Alkali-metal-mediated zincation (AMMZn) meets *N*-heterocyclic carbene (NHC) chemistry: Zn– H exchange reactions and structural authentication of a dinuclear Au(I) complex with a NHC anion

David R. Armstrong,^a Sharon E. Baillie, ^a Victoria L. Blair,^a Nicolas G. Chabloz,^a Josefina Diez,^b Joaquin Garcia-Alvarez,^b Alan R. Kennedy,^a Stuart D. Robertson^a and Eva Hevia^{*a}

[a] Dr. D. R. Armstrong, Dr. S. E. Baillie, Dr. V. L. Blair, N. G. Chabloz, Dr. A. R. Kennedy, Dr. S. D.

Robertson and Dr. E. Hevia,

WestCHEM, Department of Pure and Applied Chemistry,

University of Strathclyde, Glasgow, G1 1XL, U.K.

E-mail: eva.hevia@strath.ac.uk

[b] Dr. J. Garcia-Alvarez, Dr. J. Diez

Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles" (Unidad Asociada al CSIC), Facultad de Química, Universidad de Oviedo, E-33071 Oviedo, Spain **Crystallography.** All data were measured at low temperature using Oxford Diffraction diffractometers. Refinements to convergence on F^2 were performed with SHELXL-97.¹Final models for structures **2** and **4** included models for disorder in multiple THF groups and also (for **4**) a disordered butyl fragment. Reflection data for compound **5** had a low average intensity, and the count statistics were further compromised by the presence of other non-indexed diffraction peaks. Numerous samples of **5** were measured, but no better dataset was achieved. Thus the structure of **5** is of lower quality than the others presented here.

Compound	2	3	4	5	6
Earneyla	C ₄₇ H ₇₇ N ₂ NaO ₃	$C_{35}H_{54}N_2$	$C_{71}H_{127}N_2NaO_7$	C ₃₉ H ₆₃ LiN ₂	$C_{45}H_{50}Au_2Cl$
Formula	Zn	Zn	Zn_2	Zn	N_2P
Formula	806.47	568.17	1274.48	632.22	1079.22
weight					
Crystal	orthorhombic	triclinic	monoclinic	orthorhomb	triclinic
system				ic	
Space Group	$P2_12_12_1$	P-1	$P2_1/c$	Pbca	P-1
λÅ	0.71073	1.5418	0.71073	0.71073	1.5418
a Å	11.9480(6)	9.7795(5)	12.5177(2)	21.8628(13	9.2833(3)
μÅ	15.8780(8)	10.1033(5	33.2445(6)	22.1892(11	14.4759(3)
υA))	
c Å	24.9404(11)	20.1669(8	18.2146(6)	31.9347(14	16.9188(4)
ι A))	
α°	90	90.336(4)	90	90	68.109(2)
ß°	90	103.989(4	100.694(2)	90	81.380(2)
h)			
γ°	90	118.932(5	90	90	86.270(2)
Volume Å ³	4731.5(4)	1674.40(1	7448.3(2)	15492.1(14	2085.74(9)
volume A		4))	
Temp. K	123(2)	123(2)	123(2)	123(2)	150(2)
Z	4	2	4	16	2
Refls.	30717	11997	106036	43518	46765
Collected					
Refls.	10854	6087	17954	13585	8371
Unique					
Refls. Obs.	7909	5646	14402	5496	7267
Rint	0.0552	0.0312	0.0636	0.3604	0.0487
Goodness of Fit	1.011	1.094	1.178	0.915	1.051
$R[I>2\sigma(I)], F$	0.0557	0.0425	0.0781	0.0897	0.0311
Rw, F^2	0.1010	0.0989	0.1585	0.2639	0.0804

 Table S1. Selected crystallographic and refinement parameters.

¹ G. M. Sheldrick, Acta Crystallogr., 2008, A64, 112⁻

General Experimental Conditions All reactions were performed under a protective argon atmosphere using standard Schlenk techniques. Hexane and THF were dried by heating to reflux over sodium benzophenone ketyl and distilled under nitrogen prior to use. [(TMEDA)Na(TMP)Zn(*t*Bu)₂] (1),² **IPr**,³ **IBu**,⁴ Zn*t*Bu₂,¹ and [ClAu(PPh₃)]⁵ were prepared according to literature procedures. NMR spectra were recorded on a Bruker DPX 400 MHz spectrometer operating at 400.13 MHz for ¹H, 100.62 MHz for ¹³C and 155.50 MHz for ⁷Li. Elemental analyses was carried out using a Perkin Elmer 2400 elemental analyzer.

 $(THF)_{3}Na[:C{[N(2,6-iPr_{2}C_{6}H_{3})]_{2}CHCZn(tBu_{2})}]$ solution **Synthesis** of (2) То a of $[(TMEDA)Na(TMP)Zn(tBu)_2]$ (1) (2.30 g, 5 mmol) in hexane (30 mL) 1,3-bis-(2,6diisopropylphenyl)imidazole-2-ylidene (1.95 g, 5 mmol) was added and the resulting cream suspension was stirred for 30 minutes after which all volatiles were removed. THF (10 mL) and gentle heat gave a clear tan solution which was transferred to the freezer (-28 °C), which overnight deposited a crop of colourless crystals (3.46 g, 86%). Anal. Calcd for C₄₃H₆₉N₂NaO₂Zn: C, 70.33; H, 9.47; N, 3.81. Found: C, 70.45; H, 9.95; N 3.79. ¹H NMR (400.03 MHz, 298 K, d₈-THF) δ (ppm)⁶ 0.73 (18H, s, C(CH₃)₃), 1.12 (6H, d, CH(CH₃)₂), 1.15 (6H, d, CH(CH₃)₂), 1.18 (6H, d, CH(CH₃)₂), 1.23 (6H, d, CH(CH₃)₂), 1.77 (8H, m, CH₂ (THF)), 2.95 (2H, septet, CH(CH₃)₂), 3.16 (2H, septet, CH(CH₃)₂), 3.62 (8H, m, OCH₂ (THF)), 6.66 (1H, s, imidazole backbone CH), 7.19-7.25 (5H, overlapping m, ArCH), 7.32 (1H, t, *p*-CH). ¹³C {¹H} NMR (100.62 MHz, 298 K, d₈-THF) δ (ppm) 22.4 (CCH₃), 23.6 (CH(CH₃)₂), 24.6 (CH(CH₃)₂), 25.1 (CH(CH₃)₂), 26.0 (CH(CH₃)₂), 26.4 (CH₂ (THF)), 28.7 (CH(CH₃)₂), 28.8 (CH(CH₃)₂), 34.5 (CCH₃), 68.2 (OCH₂ (THF)), 123.9 (ArCH), 123.9 (ArCH), 127.6 (ArCH), 128.6 (ArCH), 129.9 (imidazole backbone CH), 140.7 (ArC), 145.4 (ArC), 146.5 (ArC), 147.5 (ArC), 159.5 (ZnC), 201.4 (C:).

Synthesis of $(THF)_3Na[:C\{[N(tBu)]_2CHCZn(tBu_2)\}]$ (2^{IBu}) This compound was prepared using the same experimental procedure described for 2, by reacting $[(TMEDA)Na(TMP)Zn(tBu)_2]$ (1) (0.23 g, 0.5 mmol) in hexane (5 mL) with 1,3-ditertbutlyl-imidazole-2-ylidene (0.09 g, 0.5 mmol). Addition of 1 mL of THF and storing the resulting solution in the freezer (-28 °C) over 24 hour led to the isolation

². P. C. Andrikopoulos, D. R. Armstrong, H. R. L. Barley, W. Clegg, S. H. Dale, E. Hevia, G. W. Honeyman, A. R. Kennedy, R. E. Mulvey, J. Am. Chem. Soc. 2005, 127, 6184

³. A. J. Arduengo III, R. Krafczyk, R. Schmutzler, *Tetrahedron* **1999**, *55*, 14523.

⁴ E. C. Hurst, K. Wilson, I. J. S. Fairlamb, V. Chechik, *New J. Chem.* **2009**, *33*, 1837.

⁵. M.-C. Brandys, M. C. Jennings, R. J. Puddephatt, J. Chem. Soc., Dalton Trans. 2000, 4601-4606

The integration of the THF resonances in the ¹H NMR spectrum **2** with respect to those belonging to the *t*Bu groups and the metallated NHC fragment, show that only two molecules are present whereas the crystal structure of **2** contains three solvating THF molecules. This deficiency of THF in the ¹H NMR spectrum is due to removal of some of the sodium-bound THF when crystals of **2** are dried under vacuum. The loss of this THF molecule is also shown in the data obtained for CHN analysis.

of **2^{IBu}** in a 63% yield (0.187 g). Anal. Calcd for C₁₉H₃₇N₂NaZn:⁷ C, 59.76; H, 9.77; N, 7.34. Found: C, 59.23; H, 10.01; N 7.59. ¹H NMR (400.03 MHz, 298 K, d₈-THF) δ (ppm)⁸ 0.91 (18H, s, Zn-C(CH₃)₃), 1.46 (9H, s, NC(CH₃)₃), 1.48 (9H, s, NC(CH₃)₃), 1.73 (8H, m, CH₂ (THF)), 3.58 (8H, m, OCH₂ (THF)), 6.34 (1H, s, imidazole backbone CH). ¹³C {¹H} NMR (100.62 MHz, 298 K, d₈-THF) δ (ppm) 21.4 (Zn-C(CH₃)₃), 26.4 (CH₂ (THF)), 32.0 (NC(CH₃)₃), 33.2 (NC(CH₃)₃), 35.7 (Zn-C (CH₃)₃), 54.1 (NC(CH₃)₃), 55.7 (NC(CH₃)₃), 68.2 (OCH₂ (THF)), 118.2 (imidazole backbone CH), 153.7 (ZnC), 195.2 (C:).

Synthesis of [Ipr.ZntBu₂] (3) To a solution of ZntBu₂ (1.26 g, 7 mmol) in hexane (35 mL) was added IPr (2.73 g, 7 mmol), giving a pale yellow suspension. After stirring for 30 minutes THF (10 mL) was charged, giving a clear yellow solution which deposited a crop of crystals after storage in the freezer overnight: 3.01 g, 76%. Crystals suitable for X-ray determination were crystallised from methylcyclohexane solution. Anal. Calcd for $C_{35}H_{54}N_2Zn$: C, 73.96; H, 9.58; N, 4.93. Found: C, 73.76; H, 10.12; N 4.99. ¹H NMR (400.03 MHz, 298 K, C₆D₆) δ (ppm) 0.96 (12H, d, CH(CH₃)₂), 1.10 (18H, s, C(CH₃)₃), 1.35 (12H, d, CH(CH₃)₂), 3.06 (4H, septet, CH(CH₃)₂), 6.63 (2H, s, imidazole backbone CH), 7.12 (4H, d, *m*-CH), 7.19 (2H, t, *p*-CH). ¹³C {¹H} NMR (100.62 MHz, 298 K, C₆D₆) δ (ppm) 22.6 (CH(CH₃)₂), 23.7 (C(CH₃)₃), 26.0 (CH(CH₃)₂), 28.5 (CH(CH₃)₂), 34.1 (CH(CH₃)₂), 123.3 (imidazole backbone CH), 124.6 (*m*-CH), 130.1 (*p*-CH), 136.2 (*i*-C), 144.8 (*o*-C). Carbene C could not be detected.

[Na(THF)₆]⁺ [*t*Bu₂Zn:C{[N(2,6-*i*Pr₂C₆H₃)]₂CHCZn(*t*Bu₂)}]⁻ (4) To a solution of [IPr.Zn*t*Bu₂] (3) (0.57 g, 1 mmol) in hexane (10 mL) was added [(TMEDA)Na(TMP)Zn(*t*Bu)₂] (1) (0.46 g, 1 mmol) and the off-white suspension was stirred for 15 minutes. THF (5 mL) was added and the straw solution was frozen in liquid nitrogen before transferral to the freezer (-28 °C). A crop of colourless crystals was deposited overnight (0.36 g, 30%).⁹ Anal. Calcd for C₅₉H₁₀₆N₂NaO₄Zn₂: C, 66.77; H, 10.07; N, 2.64. Found: C, 66.14; H, 10.45; N 2.93. ¹H NMR (400.03 MHz, 298 K, d₈-THF) δ (ppm) 0.50 (18H, s, C(CH₃)₃), 0.74 (18H, s, C(CH₃)₃), 1.10 (6H, d, CH(CH₃)₂), 1.14 (6H, d, CH(CH₃)₂), 1.23 (6H, d, CH(CH₃)₂), 1.27 (6H, d, CH(CH₃)₂), 1.77 (16H, m, CH₂ (THF)), 3.23 (2H, septet, CH(CH₃)₂), 3.38 (2H, septet, CH(CH₃)₂), 3.62 (16H, m, OCH₂ (THF)), 6.88 (1H, s, imidazole backbone CH), 7.16-7.26

 $^{^{7}}$. CHN analysis results are consitent with the lack of THF molecules in the isolated solid, which were probably removed under vacuum when 2^{IBu} was dried.

⁸ The integration of the THF resonances in the ¹H NMR spectrum **2** with respect to those belonging to the *t*Bu groups and the metallated NHC fragment, show that only two molecules are present whereas the crystal structure of **2** contains three solvating THF molecules. This deficiency of THF in the ¹H NMR spectrum is due to removal of some of the sodium-bound THF when crystals of **2** are dried under vacuum.

⁹. NMR analysis of the filtrate showed that **4** is the only organometallic species present in solution suggesting that its formation is quantitative.

(6H, overlapping m, ArC*H*). ¹³C {¹H} NMR (100.62 MHz, 298 K, d₈-THF) δ (ppm) 22.1 (*C*CH₃), 23.0 (CH(*C*H₃)₂), 23.1 (*C*CH₃), 24.2 (CH(*C*H₃)₂), 26.1 (CH(*C*H₃)₂), 26.4 (*C*H₂ (THF)), 26.8 (CH(*C*H₃)₂), 28.8 (*C*H(CH₃)₂), 28.9 (*C*H(CH₃)₂), 34.9 (*C*CH₃), 35.4 (*C*CH₃), 68.2 (*O*CH₂ (THF)), 124.4 (Ar*C*H), 124.6 (Ar*C*H), 127.6 (Ar*C*H), 128.7 (Ar*C*H), 131.4 (imidazole backbone *C*H), 139.3 (Ar*C*), 143.6 (Ar*C*), 144.9 (Ar*C*), 146.0 (Ar*C*), 160.8 (Zn*C*), 187.8 (C:).

Synthesis of [IPrLiZntBu₃] (5) A solution of ZntBu₂ (0.18 g, 1 mmol) in hexane (5 mL) was added to **IPr** (0.39 g, 1 mmol) and the pale yellow suspension stirred for 90 minutes before *t*BuLi (0.6 mL of a 1.7 M solution in pentane) was added giving a clear solution which was transferred to the freezer. A crop of crystals was formed after 3 days: 0.52 g, 82%. Anal. Calcd for C₃₉H₆₃LiN₂Zn: C, 74.06; H, 10.05; N, 4.43. Found: C, 73.74; H, 10.53; N 4.29.¹H NMR (400.03 MHz, 298 K, C₆D₆) δ (ppm)¹⁰ 0.96 (12H, d, CH(CH₃)₂), 1.95 (27H, s, C(CH₃)₃), 1.26 (12H, d, CH(CH₃)₂), 2.64 (4H, br, CH(CH₃)₂), 6.47 (2H, s, imidazole backbone CH), 7.07 (4H, d, *m*-CH). 7.21 (2H, t, *p*-CH). ¹³C {¹H} NMR (100.62 MHz, 298 K, C₆D₆) δ (ppm) 23.1 (CH(CH₃)₂), 24.6 (CH(CH₃)₂), 28.4 (CCH₃), 28.6 (CH(CH₃)₂), 34.2 (CCH₃), 123.4 (imidazole backbone CH), 124.3 (*m*-CH), 130.4 (*p*-CH), 136.0 (*i*-CH), 145.2 (*o*-CH). Carbene *C* could not be detected. ⁷Li NMR (155.50 MHz, C₆D₆) δ -0.10 (s).

Synthesis of [ClAu:C{[N(2,6-*i*Pr₂C₆H₃)]₂CHCAu(PPh₃)]] (6). A solution of the sodium zincate 2 (0.403 g, 0.5 mmol) dissolved in 20 mL of THF was treated with [ClAu(PPh₃)] (0.496 g, 1 mmol) and stirred at room temperature for 1 h to yield a colourless solution. This solution was then evaporated to dryness and the solid residue extracted with diethyl ether (20 mL) and filtered off (Kieselguhr). The obtained solution was then concentrated to *ca*. 2 mL and supported on silica gel, and the resulting solid was transferred onto a silica gel column packed in hexane. The elution of this column with hexane-ethyl acetate (1:1) afforded compound **6** (0.329 g, 61%) which could be recrystallised as colourless crystals suitablesuitable for X-ray diffraction analysis by slow diffusion of hexane into a saturated solution of the complex in dichloromethane. Anal. Calcd for Au₂C₄₅H₅₀ClN₂P: C, 50.08; H, 4.67; N, 2.60. Found: C, 50.14; H, 4.70; N 2.63. IR (KBr, cm⁻¹): *v* 536, 692, 759, 802, 1021, 1100, 1261, 1384, 1436, 1647, 2862, 2923, 2961. ³¹P{¹H} NMR (121.5 MHz, 298 K, 85% solution H₃PO₄ as a reference, CDCl₂) δ (ppm): δ 42.6 (s, Au-*P*Ph₃). ¹H NMR (400.03 MHz, 298 K, CDCl₂) δ (ppm): δ 1.17 (d, 6H, CH(CH₃)₂), 1.27 (d, 6H, CH(CH₃)₂), 1.32 (d, 6H, CH(CH₃)₂), 1.37 (d, 6H, , CH(CH₃)₂), 2.74 (m, 4H,

¹⁰ As similarly described for **2**, integration of the THF resonances in the ¹H NMR with respect to those belonging to the *t*Bu groups and the metallated NHC fragment, show that only four molecules are present whereas the crystal structure of **4** contains six solvating THF molecules. This deficiency of THF in the ¹H NMR spectrum is due to removal of some of the sodium-bound THF when crystals of **4** are dried under vacuum The loss of 2 molecules of THF is also observed in the results from CHN analysis

 $CH(CH_3)_2$), 6.91 (s1H, s, imidazole backbone CH), 7.27-7.64 (m, 6H, overlapping, ArCH). ¹³C {¹H} NMR (100.62 MHz, 298 K, CD₂Cl₂) δ (ppm)): δ 23.8 (CH(CH₃)₂), 24.4 (CH(CH₃)₂), 28.5 (CH(CH₃)₂), 123.8 (d, ³J_{CP} = 8.0 Hz, NCH=C-AuPPh₃), 126.7-146.0 (m, CH_{arom}, C_{arom} and NCH=C-Au), 172.8 (s, N₂C-Au).

Computational Details

Density Functional Theory (DFT) calculations¹¹ were performed using the Gaussian computational package G03.¹² In this series of calculations the geometries of the molecules and ions were optimised by employing the B3LYP density functionals^{13,14} and the 6-311G** basis set.^{15,16} The charge distributions were obtained from a Natural Bond Orbital analysis.¹⁷

Scheme S1: DFT study on the energy of the reaction of model systems 1A and 1B to afford 2A

¹⁶. R. Krishnan, J. S. Binkley, R. Seeger and J. A. Pople, J. Chem. Phys., **1980**, 72, 650.

¹¹. W. Kohn, A. D. Becke and R.G. Parr, J. Phys. Chem., **1996**, *100*, 12974.

¹². Gaussian 03, Revision B.0.5, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 2003.

¹³. A.D. Becke, Phys. Rev. A, **1988**, *38*, 3098.

¹⁴. C.T. Lee, W.T. Yang and R.G.Parr, Phys.Rev. B, 1998, **37**, 785.

¹⁵. A. D. McLean and G. S. Chandler, J. Chem. Phys., **1980**, <u>72</u>, 5639.

¹⁷. NBO Version 3.1, E. D. Glendening, A. E. Reed, J. E. Carpenter, and F.Weinhold.

	2	2A
C_1-N_2	1.403(4)	1.404
C_3-N_2	1.359(4)	1.362
C ₁ -C ₅	1.338(4)	1.364
C ₅ -N ₄	1.416(4)	1.424
C ₃ -N ₄	1.379(4)	1.373
Zn-C ₅	2.058(3)	2.127
Zn-C _{tBu}	2.022(2) $2.056(2)$	2.051,
	2.055(5), 2.050(5)	2.073
Na-C ₃	2.501(3)	2.500

Table S2: Comparison of the calculated bond distances (Å) for model 2A with those from the X-ray crystallographic data of 2.

Switching the positions ZntBu₂ of *t*Bu₂Zn:C{[N(*t*Bu)]₂CHC(THF)₃Na }] (2B)

 ${Na(THF)_3}^+$ in 2A:

and

Geometry optimisation of 2A

Principal bond lengths (Å)

N_2-C_1	1.404
N_2-C_3	1.362
C_1-C_5	1.364
N_4-C_5	1.424
N_4-C_3	1.373
N ₂ -C	1.436
N ₄ -C	1.439
C ₅ -Zn	2.127
Zn-C _{tbu}	2.051 2.073
C ₃ -Na	2.500
Na-O	2.369 2.376 2.369

E = -4114.727393 a.u.

Bond Indices and Charges

N_2-C_1	1.04	C_1	-0.13	N_4-C_5	1.06	C_5	-0.38
N_2-C_3	1.26	N_2	-0.46	N_4-C_3	1.24	N_4	-0.47
N_2 - C_{Ph}	0.94	C ₃	-0.06	N_4 - $C_{Ph'}$	0.95	C _{Ph} ,	+0.18
C_1-C_5	1.67	CI	_{Ph} +0.16	C ₅ -Zn	0.22	Zr	n +1.49
Zn-C _{tbu}	0.32	Ct	_{bu} -0.57	C ₃ -Na	0.06	Na	a +0.90
C _{tbu} -C _{Me}	1.03	1.03 1.03	$C_{Me} - 0.59$	-0.59 -0.59			
Zn-C _{tbu'}	0.28	Ct	_{bu} [,] -0.58				
$C_{tbu'}$ - C_{Me}	1.03 1.0	3 1.03	C _{Me} -0.59	9 -0.59 -0.59			
Na-O	0.01 0.01	0.01 O	-0.66 -0.	66 -0.64			

Figure S1. Representation of molecular orbitals HOMO, HOMO-1 and HOMO-2 of 2A

Scheme S2: DFT study on the energy of the reaction of model systems 1B and 3A to afford 4A

Tabl	e S3: Comparison	of the	calculated	bond	distances	(A) t	or the	anion	of model	4 A	with t	hose	from	the X-
ray c	rystallographic dat	a of the	e anion of 4	4.										

	4	4 A	
C_1-N_2	1.367(4)	1.372	-
C ₃ -N ₂	1.423(4)	1.425	
C ₃ -C ₄	1.362(4)	1.361	Dipp /
C ₄ -N ₅	1.394(4)	1.400	$4 \frac{5}{1}$ N
N ₅ -C ₁	1.359(4)	1.361	
Zn ₆ -C ₃	2.058(3)	2.135	Zn 3 N2
\mathbf{Zn}_{7} - \mathbf{C}_{1}	2.114(3)	2.140	/ - tBu Dipp
Zn ₆ -C _{tBu}	2.058(4), 2.075(9)	2.054, 2.069	рр
Zn ₇ -C _{tBu}	2.030(4), 2.047(4)	2.063, 2.071	

Geometry optimisation of anion present in 4A

Principal bond lengths (\AA) and bond angles $(^{\circ})$

C_1-N_2	1.372	$N_{5}-C_{1}-N_{2}$	103.2	
N_2-C_3	1.425	$C_1 - N_2 - C_3$	114.1	
C_3-C_4	1.	361 N ₂ -0	C_3-C_4	101.8
C_4-N_5	1.400	$C_{3}-C_{4}-N_{5}$	110.5	
N_3-C_1	1.361	$C_4-N_5-C_1$	110.3	
C_1 - Zn_7	2.140	N_2 - C_1 - Zn_7	130.0	
N ₂ -C	1.443	$N_5-C_1-Z_1$	n ₇ 12	6.6
C_3 - Zn_6	2.135	N_2 - C_3 - Zn_6	140.5	
N ₅ -C	1.4	43 $C_4 - C_3 - Z_1$	n ₆ 11	7.7
Zn_6 - $C(^tBu)$	2.054	$C(^{t}B)$	u)- Zn_6 - C	$C(^{t}Bu)$ 128.4
Zn_6 - $C(^tBu)$	2.069	$C(^{t}B)$	3u)-Zn ₇ -C	$C(^{t}Bu)$ 121.2
$Zn_7-C(^tBu)$	2.063			
$Zn_7-C(^tBu)$	2.071			

Charges and Bond Indices

0				
C_1-N_2	1.25	C_1 -(0.05	
N_2-C_3	1.05	N ₂ -().45	
C_3-C_4	1.	68 C	3 -0.3	39
C_4-N_5	1.05	C ₄ -0).13	
N_3-C_1	1.25	N ₅ -().44	
C_1 - Zn_7	0.22	$Zn_6 + 1$.50	
N ₂ -C		0.94	C(Bu) -0.58 -0.58
C_3 - Zn_6	0.22	C(Me) -0.5	59 -0.59 -0.59 -0.59 -0.59 -0.59
N ₅ -C	0.94		Zn_7	+1.49
Zn_6 - $C(^tBu)$	0.28	C	(^{t}Bu)	-0.58 -0.58
Zn_6 - $C(^tBu)$	0.31	C	(Me)	-0.59 -0.59 -0.60 -0.59 -0.59 -0.60
$Zn_7-C(^tBu)$	0.31			
Zn_7 - $C(^tBu)$	0.29			

HOMO-2

номо

HOMO-1 ESI11 Figure S2. Representation of molecular orbitals HOMO, HOMO-1 and HOMO-2 of the anion of 4A

NMR spectra of compounds 2-6

Figure S3: ¹H NMR spectrum of $(THF)_3Na[:C\{[N(2,6-iPr_2C_6H_3)]_2CHCZn(tBu_2)\}]$ (2) in d₈-THF

Figure S4: ¹³C {¹H} NMR spectrum of $(THF)_3Na[:C\{[N(2,6-iPr_2C_6H_3)]_2CHCZn(tBu_2)\}]$ (2) in d₈-THF

Figure S5: ¹H NMR spectrum of $(THF)_3Na[:C\{[N(tBu)]_2CHCZn(tBu_2)\}]$ (2^{IBu}) in d₈-THF

Figure S6: ¹³C {¹H} NMR spectrum of $(THF)_3Na[:C\{[N(tBu)]_2CHCZn(tBu_2)\}]$ (2^{IBu}) in d₈-THF

Figure S8: ${}^{13}C \{{}^{1}H\}$ NMR spectrum of [IPr.Zn*t*Bu₂] (**3**) in C₆D₆

Figure S9: ¹H NMR spectrum of Na(THF)₆]⁺ [$tBu_2Zn:C\{[N(2,6-iPr_2C_6H_3)]_2CHCZn(tBu_2)\}]^-$ (4) in d₈-THF

Figure S10: ¹³C {¹H} NMR spectrum of Na(THF)₆]⁺ [$tBu_2Zn:C\{[N(2,6-iPr_2C_6H_3)]_2CHCZn(tBu_2)\}]^-$ (4) in d₈-THF

Figure S11: ¹H NMR spectrum of [IPr.LiZn*t*Bu₃] (5) in d₈-THF

Figure S12: ¹³C {¹H} NMR spectrum of [IPr.LiZn*t*Bu₃] (**5**) in d₈-THF

Electronic Supplementary Material (ESI) for Chemical Science This journal is O The Royal Society of Chemistry 2013

Figure S13: ¹H NMR spectrum of [ClAu:C{[N(2,6-*i*Pr₂C₆H₃)]₂CHCAu(PPh₃)] (6) in CDCl₂

Figure S14: ¹³C {¹H} NMR spectrum of [ClAu:C{[N(2,6-*i*Pr₂C₆H₃)]₂CHCAu(PPh₃)] (6) in CDCl₂

Figure S15: ³¹P {¹H} NMR spectrum of [ClAu:C{[N(2,6-iPr₂C₆H₃)]₂CHCAu(PPh₃)] (6) in CDCl₂

Figure S16: (a) ¹H NMR spectrum of free **IAd** in d_8 -THF. (b) ²H NMR of reaction crude of the reaction of **IAd** with sodium zincate **1** followed by *in situ* treatment with CD₃OD in d_8 -THF.

Figure S17: (a) ¹H NMR spectrum of free **IMes** in d₈-THF. (b) ²H NMR of reaction crude of the reaction of **IMes** with sodium zincate **1** followed by *in situ* treatment with CD₃OD in d₈-THF.