Supporting Information for:

Competitive Oxygen-18 Kinetic Isotope Effects Expose O–O Bond Formation in Water Oxidation Catalysis by Monomeric and Dimeric Ruthenium Complexes

Alfredo M. Angeles-Boza,^{1,#}Mehmed Zahid Ertem^{*,2,§} Rupam Sarma,¹ Christian H. Ibañez,¹ Somnath Maji,³ Antoni Llobet^{*,3} Christopher J. Cramer² Justine P. Roth^{*,1}

¹Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218

²Department of Chemistry and Research Computing Center, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN 55410

³Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans, 16, 43007 Tarragona, Spain

Table of contents	Page #
Full list of authors for Reference 35.	S-4
Calculations of ¹⁸ O isotope effects	S-4
Table S-1. Reduced partition function calculation of ¹⁸ O KIE(O–O) for Ru.	S-11
Table S-2. Reduced partition function calculation of ^{18}O KIE(O–O) for Ru_2^{BD} .	S-12
Table S-3. Reduced partition function calculation of ¹⁸ O KIE(O–O) for Ru ₂ ^{Hbpp} .	S-13
Calculated vibrational frequencies for water	S-15
Table S-4 . Reduced partition function calculation of ^{18}O KIE(H ₂ O) for Ru .	S-16
Table S-5. Reduced partition function calculation of ^{18}O KIE(H ₂ O) for Ru_2^{BD} .	S-17
Table S-6. Reduced partition function calculation of ^{18}O KIE(H ₂ O) for Ru_2^{Hbpp} .	S-19
Additional computational analysis	S-20
Table S-7. Summary of DFT calculated parameters for catalysis by Ru.	S-21
Table S-8. Summary of DFT calculated parameters for catalysis by Ru2 ^{BD} .	S-22
Table S-9. Summary of DFT calculated parameters for catalysis by Ru2 ^{Hbpp} .	S-23

Table S-10: Comparison of gas phase ¹⁸ O KIE(H ₂ O) and ¹⁸ O KIE(D ₂ O)	S-24
Figure S-1: UV-Vis Spectrum and Beer's Law Plot for Ru₂^{BD} .	S-25
Figure S-2: Quantitative ¹ H-NMR spectrum of Ru₂^{BD} .	S-26
Figure S-3: Expanded views of the spectrum in Figure S-2.	S-27
Figure S-4: UV-Vis Spectrum and Beer's Law Plot for Ru.	S-28
Figure S-5: Quantitative ¹ H-NMR spectrum of Ru .	S-29
Figure S-6: UV-Vis spectrum and Beer's Law plot for Ru₂^{Hbpp} .	S-30
Figure S-7: Quantitative ¹ H-NMR spectrum of Ru₂^{Hbpp} .	S-31
Figure S-8: Plots of initial rate versus \mathbf{Ru} (a), $\mathbf{Ru_2}^{BD}$ (b) and $\mathbf{Ru_2}^{Hbpp}$ (c)	S-32

Full Lists of Authors for (Gaussian) Reference 35b.

Gaussian 03, Revision C.02, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,
M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.;
Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.;
Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.;
Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.;
Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.
E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.;
Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.;
Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.;
Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.;
Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Allaham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.;
Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian, Inc., Wallingford CT, 2004

Calculations of ¹⁸O EIEs and ¹⁸O KIEs

Isotope exchange reactions (Schemes S1-S4) are used to define reduced partition function ratios for the computation of ¹⁸O EIEs and ¹⁸O KIEs are provided below. Each reactant and product of every step in the catalytic reactions mechanism is considered, following the approach outlined by Bigeleisen and Goeppert-Mayer.

_

_

_

Scheme S1. The isotope exchange reaction used to define irreversible oxo-coupling (OC).

$$Ru=O + Ru=O \implies Ru = OO-Ru$$

$$Ru=O* + Ru=O \implies Ru = OO-Ru$$

$$Ru=O + Ru^*OOORu = Ru=O^*$$

Scheme S2. Isotope exchange reactions used to define irreversible water attack (WA).

$$H_2O + Ru = O \implies RuO - OH + H^+$$

$$H_2O + Ru = O^*$$

Ru=O + Ru=O* + Ru=O* + Ru=O* + Ru=O* + Ru=O*

$$H_2O + Ru = O \implies RuO - OH + H^+$$

$$H_2O^* + Ru=O \implies RuO-O^*H + H^+$$

$$H_2O + {}^{\ddagger}RuO-O*H \implies H_2O* + {}^{\ddagger}RuO-OH$$
 16,16*K*/18,16*K*

Scheme S3. Isotope exchange reactions for the oxidation of monomeric (a) and dimeric (b) ruthenium complexes.

(a)

$$\operatorname{Ru}^{II} - \operatorname{OH}_2 \longrightarrow \operatorname{Ru}^{V} = \operatorname{O} + 3e^- + 2H^+$$

$$Ru^{II} - *OH_2 \longrightarrow Ru^{V} = O^* + 3e^- + 2H^+$$

$$Ru^{II} - OH_2 + Ru^V = O* \implies Ru^V = O + Ru^{II} - *OH_2$$

16,16K/16,18K

(b)

$$Ru_{2}^{red}(OH_{2})_{2} \Longrightarrow Ru_{2}^{ox}(O)_{2} + 4e^{-} + 4 H^{+}$$

$$Ru^{red}(*OH_{2})Ru^{red}(OH_{2}) \Longrightarrow Ru^{ox}(*O)Ru^{ox}(O) + 4e^{-} + 4 H^{+}$$

$$Ru^{red}(OH_{2})_{2} + Ru^{ox}(*O)Ru^{ox}(O) \Longrightarrow Ru_{2}^{ox}(O)_{2} + Ru^{red}(*OH_{2})Ru^{red}(OH_{2})$$

$$16,16K/16,18K$$

$$16,16K/16,18K$$

Scheme S4. Isotope exchange reactions for the reversible release of O_2 (a) and H_2O binding (b).

$$\operatorname{Ru}^{\operatorname{III or IV}}(O_2) \Longrightarrow \operatorname{Ru}^{\operatorname{II or III}} + O_2$$
 16,16K

$$\operatorname{Ru}^{\operatorname{III or IV}}(*O_2) \Longrightarrow \operatorname{Ru}^{\operatorname{II or III}} + *O_2$$
^{16,18}K

$$Ru^{III \text{ or }IV}(O_2) + *O_2 \longrightarrow Ru^{III \text{ or }IV}(*O_2) + O_2$$

16,16K/16,18K

(b)

$$H_2O + Ru^{II \text{ or III}} \longrightarrow Ru^{II \text{ or III}} - OH_2$$

$$H_2O^* + Ru^{II \text{ or III}} \Longrightarrow Ru^{II \text{ or III}} *OH_2$$

$$H_2O + Ru^{II \text{ or III}} - *OH_2 \longrightarrow H_2O^* + Ru^{II \text{ or III}} - OH_2$$

In the latter case the vibrational product (*VP*) was derived from the *MMI* partition function by removing the imaginary mode corresponding to the reaction coordinate frequency referred to throughout as v_{RC} . The complete set of vibrational frequencies was implemented for the initial (A) and final (B) states per the Redlich-Teller product rule, using the generic isotope exchange equation A + B* \rightarrow A* +B, where the asterisk designated the site of the heavy isotope. A is the initial reactant in all cases containing 3*N*-6 modes, where *N* is the number of atoms. B may be S-6 the product with 3*N*-6 stable modes or the transition state (TS) with 3*N*-7 stable modes. The product with 3*N*-6 vibrations was used to calculate ¹⁸O EIEs whereas the TS with 3*N*-7 vibrations was used to compute the ¹⁸O KIEs defined by the expression below, where additional terms include *h* (Planck's constant), *k* (Boltzmann's constant) and *T* is temperature.

(S-1)
18
O EIE = $ZPE \times EXC \times MMI$

(S-2)
$$ZPE = \frac{\begin{bmatrix} 3N-6 & \exp(hv_j^{B^*}/(2kT)) \\ \prod_j & \exp(hv_j^{B^*}/(2kT)) \end{bmatrix}}{\begin{bmatrix} 3N-6 & \exp(hv_i^{A^*}/(2kT)) \\ \prod_i & \exp(hv_i^{A^*}/(2kT)) \end{bmatrix}}$$

(S-3)
$$EXC = \frac{\left[\prod_{j=1}^{3N-6} \frac{1 - \exp\{-(hv_{j}^{B^{*}}/(kT))\}}{1 - \exp\{-(hv_{j}^{B^{*}}/(kT))\}}\right]}{\left[\prod_{i=1}^{3N-6} \frac{1 - \exp\{-(hv_{i}^{A^{*}}/(kT))\}}{1 - \exp\{-(hv_{i}^{A^{*}}/(kT))\}}\right]}$$

(S-4)
$$MMI = \frac{\prod_{j=1}^{3N-6} (v_j^B / v_j^{B^*})}{\prod_{i=1}^{3N-6} (v_i^A / v_i^{A^*})}$$

The kinetic isotope effect is computed similarly using the terms described above, except that a pseudo-equilibrium constant for attaining the TS from the reactant is used. This term, ${}^{18}K_{TS}$, is defined as the product: $ZPE \times EXC \times VP$. In addition, the ${}^{18}v_{RC}$ is the ratio of the imaginary mode for the light TS isotopologue to the heavy TS isotopologue, or to the average of the two heavy isotopologues (vide infra). As a result, this term is invariably calculated to be ≥ 1 .

(S-5)
$${}^{18}O \text{ KIE} = ({}^{18}v_{\text{RC}})(ZPE \times EXC \times VP)$$

(S-6)
$$ZPE = \frac{\left[\frac{3N-7}{\prod_{j=1}^{3N-7} \frac{\exp(hv_{j}^{B^{*}}/(2kT))}{\exp(hv_{j}^{B}/(2kT))}}\right]}{\left[\frac{3N-6}{\prod_{i=1}^{3N-6} \frac{\exp(hv_{i}^{A^{*}}/(2kT))}{\exp(hv_{i}^{A}/(2kT))}}\right]}$$

(S-7)
$$EXC = \frac{\left[\prod_{j=1}^{3N-7} \frac{1 - \exp\{-(hv_{j}^{B^{*}}/(kT))\}}{1 - \exp\{-(hv_{j}^{A^{*}}/(kT))\}}\right]}{\left[\prod_{i=1}^{3N-6} \frac{1 - \exp\{-(hv_{i}^{A^{*}}/(kT))\}}{1 - \exp\{-(hv_{i}^{A}/(kT))\}}\right]}$$

(S-8)
$$VP = \frac{\prod_{j=1}^{3N-7} (v_j^B / v_j^{B^*})}{\prod_{i=1}^{3N-6} (v_i^A / v_i^{A^*})}$$

The isotope exchange reactions used to define the relevant ¹⁸O KIEs and ¹⁸O EIEs are provided in the accompanying text. The preference of heavy oxygen for the position associated with the weaker force constant and light oxygen for the stiffer force constant was considered by Boltzmann-weighting. Results are essentially equivalent to statistical averaging as shown below.

*m*PW91

Ru, WA ^{4a}	Ru=O + H ₂ O*	Ru=O* + H ₂ O
ZPE	0.9207	1.0274
MMI	1.1494	0.9826
EXC	0.9353	1.0099
¹⁸ <i>K</i> _{TS}	0.9898	1.0194
¹⁸ V _{RC}	1.0193	1.0204
¹⁸ KIE	1.0089	1.0402

Average ${}^{18}k_{WA} = 1.0246$

M06-L

Ru, WA ^{4a}	Ru=O + H ₂ O*	Ru=0* + H ₂ O
ZPE	0.9277	1.0355
MMI	1.1500	0.9821
EXC	0.9327	1.0094
¹⁸ <i>K</i> _{TS}	0.9950	1.0265
¹⁸ V _{RC}	1.0186	1.0209
¹⁸ KIE	1.0136	1.0480

Average ${}^{18}k_{WA} = 1.0308$

*m*PW91

Ru ₂ ^{BD 1} WA ²	[Ru ^v =O, Ru ^v =O] + H ₂ O*	[Ru ^v =O*,Ru ^v =O] + H ₂ O
ZPE	0.9260	1.0172
MMI	1.1592	0.9859
EXC	0.9226	1.0100
¹⁸ <i>K</i> _{TS}	0.9903	1.0129
¹⁸ V _{RC}	1.0127	1.0147
¹⁸ KIE	1.0029	1.0278

Average ¹⁸ k_{WA} = 1.0154

M06-L

Ru ₂ ^{BD 1} WA ²	[Ru ^v =0,Ru ^v =0] + H ₂ 0*	[Ru ^v =O*,Ru ^v =O] + H ₂ O
ZPE	0.9229	1.0254
MMI	1.1585	0.9867
EXC	0.9248	1.0074
EIE	0.9888	1.0193
¹⁸ V _{RC}	1.0132	1.0140
¹⁸ KIE	1.0019	1.0336

Average ${}^{18}k_{WA} = 1.0178$

	¹⁸ v _{RC}	ZPE	VP	EXC	$^{18}K_{\rm TS}$	$^{16,16}v_{\rm RC}~(\rm cm^{-1})$
Ru	<i>m</i> PW91 /	<i>m</i> PW91 /	<i>m</i> PW91 /	<i>m</i> PW91 /	<i>m</i> PW91 /	<i>m</i> PW91 /
	M06-L	M06-L	M06-L	M06-L	M06-L	M06-L
	1.0198/	0.9703/	1.0605/	0.9706/	1.0041/	-263.77/
² WA ^{4a}	1.0197	0.9779	1.0604	0.9690	1.0103	-411.61
² WA ^{4a}	1.0221/	0.9779/	1.0549/	0.9700/	1.0054/	-227.63/
(SMD)	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
	n.d./	n.d./	n.d./	n.d./	n.d./	n.d./
² WA ^{4b}	1.0092	0.9758	1.0703	0.9593	1.0064	-307.92
² WA ^{4b}	n.d./	n.d.	n.d./	n.d./	n.d./	n.d/
(SMD)	1.0123	/0.9896	1.0633	0.9573	1.0113	-465.92
	1.0085/	0.9665/	1.0729/	0.9617/	1.0021/	-561.74/
² WA ⁵	1.0078	0.9698	1.0709	0.9616	1.0034	-327.32

Table S-1. Reduced partition function calculation of ¹⁸O KIE(O–O) for **Ru**.

Table S-2. Reduced pa	rtition function calcu	ulation of ¹⁸ O KIE	$(O-O)$ for $\mathbf{Ru_2}^{\mathbf{BD}}$.
-----------------------	------------------------	--------------------------------	---

	¹⁸ v _{RC}	ZPE	VP	EXC	$^{18}K_{\rm TS}$	$^{16,16}v (cm^{-1})$
Ru ₂ ^{BD}	<i>m</i> PW91 /	<i>m</i> PW91 /	<i>m</i> PW91 /	<i>m</i> PW91 /	<i>m</i> PW91 /	<i>m</i> PW91 /
	M06-L	M06-L	M06-L	M06-L	M06-L	M06-L
^{1s} WA ¹	1.0057/	0.9553/	1.0751/	0.9641/	0.9954/	-923.30/
	1.0072	0.9627	1.0731	0.9632	0.9998	-958.40
¹ WA ¹	1.0060/	0.9611/	1.0747/	0.9614/	0.9985/	-888.12/
(SMD)	1.0039	0.9564	1.0783	0.9607	0.9953	-1144.66
2 1	n.d./	n.d./	n.d./	n.d./	n.d./	n.d./
³ WA ¹	1.0043	0.9561	1.0760	0.9638	0.9964	-1096.87
	n.d./	n.d./	n.d./	n.d./	n.d./	n.d./
⁵ WA ¹	1.0113	0.9687	1.0676	0.9633	1.0007	-715.23
	1.0137/	0.9688/	1.0667/	0.9637/	1.0013/	-572.34/
¹ WA ²	1.0135	0.9706	1.0670	0.9637	1.0036	-571.78
¹ WA ²	1.0218/	0.9711/	1.0581/	0.9680/	1.0004/	-426.85/
(SMD)	1.0118	0.9580	1.0724	0.9658	0.9977	-578.11
³ WA ²	n.d./	n.d./	n.d./	n.d./	n.d./	n.d./

	1.0110	0.9711	1.0691	0.9614	1.0035	-617.03
	n.d./	n.d./	n.d./	n.d./	n.d./	n.d./
⁵ WA ²	1.0166	0.9712	1.0633	0.9646	1.0020	-504.46
	n.d./	n.d./	n.d./	n.d./	n.d./	n.d./
¹ OC						
	1.0223	1.0238	0.9792	1.0138	1.0165	-345.78
	n.d./	n.d./	n.d./	n.d./	n.d./	n.d./
³ OC	1.0294	1.0218	0.9714	1.0192	1.0117	-318.99
	n.d./	n.d./	n.d./	n.d./	n.d./	n.d./
⁵ OC	1.0278	1.0294	0.9731	1.0147	1.0166	-343.84

Table S-3. Reduced partition function calculation of ${}^{18}\text{O}$ KIE(O–O) for $\mathbf{Ru_2}^{Hbpp}$.

	¹⁸ v _{RC}	ZPE	VP	EXC	$^{18}K_{TS}$	$^{16,16}v_{\rm RC}~({\rm cm}^{-1})$
Ru_2^{Hbpp}	<i>m</i> PW91 /	<i>m</i> PW91 /	<i>m</i> PW91 /	<i>m</i> PW91 /	<i>m</i> PW91 /	<i>m</i> PW91 /
	M06-L	M06-L	M06-L	M06-L	M06-L	M06-L
	1.0061/	0.9543/	1.0748/	0.9638/	0.9934/	-693.15/
¹ WA ¹ (IV,IV)	1.0008	0.9571	1.0796	0.9608	0.9978	-1436.73

$^{1}WA^{2}$ (IV,IV)	1.0012/	0.9654/	1.0793/	0.9556/	1.0006/	-1152.41/
	1.0010	0.9700	1.0794	0.9535	1.0034	-1412.46
	1.0203/	1.0170/	0.9800/	1.0137/	1 0104/	-156 96/
¹ OC (IV,IV)	1 0281	1 0248	0.9729	1 0189	1 0160	-396.84
	1.0201	1.0240	0.9729	1.0109	1.0100	570.04
¹ OC (IV,IV)	n.d./	n.d./	n.d./	n.d./	n.d./	n.d./
(SMD)	1.0282	1.0286	0.9733	1.0170	1.0182	-384.84
	1.0189/	0.9762/	1.0608/	0.9660/	1 0044/	-376 22/
$^{2}WA^{1}$ (IV,V)	1.0107/	0.9702/	1.0000/	0.9000/	1.0011/	510.22
	1.0227	0.9852	1.0566	0.9680	1.0113	-228.49
	1.0155/	0.9811/	1.0643/	0.9613/	1.0083/	-141 56/
$2\mathbf{W} \mathbf{A}^2$ (IV V)	1.01557	0.9011/	1.0045/	0.9015/	1.0005/	141.50/
WA (IV,V)	1.0110	0.9847	1.0693	0.9564	1.0121	-437.39
	1 /	1 /	1 /	1 /	1 /	1 /
2	n.d./	n.d./	n.d./	n.d./	n.d./	n.d./
² OC (IV,V)	1.0272	1.0238	0.9736	1.0200	1.0167	-337.18
	1.0197/	0.9779/	1.0599/	0.9666/	1.0061/	-382.20/
⁴ WA ¹ (IV,V)	1 0230	0.9852	1 0565	0 9674	1 0108	-248 36
	1.0250	0.9002	1.0000	0.9071	1.0100	210.30
	1 0167/	0.9831/	1.0631/	0 9619/	1 0099/	-146.26/
$4WA^2 (WW)$	1.01077	0.2001	1.0001/	0.7017	1.00771	1.0.20
	1.0113	0.9865	1.0689	0.9556	1.01283	-430.98

	1.0264/	1.0239/	0.9744/	1.0180/	1.0157/	-277.64/
⁴ OC (IV,V)						
	1.0279	1.0321	0.9730	1.0172	1.0216	-408.76
⁴ OC (IV, V)	1.0244/	1.0273/	0.9757/	1.0116/	1.0141/	-242.03/
(SMD)	1.0274	1.0287	0.9735	1.0167	1.0183	-421.28

Calculated Vibrational Frequencies of Water

$H_2O(a$	mPW91)
----------	--------

D₂**O** (*m*PW91)

16	18	16	18
1672.893	1665.824	1225.14	1216.288
3647.852	3640.434	2628.01	2617.323
3773.26	3757.823	2765.147	2744.038

H₂O (M06-L)

D₂O (M06-L)

16	18	16	18
1746.834	1739.676	1277.87	1268.939
3797.261	3789.053	2738.7	2726.904

3937.48	3921.641	2883.824	2862.159

H₂O (SMD) (*m*PW91)

H₂O (SMD) (M06-L)

16	18	16	18
1640.039	1633.301	1695.674	1688.906
3645.037	3637.198	3775.161	3766.597
3741.44	3726.248	3883.54	3868.098

Table S-4. Reduced partition function calculation of 18 O KIE(H₂O) for **Ru**.

Da	18 V _{RC}	ZPE	VP	EXC	$^{18}K_{\rm TS}$
Ku	<i>m</i> PW/M06-L	<i>m</i> PW/M06-L	<i>m</i> PW/M06-L	<i>m</i> PW/M06-L	<i>m</i> PW/M06-L
277 442	1.0199/	0.9318/	1.1497/	0.9359/	1.0026/
² Ru, WA ⁴	1.0196	0.9351	1.150	0.9359	1.0062
² Ru, WA ^{4a}	1.0221/	0.9326/	1.1475/	0.9358/	1.0015/
(SMD)	n.d.	n.d.	n.d.	n.d.	n.d.
275 xxx 4h	n.d./	n.d./	n.d./	n.d./	n.d./
⁻ Ru, WA ⁺	1.0092	0.9310	1.1619	0.9262	1.0022

² Ru, WA ^{4b}	n.d./	n.d.	n.d./	n.d./	n.d./
(SMD)	1.0123	/0.9416	1.1564	0.9249	1.0067
² D XX 4.5	1.0085/	0.9275/	1.1635/	0.9272/	1.0006/
-Ku, WA	1.0078	0.9256	1.1624	0.9285	0.9992

Table S-5. Reduced partition function calculation of ${}^{18}O$ KIE(H₂O) for $\mathbf{Ru_2}^{BD}$.

D _{-r} BD	$^{18}v_{\rm RC}$	ZPE	VP	EXC	$^{18}K_{\rm TS}$
Ku ₂	<i>m</i> PW/M06-L	<i>m</i> PW/ M06-L	<i>m</i> PW / M06-L	<i>m</i> PW/M06-L	<i>m</i> PW/M06-L
$^{1}\mathrm{Ru_{2}}^{\mathrm{BD}},\mathrm{WA}^{1}$	1.0057/	0.9181/	1.1685/	0.9294/	0.9971/
	1.0072	0.9220	1.1668	0.9293	0.9996
$^{1}\mathrm{Ru}_{2}^{\mathrm{BD}},$	1.0059/	0.9248/	1.1678/	0.9266/	1.0007/
WA ¹ (SMD)	1.0039	0.9218	1.1706	0.9253	0.9979
	n.d./	n.d./	n.d./	n.d./	n.d./
$^{3}\mathrm{Ru}_{2}^{\mathrm{BD}},\mathrm{WA}^{1}$					
	1.0043	0.9166	1.1706	0.9300	0.9977
	n.d./	n.d./	n.d./	n.d./	n.d./
⁵ Ru ₂ ^{BD} , WA ¹	1.0113	0.9286	1.1617	0.9288	1.0018

	1.0135/	0.9316/	1.1588/	0.9292/	1.0032/
${}^{1}\mathrm{Ru}_{2}^{\mathrm{BD}}$, WA ²					
- ,	1.0134	0.0300	1 1580	0.0303	1 0036
	1.0134	0.9309	1.1309	0.9303	1.0030
1 Ru ₂ ^{BD} , WA ²	1.0215/	0.9352/	1.1492/	0.9330/	1.0027/
- ,					
(SMD)	1 0115	0 9251	1 1618	0 9305	1 0001
	1.0110	0.7 -0 1		0.5000	110001
	n.d./	n.d./	n.d./	n.d./	n.d./
$^{3}\mathrm{Ru_{2}}^{\mathrm{BD}},\mathrm{WA}^{2}$					
	1.0108	0.9319	1.1619	0.9281	1.0050
	1 /	1 /	1 /	1 /	1 /
5 DD 3	n.d./	n.d./	n.a./	n.d./	n.d./
$^{5}\mathrm{Ru}_{2}^{\mathrm{BD}},\mathrm{WA}^{2}$					
	1.0163	0.9327	1.1554	0.9310	1.0033
	nd/	nd/	nd/	nd/	nd/
	11. u ./	II. u ./	n.u./	11. u ./	11. u ./
$\mathrm{Ru}_{2}^{},\mathrm{OC}$					
	1.0223	0.9377	1.1506	0.9419	1.0162
	n.d./	n.d./	n.d./	n.d./	n.d./
³ Ru ² ^{BD} , OC					
Ku ₂ , 00	1.0205	0.0275	1 1 4 2 6	0.0470	1 0144
	1.0295	0.9375	1.1420	0.9470	1.0144
	n.d./	n.d./	n.d./	n.d./	n.d./
⁵ Ru ₂ ^{BD} , OC					
	1 0279	0 9449	1 1445	0 9418	1 0185

n Hbpp	18 v _{RC}	ZPE	VP	EXC	$^{18}K_{\rm TS}$
Ru ₂ ^{-tr} FF	<i>m</i> PW/M06-L	<i>m</i> PW/ M06-L	<i>m</i> PW / M06-L	<i>m</i> PW/M06-L	<i>m</i> PW/M06-L
	1.0061/	0.9217/	1.1693/	0.9264/	0.9985/
¹ WA ¹ (IV,IV)	1.0008	0.9213	1.1750	0.9242	1.0006
	1.0012/	0.0222/	1 1744/	0.010(/	1.0050/
¹ WA ² (IV,IV)	1.0013/	0.9322/	1.1/44/	0.9186/	1.0058/
	1.0011	0.9335	1.1748	0.9172	1.0062
	1.0204/	0.9446/	1.1534/	0.9340/	1.1767/
¹ OC (IV,IV)	1.0282	0.9491	1.1448	0.9403	1.0216
	n.d./	n.d./	n.d./	n.d./	n.d./
OC(IV,IV)					
(SMD)	1.0282	0.9513	1.1446	0.9400	1.0235
	1.0189/	0.9435/	1.1544/	0.9274/	1.0102/
² WA ¹ (IV,V)	1.0227	0.9470	1.1502	0.9299	1.0131
	1.0156/	0.9486/	1.1579/	0.9233/	1.0141/
² WA ² (IV,V)	1.0110	0.9476	1.1633	0.9196	1.0139
² OC (IV,V)	n.d./	n.d./	n.d./	n.d./	n.d./

Table S-6. Reduced partition function calculation of ${}^{18}\text{O}$ KIE(H₂O) for $\mathbf{Ru_2}^{Hbpp}$.

	1.0273	0.9468	1.1458	0.9404	1.0202
	1.0100/	0.0440/	1.1.70.7/	0.000/	1.010.7/
4	1.0198/	0.9440/	1.1535/	0.9280/	1.0105/
'WA' (IV,V)	1.0231	0.9457	1.1500	0.9303	1.0119
	1.0168/	0.9493/	1.1566/	0.9238/	1.0144/
$^{4}WA^{2} (IV,V)$					
	1.0114	0.9480	1.1628	0.9197	1.0139
40000000	1.0264/	0.9508/	1.1468/	0.9368/	1.0215/
*OC (IV,V)	1.0280	0.9516	1.1451	0.9396	1.0238
⁴ OC (IV, V)	1.0244/	0.9536/	1.1482/	0.9329/	1.0214/
(SMD)	1.0275	0.9509	1.1457	0.9386	1.0226

Additional Computational Details

¹⁸O KIEs are calculated for **OC** and **WA** mechanisms occurring during catalytic water oxidation by considering all microscopic steps, beginning with H_2O coordination to the reduced ruthenium species, leading up to and including the O–O bond formation step. Expressions for the isotope effect, KIE(H₂O), corresponding to Eq 6 where all steps are reversible prior to O–O bond formation, are presented in the tables below. The results are compared to the ¹⁸O KIE(O–O) which represents the ¹⁸O KIE on the microscopic step for O–O bond formation.

Aqueous free energies of activation were computed in two ways following geometry optimization. In the first approach, aqueous solvation free energies computed from the SMD

continuum solvation model were added to the gas-phase free energies computed at the *m*PW or M06-L levels detailed above. In the second approach, thermal contributions from the level employed for geometry optimization were added to single-point M06-L electronic energies computed with the SDD basis set for ruthenium and the 6-311+G(2df,p) basis for all other atoms. Calculations reflect a 1 M standard state for the ruthenium complexes in aqueous solution.

Water is present at its bulk concentration of 55.6 M. For all molecules except water, free energies in solution were computed including a 1 atm to 1 M standard-state concentration change $(1.9 \text{ kcal mol}^{-1})$ in addition to the 1 M to 1 M (solvation) transfer free energy computed from the SMD model. In the case of water, a 1 atm to 55.6 M standard-state concentration change $(4.3 \text{ kcal mol}^{-1})$ is added to the 1 M to 1 M experimental solvation free energy (-6.3 kcal mol⁻¹).]

	$\Delta G^{\ddagger}(\mathbf{O}-\mathbf{O})^{b}$	¹⁸ O KIE(O–O) ^{<i>c</i>}	$^{18}O \text{ KIE}(\text{H}_2\text{O})^{d}$
TS ^a	(kcal mol ⁻¹)	mPW / M06-L	mPW / M06-L
² Ru, WA ^{4a}	22.5	1.0240 / 1.0303	1.0225 / 1.0260
² Ru, WA ^{4a} (SMD)	23.1 ^e	1.0277 /	1.0236 /
² Ru, WA ^{4b}	19.0	— / 1.0158	— / 1.0114
² Ru, WA ^{4b} (SMD)	20.0 ^{<i>e</i>}	— / 1.0237	— /1.0191
² Ru, WA ⁵	20.6	1.0106 / 1.0113	1.0090 / 1.0070

Table S-7. Summary of DFT-calculated parameters for catalysis initiated by Ru.

^{*a*} Attained from the doublet, ²Ru^V=O, precursor. ^{*b*} Single-point corrected for spin and solvation unless noted. ^{*c*} Calculated for the microscopic O–O bond formation step. ^{*d*} Calculated for reversible steps beginning with H₂O coordination and leading up to irreversible O–O bond formation. ^{*e*} Computed from structures re-optimized including SMD aqueous solvation effects.

TS	$\Delta G^{\ddagger}(\mathbf{O-O})$	¹⁸ OKIE (O–O)	¹⁸ O KIE (H ₂ O)
	1 /	4	
	$(\text{kcal mol}^{-1})^{c,a}$	<i>m</i> PW / M06-L ^{<i>a</i>}	<i>m</i> PW / M06-L ^{<i>e</i>}
1 Ru ₂ ^{BD} , WA ¹ (SMD) ^{<i>a</i>}	54.0 ^f	1.0046 / 0.9993	1.0066 / 1.0018
$^{1}\mathrm{Ru}_{2}^{\mathrm{BD}},\mathrm{WA}^{1a}$	46.8	1.0012 / 1.0071	1.0028 / 1.0068
3 Ru ₂ ^{BD} , WA ¹ ^b	31.3	— / 1.0007	— / 1.0020
${}^{5}\mathrm{Ru}_{2}{}^{\mathrm{BD}},\mathrm{WA}^{1\ b}$	28.9	— / 1.0121	1.0050 / 1.0130
1 Ru ₂ ^{BD} , WA ² (SMD) ^{<i>a</i>}	34.4 ^f	1.0222 / 1.0095	1.0243 / 1.0120
1 Ru ₂ ^{BD} , WA ² ^a	36.5	1.0151 / 1.0172	1.0167 / 1.0170
$^{3}\mathrm{Ru}_{2}^{\mathrm{BD}},\mathrm{WA}^{2\ b}$	27.0	— / 1.0146	— / 1.0158
5Ru ₂ ^{BD} , WA ² ^b	31.9	— / 1.0184	— / 1.0196
$^{1}\mathrm{Ru}_{2}^{\mathrm{BD}},\mathrm{OC}^{\mathrm{a}}$	27.3	— /1.0393	— /1.0389

Table S-8 . Summary of DF1-calculated parameters for catalysis initiated by R

$^{3}\mathrm{Ru}_{2}^{\mathrm{BD}},\mathrm{OC}^{b}$	10.0	— /1.0416	— /1.0443
${}^{5}\mathrm{Ru}_{2}{}^{\mathrm{BD}},\mathrm{OC}{}^{b}$	7.8	— /1.0449	—/1.0469

^{*a*} Relative to the di-ruthenium (V, V) bis-oxo intermediate in an unrestricted singlet state, having a staggered conformation. ^{*b*} Relative to the corresponding di-ruthenium (V, V) bis-oxo intermediate in the triplet or quintet spin state, having an eclipsed conformation. ^{*c*} Calculated at the M06-L level using single-point corrections unless noted. ^{*d*} Calculated for the microscopic O– O bond formation step. ^{*e*} Calculated in a manner that includes all reversible steps, beginning with H₂O coordination and leading up to irreversible O–O bond formation. ^{*f*} Calculated using SMD at the M06-L level of theory.

	$\Delta G^{\ddagger}(\mathbf{O-O})$	$^{18}O \text{ KIE}(O-O)^{c}$	¹⁸ O KIE(H_2O) ^{<i>d</i>}
TS ^a	kcal mol ^{-1 b}	mPW / M06-L	<i>m</i> PW / M06-L
¹ Ru ² ^{Hbpp} ,WA ¹ (IV,IV)	43.9	0 9995 / 0 9987	1 0046 / 1 0014
		0.7770 + 0.770+	
1 Ru ₂ ^{Hbpp} ,WA ² (IV,IV)	55.9	1.0020 / 1.0046	1.0071 / 1.0073
1 Ru ₂ ^{Hbpp} , OC (IV,IV) (SMD)	16.5 ^e	— / 1.0470	— / 1.0524
¹ Ru ₂ ^{Hbpp} , OC (IV,IV)	14.3	1.0311 / 1.0447	1.0385 / 1.0504
2 Ru ₂ ^{Hbpp} ,WA ¹ (IV,V)	27.4	1.0235/ 1.0344	1.0294 / 1.0360

Table S-9. Summary of DFT-calculated parameters for catalysis initiated by Ru₂^{Hbpp}.

2 Ru ₂ ^{Hbpp} ,WA ² (IV,V)	27.6	1.0241 / 1.0234	1.0299 / 1.0250
² Ru ₂ ^{Hbpp} , OC (IV,V)	13.8	— / 1.0445	— /1.0480
4 Ru ₂ ^{Hbpp} ,WA ¹ (IV,V)	27.4	1.0260 / 1.0342	1.0305 / 1.0353
4 Ru ₂ ^{Hbpp} ,WA ² (IV,V)	26.7	1.0269 / 1.0244	1.0314 / 1.0254
⁴ Ru ₂ ^{Hbpp} , OC (IV, V) (SMD)	12.5 ^e	1.0389 / 1.0463	1.0463 / 1.0506
⁴ Ru ₂ ^{Hbpp} , OC (IV,V)	11.4	1.0426 / 1.0503	1.0485 / 1.0524

^{*a*} Relative to the di-ruthenium bis oxo precursor in the oxidation states indicated in the gas phase or aqueous dielectric continuum model. ^{*b*} Calculated at the M06-L level of theory or using single-point corrections as described in the Experimental. ^{*c*} Calculated for the microscopic O–O bond formation step. ^{*d*} Calculated assuming reversible steps beginning with H₂O coordination leading up to O–O bond formation in the first irreversible step. ^{*e*} Calculated using SMD at the M06-L level of theory.

Table S-10. Comparison of gas phase ¹⁸O KIE(H₂O) and ¹⁸O KIE(D₂O). Contributions from the isotope effects on the reaction coordinate frequency are given in parentheses.

mPW91	Proposed TS	¹⁸ O KIE _{calc} H ₂ O (¹⁸ v _{RC})	¹⁸ O KIE _{calc} D ₂ O(¹⁸ v _{RC})
Ru	WA ^{4a}	1.0242 (1.0199)	1.0275 (1.0179)
Ru ₂ ^{BD}	WA ²	1.0151 (1.0137)	1.0210 (1.0138)

M06-L	Proposed TS	¹⁸ O KIE _{calc} H ₂ O (¹⁸ v _{RC})	¹⁸ O KIE _{calc} D ₂ O(¹⁸ v _{RC})
Ru	WA ^{4a}	1.0303 (1.0198)	1.0355 (1.0188)
Ru ₂ ^{BD}	WA ²	1.0172 (1.0073)	1.0235 (1.0136)

Figure S-1: UV-Vis spectra (a) and Beer's Law plot (b) for Ru_2^{BD} : $\epsilon_{638 nm} = 22000 \text{ M}^{-1} \text{cm}^{-1}$, ϵ_{281} _{nm}= 56500 M⁻¹ cm⁻¹ and $\epsilon_{638 nm} = 46500 \text{ M}^{-1} \text{cm}^{-1}$. Purity based on $\epsilon_{638 nm} = 100 \pm 1 \%$).

b.

a.

Figure S-2: Quantitative ¹H NMR spectrum of $\mathbf{Ru_2}^{BD}$ (2.5 × 10⁻⁵ moles) and HMDS (4.2 × 10⁻⁶ moles) in d₆-DMSO (purity based on internal standard = 105 ± 6 %).

a.

Figure S-4: UV-Vis spectra (a) and Beer's Law plot (b) for Ru: $\varepsilon_{475nm} = 9200 \text{ M}^{-1} \text{cm}^{-1}$. The purity is estimated to be 96 ± 1 % based on $\epsilon_{475 \text{ nm}}$ (9600 M⁻¹ cm⁻¹).

Wavelength (nm)

b.

Figure S-5: Quantitative ¹H NMR spectrum of **Ru** (1.3×10^{-5} moles) and HMDS (1.2×10^{-5} moles) in CD₃OD (purity based on internal standard 99 ± 6 %).

Figure S-6: UV-Vis spectra (a) and Beer's Law plot (b) for $\mathbf{Ru_2}^{\mathbf{Hbpp}}$: $\varepsilon_{471nm} = 11320 \text{ M}^{-1}\text{cm}^{-1}$. The purity is estimated to be $95 \pm 1 \%$ based on the $\varepsilon_{471 \text{ nm}}$ (11880 M⁻¹cm⁻¹).

Figure S-7: Quantitative ¹H NMR spectrum of $\mathbf{Ru_2}^{\mathbf{Hbpp}}$ (1.15 × 10⁻⁵ moles) and HMDS (1.25 × 10⁻⁵ moles) in acetone-d₆ (purity based on internal standard 100 ± 5 %).

Figure S-8: Plots of initial rate versus \mathbf{Ru} (a), $\mathbf{Ru_2}^{BD}$ (b) and $\mathbf{Ru_2}^{Hbpp}$ (c) measured using a YSI O₂ electrode as described in the text.

Electronic Supplementary Material (ESI) for Chemical Science This journal is O The Royal Society of Chemistry 2014

