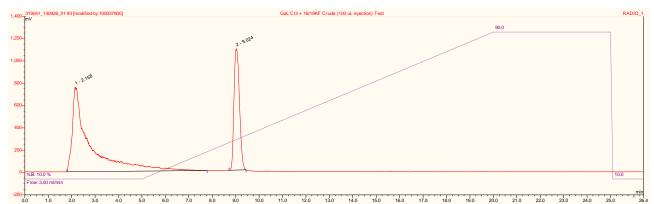
Electronic Supporting Information

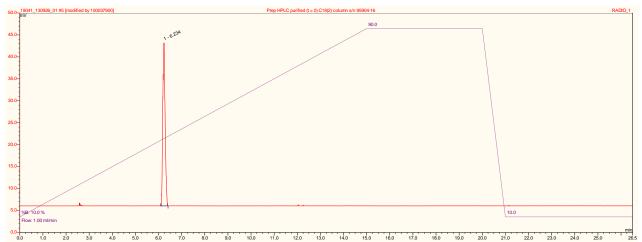
Triaza-Macrocyclic Complexes of Aluminium, Gallium and Indium Halides: Fast ¹⁸F and ¹⁹F Incorporation *via* Halide Exchange under Mild Conditions in Aqueous Solution

Rajiv Bhalla, Christine Darby, William Levason, Sajinder K. Luthra, Gillian Reid*, Graeme McRobbie, George Sanderson, Wenjian Zhang

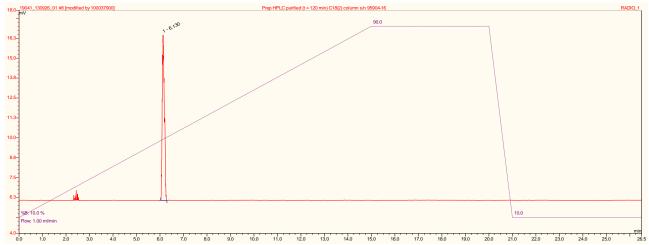
Preparations


[AlBr₃(Me₃-tacn)]: AlBr₃ (0.133 g, 0.50 mmol) was added to a solution of Me₃-tacn (0.086 g, 0.50 mmol) in CH₂Cl₂ (5 mL) at room temperature with stirring which leads a formation of precipitate. After 30 mins. the solvent was removed by filtration. The white precipitate was washed with small amount of CH₂Cl₂ solvent and dried *in vacuo*. Yield: 0.16 g, 74%. Required for C₉H₂₁A1Br₃N₃: C, 24.7; H, 4.8; N, 9.6. Found: C, 24.6; H, 5.3; N, 8.9. ¹H NMR (CD₂Cl₂, 297 K): δ 3.43 (m, [6H], CH₂), 2.98 (m, [9H], CH₃), 2.73 (m, [6H], CH₂). IR (Nujol, v/cm⁻¹): 324 (Al–Br).

[AlBr₃(BzMe₂-tacn)]: Method as for [AlBr₃(Me₃-tacn)] but using AlBr₃ (0.133 g, 0.50 mmol) and BzMe₂-tacn (0.13 g, 0.50 mmol). White solid. Yield: 0.19 g, 74%. ¹H NMR (CD₂Cl₂, 298 K): δ 7.31 (m, [5H], ArH), 4.75 (m, [2H], Ar-CH₂), 3.72 (m, [2H], tacn-CH₂), 3.46 (m, [4H], tacn-CH₂), 3.04 (m, [6H], CH₃), 2.70 (m, [4H], tacn-CH₂), 2.33 (m, [2H], tacn-CH₂). IR (Nujol, v/cm⁻¹): 343, 325 sh (Al–Br).


[GaBr₃(Me₃-tacn)]: Method as for [GaCl₃(Me₃-tacn)] but using Me₃-tacn (0.086 g, 0.50 mmol) and GaBr₃ (0.150 g, 0.50 mmol). White solid. Yield: 0.106 g, 45%. Required for C₉H₂₁Br₃GaN₃: C, 22.5; H, 4.4; N, 8.7. Found C, 22.4; H, 4.6; N, 8.6%. ¹H NMR (CD₂Cl₂, 298 K): δ 3.3 (br m, [6H], CH₂), 2.9 (br s, [9H], Me), 2.7 (br m, [6H], CH₂).

[InBr₃(Me₃-tacn)]: Method as for [GaCl₃(Me₃-tacn)], but using Me₃-tacn (0.087 g, 0.50 mmol) and InBr₃ (0.177 g, 0.50 mmol). White solid. Yield: 0.162 g, 61%. Required for C₉H₂₁Br₃InN₃: C, 20.5; H, 4.0; N, 8.0. Found C, 19.8; H, 4.0; N, 7.4%. ¹H NMR (CD₂Cl₂, 298 K): δ 3.18 (br m, [6H], CH₂), 2.78 (br s, [9H], Me), 2.67 (br m, [6H], CH₂).


[NMe₄]₃[Al₂F₉]: AlF₃·3H₂O (0.250 g, 1.8 mmol) was suspended in 10 mL freshly distilled water. A solution of [NMe₄]F (0.167 g, 1.8 mmol) in 3 mL water was added and the resulting mixture refluxed for 15 hours. The solution was cooled to room temperature and the white solid was isolated by filtration and dried under high vacuum for six hours. Yield 0.220 g, 70%. IR (Nujol, v/ cm⁻¹): 674 (br), 358 (s) (Al–F). ¹H NMR (CD₃CN, 298 K): δ 3.07 (s [12H] CH₃) ppm. ¹⁹F NMR (CD₃CN, 298 K): δ –150.0 (m F⁻), –194.1 (m, [AlF₄]⁻) ppm. ²⁷Al NMR (CD₃CN, 298 K): 48.8 (quintet, [AlF₄]⁻) ppm. Washing with MeCN, followed by slow evaporation of the filtrate yielded colourless crystals suitable for X-ray diffraction.

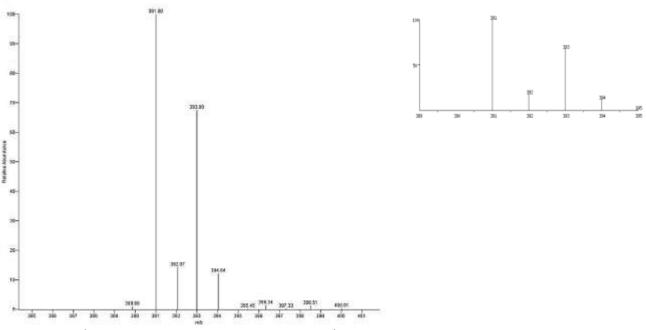

Figure S1: <u>Preparative</u> HPLC radio trace of the crude reaction mixture for the labelling of $[GaCl_3(BzMe_2-tacn)]$ with ${}^{18}F/K{}^{19}F$. Peak 1: R_t 2.1 mins. (${}^{18}F^{-}$). Peak 2: Rt 9.0 mins. ($[Ga{}^{18}F{}^{19}F_2(BzMe_2-tacn)]$).

Figure S2: <u>Analytical</u> HPLC radio trace of $[Ga^{18}F^{19}F_2(BzMe_2-tacn)]$ formulated in PBS:EtOH (90:10) at t = 0. Peak: Rt 6.2 mins. RCP = 99.6%.

Figure S3: <u>Analytical</u> HPLC radio trace of $[Ga^{18}F^{19}F_2(BzMe_2-tacn)]$ formulated in PBS:EtOH (90:10) at t = 120 min. Peak: Rt 6.1 mins. RCP = 98.8%.

Figure S4: ESI^+ mass spectrum of $[\text{GaF}_3(\text{BzMe}_2\text{-tacn})] + \text{NH}_4]^+$ taken from radiolabelling reaction (left) and the predicted isotope pattern for $[\text{GaF}_3(\text{BzMe}_2\text{-tacn})] + \text{NH}_4]^+$ (right).

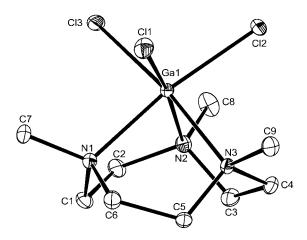

Compound	[AlF ₃ (Me ₃ -	[GaF ₃ (Me ₃ -tacn)]	[InF ₃ (Me ₃ -tacn)]	[InF ₃ (BzMe ₂ -	[AlCl ₃ (Me ₃ -tacn)]	[GaCl ₃ (Me ₃ -tacn)]
	tacn)] ·4H ₂ O	·4H ₂ O	·4H ₂ O	tacn)] ·1.2H ₂ O		
Formula	$C_9H_{29}AlF_3N_3O_4$	$C_9H_{29}F_3GaN_3O_4$	$C_9H_{29}F_3InN_3O_4$	$C_{15}H_{27}F_{3}InN_{3}O_{1.20}$	C ₉ H ₂₁ AlCl ₃ N ₃	C ₉ H ₂₁ Cl ₃ GaN ₃
М	327.33	370.07	415.17	440.42	304.62	347.36
crystal syst	Orthorhombic	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space group	Pbca (no. 61)	P2 ₁ /c (no. 14)	P2 ₁ /n (no. 14)	P2 ₁ /c (no. 14)	P2 ₁ /c (no. 14)	P2 ₁ /c (no. 14)
<i>A</i> [Å]	8.8131(15)	13.420(4)	6.8679(10)	6.7721(10)	12.128(5)	12.173(3)
<i>B</i> [Å]	13.356(2)	8.871(2)	20.187(4)	13.666(3)	7.185(2)	7.2253(10)
<i>C</i> [Å]	26.551(5)	13.542(3)	12.014(2)	18.998(3)	15.695(6)	15.696(6)
α [deg]	90	90	90	90	90	90
β [deg]	90	97.816(15)	99.482(10)	96.106(10)	90.07(5)	90.239(6)
Γ[deg]	90	90	90	90	90	90
U [Å ³]	3125.3(10)	1597.3(7)	1642.8(5)	1748.2(5)	1367.7(8)	1380.5(6)
Z	8	4	4	4	4	4
μ(Mo Kα) [mm ⁻	0.178	1.769	1.484	1.389	0.713	2.552
1]						
total reflns	8255	12911	19404	23249	8994	6378
unique reflns	3570	3645	3750	4005	3059	3150
$R_{ m int}$	0.051	0.049	0.028	0.028	0.053	0.022
No. of params,	209, 8	216, 85	209, 0	226,0	149,0	148,0
restraints						
$R_1^{b} [I_o > 2\sigma(I_o)]$	0.079	0.058	0.0219	0.022	0.058	0.021
R_1 [all data]	0.124	0.076	0.0254	0.025	0.078	0.024
$wR_{2}^{b}[I_{o}>$	0.168	0.124	0.044	0.046	0.107	0.052
$2\sigma(I_o)]$						
wR_2 [all data]	0.196	0.133	0.046	0.048	0.119	0.053

Table S1 Crystal data and structure refinement details^a

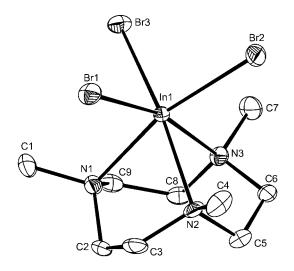
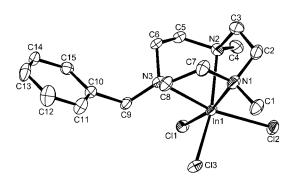
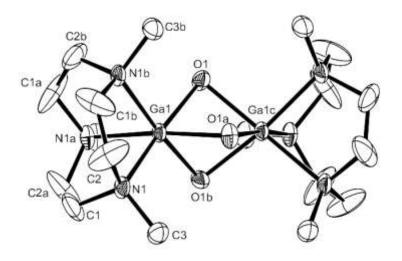

^{*a*} Common items: temperature = 120 K; wavelength (Mo–K α) = 0.71073 Å; $\theta(\max) = 27.5^{\circ}$; ^{*b*} $R_1 = \Sigma ||F_0| - |F_c||/\Sigma |F_0|$; $wR_2 = [\Sigma w(F_0^2 - F_c^2)^2 / \Sigma w F_0^4]^{1/2}$.

Table S1 continued


Compound	[InBr ₃ (Me ₃ -tacn)]·CH ₂ Cl ₂	[InCl ₃ (BzMe ₂ -tacn)]	$[{(Me_3-tacn)Ga}_2(\mu-OH)_3]Br_3$	$[NMe_4]_3[Al_2F_9]$	
			$\cdot 3CH_2Cl_2$		
Formula	$C_{10}H_{23}Br_3Cl_2InN_3$	C ₁₅ H ₂₅ Cl ₃ InN ₃	$C_{21}H_{51}Br_3Cl_6Ga_2N_6O_3$	$C_{12}H_{36}Al_2F_9N_3$	
М	610.76	468.55	1027.55	447.40	
crystal syst	Monoclinic	Monoclinic	Hexagonal	Hexagonal	
Space group	C2/c (no. 15)	$P2_1/c$ (no. 14)	P6 ₃ /m (no. 176)	P6 ₃ /m (no. 176)	
a [Å]	16.276(3)	7.2893(15)	12.979(2)	7.997(5)	
<i>b</i> [Å]	16.175(3)	15.026(4)	12.979(2)	7.997(5)	
<i>c</i> [Å]	14.815(2)	18.528(4)	13.565(4	18.178(7)	
α [deg]	90	90	90	90	
β [deg]	105.595(2)	100.924(15)	90	90	
γ [deg]	90	90	120	120	
$U[Å^3]$	3756.9(11)	1992.5(8)	1978.9(7)	1006.8(10)	
Z	8	4	2	2	
μ (Mo K α) [mm ⁻¹]	7.916	1.588	4.826	0.227	
total no. reflns	21458	19924	15378	4622	
unique reflns	4306	4522	1356	799	
R _{int}	0.078	0.057	0.074	0.064	
no. of params, restraints	176,0	201,0	72,0	49,0	
$R_1^{b}[I_o > 2\sigma(I_o)]$	0.045	0.053	0.044	0.043	
<i>R</i> ₁ [all data]	0.071	0.0758	0.054	0.063	
$wR_2^{b}[I_o > 2\sigma(I_o)]$	0.080	0.096	0.091	0.098	
wR ₂ [all data]	0.088	0.107	0.097	0.107	


Figure S5 Structure of $[GaCl_3(Me_3-tacn)]$ showing the atom labelling scheme. Ellipsoids are drawn at the 50% probability level and H atoms are omitted for clarity. Selected bond lengths (Å) and angles (°): Ga1-N3 = 2.1644(13), Ga1-N1 = 2.1755(13), Ga1-N2 = 2.1960(14), Ga1-Cl2 = 2.3087(5), Ga1-Cl1 = 2.3177(9), Ga1-Cl3 = 2.3217(5), N3-Ga1-N1 = 81.90(5), N3-Ga1-N2 = 80.80(5), N1-Ga1-N2 = 80.83(5), Cl2-Ga1-Cl1 = 94.38(2), Cl2-Ga1-Cl3 = 93.98(2), Cl1-Ga1-Cl3 = 94.49(2).

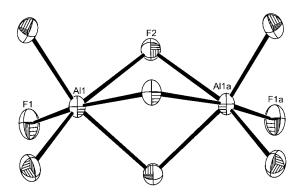

Figure S6 Structure of $[InBr_3(Me_3-tacn)]$ showing the atom numbering scheme. Ellipsoids are drawn at the 50% probability level and H atoms are omitted for clarity. Selected bond lengths (Å) and angles (°): In1–N3 = 2.344(4), In1–N1 = 2.345(5), In1–N2 = 2.347(4), In1–Br2 = 2.5987(8), In1–Br3 = 2.6006(8), In1–Br1 = 2.6046(8), N3–In1–N1 = 76.4(2), N3–In1–N2 = 76.8(2), N1–In1–N2 = 76.2(2), Br2–In1–Br3 = 96.66(3), Br2–In1–Br1 = 95.06(2), Br3–In1–Br1 = 96.15(3).

Figure S7 Structure of $[InCl_3(BzMe_2-tacn)]$ with atom numbering scheme. Ellipsoids are shown at the 50% probability level and H atoms are omitted for clarity. Selected bond lengths (Å) and angles (°): In1-N1 = 2.312(4), In1-N2 = 2.342(4), In1-N3 = 2.371(4), In1-Cl1 = 2.4443(13), In1-Cl2 = 2.4518(14), In1-Cl3 = 2.4581(14), N1-In1-N2 = 77.1(2), N1-In1-N3 = 77.4(2), N2-In1-N3 = 76.3(2), Cl1-In1-Cl2 = 95.32(5), Cl1-In1-Cl3 = 96.26(5), Cl2-In1-Cl3 = 98.31(5).

Figure S8 View of the structure of the cation in [{(Me₃-tacn)Ga}(μ -OH)₃]Br₃·3CH₂Cl₂. Ellipsoids are drawn at the 40% probability level and H atoms are omitted for clarity. Symmetry operations: a = 1–y, x–y, z ; b = 1–x+y, 1–x, z ; c = x, y, 1/2–z. The cation has C_{3h} (–6) symmetry. Selected bond lengths (Å) and angles (°): Ga1–O1 = 1.955(4), Ga1–N1 = 2.078(4), Ga1····Ga1c = 2.668(2), O1–Ga1–O1a = 78.6(2), N1–Ga1–N1a = 84.7(2), Ga1–O1–Ga1a = 86.0(2).

Figure 9 View of the anion in $[NMe_4]_3[Al_2F_9]$ with atoms numbering scheme. Atoms are shown at the 50% probability level. The anion has D_{3h} (-6m2) crystallographic symmetry. Symmetry operation: a = x, y, 3/2 - z. Selected bond lengths (Å) and angles (°): Al1–F1 = 1.7389(14), Al1–F2 = 1.9136(14), F1–Al1–F1a = 96.94(6), F1–Al1–F2 = 91.89(6), F1–Al1–F2a = 165.19(6), F2–Al1–F2a = 75.63(7), Al1–F2–Al1 = 89.86(8).

Crystal structure determination of [Me₄N]₃[Al₂F₉]: The crystal system is hexagonal with the likely Laue group 6/m. Possible space groups from the absences are P6₃/m (no. 176) and P6₃ (no.173). Structure solution in space group P6₃/m reveals a discrete $[Al_2F_9]^-$ anion (D_{3h} point group), with two overlapping $[Me_4N]^+$ cations (like two face-sharing tetrahedra – the common face positioned on a mirror planes), which refined well to a final R1 = 0.043. Structure solution was also attempted in space group P6₃ to establish whether this might remove the overlapping cations. However, while the individual moieties were evident in the difference map, the pseudo mirror plane was very clear in the anion and two of the Me4N cations, and the third cation (N2) did not show the overlapping problem. Refinement was less satisfactory and the final R1 = 0.052. The Flack parameter was 1.1 with a very large esd. Attempts to get the absolute structure (BASF/TWIN) failed (the L.S. blew-up). Hence, while chemically the same structure was evident in both space groups, the solution in P6₃/m (176) was preferred.