Supporting Information for:

Conjugated Macrocycles of Phenanthrene: a New Segment of [6,6]-Carbon Nanotube and Solution-Processed Organic Semiconductors

Zikai He, ${ }^{1}$ Xiaomin Xu, ${ }^{1}$ Xing Zheng, ${ }^{1}$ Tian Ming, ${ }^{2}$ Qian Miao* ${ }^{1,3}$
${ }^{l}$ Department of Chemistry, the Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
${ }^{2}$ Department of Physics, the Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
${ }^{3}$ Center of Novel Functional Molecules, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
*miaoqian@cuhk.edu.hk

Table of Contents

1. Synthesis
2. Density functional theory (DFT) calculation
3. Calculation of association constants based on variable-concentration ${ }^{1} \mathrm{H}$ NMR spectroscopy
4. Variable-temperature ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1}$
5. Differential Scanning Calorimetry of 2
6. Fabrication and Characterization of Solution-Processed Thin Films and Transistors
7. NMR spectra

General: The reagents and starting materials employed were commercially available and used without any further purification if not specified elsewhere. Anhydrous and oxygen-free THF and toluene were purified by an Advanced Technology Pure-Solv PS-MD-4 system. Dry DMF was distilled over $\mathrm{P}_{2} \mathrm{O}_{5} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ or ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were recorded on a Brucker ADVANCE III 400 MHz spectrometer. Mass spectra were recorded on a Bruker Daltonics Autoflex MALDI-TOF Mass Spectrometer. UV-Vis and steady-state fluorescence spectra were taken on a Cary 5G UV-Vis-NIR spectrophotometer and a Hitachi F-4500 spectrofluorometer respectively. Melting points, without correction, were measured using a Nikon Polarizing Microscope ECLIPSE 50i POL equipped with an INTEC HCS302 heating stage.

1. Synthesis

3, 6-dibromophenanthrene-9, 10-diol were synthesized following the reported procedure. ${ }^{1}$

3, 6-dibromo-9, 10-bis(hexyloxy)phenanthrene (5)

To a mixture of 3, 6-dibromophenanthrene-9, 10 -diol ($4.208 \mathrm{~g}, 11.43 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(11.801 \mathrm{~g}, 85.51 \mathrm{mmol})$ in 24 ml DMF, which was purged with nitrogen for 30 minutes, was added 1-bromohexane ($24.0 \mathrm{ml}, 182.88 \mathrm{mmol}$) via a syringe under a nitrogen atmosphere at room temperature. The resulting solution was stirred under a N_{2} atmosphere at room temperature overnight. The solution was then poured into water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for three times. The organic layers were combined, washed with brine, dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to remove the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and excessive 1-bromohexane. The pure product was recrystallized from ethanol to yield 3.378 g of 3, 6-dibromo-9, 10-bis(hexyloxy)phenanthrene (52%). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 8.64(\mathrm{~s}, 2 \mathrm{H})$, 8.10 (d, J=9.0 Hz, 2H), 7.71 (dd, $\mathrm{J}_{\mathrm{l}}=6.15 \mathrm{~Hz}, \mathrm{~J}_{2}=1.8 \mathrm{~Hz}, 2 \mathrm{H}$), 4.18 (t, J=6.6 Hz, 4H), 1.88 (m, $4 \mathrm{H}), 1.38(\mathrm{~m}, 8 \mathrm{H}), 0.92(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 14.1,22.6,25.9,30.4$, $31.7,73.7,120.3,124.2,125.4,128.7,128.8,130.4,143.1$. The NMR data are consistent with the reported. 1
(1) B. N. Boden, J. K.-H. Hui, M. J. Maclachlan, J. Org. Chem. 2008, 73, $8069-8072$.

3-(2'-methyl-2'-ol-but-3'-nyl)-6-bromo-9, 10-bis(hexyloxy)-phenanthrene (6)

To a mixture of 3,6-dibromo-9, 10-bis(hexyloxy)phenanthrene ($1.731 \mathrm{~g}, 3.23 \mathrm{mmol}$), CuI $(123.0 \mathrm{mg}, 0.65 \mathrm{mmol}), \mathrm{PPh}_{3}(169.4 \mathrm{mg}, 0.65 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(72.5 \mathrm{mg}, 0.10 \mathrm{mmol})$ and 1.35 ml of triethylamine in 40 ml of anhydrous and oxygen-free THF was added 2-methylbut-3-yn-2-ol ($0.31 \mathrm{ml}, 3.23 \mathrm{mmol}$) via a syringe under a nitrogen atmosphere at room temperature. The resulting solution was stirred under a nitrogen atmosphere at room temperature overnight. The reaction mixture was then extracted with diethyl ether for three times. The organic layers were combined, washed with water and brine, dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel using dichloromethane as eluent yielded 979 mg (65%) of 3-(2'-methyl-2'-ol-but-3'-nyl)-6-bromo-9, 10-bis(hexyloxy) phenanthrene as a light yellow oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 8.60(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.48(\mathrm{~s}, 1 \mathrm{H}), 8.06(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 8.03(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.65\left(\mathrm{dd}, \mathrm{J}_{1}=8.8 \mathrm{~Hz}, \mathrm{~J}_{2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.55(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.14(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 4 \mathrm{H}), 2.87(\mathrm{~s}, 1 \mathrm{H}), 1.87(\mathrm{~m}, 4 \mathrm{H}), 1.74(\mathrm{~s}, 6 \mathrm{H}), 1.54(\mathrm{~m}, 4 \mathrm{H}), 1.38(\mathrm{~m}, 8 \mathrm{H})$, $0.94(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 143.5,143.0,130.0,129.8,129.3,129.2,128.3$, $126.9,126.1,125.2,124.0,122.1,120.2,120.0,94.5,82.4,73.7,73.6,65.6,31.6,31.5,30.3$, 25.8, 22.6, 14.0. HRMS (MALDI-TOF): calcd. for $\mathrm{C}_{31} \mathrm{H}_{39}{ }^{79} \mathrm{BrO}_{3}$ ([M] ${ }^{+}$): 538.2083, found: 538.1006.

To a mixture of 3-(2'-methyl-2'-ol-but-3'-nyl)-6-bromo-9, 10-bis(hexyloxy)-phenanthrene ($760 \mathrm{mg}, 1.4 \mathrm{mmol}$), $\mathrm{CuI}(13.5 \mathrm{mg}, 0.07 \mathrm{mmol}), n \mathrm{Bu}_{4} \mathrm{NBr}(22.5 \mathrm{mg}, 0.07 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(81 \mathrm{mg}, 0.07 \mathrm{mmol})$ were added 30 ml of benzene and 5 ml of 5 M NaOH aqueous solution, both of which were purged with nitrogen before use. The reaction mixture was heated at $90{ }^{\circ} \mathrm{C}$ under a nitrogen atmosphere for 24 hours, and then cooled to room temperature. The crude product was then extracted with diethyl ether for three times. The organic layers were combined, washed with water and brine, dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel using dichloromethane:hexane $1: 4(\mathrm{~V}: \mathrm{V})$ as eluent yielded 150 $\mathrm{mg}(27 \%)$ of $\mathbf{2}$ as yellow solids and $40 \mathrm{mg}(7 \%)$ of $\mathbf{8}$ as off-white solids.

2 Melting point: $178{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 1 \mathrm{mg} / \mathrm{ml}\right) \delta(\mathrm{ppm}): 9.28(\mathrm{~s}, 6 \mathrm{H}), 8.24(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}$, 6 H), 7.81 (d, J=8.8 Hz, 6H), 4.25 (t, J=6.8 Hz, 12H), 1.95 (m, 12H), 1.61 (m, 12H), 1.43 (m, $24 \mathrm{H}), 0.96(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 14.3,22.9,26.1,30.7,31.9,73.9$, $91.2,120.9,122.5,127.2,128.2,129.4,129.5,144.1$. HRMS (MALDI-TOF): calcd. for $\mathrm{C}_{84} \mathrm{H}_{96} \mathrm{O}_{6}\left([\mathrm{M}]^{+}\right): 1200.7207$, found: 1200.7151 .
$\mathbf{8 ~}^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 8.86(\mathrm{~s}, 8 \mathrm{H}), 8.24(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 8 \mathrm{H}), 7.80\left(\mathrm{dd}, \mathrm{J}_{1}=8.4 \mathrm{~Hz}\right.$, $\left.\mathrm{J}_{2}=1.2 \mathrm{~Hz}, 8 \mathrm{H}\right), 4.24(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 16 \mathrm{H}), 1.95(\mathrm{~m}, 16 \mathrm{H}), 1.59(\mathrm{~m}, 16 \mathrm{H}), 1.39(\mathrm{~m}, 32 \mathrm{H}), 0.95(\mathrm{t}$, $\mathrm{J}=6.8 \mathrm{~Hz}, 24 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 14.2,22.8,26.1,30.6,31.9,73.9,90.2,120.8$, 122.6, 126.2, 128.0, 129.7, 130.1, 144.0. HRMS (MALDI-TOF): calcd. for $\mathrm{C}_{122} \mathrm{H}_{128} \mathrm{O}_{8}\left([\mathrm{M}]^{+}\right)$: 1601.9643, found: 1601.9590 .

To a mixture of cyclic-tri(3-ethynyl-9,10-bis(hexyloxy)phenanthrene) ($48 \mathrm{mg}, 0.04 \mathrm{mmol}$) and $\mathrm{Cu}(\mathrm{OTf})_{2}(9.0 \mathrm{mg}, 0.024 \mathrm{mmol})$ in 1,2 -dichloroethane (10 mL) were added 2-phenylethynyl-benzaldehyde ($50 \mathrm{mg}, 0.24 \mathrm{mmol}$) and $\mathrm{CF}_{3} \mathrm{COOH}$ ($20 \mathrm{uL}, 0.264 \mathrm{mmol}$) successively at room temperature under a N_{2} atmosphere. The resulting mixture was stirred at $100{ }^{\circ} \mathrm{C}$ for 3 hours and then cooled to room temperature. After addition of a saturated aqueous solution of NaHCO_{3}, the mixture was extracted with ether for three times. The combined extracts were washed with brine, dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel using dichloromethane:hexane $1: 5(\mathrm{~V}: \mathrm{V})$ as eluent yielding $45 \mathrm{mg}(75 \%)$ of $\mathbf{1}$ as off-white solids. Melting point: $143-144^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta(\mathrm{ppm}): 8.29$ (s, 6 H$), 8.01$ (d, $\mathrm{J}=8.4 \mathrm{~Hz}, 6 \mathrm{H}), 7.88(\mathrm{~m}, 12 \mathrm{H}), 7.70\left(\mathrm{dd}, \mathrm{J}_{1}=8.4 \mathrm{~Hz}, \mathrm{~J}_{2}=1.2 \mathrm{~Hz}, 6 \mathrm{H}\right), 7.51\left(\mathrm{dd}, \mathrm{J}_{1}=8.4 \mathrm{~Hz}\right.$, $\left.\mathrm{J}_{2}=1.2 \mathrm{~Hz}, 6 \mathrm{H}\right), 4.05(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 12 \mathrm{H}), 1.85(\mathrm{~m}, 12 \mathrm{H}), 1.53(\mathrm{~m}, 12 \mathrm{H}), 1.36(\mathrm{~m}, 24 \mathrm{H}), 0,93(\mathrm{t}$, $\mathrm{J}=7.2 \mathrm{~Hz}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta(\mathrm{ppm}): 14.3,23.1,26.3,30.8,32.2,73.8,121.2,124.1$, 126.7, 128.0, 128.5, 128.7, 129.7, 129.7, 132.7, 139.5, 140.9, 143.4. HRMS (MALDI-TOF): calcd. for $\mathrm{C}_{108} \mathrm{H}_{114} \mathrm{O}_{6}\left([\mathrm{M}]^{+}\right): 1507.8649$, found: 1507.8585.

Lewis acid-catalyzed [4+2] benzannulation of 8

To a mixture of $\mathbf{8}(40 \mathrm{mg}, 0.025 \mathrm{mmol})$ and $\mathrm{Cu}(\mathrm{OTf})_{2}(9.0 \mathrm{mg}, 0.024 \mathrm{mmol})$ in 1,2-dichloroethane (10 mL) were added 2-phenylethynyl-benzaldehyde ($50 \mathrm{mg}, 0.24 \mathrm{mmol}$) and $\mathrm{CF}_{3} \mathrm{COOH}$ ($20 \mathrm{uL}, 0.264 \mathrm{mmol}$) successively at room temperature under a N_{2} atmosphere. The resulting mixture was stirred at $100^{\circ} \mathrm{C}$ for 3 hours and then cooled to room temperature. After addition of a saturated aqueous solution of NaHCO_{3}, the mixture was extracted with diethyl ether for three times. The combined extracts were washed with brine, dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The crude product was a complex mixture as found from ${ }^{1} \mathrm{H}$ NMR spectrum. HRMS (ESI): calcd. for $\mathrm{C}_{144} \mathrm{H}_{152} \mathrm{O}_{8} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right):$2033.1413, found: 2033.1406. HRMS (MALDI-TOF): calcd. for $\mathrm{C}_{144} \mathrm{H}_{152} \mathrm{O}_{8}\left([\mathrm{M}]^{+}\right): 2010.1521$, found: 2010.1541.

3, 6-bis(trimethylsilylethynyl)-9, 10-bis(hexyloxy)-phenanthrene

To a mixture of 3, 6-dibromo-9, 10-bis(hexyloxy)phenanthrene (1.072 g, 2.00 mmol), CuI ($70.3 \mathrm{mg}, 36.91 \mathrm{mmol}$), $\mathrm{PPh}_{3}(120.7 \mathrm{mg}, 0.46 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(75.0 \mathrm{mg}, 0.10 \mathrm{mmol})$ in 20.0 ml anhydrous and oxygen-free toluene and 1.12 ml triethylamine was added (trimethylsilyl)acetylene ($3.6 \mathrm{ml}, 16.0 \mathrm{mmol}$) via a syringe under a nitrogen atmosphere at room temperature. The resulting solution was stirred under a nitrogen atmosphere and refluxed overnight. The reaction mixture was then extracted with diethyl ether for three times. The organic layers were combined, washed with water and brine, dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel using dichloromethane:hexane $1: 10(\mathrm{~V}: \mathrm{V})$ yielding 882 mg (77%) of 3 , 6-bis(trimethylsilylethynyl)-9, 10-bis(hexyloxy)-phenanthrene. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta(\mathrm{ppm}): 8.76(\mathrm{~s}, 2 \mathrm{H}), 8.15(\mathrm{~d}, \mathrm{~J}=8.48 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{~d}, \mathrm{~J}=8.48 \mathrm{~Hz}, 2 \mathrm{H}), 4.19(\mathrm{t}, \mathrm{J}=6.68 \mathrm{~Hz}$, $4 \mathrm{H}), 1.90(\mathrm{~m}, 4 \mathrm{H}), 1.56(\mathrm{~m}, 4 \mathrm{H}), 1.39(\mathrm{~m}, 8 \mathrm{H}), 0.95(\mathrm{t}, \mathrm{J}=6.84 \mathrm{~Hz}, 6 \mathrm{H}), 0.35(\mathrm{~s}, 18 \mathrm{H})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 0.1,14.1,22.7,25.9,30.4,31.7,73.7,94.8,105.6,120.5,122.3$, $126.7,127.7,129.6,130.0,143.8$. These data are consistent with the reported literature. ${ }^{2}$

3, 6-diethynyl-9, 10-bis(hexyloxy)phenanthrene (7)

To a solution of 3, 6-bis(trimethylsilylethynyl)-9, 10-bis(hexyloxy)-phenanthrene (0.882 g , $1.55 \mathrm{mmol})$ in 10.0 ml THF was added $3.0 \mathrm{ml}(6.0 \mathrm{mmol})$ of 2 M KOH aqueous solution. The resulting solution was stirred under air at room temperature overnight. After reaction, saturated $3 \mathrm{ml} \mathrm{NH}_{4} \mathrm{Cl}$ was added and the solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for three times. The organic layer was combined and washed with brine, dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and removed under reduced pressure. The crude product was purified by column chromatography on silica gel using dichloromethane: hexane $1: 10(\mathrm{~V}: \mathrm{V})$ as eluent yielding $576 \mathrm{mg}(88.0 \%)$ of 3, 6-diethynyl-9, 10-bis(hexyloxy) phenanthrene. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 8.76$ (s, 2H), $8.18(\mathrm{~d}, \mathrm{~J}=8.44 \mathrm{~Hz}, 2 \mathrm{H}), 7.70\left(\mathrm{dd}, \mathrm{J}_{1}=8.44 \mathrm{~Hz}, \mathrm{~J}_{2}=1.24 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.20(\mathrm{t}, \mathrm{J}=6.72 \mathrm{~Hz}, 4 \mathrm{H}), 3.22$ $(\mathrm{s}, 2 \mathrm{H}), 1.90(\mathrm{~m}, 4 \mathrm{H}), 1.56(\mathrm{~m}, 4 \mathrm{H}), 1.38(\mathrm{~m}, 8 \mathrm{H}), 0.93(\mathrm{t}, \mathrm{J}=2.48 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta(\mathrm{ppm}): 143.9,130.1,129.9,127.6,126.9,122.5,119.5,84.1,77.8,73.8,31.7,30.4,25.9$, $22.7,14.1$. These data are consistent with the reported literature. ${ }^{2}$

[^0]

To a solution of $31.700 \mathrm{~g}(174.0 \mathrm{mmol})$ of $\mathrm{Cu}(\mathrm{OAc})_{2}$ in 200 ml of pyridine and 20 ml $\mathrm{CH}_{3} \mathrm{OH}$ was added a solution of $2.470 \mathrm{~g}(5.8 \mathrm{mmol})$ of 3,6-diethynyl- 9,10 -bis(hexyloxy)phenanthrene in 150.0 ml pyridine dropwise over 2 hours. The resulting mixture was stirred at $55^{\circ} \mathrm{C}$ overnight. Then the reaction mixture was cooled to room temperature and 200 ml methanol was added into the solution. The mixture was filtered and the resulting solid was washed thoroughly with water and methanol successively. The solid was purified with column chromatography on silica gel using dichloromethane: hexane $(=1: 3)$ as eluent yielding cyclic-tri(3, 6-diethynyl-9, 10-bis(hexyloxy)phenanthrene) and cyclic-bis(3, 6-diethynyl-9,10-bis(hexyloxy)phenanthrene) in two separate portions. Recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ yielded $238.2 \mathrm{mg}(9.7 \%)$ of $\mathbf{9}$ as yellow crystals. Precipitation from ethanol yielded $1.132 \mathrm{~g}(46 \%)$ of $\mathbf{3}$ as yellow solids.

3: Melting point: $244^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 1 \mathrm{mg} / \mathrm{ml}\right) \delta(\mathrm{ppm}): 8.71(\mathrm{~s}, 6 \mathrm{H}), 8.10(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}$, 6 H), 7.67 (d, J=8.8 Hz, 6H), $4.20(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 12 \mathrm{H}), 1.94(\mathrm{~m}, 12 \mathrm{H}), 1.60(\mathrm{~m}, 12 \mathrm{H}), 1.43(\mathrm{~m}$, $24 \mathrm{H}), 0.97(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 14.2,22.8,26.0,30.6,31.9,73.4$, 75.4, 82.7, 119.2, 121.7, 126.9, 127.3, 128.9, 129.2, 143.6. HRMS (MALDI-TOF): calcd. for $\mathrm{C}_{90} \mathrm{H}_{97} \mathrm{O}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 1273.7285$, found: 1273.7358 .
9: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 9.94(\mathrm{~s}, 4 \mathrm{H}), 8.00(\mathrm{~d}, \mathrm{~J}=8.44 \mathrm{~Hz}, 4 \mathrm{H}), 7.37(\mathrm{~d}, \mathrm{~J}=8.36 \mathrm{~Hz}, 4 \mathrm{H})$, $4.17(\mathrm{t}, \mathrm{J}=6.68 \mathrm{~Hz}, 8 \mathrm{H}), 1.88(\mathrm{~m}, 8 \mathrm{H}), 1.55(\mathrm{~m}, 8 \mathrm{H}), 1.38(\mathrm{~m}, 16 \mathrm{H}), 0.93(\mathrm{t}, \mathrm{J}=6.84 \mathrm{~Hz}, 12 \mathrm{H})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 14.1,22.6,25.8,30.4,31.7,73.8,90.9,119.9,122.5,125.8,127.9$, 130.2, 133.9, 144.7. HRMS (MALDI-TOF): calcd. for $\mathrm{C}_{60} \mathrm{H}_{64} \mathrm{O}_{4}$ ([M] ${ }^{+}$): 848.4805, found: 848.4807.

Cyclo-3,6-tris(9, 10-di(hexyloxy)phenanthrene) (4)
Bis(cyclooctadiene)nickel ($660.2 \mathrm{mg}, 2.4 \mathrm{mmol}, 2.4$ equiv), cyclooctadiene ($0.295 \mathrm{ml}, 2.4$ mmol, 2.4 equiv), and $2,2^{\prime}$-bipyridine ($374.9 \mathrm{mg}, 2.4 \mathrm{mmol}, 2.4$ equiv) were dissolved in 10.0 ml dry N, N-dimethylformamide (DMF) in a Schlenk tube reactor. The mixture was heated at
$60^{\circ} \mathrm{C}$ under a nitrogen atmosphere for 45 minutes with stirring to produce the catalyst, and then a solution of 3,6-dibromo-9,10-bis(hexyloxy)phenanthrene ($536 \mathrm{mg}, 1.0 \mathrm{mmol}$) in dry DMF (12.0 ml) was added. After being heated to $75^{\circ} \mathrm{C}$ with stirring for 2 days, the resulting mixture was poured into a mixture of methanol (50.0 ml) and concentrated hydrochloric acid $(25.0 \mathrm{ml})$ and stirred overnight. The brown precipitates were filtered off and washed with water and methanol. The crude product was purified by column chromatography on silica gel using hexane: $\mathrm{CH}_{2} \mathrm{Cl}_{2} 3: 1(\mathrm{~V}: \mathrm{V})$ as eluent yielding a colorless oil, which was made into a slurry with methanol. The slurry was filtered and washed with methanol yielding 110 mg (30\%) of cyclo-3,6-tris(9, 10-di(hexyloxy)phenanthrene (4) as white solids. Melting point: decomposed at $320{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 10 \mathrm{mg} / \mathrm{ml}\right) \delta(\mathrm{ppm}): 9.43(\mathrm{~s}, 6 \mathrm{H}), 8.31(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}$, $6 \mathrm{H}), 8.25(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 6 \mathrm{H}), 4.30(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 12 \mathrm{H}), 2.01(\mathrm{~m}, 12 \mathrm{H}), 1.68(\mathrm{~m}, 12 \mathrm{H}), 1.47(\mathrm{~m}, 24 \mathrm{H})$, $1.00(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 14.1,22.7,26.0,30.6,31.8,73.9,119.1$, 123.3, 124.0, 128.9, 129.5, 135.0, 143.5. HRMS (MALDI-TOF): calcd. for $\mathrm{C}_{78} \mathrm{H}_{96} \mathrm{O}_{6}\left([M]^{+}\right)$: 1128.7207, found: 1128.7208 .

2. Density functional theory calculation

2.1 Frontier molecular orbitals

The frontier molecular orbitals of $\mathbf{1 - 4}$ were calculated using simplified model molecules $\mathbf{1}^{\prime}-\mathbf{4}$, (shown in the Supporting Information), which have smaller methyl groups replacing the hexyl groups in 1-4, with the Gaussian 09 software package. ${ }^{3}$ The geometries of these model molecules were first optimized at the B3LYP level of density functional theory (DFT) with the $6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set, and the HOMO and LUMO were then calculated with the $6-311++G(d, p)$ basis set.

[^1]2'

3'

LUMO (doubly degenerate): -2.42 eV

HOMO (doubly degenerate): -5.54 eV

Figure S1 Calculated frontier molecular orbitals of $\mathbf{2 '}^{\prime} \mathbf{- 4}$ ' with the energy levels.

2.2 Strain Energy of 1

The strain energy of $\mathbf{1}$ was estimated from the following hypothetical homodesmotic reaction. Molecules structures were optimized at the B3LYP level of DFT with the $6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set, and the single-point energy was calculated at the B3LYP level with the $6-311++G(d, p)$ basis set.

$E=-3457.05036696$ a.u.

$E=-1153.55951397$ a.u.

$E=-2305.91354733$ a.u.

Scheme S1 Hypothetical homodesmotic reaction with calculated energies.

$$
\begin{aligned}
\Delta \mathrm{H} & =3 \times(-2305.91354733)-3 \times(-1153.55951397)-(-3457.05036696) \\
& =-0.01173312 \mathrm{a} . \mathrm{u} . \\
& =-7.362644 \mathrm{kcal} / \mathrm{mol}
\end{aligned}
$$

Therefore the strain energy of $\mathbf{1}$ is estimated as $7.4 \mathrm{kcal} / \mathrm{mol}$, which is much smaller than those of [n]cycloparaphenylenes and [n]cycloparaphenyleneacetylenes. ${ }^{4}$

2.3 C2-Isomer of $\mathbf{1 '}^{\prime}$

Benzannulation on the three alkyne moieties of 2 can in principle lead to two isomers depending on whether the benzannulation occurs on the same side of the flat macrocycle 2 . A simplified model with hexyl groups replaced by methyl group was optimized optimized at the B3LYP level of DFT with the $6-31 G(d, p)$ basis set. As shown in Figure S2, the isomer of 1' has a screwed structure with C2 symmetry. The single-point energy is calculated at the B3LYP level of DFT with 6-311++G(d, p) basis set.

$E=-3457.05036696$ a.u.

$E=-3457.05365854$ a.u.

Figure S2 Stick models of 1' and its isomer C2-1'.

2.3 Cartesian coordinates for optimized molecular structures

Cartesian coordinates for optimized structure of $\mathbf{1}^{\prime}$

C	-4.027362	2.513320	-1.914059
C	-3.120313	2.508206	-0.814826
C	-1.984476	3.420179	-0.825960
C	-1.768529	4.245110	-1.967370
C	-2.682035	4.187576	-3.078427
C	-3.787571	3.380220	-3.038144
C	-5.157675	1.665962	-1.888121
C	-5.385614	0.821043	-0.821692
C	-4.481923	0.772369	0.263243
C	-3.379300	1.616842	0.250428
C	-1.081170	3.537107	0.254853
C	0.000000	4.409793	0.230921
C	0.197453	5.210368	-0.917524
C	-0.666837	5.129487	-1.988705

[^2]| | | | |
| :--- | ---: | ---: | ---: |
| C | -3.818993 | -2.204896 | 0.230921 |
| C | -4.611038 | -2.434185 | -0.917524 |
| C | -4.108848 | -3.142241 | -1.988705 |
| C | -2.792108 | -3.654146 | -1.967370 |
| C | -1.969724 | -3.428696 | -0.825960 |
| C | -2.522640 | -2.704874 | 0.254853 |
| C | -2.285530 | -4.416498 | -3.078427 |
| C | -1.033571 | -4.970242 | -3.038144 |
| C | -0.162918 | -4.744457 | -1.914059 |
| C | -0.612014 | -3.956374 | -0.814826 |
| C | 1.136072 | -5.299659 | -1.888121 |
| C | 1.981763 | -5.074600 | -0.821692 |
| C | 1.572070 | -4.267644 | 0.263243 |
| C | 0.289424 | -3.734981 | 0.250428 |
| C | 3.818993 | -2.204896 | 0.230921 |
| C | 4.413585 | -2.776183 | -0.917524 |
| C | 4.775684 | -1.987246 | -1.988705 |
| C | 4.560638 | -0.590964 | -1.967370 |
| C | 3.954200 | 0.008517 | -0.825960 |
| C | 3.603809 | -0.832233 | 0.254853 |
| C | 4.967565 | 0.228922 | -3.078427 |
| C | 4.821142 | 1.590023 | -3.038144 |
| C | 4.190279 | 2.231138 | -1.914059 |
| C | 3.732327 | 1.448168 | -0.814826 |
| C | 4.021603 | 3.633696 | -1.888121 |
| C | 3.403851 | 4.253557 | -0.821692 |
| C | 2.909853 | 3.495275 | 0.263243 |
| C | 3.089876 | 2.118139 | 0.250428 |
| O | -3.124138 | -4.613416 | -4.155989 |
| C | -2.724791 | -3.934023 | -5.354538 |
| O | -2.433266 | 5.012290 | -4.155989 |
| C | -2.044569 | 4.326750 | -5.354538 |
| O | -4.681721 | 3.329179 | -4.087331 |
| C | -5.465438 | 4.516931 | -4.266732 |
| O | -0.542293 | -5.719079 | -4.087331 |
| C | -5.405558 | -0.302697 | 3.793447 |
| C | -5.209619 | 0.446232 | 2.605188 |
| O | -4.715116 | -0.118638 | 1.444329 |
| C | 5.224014 | 2.691674 | -4.266732 |
| O | 6.644497 | 2.474743 | -4.087331 |
| C | 5.557404 | -0.398875 | -4.266732 |
| C | 4.769360 | -0.392726 | -5.3545389 |
| C | -559958 | -1.689708 | 3.788002 |
| C | | | |

C	-4.376734	-1.515745	1.434892
C	-4.546050	-2.253693	2.593089
C	2.218361	-4.734779	2.605188
C	2.460301	-4.024091	1.444329
C	3.501040	-3.032490	1.434892
C	4.224780	-2.810148	2.593089
C	1.066649	5.226907	3.788002
C	2.440635	4.832699	3.793447
C	2.991258	4.288547	2.605188
C	2.254814	4.142729	1.444329
C	0.875693	4.548235	1.434892
C	0.321270	5.063841	2.593089
H	-5.840181	1.692554	-2.729488
H	-6.272186	0.195191	-0.808397
H	-2.697762	1.572548	1.092037
H	-1.225751	2.934673	1.144251
H	1.018902	5.917821	-0.941236
H	-0.530411	5.760638	-2.858956
H	-5.634434	-2.076516	-0.941236
H	-4.723653	-3.339668	-2.858956
H	-1.928626	-2.528868	1.144251
H	1.454296	-5.904022	-2.729488
H	2.967053	-5.529468	-0.808397
H	-0.012986	-3.122605	1.092037
H	4.615532	-3.841305	-0.941236
H	5.254064	-2.420969	-2.858956
H	3.154377	-0.405805	1.144251
H	4.385885	4.211468	-2.729488
H	3.305134	5.334277	-0.808397
H	2.710748	1.550056	1.092037
H	-3.490322	-4.157468	-6.100424
H	-2.682757	-2.850789	-5.190460
H	-1.750958	-4.289785	-5.703516
H	-1.855312	5.101441	-6.100424
H	-1.127478	3.748730	-5.190460
H	-2.839584	3.661266	-5.703516
H	-6.136144	4.314958	-5.104417
H	-6.059435	4.728690	-3.369589
H	-4.831683	5.378017	-4.497188
H	-0.668791	-7.471535	-5.104417
H	-1.065448	-7.611969	-3.369589
H	-6.873368	-4.497188	
H	3.156578	-5.104417	
H	1.495351	-4.497188	

H	7.124883	2.883279	-3.369589
H	5.345634	-0.943974	-6.100424
H	4.590542	0.628519	-5.703516
H	3.810234	-0.897941	-5.190460
H	-5.452615	1.505659	2.612347
H	-4.285903	-3.308955	2.586578
H	1.422368	-5.474933	2.612347
H	5.008590	-2.057224	2.586578
H	4.030247	3.969274	2.612347
H	-0.722687	5.366178	2.586578
C	3.993310	-3.537198	3.788002
C	2.964922	-4.530002	3.793447
C	4.744750	-3.317359	4.973853
C	2.724064	-5.266253	4.984400
H	5.526415	-2.562175	4.966285
H	1.940515	-6.019552	4.985444
C	3.198677	4.992235	4.984400
C	0.500542	5.767753	4.973853
H	4.242828	4.690311	4.985444
H	-0.544299	6.067103	4.966285
C	-5.922741	0.274018	4.984400
C	-5.245292	-2.450395	4.973853
H	-6.183342	1.329241	4.985444
H	-4.982116	-3.504928	4.966285
C	1.260408	5.910728	6.112559
C	2.622441	5.519321	6.117931
H	0.818073	6.324984	7.013814
H	3.210641	5.637380	7.023260
C	-5.749045	-1.863819	6.112559
C	-6.091093	-0.488560	6.117931
C	4.488637	-4.046909	6.112559
C	3.468652	-5.030761	6.117931
H	3.276794	-5.599186	7.023260
H	5.068560	-3.870964	7.013814
H	-5.886634	-2.454020	7.013814
H	-6.487435	-0.038194	7.023260

Cartesian coordinates for optimized structure of C2-1'

C	-4.027362	2.513320	-1.914059
C	-3.120313	2.508206	-0.814826
C	-1.984476	3.420179	-0.825960
C	-1.768529	4.245110	-1.967370
C	-2.682035	4.187576	-3.078427
C	-3.787571	3.380220	-3.038144

C	-5.157675	1.665962	-1.888121
C	-5.385614	0.821043	-0.821692
C	-4.481923	0.772369	0.263243
C	-3.379300	1.616842	0.250428
C	-1.081170	3.537107	0.254853
C	0.000000	4.409793	0.230921
C	0.197453	5.210368	-0.917524
C	-0.666837	5.129487	-1.988705
C	-3.818993	-2.204896	0.230921
C	-4.611038	-2.434185	-0.917524
C	-4.108848	-3.142241	-1.988705
C	-2.792108	-3.654146	-1.967370
C	-1.969724	-3.428696	-0.825960
C	-2.522640	-2.704874	0.254853
C	-2.285530	-4.416498	-3.078427
C	-1.033571	-4.970242	-3.038144
C	-0.162918	-4.744457	-1.914059
C	-0.612014	-3.956374	-0.814826
C	1.136072	-5.299659	-1.888121
C	1.981763	-5.074600	-0.821692
C	1.572070	-4.267644	0.263243
C	0.289424	-3.734981	0.250428
C	3.818993	-2.204896	0.230921
C	4.413585	-2.776183	-0.917524
C	4.775684	-1.987246	-1.988705
C	4.560638	-0.590964	-1.967370
C	3.954200	0.008517	-0.825960
C	3.603809	-0.832233	0.254853
C	4.967565	0.228922	-3.078427
C	4.821142	1.590023	-3.038144
C	4.190279	2.231138	-1.914059
C	3.732327	1.448168	-0.814826
C	4.021603	3.633696	-1.888121
C	3.403851	4.253557	-0.821692
C	2.909853	3.495275	0.263243
C	3.089876	2.118139	0.250428
O	-3.124138	-4.613416	-4.155989
C	-2.724791	-3.934023	-5.354538
O	-2.433266	5.012290	-4.155989
C	-2.044569	4.326750	-5.354538
O	-4.681721	3.329179	-4.087331
C	-5.465438	4.516931	-4.266732
O	-0.542293	-5.719079	-4.087331
C	-1.179058	-6.991674	-4.266732

O	5.224014	2.389900	-4.087331
C	6.644497	2.474743	-4.266732
O	5.557404	-0.398875	-4.155989
C	4.769360	-0.392726	-5.354538
C	-5.059958	-1.689708	3.788002
C	-5.405558	-0.302697	3.793447
C	-5.209619	0.446232	2.605188
C	-4.715116	-0.118638	1.444329
C	-4.376734	-1.515745	1.434892
C	-4.546050	-2.253693	2.593089
C	2.218361	-4.734779	2.605188
C	2.460301	-4.024091	1.444329
C	3.501040	-3.032490	1.434892
C	4.224780	-2.810148	2.593089
C	1.066649	5.226907	3.788002
C	2.440635	4.832699	3.793447
C	2.991258	4.288547	2.605188
C	2.254814	4.142729	1.444329
C	0.875693	4.548235	1.434892
C	0.321270	5.063841	2.593089
H	-5.840181	1.692554	-2.729488
H	-6.272186	0.195191	-0.808397
H	-2.697762	1.572548	1.092037
H	-1.225751	2.934673	1.144251
H	1.018902	5.917821	-0.941236
H	-0.530411	5.760638	-2.858956
H	-5.634434	-2.076516	-0.941236
H	-4.723653	-3.339668	-2.858956
H	-1.928626	-2.528868	1.144251
H	1.454296	-5.904022	-2.729488
H	2.967053	-5.529468	-0.808397
H	-0.012986	-3.122605	1.092037
H	4.615532	-3.841305	-0.941236
H	5.254064	-2.420969	-2.858956
H	3.154377	-0.405805	1.144251
H	4.385885	4.211468	-2.729488
H	3.305134	5.334277	-0.808397
H	2.710748	1.550056	1.092037
H	-3.490322	-4.157468	-6.100424
H	-2.682757	-2.850789	-5.190460
H	-1.750958	-4.289785	-5.703516
H	-1.855312	5.101441	-6.100424
H	-1.127478	3.748730	-5.190460
H	-2.839584	3.661266	-5.703516

H	-6.136144	4.314958	-5.104417
H	-6.059435	4.728690	-3.369589
H	-4.831683	5.378017	-4.497188
H	-0.668791	-7.471535	-5.104417
H	-1.065448	-7.611969	-3.369589
H	-2.241658	-6.873368	-4.497188
H	6.804935	3.156578	-5.104417
H	7.073340	1.495351	-4.497188
H	7.124883	2.883279	-3.369589
H	5.345634	-0.943974	-6.100424
H	4.590542	0.628519	-5.703516
H	3.810234	-0.897941	-5.190460
H	-5.452615	1.505659	2.612347
H	-4.285903	-3.308955	2.586578
H	1.422368	-5.474933	2.612347
H	5.008590	-2.057224	2.586578
H	4.030247	3.969274	2.612347
H	-0.722687	5.366178	2.586578
C	3.993310	-3.537198	3.788002
C	2.964922	-4.530002	3.793447
C	4.744750	-3.317359	4.973853
C	2.724064	-5.266253	4.984400
H	5.526415	-2.562175	4.966285
H	1.940515	-6.019552	4.985444
C	3.198677	4.992235	4.984400
C	0.500542	5.767753	4.973853
H	4.242828	4.690311	4.985444
H	-0.544299	6.067103	4.966285
H	-5.922741	0.274018	4.984400
H	-5.245292	-2.450395	4.973853
H	-6.183342	1.329241	4.985444
H	-4.982116	-3.504928	4.9662854
H	1.260408	5.910728	6.112559
C	2.622441	5.519321	6.117931
C	0.818073	6.324984	7.013814
H	3.210641	5.637380	7.023260
H	-5.749045	-1.863819	6.112559
C	-6.091093	-0.488560	6.117931
C	4.488637	-4.046909	6.112559
H	3.468652	-5.030761	6.117931
H	-0.276794	-5.599186	7.023260
	-3.870964	7.013814	

Cartesian coordinates for optimized structure of 2'

C	-3.303237	-5.692393	0.019424
C	-2.971588	-4.304954	0.000968
C	-4.045193	-3.317170	-0.002962
C	-5.400299	-3.762636	-0.022701
C	-5.691456	-5.170477	-0.026811
C	-4.682208	-6.099168	0.022236
C	-2.268845	-6.658478	0.031787
C	-0.945014	-6.282464	0.027165
C	-0.593140	-4.906999	0.008792
C	-1.609721	-3.948965	-0.004512
C	-3.803614	-1.930487	0.004188
C	-4.842718	-0.996921	-0.008473
C	-6.184264	-1.461552	-0.028287
C	-6.448979	-2.812057	-0.034783
C	0.771449	-4.503584	0.002980
C	1.933633	-4.141423	-0.001464
C	3.285039	-3.695786	-0.006883
C	4.358362	-4.625183	-0.020333
C	5.660317	-4.179080	-0.024577
C	5.959225	-2.795639	-0.016758
C	4.895623	-1.844912	-0.002676
C	3.573943	-2.329061	0.002249
C	7.324060	-2.343448	-0.019744
C	7.623450	-1.004874	0.023834
C	6.581342	-0.014408	0.016145
C	5.214233	-0.421329	-0.002100
C	6.900882	1.364493	0.024338
C	5.913325	2.322913	0.016864
C	4.546334	1.939452	-0.000206
C	4.224985	0.580006	-0.010164
C	3.514462	2.919317	-0.007312
C	2.619227	3.744163	-0.012052
C	1.557678	4.691815	-0.016862
C	1.826312	6.085835	-0.035655
C	0.789149	6.990444	-0.038101
C	-0.558424	6.557787	-0.022778
C	-0.850488	5.161647	-0.003975
C	0.229540	4.258957	-0.001061
C	-1.632172	7.513969	-0.023096
C	-2.941012	7.104521	0.028609
C	-3.278456	5.706857	0.025852
-2.242775	4.726072	0.003521	
C			

C	-4.632298	5.294371	0.042186
C	-4.969034	3.959984	0.036857
C	-3.953888	2.967601	0.013982
C	-2.615870	3.368821	-0.002363
C	-4.286658	1.584055	0.006313
C	-4.553238	0.396316	-0.000302
O	8.314401	-3.301463	-0.020187
C	9.090102	-3.366348	-1.226385
O	-7.016578	-5.547868	-0.033582
C	-7.455091	-6.192163	-1.239237
O	-4.949005	-7.450943	0.029669
C	-5.553766	-7.939798	1.236414
O	8.927414	-0.559648	0.029460
C	9.652665	-0.831572	1.238128
O	-3.978225	8.011621	0.037360
C	-4.098010	8.780142	1.244028
O	-1.296661	8.850325	-0.030638
C	-1.635578	9.550824	-1.236968
H	-2.545508	-7.706096	0.035395
H	-0.158511	-7.029636	0.034678
H	-1.318122	-2.906331	-0.021682
H	-2.788915	-1.553098	0.022449
H	-6.994077	-0.739720	-0.035505
H	-7.469982	-3.174737	-0.039539
H	4.138385	-5.687491	-0.024500
H	6.485086	-4.881771	-0.024301
H	2.739655	-1.638938	0.015329
H	7.946528	1.648293	0.027319
H	6.166783	3.377723	0.021581
H	3.176211	0.311347	-0.026032
H	2.856366	6.426101	-0.045134
H	0.985442	8.056028	-0.042069
H	0.049163	3.191412	0.016294
H	-5.400657	6.058301	0.049481
H	-6.009354	3.652597	0.047291
H	-1.859178	2.594516	-0.022419
H	9.805468	-4.178490	-1.083235
H	9.622837	-2.427993	-1.404189
H	8.449498	-3.593745	-2.086526
H	-8.517792	-6.400818	-1.101643
H	-6.911231	-7.125609	-1.408940
H	-7.323828	-5.528676	-2.102061
H	-5.675302	-9.016078	1.099845
H	-6.528291	-7.473667	1.406753

H	-4.902201	-7.753983	2.098292
H	10.645487	-0.399316	1.099339
H	9.736426	-1.907513	1.414963
H	9.165610	-0.355097	2.097015
H	-4.968565	9.424566	1.107444
H	-3.206372	9.389999	1.414280
H	-4.263691	8.123382	2.106081
H	-1.286228	10.576041	-1.100251
H	-2.715859	9.545012	-1.406938
H	-1.125850	9.105087	-2.099195

Cartesian coordinates for optimized structure of $\mathbf{3}^{\prime}$

C	-5.309425	-4.100252	-0.001918
C	-7.342156	-2.125871	-0.023227
C	-4.989008	-2.730083	0.004918
C	-6.688350	-4.467551	-0.019345
C	-7.682076	-3.459176	-0.029207
C	-5.975163	-1.739210	-0.006012
C	-4.294154	-5.148246	-0.000524
C	-2.386226	-7.242734	0.019839
C	-4.705564	-6.514514	0.017043
C	-2.914271	-4.871380	-0.007585
C	-1.955645	-5.888932	0.002988
C	-3.729587	-7.540077	0.026183
C	-6.105304	-6.841519	0.022192
C	-7.060113	-5.855983	-0.024023
C	1.936616	-4.967097	-0.012062
C	3.121121	-4.665777	-0.015009
C	-5.609529	-0.367588	0.001088
C	-5.279657	0.809297	0.006374
C	5.509212	-5.290645	-0.029889
C	6.207133	-2.544532	-0.007543
C	6.834557	-4.920661	-0.030495
C	4.492304	-4.298599	-0.017738
C	4.859440	-2.949760	-0.006375
C	7.213186	-3.556542	-0.020015
C	6.609397	-1.142055	-0.004022
C	7.473463	1.556616	0.022949
C	7.998710	-0.817012	0.020298
C	5.681634	-0.083975	-0.014170
C	6.085434	1.254358	0.000058
C	8.400961	0.540351	0.032275
C	8.602225	-3.186124	-0.017555
C	8.980192	-1.867079	0.030942

C	5.118682	2.293746	-0.008058
C	4.278916	3.181805	-0.012834
C	1.827206	7.411926	-0.042446
C	-0.900270	6.644429	-0.004873
C	0.844477	8.374995	-0.043678
C	1.476079	6.035523	-0.022171
C	0.124216	5.679629	-0.003145
C	-0.526345	8.021330	-0.025943
C	-2.316304	6.292123	0.005962
C	-5.085376	5.691933	0.047063
C	-3.292004	7.333221	0.030173
C	-2.769176	4.959682	0.001862
C	-4.130155	4.640573	0.022261
C	-4.668618	7.003193	0.050258
C	-1.541230	9.039082	-0.025760
C	-2.872513	8.708121	0.030248
O	-1.128256	10.352723	-0.037761
O	-3.853171	9.674461	0.040045
C	-1.415534	11.064698	-1.250492
C	-3.926019	10.451998	1.244461
O	-8.403962	-6.156430	-0.028971
O	-6.448453	-8.174980	0.027990
C	-8.882596	-6.769507	-1.235441
C	-7.071336	-8.634487	1.236707
O	9.532495	-4.201085	-0.016136
O	10.307632	-1.500250	0.045716
C	10.311735	-4.310604	-1.216570
C	11.005280	-1.808748	1.261594
C	3.336177	4.159703	-0.016573
C	2.479826	5.031793	-0.019339
C	0.617361	-5.290488	-0.008075
C	-0.572358	-5.570491	-0.003602
C	-4.547906	3.283921	0.016719
C	-4.900651	2.113688	0.011956
H	-8.109579	-1.358487	-0.028823
H	-3.954372	-2.409590	0.021000
H	-8.722463	-3.763158	-0.032009
H	-1.643796	-8.034339	0.024959
H	-2.561344	-3.847380	-0.023300
H	-4.066215	-8.570420	0.028585
H	5.226733	-6.338530	-0.035592
H	7.616494	-5.671256	-0.028670
H	4.065740	-2.212640	0.005871
H	7.789158	2.594945	0.030565

H	4.618037	-0.288296	-0.034546
H	9.461977	0.761612	0.039499
H	2.875989	7.690800	-0.053897
H	1.104309	9.427366	-0.048087
H	-0.117538	4.623836	0.015625
H	-6.142503	5.446745	0.060414
H	-2.060645	4.140481	-0.019786
H	-5.390855	7.811431	0.058629
H	-0.925665	10.582816	-2.105492
H	-1.005759	12.067971	-1.114277
H	-2.493492	11.122496	-1.428313
H	-4.759405	11.144082	1.104949
H	-3.000180	11.010557	1.410478
H	-4.127656	9.806738	2.108284
H	-8.713678	-6.110743	-2.096090
H	-9.955822	-6.914268	-1.093276
H	-8.395136	-7.733405	-1.408746
H	-6.404020	-8.486992	2.094707
H	-7.250882	-9.702495	1.094834
H	-8.018652	-8.116879	1.414299
H	10.904768	-3.407089	-1.385897
H	9.663096	-4.493824	-2.081959
H	10.971940	-5.168084	-1.068785
H	12.023478	-1.437325	1.126311
H	11.022216	-2.887305	1.444091
H	10.539928	-1.297471	2.113219

Cartesian coordinates for optimized structure of $\mathbf{4}^{\prime}$

C	4.705738	2.120215	-0.216564
C	3.315018	1.900906	-0.044314
C	2.339025	3.022153	0.036378
C	2.747656	4.368982	0.212231
C	5.600373	1.069070	-0.236843
C	5.160747	-0.269771	-0.125552
C	3.764551	-0.523152	-0.024027
C	2.891137	0.576139	0.054517
C	0.968662	2.784872	-0.064290
C	0.000000	3.800932	0.017007
C	0.442989	5.148851	0.122472
C	1.829632	5.399771	0.234564
C	3.291704	-1.900466	0.017007
C	-1.429213	3.521773	-0.024027
C	-1.944520	2.215729	0.054517

C	-3.303742	1.920437	-0.044314
C	-4.189029	3.015181	-0.216564
C	-3.726029	4.315530	-0.236843
C	-2.346745	4.604224	-0.125552
C	4.237542	-2.958065	0.122472
C	3.761523	-4.284393	0.234564
C	2.409822	-4.564031	0.212231
C	1.447749	-3.536731	0.036378
C	1.927439	-2.231322	-0.064290
C	-0.516709	-5.135396	-0.216564
C	-0.011276	-3.821343	-0.044314
C	-1.874344	-5.384600	-0.236843
C	-2.814002	-4.334452	-0.125552
C	-2.335339	-2.998621	-0.024027
C	-0.946618	-2.791868	0.054517
C	-3.786774	0.514578	0.036378
C	-5.157477	0.195048	0.212231
C	-2.896101	-0.553550	-0.064290
C	-3.291704	-1.900466	0.017007
C	-4.680530	-2.190786	0.122472
C	-5.591155	-1.115378	0.234564
C	5.644674	-2.658762	0.090093
C	6.087381	-1.370234	-0.088422
C	-4.230348	-4.586710	-0.088422
C	-5.124892	-3.559050	0.090093
C	-1.857033	5.956944	-0.088422
C	-0.519782	6.217812	0.090093
O	6.522044	-3.718677	0.175953
O	7.430819	-1.072035	-0.167601
O	-4.643820	-5.899261	-0.167601
O	-6.481491	-3.788917	0.175953
O	-2.787000	6.971296	-0.167601
O	-0.040553	7.507595	0.175953
C	-5.391305	-6.226361	-1.347932
C	-6.901635	-4.476085	1.363423
C	-2.696534	7.782187	-1.347932
C	-0.425586	8.215034	1.363423
C	8.087839	-1.555827	-1.347932
C	7.327221	-3.738949	1.363423
H	5.087107	3.128731	-0.332617
H	3.799029	4.607120	0.330016
H	1.255976	-0.331538	
H	0.375742	0.241421	
C	1.777565	-0.254650	

H	2.161058	6.427141	0.332321
H	-1.248234	1.410522	0.241421
H	-5.253114	2.841198	-0.332617
H	-4.419621	5.143055	-0.331538
H	4.485539	-5.085102	0.332321
H	2.090368	-5.593615	0.330016
H	1.226257	-1.431190	-0.254650
H	0.166007	-5.969930	-0.332617
H	-2.244206	-6.399032	-0.331538
H	-0.597431	-1.786263	0.241421
H	-5.889397	0.986496	0.330016
H	-1.852575	-0.346374	-0.254650
H	-6.646597	-1.342039	0.332321
H	-6.322321	-5.654656	-1.398664
H	-4.795431	-6.035998	-2.248356
H	-5.613539	-7.293145	-1.280073
H	-6.628631	-3.904385	2.258241
H	-7.988948	-4.552835	1.300920
H	-6.460518	-5.475319	1.419708
H	-2.829612	7.170964	-2.248356
H	-1.735915	8.302619	-1.398664
H	-3.509279	8.508039	-1.280073
H	-0.066981	7.692755	2.258241
H	0.051603	9.195050	1.300920
H	-1.511506	8.332632	1.419708
H	7.625043	-1.134966	-2.248356
H	9.122818	-1.214895	-1.280073
H	8.058236	-2.647963	-1.398664
H	7.972024	-2.857313	1.419708
H	6.695612	-3.788370	2.258241
H	7.937345	-4.642215	1.300920

3. Calculation of association constants based on variable-concentration ${ }^{1} \mathrm{H}$ NMR spectroscopy

The method described here is based on that developed by Horman and Dreux. ${ }^{5}$ For dimerization of M , the following equilibrium is assumed:

$$
\begin{align*}
& 2 \mathrm{M} \stackrel{\mathrm{~K}_{\text {assoc }}}{\rightleftharpoons} \mathrm{M}_{2} \\
& \mathrm{~K}_{\mathrm{assoc}}=\frac{\left[\mathrm{M}_{2}\right]}{[\mathrm{M}]^{2}} \tag{1}
\end{align*}
$$

It is assumed that the measured chemical shift (δ) is the weighted average that of the monomer $\left(\delta_{0}\right)$ and dimer $\left(\delta_{2}\right)$:

$$
\begin{equation*}
\delta=\mathrm{f}_{0} \delta_{0}+\mathrm{f}_{2} \delta_{2} ;\left(\mathrm{f}_{0}+\mathrm{f}_{2}=1\right) \tag{2}
\end{equation*}
$$

Total concentration of monomer (c):

$$
\begin{equation*}
\mathrm{c}=[\mathrm{M}]+2\left[\mathrm{M}_{2}\right]=[\mathrm{M}]+2 \mathrm{~K}_{\mathrm{assoc}}[\mathrm{M}]^{2} \tag{3}
\end{equation*}
$$

From (1) and (2), $\mathrm{K}_{\text {assoc }}, \delta, \delta_{0}, \delta_{2}$ and c are related by the following expression:

$$
\begin{align*}
& \quad \delta=\mathrm{f}_{0} \delta_{0}+\mathrm{f}_{2} \delta_{2}=\mathrm{f}_{0} \delta_{0}+\left(1-\mathrm{f}_{0}\right) \delta_{2}=\mathrm{f}_{0}\left(\delta_{0}-\delta_{2}\right)+\delta_{2}=\frac{[\mathrm{M}]}{\mathrm{c}}\left(\delta_{0}-\delta_{2}\right)+\delta_{2} \tag{4}\\
& \text { From (3), } \quad[\mathrm{M}]=\frac{-1+\sqrt{1^{2}-4 \times 2 K_{a s s o c}(-c)}}{2 \times 2 K_{\text {assoc }}}=\frac{-1+\sqrt{1+8 c K_{a s s o c}}}{4 K_{\text {assoc }}}
\end{align*}
$$

Combine (4) and (5):

$$
\begin{equation*}
\delta=\delta_{0}+\frac{1+4 \mathrm{~K}_{\mathrm{assoc}} \mathrm{c}-\sqrt{1+8 \mathrm{~K}_{\mathrm{assoc}} \mathrm{c}}}{4 \mathrm{~K}_{\mathrm{assoc}} \mathrm{c}}\left(\delta_{2}-\delta_{0}\right) \tag{6}
\end{equation*}
$$

For each system, weighted-average chemical shift (δ) was measured at different total concentration of monomer (c). Chemical shifts of the monomer (δ_{0}) and dimer (δ_{2}) and the association constant $\mathrm{K}_{\text {assoc }}$ need to be calculated.

When $\mathrm{A}=\delta_{2} ; \mathrm{B}=2\left(\delta_{2}-\delta_{0}\right) ; \mathrm{C}=8 \mathrm{~K}_{\text {assoc }}$, the equation (6) is of the following form:

$$
\begin{equation*}
\delta=\mathrm{A}-\frac{\mathrm{B}}{1+\sqrt{1+\mathrm{Cc}}} \tag{7}
\end{equation*}
$$

The curve fitting was then performed using Origin 8.5 to give A, B and C as shown here.

Figure S3 Chemical shift of selected aromatic proton of 2 at different concentration and curve fitting results.

Figure S4 Chemical shift of selected aromatic proton of $\mathbf{3}$ at different concentration and curve fitting results.

Figure S5 Chemical shift of selected aromatic proton of 4 at different concentration and curve fitting results.

Table S1 Summary of chemical shifts of selected proton $\mathrm{H} \alpha$ at different concentration and curve fitting results.

Concentration	Chemical Shift (ppm)		Concentration	Chemical
(mM in CDCl_{3})	3	4	(mM in CDCl_{3})	2
0.22	8.788	9.629	0.21	9.279
0.44	8.759	9.62	0.41	9.276
0.89	8.718	9.603	0.84	9.275
1.77	8.669	9.576	1.66	9.273
4.43	8.595	9.505	4.16	9.265
8.85	8.535	9.428	8.32	9.255
17.71	8.475	9.334	16.65	9.239
35.41	8.416	9.213	33.29	9.218
70.82	8.351	9.082	66.57	9.187
Curve Fitting Results				
$\delta_{2}(\mathrm{ppm})$	8.230	8.604		9.019
$\delta_{0}(\mathrm{ppm})$	8.801	9.633		9.278
$\mathrm{K}_{\text {assoc }}\left(\mathrm{M}^{-1}\right)$	98	17		6

4. Variable-temperature ${ }^{1} \mathrm{H}$ NMR spectra of 1

Figure S6 Partial ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1}$ in toluene- d_{8} at different temperature. $\left(22^{\circ} \mathrm{C}\right.$ to $\left.80^{\circ} \mathrm{C}\right)$

Figure S7 Partial ${ }^{1} \mathrm{H}$ NMR spectra for $\mathbf{1}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at different temperature. $\left(22^{\circ} \mathrm{C}\right.$ to $\left.-40^{\circ} \mathrm{C}\right)$

5. Differential Scanning Calorimetry of 2

Differential Scanning Calorimetry (DSC) was performed on Perkin Elmer Differential Scanning Calorimeter Pyris 1.

Figure S8 DSC trace of $\mathbf{2}$ for the first heating/cooling cycle with a heating rate of $10^{\circ} \mathrm{C} / \mathrm{min}$ and a cooling rate of $5^{\circ} \mathrm{C} / \mathrm{min}$.

6. Fabrication and Characterization of Solution-Processed Thin Films and Transistors of 2-4

Deposition of thin films and fabrication of transistors

Organic thin films of 2-4 were deposited by drop-casting solutions onto octadecyltrimethoxysilane (OTMS) modified $\mathrm{SiO}_{2} / \mathrm{Si}$ wafers ${ }^{6}$ at room temperature in air ambient. To perform thermal annealing, the drop-cast films were heated at $120^{\circ} \mathrm{C}$ for 10 minutes and then cooled in air to room temperature. Thin film devices of 2 with best performance were deposited by drop-casting a solution (1 mg in 0.6 mL toluene) onto a phenyltrichlorosilane (PTS)-modified $\mathrm{SiO}_{2} / \mathrm{Si}$ wafer ${ }^{7}$ at a substrate temperature of $120^{\circ} \mathrm{C}$.
The devices were then placed in a vacuum oven at room temperature overnight to totally remove the organic solvents. Using an Edwards Auto 306 vacuum coater with a Turbomolecular pump at a pressure of 2.0×10^{-6} torr or lower, gold was vacuum-deposited through a shadow mask onto the organic films to form top contact drain and source electrodes, and the resulting semiconducting channels were $50 \mu \mathrm{~m}(\mathrm{~L}) \times 1 \mathrm{~mm}(\mathrm{~W}), 100 \mu \mathrm{~m}(\mathrm{~L}) \times 1 \mathrm{~mm}(\mathrm{~W})$, $150 \mu \mathrm{~m}(\mathrm{~L}) \times 1 \mathrm{~mm}(\mathrm{~W}), 50 \mu \mathrm{~m}(\mathrm{~L}) \times 2 \mathrm{~mm}(\mathrm{~W})$ and $100 \mu \mathrm{~m}(\mathrm{~L}) \times 2 \mathrm{~mm}(\mathrm{~W})$.
(6) Y. Ito, A. A.Virkar, S. Mannsfeld, J. H. Oh, M. Toney, A. Locklin, Z. Bao, J. Am. Chem. Soc. 2009, 131, 9396-9404.
(7) G. Giri, E. Verploegen, S. C. B. Mannsfeld, S. Atahan-Evrenk, D. H. Kim, S. Y. Lee, H. A. Becerril, A. Aspuru-Guzik, M. F. Toney, Z. Bao, Nature, 2011, 480, 504-508.

Characterization of Thin Films

Reflection polarized light microscopy

Polarized optical images of the thin films were obtained using Nikon 50IPOL microscope.

Figure S9 Reflected polarized-light micrographs for the films of 2 as deposited by drop-casting a $0.17 \mathrm{wt} \%$ solution in THF onto OTMS-modified SiO_{2} : (a) without thermal annealing; (b) with thermal annealing at $120^{\circ} \mathrm{C}$.

Figure S10 Reflected polarized-light micrographs for the films of $\mathbf{3}$ as deposited (a) by drop-casting a $0.2 \mathrm{wt} \%$ solution in cyclohexane onto a bare SiO_{2} surface; (b) by drop-casting a $0.17 \mathrm{wt} \%$ solution in THF onto OTMS-modified SiO_{2} surface without annealing; and (c) by drop-casting a $0.17 \mathrm{wt} \%$ solution in THF onto OTMS-modified SiO_{2} surface followed by thermal annealing at $120^{\circ} \mathrm{C}$.

Figure S11 Reflected polarized-light micrographs for a film of $\mathbf{4}$ as drop-cast from a $0.17 \mathrm{wt} \%$ solution in mixed THF and acetone (1:1) onto OTMS-modified SiO_{2} surface: (a) without thermal annealing; (b) followed by thermal annealing at $120^{\circ} \mathrm{C}$.

Atomic Force Microscopy (AFM)

Thin films deposited through solution process were used for AFM studies. The topographic images were obtained using a Nanoscope IIIa Multimode Microscope from Digital Instruments, with tapping mode and under ambient condition. The topographic images were collected from multiple samples, and for each sample, different regions were scanned to ensure reproducibility.

Figure S12 AFM section analysis for thin films of: (a) $\mathbf{2}$ as deposited by drop-casting a 0.17 $\mathrm{wt} \%$ toluene solution onto PTS-modified SiO_{2} surface at $120{ }^{\circ} \mathrm{C}$; (b) 3 as deposited by drop-casting a $0.17 \mathrm{wt} \%$ THF solution onto OTMS-modified SiO_{2} surface; (d) 4 as deposited by drop-casting a $0.17 \mathrm{wt} \%$ solution in mixed THF and acetone (1:1) onto OTMS-modified SiO_{2} surface.

X-ray diffraction (XRD)

XRD data were collected on a SmartLab X-Ray Refractometer from powders or solution-processed films.

Figure S13 X-ray diffraction from powders of $\mathbf{2}$ at room temperature (above), and when cooling from melts to $100^{\circ} \mathrm{C}$ (below).

Figure S14 X-ray diffraction from thin films of $\mathbf{2}$ as drop-cast from a $0.17 \mathrm{wt} \%$ toluene solution onto PTS-modified SiO_{2} surface at a substrate temperature of $120^{\circ} \mathrm{C}$.

Figure S15 X-ray diffraction from a thin film of 4, which was deposited by drop-casting a $0.17 \mathrm{wt} \%$ solution in mixed THF and acetone (1:1) onto a OTMS-modified $\mathrm{SiO}_{2} / \mathrm{Si}$ wafer.

Electrical Characterization of Thin Film Transistors

The current-voltage measurement was carried out on a JANIS ST-500-20-4TX probe station with a Keithley 4200 Semiconductor Characterization System at room temperature in ambient air.

Figure S16 (a) Reflection polarized light micrograph for an OTFT of 2 (with an active channel of $\mathrm{W}=1 \mathrm{~mm}$ and $\mathrm{L}=100 \mu \mathrm{~m}$), which was fabricated by drop-casting a $0.17 \mathrm{wt} \%$ solution in THF onto OTMS-modified SiO_{2} and thermal annealing at $120^{\circ} \mathrm{C}$; (b) transfer I-V curves for the device shown in (a) exhibiting a field effect mobility of $7.0 \times 10^{-4} \mathrm{~cm}^{2} / \mathrm{V} \cdot \mathrm{s}$.

Figure S17 (a) Reflection polarized light micrograph for an OTFT of $\mathbf{3}$ (with an active channel of $\mathrm{W}=1 \mathrm{~mm}$ and $\mathrm{L}=100 \mu \mathrm{~m}$), which was fabricated by drop-casting a $0.17 \mathrm{wt} \%$ solution in THF onto OTMS-modified SiO_{2} at room temperature; (b) transfer I-V curves for the device shown in (a) exhibiting a field effect mobility of $2.4 \times 10^{-4} \mathrm{~cm}^{2} / \mathrm{V} \cdot \mathrm{s}$.

Figure S18 (a) Reflection polarized light micrograph for an OTFT of 4 (with an active channel of $\mathrm{W}=1 \mathrm{~mm}$ and $\mathrm{L}=100 \mu \mathrm{~m}$), which was fabricated by drop-casting a $0.17 \mathrm{wt} \%$ solution in mixed THF and acetone (1:1) onto OTMS-modified SiO_{2} at room temperature; (b) transfer I-V curves for the device shown in (a) exhibiting a field effect mobility of 4.4×10^{-5} $\mathrm{cm}^{2} / \mathrm{V} \cdot \mathrm{s}$.

7. NMR spectra

${ }^{1}$ H-NMR of 3, 6-dibromo-9, 10-bis(hexyloxy)phenanthrene in CDCl_{3}.

${ }^{13} \mathrm{C}$-NMR of 3, 6-dibromo-9, 10-bis(hexyloxy)phenanthrene in CDCl_{3}.

${ }^{1} \mathrm{H}$-NMR of 3, 6-bis(trimethylsilylethynyl)-9, 10-bis(hexyloxy)-phenanthrene in CDCl_{3}.

${ }^{13}$ C-NMR of 3, 6-bis(trimethylsilylethynyl)-9, 10-bis(hexyloxy)-phenanthrene in CDCl_{3}.

${ }^{1} \mathrm{H}$-NMR of 3, 6-diethynyl-9, 10-bis(hexyloxy)-phenanthrene in CDCl_{3}.

${ }^{13}$ C-NMR of 3, 6-diethynyl-9, 10-bis(hexyloxy)-phenanthrene in CDCl_{3}.

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{3}$ in CDCl_{3}.

${ }^{13} \mathrm{C}$-NMR of $\mathbf{3}$ in CDCl_{3}.

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{9}$ in CDCl_{3}.

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of 9 in CDCl_{3}.

${ }^{1}$ H-NMR of 3-(2'-methyl-2'-ol-but-3'-ynl)-6-bromo-9, 10-bis(hexyloxy)phenanthrene in CDCl_{3}.

${ }^{13}$ C-NMR of 3-(2'-methyl-2'-ol-but-3'-ynl)-6-bromo-9, 10-bis(hexyloxy)phenanthrene in CDCl_{3}.

$\begin{array}{llllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \mathrm{ppm}\end{array}$
${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{2}$ in CDCl_{3}.

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{8}$ in CDCl_{3}.

${ }^{1} \mathrm{H}$-NMR of cyclo-3,6-tris(9, 10-di(hexyloxy)phenanthrene (4) in CDCl_{3}.

${ }^{13} \mathrm{C}$-NMR of cyclo-3,6-tris(9, 10-di(hexyloxy)phenanthrene (4) in CDCl_{3}.

${ }^{1} \mathrm{H}$-NMR of $\mathbf{1}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{1}$ in toluene- d_{8}

[^0]: (2) B. L. Merner, L. N. Dawe, G. J. Bodwell, Angew. Chem. Int. Ed. 2009, 48, 5487-5491.

[^1]: (3) Gaussian 09, Revision A.1, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

[^2]: 4. Y. Segawa, H. Omachi, K. Itami, K. Org. Lett. 2010, 12, 2262-2265.
