 500 ml Erlenmeyer flasks, stoppered with a foam bung and covered with aluminium foil before sterilization. 25 ml of melted Czapek Dox agar was poured in plates and cooled to solidify.

The spores of *A. oryza*e transformants were grown on plates in DPY medium (dextrinpeptone-yeast extract, 2% (w/v) dextrin, 1% (w/v) polypeptone, 0.5% (w/v) yeast extract, 0.5% (w/v) potassium dihydrogen phosphate, 0.05% (w/v) magnesium sulphate, 2.5% (w/v) agar.

The liquid media used for production of metabolites was CMP medium (3.5 % Czapek Dox broth, 2% maltose and 1% poypeptone). 1 litre liquid media was divided in ten 250 ml baffled Erlenmeyer flasks each containing 100 ml of the CMP media. The Erlenmeyer flasks were stoppered with a foam bung and covered with aluminium foil before sterilization.

Structures of compounds used for ³*J*_{CH} modelling

