Formation of sub-valent carbenoid ligands by metal-mediated dehydrogenation chemistry: coordination and activation of $H_2Ga\{(NDippCMe)_2CH\}$

Joshua Turner, Joseph A.B. Abdalla, Joshua I. Bates, Remi Tirfoin, Michael J. Kelly, Nicholas Phillips and Simon Aldridge*

Supporting Information (23 pages)

1.	General methods and starting materials	S2
2.	Syntheses of new compounds	S3
3.	Details of DFT calculations	S6
4.	References for supporting information	S23

1. General methods and starting materials

All manipulations were carried out using standard Schlenk line or dry-box techniques under an atmosphere of argon. Solvents were degassed by sparging with argon and dried by passing through a column of the appropriate drying agent using a commercially available Braun SPS. Fluorobenzene and 1,2-difluorobenzene were dried by refluxing over calcium hydride, distilled, sparged and stored over activated molecular sieves. NMR spectra were recorded in benzene- d_6 , dichloromethane- d_2 or bromobenzene- d_5 , which were dried over potassium, molecular sieves or calcium hydride respectively, and stored under argon in Teflon valve ampoules. NMR samples were prepared under argon in 5 mm Wilmad 507-PP tubes fitted with J. Young Teflon valves. ¹H and ¹³C NMR spectra were recorded on Varian Mercury-VX-300 or Bruker AVII-500 spectrometers and referenced internally to residual protio-solvent (¹H) or solvent (¹³C) resonances and are reported relative to tetramethylsilane ($\delta = 0$ ppm). Chemical shifts are quoted in δ (ppm) and coupling constants in Hz. Infrared spectra were measured on a Nicolet 500 FT-IR spectrometer. Elemental analyses were carried out by Stephen Boyer at London Metropolitan University. Starting materials Mo(CO)₄(COD)^{S1} were prepared by literature procedures. H₂Ga{(NDippCMe)₂CH} (1) was prepared by a method directly analogous to that reported in the literature, ^{S2} but employing Cl₂Ga{(NDippCMe)₂CH} as a starting material rather than I₂Ga{(NDippCMe)₂CH}. Photolysis experiments were carried out using a Spectral Energy mercury arc lamp (1 kW) with samples contained either within a quartz Schlenk vessel or a J. Young's NMR tube.

2. Syntheses of new compounds

2a: Cp'Mn(CO)₃, (0.1 mL, 0.6 mmol) was added to a quartz Schlenk tube containing a stirred solution of **1** (0.300 g, 0.613 mmol) in toluene (15 mL). The solution was then subjected to UV photolysis at room temperature for 2.5 h. The orange solution was then filtered, concentrated and cooled to -30 °C, yielding yellow crystals of **2** which were isolated by filtration and dried *in vacuo*. Isolated yield of single crystals: 0.13 g, 31% (*in situ* monitoring of the reaction by ¹H NMR in toluene-d₈ is consistent with *ca*. 90% conversion of **1** to **2a**; the lower isolated yield reflects – at least in part – the high solubility of **2a** in compatible hydrocarbon solvents and its high sensitivity to air/moisture, resulting in relatively inefficient recrystallization). ¹H NMR (300 MHz, benzene-d₆, 298 K): δ_{H} –13.46 (d, ²J_{HH} = 19.2 Hz, 2H, MnHGa), 1.15 (d, ³J_{HH} = 7.2 Hz, 12H, CH₃ of Dipp ⁱPr), 1.45 (d, ³J_{HH} = 7.2 Hz, 6H, CH₃ of Dipp ⁱPr), 1.53 (d, ³J_{HH} = 7.2 Hz, 6H, CH₃ of Dipp ⁱPr), 1.55 (s, 3H, CH₃ of Cp), 1.56 (s, 6H, CH₃ of β-diketiminato backbone), 3.33 (sept, ³J_{HH} = 7.2 Hz, 2H, CH of Dipp ⁱPr), 3.46 (sept, ³J_{HH} = 7.2 Hz, 2H, CH of Dipp ⁱPr), 3.52 (m, 2H, Cp'), 3.62 (m, 2H, Cp'), 4.83 (s, 1H, γ -CH), 709–7.13 (overlapping m, 6H, ArH). The terminal GaH resonance is tentatively assigned to a broad signal centred at δ_{H} ca. 6.9 ppm. ¹³C NMR (126 MHz, benzene-d₆, 298 K): δ_{C} 13.2 (CH₃ of Cp'), 23.9 (CH₃ of β-diketiminato backbone), 24.2, 24.6, 24.7, 25.7 (CH₃ of Dipp ⁱPr), 28.2, 29.4 (CH of Dipp ⁱPr), 80.2, 80.5 (CH of Cp'), 94.4 (quaternary-C of Cp'), 95.7 (γ -CH), 124.2, 125.1, 127.2, 142.7, 142.9, 145.0 (ArC), 168.8 (CN), 230.4 (CO). IR (hexanes, v_{CO}/cm^{-1}): 1886 (s), 1951 (s). EI-MS: m/z 487.2 ([M-Cp'Mn(CO)₂H]⁺, 100%), 676.2 ([M-2H]⁺, 1%). Reproducible elemental microanalysis for **2a** proved impossible to obtain due to its very high air/moisture sensitivity. Crystallographic data: Ca₃H₅₀N₂O₂GaMn, M_r = 679.

2b: A solution of **2a** (0.240 g, 0.354 mmol) in toluene (20 mL) and subjected to UV photolysis for 2.5 h. The reaction mixture was filtered and the filtrate concentrated to the point of incipient crystallisation. Storage at -30°C produced bright yellow crystals. Isolated yield of single crystals: 0.130 g, 54%. ¹H NMR (300 MHz, benzene-d₆, 298 K): $\delta_{\rm H} 1.06$ (d, ${}^{3}J_{\rm HH} = 6.9$ Hz, 12H, CH₃ of Dipp ¹Pr), 1.43 (d, ${}^{3}J_{\rm HH} = 6.9$ Hz, 12H, CH₃ of Dipp ¹Pr), 1.59 (s, 6H, CH₃ of β-diketiminato backbone), 1.73 (s, 3H, CH₃ of Cp'), 3.15 (sept, ${}^{3}J_{\rm HH} = 6.9$ Hz, 4H, CH of Dipp ¹Pr), 3.52 (m, 2H, Cp'), 3.83 (m, 2H, Cp'), 5.10 (s, 1H, γ -CH), 7.12-7.22 (m, 6H, aromatic CH of Dipp). ¹³C NMR (126 MHz, benzene-d₆, 298 K): $\delta_{\rm C} 14.3$ (CH₃ of Cp'), 24.6, 24.6, 24.8 (CH₃ of Dipp ¹P rand β-diketiminato backbone), 29.5 (CH of Dipp ¹Pr), 7.6.6, 78.3 (CH of Cp'), 97.2 (quaternary-C of Cp'), 1003 (γ -C), 128.7, 142.5, 143.7 (ArC of Dipp), 167.8 (NC), 233.6 (CO). IR (KBr disc, v_{co}/cm⁻¹): 1837 (s), 1903 (s). EI-MS: m/z 676.2 ([M⁺], 13%), 620.2 ([M-2CO]⁺, 99%), 472 ([M-Cp'Mn(CO)₂-Me]⁺, 100%). Elemental microanalysis: calcd. for C₃-H₄₈N₂O₂GaMn: C 65.60% H 7.14% N 4.14%, meas. C 65.30% H 7.16% N 3.97%. Crystallographic data: C₃-H₄₈N₂O₂GaMn, M_r = 677.45, triclinic, P-1, a = 8.8327(1), b = 18.3781(2), c = 20.6752(2) Å, $\alpha = 90.008(1)$, $\beta = 90.007(1)$, $\gamma = 85.742(1)^\circ$, V = 3346.9(1) Å³, Z = 4, $\rho_c = 1.344$ Mg m⁻³, T = 150(2) K, $\lambda = 0.71073$ Å. 15175 independent reflections [R(int) = 0.023], used in all calculations. $R_I = 0.0355$, $wR_2 = 0.0749$ for I > 2 σ (I), and $R_I = 0.0560$, $wR_2 = 0.0919$ for all unique reflections. Max./min. residual electron densities 0.59 and -0.74 e Å⁻³. CSD ref.: 952954.

3: Fe(CO)₅ (0.083 mL, 0.613 mmol) was added to a quartz schlenk containing a stirred solution of **1** (0.300 g, 0.613 mmol) in toluene (15 mL), The solution was subjected to UV photolysis, whilst stirring, for 50 min, after which time ¹H NMR spectroscopy indicated quantitative conversion to **3**. The orange solution was filtered and concentrated, and cooled to -30 °C overnight to yield very pale yellow crystals of **3**. The crystals were isolated by filtration and dried *in vacuo*. Isolated yield of single crystals: 0.205 g, 51%. ¹H and ¹³C NMR data, together with a single crystal X-ray diffraction study confirmed that the compound is identical to that reported by Power and co-workers.^{S3}

4 and 5: The two compounds were prepared by a similar method, exemplified for 5. To an ampoule containing 1 (0.300 g, 0.613 mmol) in hexanes (10 mL) was added at room temperature a solution of W(CO)₄(COD) (0.143 g, 0.613 mmol) also in hexanes (10 mL) and the resulting pale yellow mixture warmed to 55 °C, whilst stirring. After 5 d the solvent was removed in vacuo and the resulting yellow solid was extracted into fluorobenzene. Layering the fluorobenzene solution with hexanes at -20 °C yielded yellow crystals, which were isolated by filtration and dried *in vacuo*. Isolated yield of single crystals: 0.020 g, 14%. ¹H NMR (500 MHz, dichloromethane- d_2 , 298 K): δ_H 1.21 (d, 12H, ³J_{HH} = 6.5 Hz CH₃ of Dipp ^{*i*}Pr), 1.29 (d, 12H, ³J_{HH} = 6.5 Hz CH₃ of Dipp ^{*i*}Pr), 1.905 (s, 6H, CH₃ of β-diketiminato backbone), 2.95 (sept, 4H, ³J_{HH} = 6.5 Hz CH of Dipp ^{*i*}Pr), 5.62 (s, 1H, γ -CH), 7.11-7.33 (m, 6H, ArH). ¹³C NMR (126 MHz, CD₂Cl₂, 298 K): δ_{C} 23.9 (CH₃ of Dipp ^{*i*}Pr), 24.5 (CH₃ of CH₃ of Dipp ^{*i*}Pr), 24.5 (CH₃ of Dip Dipp ⁱPr), 24.8 (CH₃ of β-diketiminato backbone) 29.6 (γ-CH of Dipp ⁱPr), 101.8 (γ-C), 124.8 (Ar-C), 128.4 (Ar-C), 141.0 (Ar-C), 143.1 C), 169.1 (CN), 197.9 (CO), 201.0 (CO). IR (CH₂Cl₂, v_{c0}/cm⁻¹): 1926 (b), 1968 (s), 2058 (s). EI-MS: m/z 726.2 ([M-3CO])⁺, 100%) 810.2 $[M]^+$, 10%). Crystallographic data: C₃₄H₄₁N₂O₅GaW, M_r = 811.28, orthrhombic, Pbnm, a = 9.15777(10), b = 35.5896(6), c = 21.050(3) Å, V = 21.050(3) Å 6878.57(17) Å³, Z = 8, $\rho_c = 1.567$ Mg m⁻³, T = 150(2) K, $\lambda = 0.71073$ Å. 7351 independent reflections [R(int) = 0.039], used in all calculations. $R_I = 0.0588$, $wR_2 = 0.1190$ for I > 2 σ (I), and $R_I = 0.0620$, $wR_2 = 0.1196$ for all unique reflections. Max./min. residual electron densities 3.62 and -2.15 e Å⁻³. CSD ref.: 944061. 4 was prepared in a similar manner, under slightly milder conditions (room temperature, 4 d) and recrystallized from 1,2-difluorobenzene as pale yellow crystals. Isolated yield of single crystals: 0.052 g (40%). ¹H NMR (500 MHz, bromobenzene-d₅, 298 K): $\delta_{\rm H}$ 1.00 (d, 12H, ³J_{HH} = 7.0 Hz CH₃ of Dipp ¹Pr), 1.24 (d, 12H, ³J_{HH} = 7.0 Hz CH₃ of Dipp ¹Pr), 1.58 (s, 6H, CH₃ of β-diketiminato backbone), 2.87 (sept , 4H, ${}^{3}J_{HH} = 7.0$ Hz, CH of Dipp ${}^{i}Pr$), 5.22 (s, 1H, γ -CH), 7.16-7.07 (m, 12H, ArH). ${}^{13}C$ NMR (126 MHz, bromobenzened₅, 298 K): δ_C 24.0, 24.6, 24.6 (CH₃ of Dipp ⁱPr and β-diketiminato backbone), 29.4 (CH of Dipp ⁱPr), 101.5 (γ-CH), 124.8 (Ar-C), 128.5 (Ar-C), 1 C), 140.8 (Ar-C), 142.6 (Ar-C), 168.3 (NC), 208.0 (CO), 212.5 (CO). IR (CH₂Cl₂, v_{CO}/cm⁻¹): 1932 (b), 1979 (s), 2059 (s). EI-MS: m/z 471 [M- $Mo(CO)_5(CH_3)]^+$, 100%), 724 ([M]⁺, 6%). Elemental microanalysis: calcd. for $C_{34}H_{41}N_2O_5GaMo$: C 56.43% H 5.72% N 3.87% meas. C 55.78% H 5.57% N 3.45%. Crystallographic data: $C_{34}H_{41}N_2O_5GaMo$, $M_r = 723.36$, tetragonal, $P4_32_12$, a = 9.08300(10), b = 9.08300(10), c = 9.08300(10), b = 9.08300(10), c = 9.08300(10), c = 9.08300(10), c = 9.08300(10), b = 9.08300(10), c = 9.0830(10), c = 9.08300(10), c = 9.08300(10), c = 9.08300(10), c41.8928(5) Å, V = 3456.19(7) Å³, Z = 4, $\rho_c = 1.390 \text{ Mg m}^3$, T = 150(2) K, $\lambda = 0.71073 \text{ Å}$. 3933 independent reflections [R(int) = 0.052], used in all calculations. $R_1 = 0.0543$, $wR_2 = 0.1170$ for I > $2\sigma(I)$, and $R_1 = 0.0659$, $wR_2 = 0.1298$ for all unique reflections. Max/min. residual electron densities 3.07 and -1.45 e Å⁻³. CSD ref.: 944060.

7: A stirred solution of **1** (0.300 g, 0.613 mmol) and Mn₂CO₁₀ (0.239 g, 0.613 mmol) in toluene (15 mL) was subjected to UV photolysis at room temperature for 6 h, after which time ¹H NMR indicated quantitative conversion to **7** and HMn(CO)₅. The reaction mixture was filtered and volatiles removed *in vacuo*. The resulting solid was extracted into diethyl ether and cooled to -30 °C to yield yellow crystals of **7**. The crystals were isolated by filtration and dried *in vacuo*. Isolated yield of single crystals: 0.077 g, 19% (*in situ* monitoring of the reaction by ¹H NMR in benzene-d₆ is consistent with *ca*. 90% conversion of **1** to **7**; the lower isolated yield reflects – at least in part – the high solubility of **7** in compatible hydrocarbon solvents and its high sensitivity to air/moisture, resulting in relatively inefficient recrystallization). ¹H NMR (500 MHz, C₆D₆, 298 K): $\delta_{\rm H}$ – 9.58 (s, 1H, MnH), 1.02 (d, 12H, ³J_{HH} = 7.5 Hz CH₃ of Dipp ¹Pr), 1.40 (d, 12H, ³J_{HH} = 7.5 Hz CH₃ of Dipp ¹Pr), 1.40 (d, 12H, ³J_{HH} = 7.5 Hz CH₃ of Dipp ¹Pr), 1.50 (s, 6H, CH₃ of Dacabcachone), 3.00 (sept, 4H, ³J_{HH} = 7.5 Hz CH of Dipp ¹Pr), 5.06 (s, 1H, γ -CH), 7.08-7.20 (overlapping m, 6H, ArH). ¹³C NMR (126 MHz, CD₂Cl₂, 298 K): 24.3, 24.6 (CH₃ of Dipp ¹Pr), 24.3 (CH₃ of β-diketiminato backbone), 29.2 (γ -CH of Dipp ¹Pr), 101.2 (γ -C), 124.9, 128.6, 140.5, 143.6 (ArC), 169.6 (CN), 220 (br, CO). IR (CH₂Cl₂, $v_{\rm CO}$ /cm⁻¹): 1922 (b), 1951 (b), 2011 (s), 2043 (s). El-MS: m/z 542.2 ([M-4(CO)]⁺, 100%), 654.2 ([M]⁺, 12%). Elemental microanalysis: calcd. for C₃₃H₄2N₂O₄ GaMn: C 60.46% H 6.46% N 4.28%, meas. C 60.12%

H 6.71% N 4.70%. Crystallographic data: $C_{33}H_{42}N_2O_4GaMn$, $M_r = 655.36$, monoclinic, P_{21}/m , a = 8.86000(10), b = 21.5544(2), c = 9.08180(10) Å, $\beta = 108.601(1)^\circ$, V = 1643.8(1) Å³, Z = 2, $\rho_c = 1.324$ Mg m⁻³, T = 150(2) K, $\lambda = 0.71073$ Å. 3844 indep. reflns [R(int) = 0.025], used in all calcus. $R_I = 0.0293$, $wR_2 = 0.0653$ for $I > 2\sigma(I)$, and $R_I = 0.0435$, $wR_2 = 0.0787$ for all unique reflns. Max./min. residual electron densities 0.62, -0.61 e Å⁻³. CSD ref.: 944063.

8: A solution of **1** (0.200 g, 0.409 mmol) and Cl₂Ga{(NDippCMe)₂CH} (0.228 g, 0.409 mmol) in toluene (20 mL) was heated to 70 °C for 48 h. The solvent was removed *in vacuo* and the resultant colourless solid extracted in diethyl ether. Concentration and cooling the ethereal solution to -30 °C yielded colourless crystals of **8**. Isolated yield of single crystals: 0.259 g, 60%. ¹H NMR (300 MHz, benzene-d₆, 298 K): $\delta_{H} 1.08$ (d, 6H, $^{3}J_{HH} = 6.9$ Hz CH₃ of Dipp ¹Pr), 1.16 (d, 6H, $^{3}J_{HH} = 6.9$ Hz CH₃ of Dipp ¹Pr), 1.51 (d, 6H, $^{3}J_{HH} = 7.2$ Hz CH₃ of Dipp ¹Pr), 1.54 (s, 6H, CH₃ of β -diketiminato backbone), 3.19 (sept, 2H, $^{3}J_{HH} = 6.9$ Hz, CH of Dipp ¹Pr), 3.64 (sept, 2H, $^{3}J_{HH} = 7.2$ Hz, CH of Dipp ¹Pr), 4.79 (s, 1H, γ -CH), 5.47 (br s, 1H, GaH), 7.03 – 7.14 (m, 6H, ArH). ¹³C NMR (126 MHz, benzene-d₆, 298 K): $\delta_{C} 23.3$ (CH₃ of β -diketiminato backbone), 24.8 (CH₃ of Dipp ¹Pr), 24.8 (CH₃ of Dipp ¹Pr), 26.1 (CH₃ of Dipp ¹Pr), 28.8 (CH of Dipp ¹Pr), 28.8 (CH of Dipp ¹Pr), 96.3 (γ -CH), 124.4 (Ar-C), 125.2 (Ar-C), 139.8 (Ar-C), 143.2 (Ar-C), 145.6 (Ar-C), 169.5 (CN). EI-MS : m/z 524.22 ([M]¹, 3%); accurate mass : calc. 524.2283. Elemental microanalysis: calcd. for C₂₉H₄₂ClGaN₂: C 66.49% H 8.08% N 5.35% meas. C 65.91% H 8.49% N 5.13%.

9: A solution of **8** (0.100 g, 0.191 mmol) in toluene (10 ml) was added to a solution of $Co_2(CO)_8$ (0.065 g, 0.191 mmol), also in toluene (10 mL). Immediate gas evolution was observed and the solution was stirred for 2 h at room temperature. Volatiles were removed *in vacuo* and the resultant solid extracted into hexanes. Storage of the hexane solution at -30 °C yielded pale yellow crystals of **9**. Isolated yield of single crystals: 0.020g, 15% (*in situ* monitoring of the reaction by ¹H NMR in benzene-d₆ is consistent with *ca*. 90% conversion of **8** to **9**; the lower isolated yield reflects – at least in part – the high solubility of **9** in compatible hydrocarbon solvents and its high sensitivity to air/moisture, resulting in relatively inefficient recrystallization). ¹H NMR (300 MHz, benzene-d₆, 298 K): $\delta_{\rm H} 1.10$ (d, 6H, ³J_{HH} = 6.9 Hz CH₃ of Dipp ⁱPr), 1.40 (d, 6H, ³J_{HH} = 6.9 Hz CH₃ of Dipp ⁱPr), 1.54 (d, 6H, ³J_{HH} = 6.9 Hz CH₃ of Dipp ⁱPr), 1.62 (s, 6H, CH₃ of β-diketiminato backbone), 3.29 (sept, 2H, ³J_{HH} = 6.9 Hz, CH of Dipp ⁱPr), 3.73 (sept, 2H, ³J_{HH} = 6.9 Hz, CH₃ of Dipp ⁱPr), 4.91 (s, 1H, γ -CH), 7.07-7.17(m, 6H, ArH). ¹³C NMR (126 MHz, benzene-d₆, 298 K): 24.5 (CH of Dipp ⁱPr), 25.4 (CH₃ of β-diketiminato backbone), 24.8 (CH₃ of Dipp ⁱPr), 24.9 (CH₃ of Dipp ⁱPr), 25.6 (CH₃ of Dipp ⁱPr), 25.6 (CH₃ of p-diketiminato backbone), 24.8 (CH₃ of Dipp ⁱPr), 24.9 (CH₃ of Dipp ⁱPr), 25.6 (CH₃ of Dipp ⁱPr), 25.6 (CH₃ of CO), 10.1 (CH₂Cl₂, v_{CO}/cm⁻¹): 1968 (s), 2000 (s), 2015 (s), 2083 (s). EI-MS : m/z 471 ([M-Co(CO)₄-CI-Hg]⁺, 55%), 506 ([M-CO(CO)₄-CH₃]⁺, 28%), 558 ([M-CO)-CI-CH₃], 12%). Contamination even of crystalline samples with small quantities of **9** were reproducibly low. Crystallographic data: C₃₃H₄H₂O₄ClGaco, M_r = 69.80, monoclinic, C2/c, a = 21.42720(10), b = 16.89020(10), c = 21.5723(2) Å, $\beta = 108.7295(4)^\circ$, V = 7393.79(9) Å³, Z = 8, $\rho_c = 1.246$ Mg m⁻³, T = 150(2) K,

 $[(OC)_4CoGa\{(NDippCMe)_2CH\}][BAr^{f_4}]$: A solution of 8 (0.100 g, 0.191 mmol) in toluene (10 mL) was added to a solution of $Co_2(CO)_8$ (0.065 g, 0.191 mmol) in toluene (10 mL) and the reaction mixture stirred at room temperature for 30 min, after which time ¹H NMR spectroscopy revealed quantitative conversion to compound 9. Volatiles were removed in vacuo and the resulting solid extracted into dichoromethane (5 mL). This solution was added to a suspension of Na[BAr⁴₄] (0.169 g, 0.191 mmol) in dichloromethane (5 mL), and a colourless precipitate was formed immediately. The reaction mixture was stirred at room temperature for 30 min, after which time it was filtered and volatiles removed in vacuo. The resulting solid was washed with hexane (3 x 5 mL) and dried in vacuo to yield a spectroscopically pure, pale yellow powder (0.256 g, 88% yield). This solid was extracted into fluorobenzene and layered with hexane. Storage at room temperature yielded pale yellow crystals suitable for X-ray diffraction. Isolated yield of single crystals: 0.207 g, 71%. ¹H NMR (300 MHz, dichloromethane-d₂, 298 K): δ_{H} 1.24 (d, ${}^{3}J_{HH}$ = 6.9 Hz, 12H, CH₃ of Dipp i Pr), 1.26 (d, ${}^{3}J_{HH}$ = 6.9 Hz, 12H, CH₃ of Dipp i Pr), 2.14 (s, 6H, CH₃ of Dipp i β-diketiminato backbone), 2.74 (sept, ${}^{3}J_{HH} = 6.9$ Hz, 4H, CH of Dipp Pr), 6.07 (s, 1H, γ-CH), 7.36 (d, ${}^{3}J_{HH} = 7.5$ Hz, 4H, m-CH of Dipp), 7.48 (t, ${}^{3}J_{HH} = 7.5$ Hz, 2H, p-CH of Dipp), 7.56 (s, 4H, p-CH of [BAr⁴₄]), 7.72 (s, 8H, o-CH of [BAr⁴₄]). 13 C NMR (75 MHz, dichloromethane-d₂, 298 K): δ_C 24.6, 25.1, 25.2 (CH₃ of Dipp ⁱPr and β-diketiminato backbone), 29.6 (CH of Dipp ⁱPr), 104.9 (γ-C), 118.0 (*p*-CH of [BAr⁴₄]), 125.2 $(q, {}^{1}J_{CF} = 271 \text{ Hz}, CF_3 \text{ of } [BAr^{f_4}]), 126.4, 131.2, 136.8, 143.5 (ArC of Dipp) 129.5 (q, {}^{2}J_{CF} = 34.3 \text{ Hz}, m-C of [BAr^{f_4}]), 135.4 (o-CH of [BAr^{f_4}]), 162.3 (q, {}^{1}J_{CB} = 49.2 \text{ Hz}, ipso-C of [BAr^{f_4}]), 175.3 (NC), 192.6 (br s, CO). {}^{11}B \text{ NMR} (96 \text{ MHz}, dichloromethane-d_2, 298 \text{ K}): \delta_B - 6.8. {}^{19}F$ NMR (282 MHz, dichloromethane-d₂, 298 K): δ_F -62.8. IR (KBr disc, v_{CO}/cm^{-1}): 2025 (s), 2047 (s), 2072 (s), 2121 (s). ESI-MS (cation) : 657 ([M]+, 18%); accurate mass: calc. 657.1649, meas. 657.1635. Elemental microanalysis: calc. (for C₆₅H₅₃N₂O₄F₂₄GaCoB) C 51.31% H 3.51% N 1.84%; meas. C 51.45% H 3.50% N 1.87%. Crystallographic data: C₆₅H₅₃N₂O₄CoF₂₄GaMn, M_r = 1521.56, triclinic, P-1, a = 12.5663(2), b = 13.2686(3), c = 20.7262(4) Å, α = 78.486(2), β = 83.945(2), γ = 83.491(2) °, V = 3352.3(1) Å³, Z = 4, ρ_c = 1.507 Mg m⁻³, T = 150(2) K, λ = 1.54180 Å. 13907 independent reflections [R(int) = 0.023], used in all calculations. $R_I = 0.0489$, $wR_2 = 0.1201$ for I > $2\sigma(I)$, and $R_I = 0.0521$, $wR_2 = 0.1228$ for all unique reflections. Max./min. residual electron densities 1.74 and -1.09 e Å⁻³. CSD ref.: 952955.

Figure S1: Molecular structure of the cationic component of [(OC)₄CoGa{(NDippCMe)₂CH}][BAr^f₄]. H atoms and counter-anion omitted, and Dipp groups shown in wireframe format for clarity. Thermal ellipsoids set at the 50% probability level.

3. Details of DFT calculations

The DFT calculations were performed using the Amsterdam Density Functional (ADF) Package Software 2012 and 2013.⁸⁴ Calculations were performed using the Vosko-Wilk-Nusair local density approximation with exchange from Becke,⁸⁵ and correlation corrections from Perdew (BP).⁸⁶ Slater-type orbitals (STOs)⁸⁷ were used for the triple zeta basis set with an additional set of polarization functions (TZP). The large frozen core basis set approximation was applied with no molecular symmetry. General numerical integration was 6.

Thermodynamic data was obtained from frequency calculations conducted on the optimised geometries of the species, calculated as detailed above. Analysis of the bonding in complex **5** was conducted using the ETS-NOCV approach,⁵⁸ and the relevant run file is listed below. Run files for the frequency calculations are found below and complete output files provided upon request.

3a. The model system $Fe(CO)_4 + H_2Ga\{(NMeCMe)_2CH\}$

#! /bin/s!

#	
#	Fe(CO)4

"\$ADFBIN/adf" <<eor

111 0110			
1 C	0.935647735200	4.145000000000	15.941447960000
2 C	3.319089802000	5.745592402000	17.336860370000
3 C	1.635012872000	4.145000000000	18.388866260000
4 O	1.046728286000	4.145000000000	19.390355660000
50	3.772238038000	1.537793833000	17.689650720000
6 Fe	2.518334654000	4.145000000000	16.886484090000
7 C	3.319089802000	2.544407598000	17.336860370000
8 0	-0.092075079320	4.145000000000	15.405742340000
90	3.772238038000	6.752206167000	17.689650720000
END			

Electronic Supplementary Material (ESI) for Chemical Science This journal is The Royal Society of Chemistry 2013

2 1 6 2.0 3 2 9 2.0 4 2 6 2.0 5 3 4 2.0 6 3 6 1.5 7 6 7 1.5 8 7 5 2.0 END BASIS type TZP core Large createoutput None END

GUIBONDS

1 1 8 2.0

XC

#! /bin/sh

MeNacNacGaH2

"\$ADFBIN/adf" <<eor

ATOMS			
1 H	2.201593941000	4.153201807000	14.898703330000
2 Н	4.982015829000	0.658967441000	13.352769630000
3 Н	3.203737040000	0.716005908600	13.238016520000
4 C	4.065213720000	7.019526069000	13.665684010000
5 H	4.021853543000	1.252044094000	14.718993140000
6 Н	5.521027491000	1.103108638000	11.214619320000
7 C	4.090935367000	1.246954116000	13.624274460000
8 N	4.161376711000	2.622851252000	13.137438730000
9 Н	4.774351821000	2.021570906000	9.888387022000
10 H	3.776182867000	0.992412219300	10.944579920000
11 C	4.418313325000	2.861026886000	11.851711870000
12 H	4.735543109000	4.138022804000	10.201434960000
13 H	3.759953230000	7.254096292000	10.839789130000
14 C	4.414050508000	5.431886668000	11.841980900000
15 C	4.520406720000	4.143262144000	11.267967810000
16 C	4.638584040000	6.594205329000	10.885517460000
17 H	5.498353447000	7.207190555000	11.193553680000
18 H	4.820473620000	7.151772391000	14.458009530000
19 H	3.076907869000	7.183012781000	14.126009470000
20 Н	4.221723925000	7.802390253000	12.914985230000
21 N	4.143363510000	5.668748065000	13.122775300000
22 Ga	3.775406039000	4.145705287000	14.533880030000
23 Н	4.964908114000	4.149463321000	15.627862970000
24 H	4.834794738000	6.221181744000	9.875354747000
25 C	4.632644111000	1.682271048000	10.919508710000
END			

GGA Becke Perdew

SCANFREQ -1000 0

SAVE TAPE21 TAPE13

AnalyticalFreq

INTEGRATION 6.0

NOPRINT LOGFILE

END

END

eor

FULLSCF

GUIBONDS	21 16 17 1.0
1 21 22 1.0	22 25 6 1.0
2 5 7 1.0	23 11 8 1.0
3 2 7 1.0	24 11 25 1.0
4 18 4 1.0	25 7 8 1.0
5 3 7 1.0	END
6 19 4 1.0	
7 22 8 1.0	BASIS
8 20 4 1.0	type TZP
9 4 21 1.0	core Large
10 23 22 1.0	createoutput None
11 1 22 1.0	END
12 14 21 1.0	
13 25 9 1.0	XC
14 25 10 1.0	GGA Becke Perdew
15 14 15 1.5	END
16 14 16 1.0	
17 15 12 1.0	
18 15 11 1.5	
19 16 24 1.0	SCANFREQ -1000 0
20 16 13 1.0	
-	

INTEGRATION 6.0 AnalyticalFreq END NOPRINT LOGFILE SAVE TAPE21 TAPE13 eor FULLSCF #! /bin/sh # _____ # Fe gallyl (anti) # _____ "\$ADFBIN/adf" <<eor ATOMS 1.202891619000 4.987041302000 16.568402730000 1 C 2 C 3.955180072000 5.329359404000 16.236910260000 4,140490749000 18.516439590000 3 C 2.982220027000 4 C 2.197272049000 6.504767971000 12.978485590000 5 0 1.803070513000 1.242310474000 16.532878890000 13.590756700000 6 Н 7.069192143000 2.042863687000 7 C 4.479263560000 1.268285500000 13.765294590000 13.455180370000 8 N 2.695304839000 4.395866624000 9 Н 7.517277029000 3.205765302000 12.317288360000 1.764932089000 10 H 6.556846468000 11.920006330000 5.448162400000 3.329942668000 12.933066470000 11 C 12 H 6.416489307000 5.049389204000 12.179163870000 13 H 4.163059140000 7.231703586000 11.116567440000 14 C 4.434708114000 5.656985400000 12.583157270000 15 C 5.466055605000 4.694339352000 12.572200350000 4.771863622000 7.017915684000 16 C 12.008061600000 17 H 4.570070326000 7.816268528000 12.737123870000 18 O 0.214272084200 5.586965873000 16.481880210000 4.768283925000 6.121063523000 15.998117150000 19 O 3,135153819000 4.193281892000 19.662999470000 20 0 13.044573740000 21 N 5,442228625000 3,200065518000 22 Ga 2.688590363000 3.710945893000 14.088488970000 2.769262900000 4.044369340000 16.712805730000 23 Fe 24 Н 5.826528127000 7.067993222000 11.719706160000 6.720968725000 2.546644684000 12.677217640000 25 C 26 C 2.136806646000 2.354019477000 16.583453490000 27 Н 5.117717670000 1.073234486000 14.643446200000 28 Н 4.873549732000 0.684795968200 12.920197340000 3.476810611000 13.991225640000 29 Н 0.886946984400 30 H 2.420312223000 7.329750192000 13.675816690000 31 Н 1.216857939000 6.094345663000 13.247500940000 2.112570569000 6.928437729000 32 H 11.966532880000 4.078408872000 3.242105729000 16.629979690000 33 H 34 H 13.470077700000 1.342424288000 3.063554918000 END 24 11 25 1.0 GUIBONDS 25 7 8 1.0 1 1 18 2.0 2 1 23 2.0 26 21 22 1.0 3 2 19 2.0 27 27 7 1.0 28 28 7 1.0 4 2 23 2.0 5 3 20 2.0 29 29 7 1.0 6 3 23 1.5 30 30 4 1.0 7 22 8 1.0 31 31 4 1.0 8 22 23 3 32 32 4 1.0 9 4 21 1.0 33 23 33 1.0 10 23 26 1.5 34 34 22 1.0 11 26 5 2.0 END 12 14 21 1.0 13 25 9 1.0 BASIS 14 25 10 1.0 type TZP 15 14 15 1.5 core Large 16 14 16 1.0 createoutput None 17 15 12 1.0 END 18 15 11 1.5 19 16 24 1.0 XC 20 16 13 1.0 GGA Becke Perdew

END

s**8**

21 16 17 1.0

22 25 6 1.0 23 11 8 1.0

SCANFREO -1000 0 FULLSCE INTEGRATION 6.0 AnalyticalFreq END NOPRINT LOGFILE SAVE TAPE21 TAPE13 eor #! /bin/sh # _____ # Fe transition state gallyl (anti) to gallyl (syn) # _____ "\$ADFBIN/adf" <<eor ATOMS 1.673701995000 5.425383597000 16.458100730000 1 C 2 C 4.344673878000 4.691543205000 16.329011650000 3 C 4.020290889000 2.861878523000 18.531106890000 4 C 1.658685563000 6.012751996000 12.824304650000 5 0 0.729783364400 1.769771571000 16.526291160000 13.701743110000 6 Н 7.486820890000 2.979460853000 7 C 5.157906950000 1.565829842000 13.962473130000 8 N 4.725689710000 2,902449735000 13.556193810000 9 Н 7.617318333000 4.058673353000 12.291212200000 10 H 7.045541672000 2.386809800000 12.093913430000 3.734849479000 12.970412730000 11 C 5.589664555000 12 H 6.108901661000 5.578596856000 12.080893360000 13 H 3.391739153000 7.056339934000 10.905694720000 14 C 4.040210086000 5.716900803000 12.482956760000 15 C 5.274076972000 5.033109192000 12.516161080000 4.034530727000 7.069745784000 11.798921780000 16 C 17 H 3.641613919000 7.851023289000 12.466045660000 18 O 1.008107685000 6.364568343000 16.316211090000 5.412917513000 5.107403310000 19 O 16.156569690000 2,959787576000 4.049505215000 19.684262150000 20 0 21 N 2.895522054000 5,248013476000 12.986294880000 22 Ga 2.803786641000 3.492491104000 14.116837730000 2.733598007000 3.954472780000 16.717783630000 23 Fe 24 Н 5.044730587000 7.353178925000 11.487198060000 7.015060396000 3.268881348000 12,751046290000 25 C 26 C 1,481742179000 2.651315320000 16.577581480000 27 Н 5.914909158000 1.599295671000 14.763507320000 5.578037128000 0.995171066400 28 Н 13.119733720000 4.295470792000 29 Н 1.006486191000 14.343695530000 30 H 1.675324413000 6.959096946000 13.388597880000 31 Н 0.814907043200 5.419592166000 13.195775570000 32 H 1.458134850000 6.247680670000 11.767429770000 3.627866238000 2.700236994000 16.729559020000 33 H 34 H 2.494313477000 13.498477020000 1.691609375000 END GUIBONDS 25 7 8 1.0 26 21 22 1.0 1 1 18 2.0 27 27 7 1.0 2 1 23 2.0 3 2 19 2.0 28 28 7 1.0 4 2 23 2.0 29 29 7 1.0 5 3 20 2.0 30 30 4 1.0 6 3 23 1.5 31 31 4 1.0 7 22 8 1.0 32 32 4 1.0 8 22 23 3 33 23 33 1.0 9 4 21 1.0 34 34 22 1.0 10 23 26 1.5 END 11 26 5 2.0 12 14 21 1.0 BASIS 13 25 9 1.0 type TZP 14 25 10 1.0 core Large 15 14 15 1.5 createoutput None 16 14 16 1.0 END 17 15 12 1.0 18 15 11 1.5 XC 19 16 24 1.0 GGA Becke Perdew 20 16 13 1.0 END 21 16 17 1.0 22 25 6 1.0 23 11 8 1.0 24 11 25 1.0 SCANFREQ -1000 0

AnalyticalFreq END		FULLSCF INTEGRATION 6
SAVE TAPE21 TAPE13		NoBeckeGrid NOPRINT LOGFILE
SCF diis END		eor
#! /bin/sh	I	
# ====================================		
"\$ADFBIN/adf" < <eor< td=""><td></td><td></td></eor<>		
1 C 4.634025752000 2 C 2.227975992000 3 C 2.543177835000 4 C 1.583428203000 5 O 2.805368436000 6 H 7.446459243000 7 C 5.132016847000 8 N 4.708930659000 9 H 7.649727903000 10 H 7.120798226000 11 C 5.588502069000 12 H 6.108161617000 13 H 3.430529607000 14 C 4.002871571000 15 C 5.263866261000 16 C 3.982898061000 17 H 3.482572745000 18 O 5.774471395000 19 O 1.776187406000 20 O 2.344612353000 21 N 2.845815098000 22 Ga 2.791486570000 23 Fe 2.828261027000 24 H 4.999787995000 25 C 7.033185436000 26 C 2.862593162000 27 H 5.826596763000 28 H 5.624039305000 29 H 4.251616395000 30 H 1	3.767838961000 2.365976476000 4.459069749000 5.918195784000 6.878680168000 3.017062519000 1.575773492000 2.947067412000 4.259495120000 2.619407131000 3.837214727000 5.761559295000 7.124806336000 5.778800196000 5.158868313000 7.147772928000 7.83262744000 3.572556609000 1.29688840000 4.709380365000 5.228925257000 3.521431658000 4.076122928000 7.496628973000 3.414937193000 5.771415421000 1.522564692000 1.10984073000 0.969314155900 6.842781166000 5.256754393000 4.308120375000 2.501456015000	$16.769181450000\\16.680617970000\\18.448159440000\\12.640781830000\\15.717383840000\\13.803623500000\\13.788706200000\\13.506181160000\\12.541480960000\\12.109699170000\\13.040583930000\\12.334289340000\\10.927797170000\\12.527846110000\\12.663156250000\\11.879379800000\\12.526275460000\\16.836204870000\\16.836204870000\\16.702824180000\\19.560955080000\\12.90504308000\\14.099885600000\\16.694097420000\\11.673373240000\\12.865343430000\\16.061659880000\\14.031860070000\\12.920563460000\\14.031860070000\\12.920563460000\\14.031860070000\\12.907064910000\\11.576752450000\\16.430662860000\\13.553649850000$
GUIBONDS 1 1 18 2.0 2 1 23 2.0 3 2 19 2.0 4 2 23 2.0 5 3 20 2.0 6 3 23 1.5 7 22 8 1.0 8 22 23 3 9 4 21 1.0 10 23 26 1.5 11 26 5 2.0 12 14 21 1.0 13 25 9 1.0 14 25 10 1.0 15 14 15 1.5 16 14 16 1.0 17 15 12 1.0 18 15 11 1.5 19 16 24 1.0 20 16 13 1.0 21 16 17 1.0		22 25 6 1.0 23 11 8 1.0 24 11 25 1.0 25 7 8 1.0 26 21 22 1.0 27 27 7 1.0 28 28 7 1.0 29 29 7 1.0 30 30 4 1.0 31 31 4 1.0 32 32 4 1.0 33 23 33 1.0 34 34 22 1.0 END BASIS type TZP core Large createoutput None END XC

GGA Bec}	ke Perdew		مەرىت سەمەرى سەمەرىيە مەرمەر
END			FULLSCF
SCANFREÇ	2 -1000 0		INTEGRATION 6.0
Analytic	calFreq		NOPRINT LOGFILE
END		I	eor
#! /bin/	/sh		
# ====== # Fe tra	ansition state H2 loss	====	
# ======			
"\$ADFBIN ATOMS	N/adf" < <eor< td=""><td></td><td></td></eor<>		
$ \begin{array}{c} 1 \\ 2 \\ 2 \\ 3 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1$	4.48456000000 3.12651000000 2.03347000000 2.40414000000 1.32019000000 4.36005000000 4.36005000000 5.77143000000 5.77143000000 5.25357000000 6.12885000000 3.83033000000 4.40246000000 5.30983000000 4.6352000000 4.6352000000 3.24932000000 3.24932000000 3.3524000000 3.3524000000 5.58326000000 5.58326000000 5.58326000000 5.58326000000 5.58326000000 5.58326000000 5.58326000000 5.58326000000 5.58326000000 5.58326000000 5.58326000000 5.5571000000 5.5521000000 2.82427000000 1.50521000000 2.9716000000 1.49771000000	4.73990000000 2.31526000000 3.97992000000 6.61873000000 6.57285000000 1.62179000000 1.22727000000 2.72949000000 1.44991000000 3.14035000000 4.70083000000 6.92915000000 5.54117000000 4.79309000000 5.54117000000 5.54128000000 5.54128000000 5.5034000000 3.94852000000 3.94852000000 4.10128000000 6.73056000000 2.18562000000 5.6181000000 5.6181000000 5.6181000000 5.6181000000 5.6181000000 5.6181000000 5.6181000000 5.6181000000 5.6181000000 5.6181000000 5.6181000000 5.6181000000 5.50345000000 5.50345000000 5.50345000000 5.50345000000 5.50345000000 5.50345000000 5.503000000 5.503000000 3.39528000000	$17.35330000000\\16.7272000000\\18.4718000000\\12.9724000000\\12.9724000000\\12.52940000000\\12.52940000000\\13.51610000000\\13.21890000000\\11.09620000000\\11.09620000000\\12.34780000000\\12.34780000000\\12.0520000000\\12.10520000000\\12.10520000000\\12.10520000000\\12.10520000000\\12.9740000000\\12.9740000000\\12.9740000000\\12.9740000000\\12.9350000000\\12.9380000000\\12.9380000000\\12.93180000000\\12.93180000000\\12.9330000000\\12.9330000000\\12.59760000000\\14.15440000000\\12.59760000000\\13.51560000000\\13.51560000000\\13.51560000000\\13.51560000000\\14.56760000000\\14.56760000000$
GUIBONDS 1 1 18 2 2 1 23 2 3 2 19 2 4 2 23 2 5 3 20 2 6 3 23 1 7 22 8 1 8 22 23 9 4 21 1 10 23 26 11 26 5 12 14 21 13 25 9 14 25 10 15 14 15 16 14 16 17 15 12 18 15 11 19 16 24 20 16 13	3 2.0 2.0 2.0 2.0 1.5 1.0 5 1.5 2.0 1.10 1.0 5 1.5 2.0 1.10 1.0 1.0 1.10 1.0 1.10 1.0 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10		21 16 17 1.0 22 25 6 1.0 23 11 8 1.0 24 11 25 1.0 25 7 8 1.0 26 21 22 1.0 27 27 7 1.0 28 28 7 1.0 29 29 7 1.0 30 30 4 1.0 31 31 4 1.0 32 32 4 1.0 33 23 33 1.0 34 34 22 1.0 END BASIS type TZP core Large createoutput None END

XC GGA Becke Perdew END

SCANFREQ -1000 0

AnalyticalFreq END RESTART \$SCM_RESULTDIR/SP_43_LT_gallyl_to_dihydrogen _a6_v7_fine.t21 SAVE TAPE21 TAPE13

FULLSCF INTEGRATION 6.0

NOPRINT LOGFILE

eor

#! /bin/sh

"\$ADFBIN/adf" <<eor

ATOMS			
1 C	1.129819222000	4.626029794000	15.738429210000
2 C	3.912304080000	5.431643887000	16.884633090000
3 C	1.965288571000	4.274998139000	18.188813500000
4 C	3.208760435000	6.866759191000	13.377586990000
5 0	3.316408484000	1.270265761000	17.021751450000
6 Н	6.470820395000	1.459596352000	11.548329650000
7 C	4.684020610000	1.297040901000	13.625176740000
8 N	4.507472173000	2.661442979000	13.111013900000
9 Н	5.870518492000	2.232866279000	10.062331560000
10 H	4.886994217000	1.011597166000	10.903590800000
11 C	4.930976380000	2.952751187000	11.869963720000
12 H	5.218439073000	4.271260320000	10.250368040000
13 H	3.307726616000	6.992455363000	10.625134670000
14 C	4.280833871000	5.419209495000	11.753336900000
15 C	4.821743942000	4.215280844000	11.262035070000
16 C	4.321191441000	6.614565457000	10.825156010000
17 H	4.889119040000	7.442875154000	11.273685100000
18 O	0.108527189800	4.945662070000	15.271323580000
19 0	4.679691080000	6.269518432000	17.153560110000
20 O	1.502164043000	4.360677680000	19.250660950000
21 N	3.743402498000	5.562514736000	12.970960070000
22 Ga	3.605724859000	4.033015432000	14.370266760000
23 Fe	2.679301505000	4.144401361000	16.548686910000
24 H	4.787380120000	6.352461713000	9.870124355000
25 C	5 575980359000	1 856901543000	11 047076320000
25 C	3 083841120000	2 393177099000	16 797721590000
20 C 27 U	5 746406832000	1 011536442000	13 658635790000
27 II 28 U	4 148366883000	0 559654044800	13 008158440000
20 II 20 U	4.287081761000	1 23637/111000	14 642313020000
20 U	3 000133004000	7 642773041000	13 375372070000
30 п 21 п	2 911335072000	6 797010025000	14 395670340000
22 H	2.011555072000	7 102227070000	12 716925920000
JZ R END	2.39130/109000	1.193331919000	12./10023030000
END			
GUIBONDS			19 16 24 1.0
1 1 18 2.0)		20 16 13 1.0
2 1 23 2.0)		21 16 17 1.0
3 2 19 2.0)		22 25 6 1.0
4 2 23 2.0)		23 11 8 1.0
5 3 20 2.0)		24 11 25 1.0
6 3 23 1.5	5		25 7 8 1.0
7 22 8 1.0)		26 21 22 1.0
8 22 23 3			27 27 7 1.0
9 4 21 1.0)		28 28 7 1.0
10 23 26 1	.5		29 29 7 1.0
11 26 5 2.	. 0		30 30 4 1.0
12 14 21 1	.0		31 31 4 1.0
13 25 9 1.	. 0		32 32 4 1.0
14 25 10 1	.0		END
15 14 15 1	.5		BYGIG
17 15 10 1	0		DAJIJ turo TZD
10 15 11 1			cype 12P
το το ττ η			core Large

Electronic Supplementary Material (ESI) for Chemical Science This journal is The Royal Society of Chemistry 2013

createoutput None END

XC GGA Becke Perdew END

SCANFREQ -1000 0

AnalyticalFreq END SAVE TAPE21 TAPE13 FULLSCF INTEGRATION 6.0 NOPRINT LOGFILE

eor

3b. The model system $Co_2(CO)_7 + H_2Ga\{(NMeCMe)_2CH\}$

Scheme S1: Model for potential gallane dehydrogenation pathway at thermally generated $[Co_2(CO)_7]$, via (hydrido)cobalt gallyl intermediates **I** and **II** (relative energies in kcal mol⁻¹). Calculations performed using the Vosko-Wilk-Nusair local density approximation with BP86 exchange-correlation corrections. A triple zeta basis set with an additional set of polarization functions (TZP) was employed.

π: /DII/3Π	#!	/bin/	sh
------------	----	-------	----

Co2(CO)7

"\$ADFBIN/adf" <<eor

ATOMS			
1 0	1.326889999000	15.052190410000	6.210589118000
2 Co	3.419049043000	14.539626480000	4.131161212000
3 Co	5.324854453000	14.700287760000	5.950576165000
4 C	4.707976954000	16.418382580000	6.228814901000
5 0	4.374818685000	17.499035790000	6.455233018000
6 C	6.488563430000	14.358053560000	4.556368455000
7 0	7.269385160000	14.145773950000	3.734809945000
8 C	6.621555340000	14.818257380000	7.190442525000
9 0	7.453238744000	14.895562080000	7.985686463000
10 C	4.470307502000	13.280140900000	6.767948579000
11 0	3.990111500000	12.393300730000	7.327041004000
12 C	4.172612368000	15.940587190000	3.215079223000
13 0	4.622036344000	16.822657560000	2.614060365000
14 C	3.923003984000	12.815678910000	3.752153344000
15 O	4.213051739000	11.725649270000	3.489584437000
16 C	2.151245471000	14.855155730000	5.421446237000
END			

GUIBONDS	END
1 14 15 2.0	
2 16 1 2.0	XC
3 12 13 2.0	GGA Becke Perdew
4 2 16 2.0	END
5 2 14 2.0	
/ 2 3 1.5	CONFRED 1000 0
8 3 8 2 . U 9 3 4 2 0	SCANFREQ -1000 0
10 3 10 2 0	ApalyticalFreq
11 3 6 2 0	END
12 4 5 2.0	
13 6 7 2.0	SAVE TAPE21 TAPE13
14 8 9 2.0	
15 10 11 2.0	FULLSCF
END	INTEGRATION 6.0
BASIS	NOPRINT LOGFILE
type TZP	
core Large	eor
createoutput None	l

#! /bin/sh

#			
#	Со	gallyl	(anti)
#	===		

"\$ADFBIN/adf" <<eor

ATOMS			
1 Ga	2.213272256000	14.638443450000	1.561151997000
2 Co	3.583941411000	14.609454020000	3.759065918000
3 Co	5.006811178000	14.508115620000	6.147355072000
4 C	4.268439541000	16.148831720000	6.468703117000
5 O	3.854540287000	17.193956690000	6.759063342000
6 C	6.463359212000	14.478879310000	5.044152664000
7 0	7.449917988000	14.463175110000	4.432816968000
8 C	5.888419865000	14.334567320000	7.707645165000
90	6.452415961000	14.223800250000	8.713039410000
10 C	3.978602877000	13.012551050000	6.317483014000
11 0	3.377674149000	12.040821200000	6.530556839000
12 C	4.405923114000	16.170940260000	3.266395870000
13 O	4.904490883000	17.154942260000	2.923467100000
14 C	4.576408033000	13.369237130000	2.926732569000
15 O	5.149843815000	12.509991040000	2.404032685000
16 C	2.092527939000	15.184399900000	4.580039430000

17 O 1.114367569000 18 N 0.824941375200 19 H 0.646472676700 20 H -2.393883390000 21 C -0.481833898600 22 N 0.769130174900 23 H 0.527180793500 24 H -2.037516849000 25 H -1.008458835000 26 H -2.310878311000 27 H -1.591748620000 28 H -0.886342334500 29 H -1.487830222000 30 C -1.424028205000 31 C -0.433359204300 32 C -1.322093598000 33 C -1.006715464000 34 C 1.198682922000 35 H 1.244604285000 36 H 2.200294017000 37 C 1.309468160000 38 H 2.299626040000 39 H 1.403062424000 40 H 2.866747710000 31 H 3.068811952000	$15.476750290000\\13.102926670000\\11.162807230000\\16.698341100000\\15.876432190000\\16.124547560000\\18.015300950000\\14.573102890000\\17.761391560000\\12.437409790000\\17.589769440000\\11.547567610000\\11.547567610000\\11.547567610000\\13.314245790000\\12.119294810000\\14.588000170000\\12.119294810000\\14.588000170000\\17.501490460000\\18.097934890000\\17.493162240000\\11.768276700000\\11.768276700000\\11.785376420000\\11.785376420000\\11.184563470000\\13.336581840000\\14.659170680000\\14.659170680000\\14.659170680000\\15.00000000000000000\\14.65917068000\\14.65917068000\\14.65917068000\\14.65917068000\\14.65917068000\\14.65917068000\\14.65917068000\\14.65917068000\\14.65917068000\\14.65917068000\\14.65917068000\\14.65917068000\\14.65917068000\\14.65917068000\\14.6591706800\\14.6591706800\\14.6591706800\\14.6591706800\\14.6591706800\\14.6591706800\\14.659170680\\14.659170880\\14.659170880\\14.659170880\\14.659170880\\14.659170880\\14.659170880\\14.659170880\\14.659170880\\14.659170880\\14.65917880\\14.659178880\\14.659178881\\14.659178881\\14.659178881\\14.$	5.123121916000 1.656696463000 0.788593413700 2.605549586000 2.022800949000 1.620004855000 0.664987965200 2.603090898000 2.955825298000 2.672635533000 1.293783797000 3.032906080000 1.373049394000 2.233921913000 2.056470427000 2.300343172000 2.255392267000 1.368836552000 2.294638763000 0.923765454100 1.452994869000 0.984249711700 2.402736505000 4.091215914000 0.195718578400
GUIEONDS 1 1 18 1.0 2 1 22 1.0 3 1 2 3 4 2 16 2.0 5 2 14 2.0 6 2 12 1.5 7 2 3 1.5 8 3 8 2.0 9 3 4 2.0 10 3 10 2.0 11 3 6 2.0 12 4 5 2.0 13 6 7 2.0 14 8 9 2.0 15 10 11 2.0 16 12 13 2.0 17 14 15 2.0		37 38 37 1.0 38 39 37 1.0 39 37 18 1.0 40 40 2 1.0 41 41 1 1.0 END BASIS type TZP core Large createoutput None END XC GGA Becke Perdew END
18 16 17 2.0 19 18 31 1.0 20 19 37 1.0 21 30 25 1.0 22 33 21 1.5		SCANFREQ -1000 0 AnalyticalFreq END
23 21 22 1.0 24 21 30 1.0 25 23 34 1.0 26 31 33 1.5 27 30 27 1.0 28 30 20 1.0 29 31 32 1.0 30 32 28 1.0 31 32 26 1.0 32 32 29 1.0 33 33 24 1.0 34 35 34 1.0 35 36 34 1.0 36 34 22 1.0		- SAVE TAPE21 TAPE13 SCF diis END FULLSCF INTEGRATION 6 NoBeckeGrid NOPRINT LOGFILE eor
#! /bin/sh		
# ====================================	== anti) to gallyl (syn) ==	
"\$ADFBIN/adf" < <eor ATOMS</eor 		
1 Ga 2.109204759000 2 Co 3.517460996000 3 Co 5.056203514000	13.996950960000 14.318379250000 14.543461390000	1.659104465000 3.818027188000 6.124558936000

4 C 5 O 6 C 7 O 8 C 9 O 10 C 11 O 12 C 13 O 14 C 15 O 16 C 17 O 18 N 19 H 20 H 21 C 17 O 18 N 19 H 21 C 17 O 18 N 22 N 23 H 24 H 25 H 26 H 27 H 28 H 29 C 13 C 13 C 14 C 15 O 16 C 17 O 18 N 19 H 20 C 17 O 18 N 19 H 20 C 10 C 11 C 12 C 13 O 14 C 15 O 16 C 17 O 18 N 19 H 20 C 17 O 18 N 19 H 21 C 17 O 18 N 23 H 24 H 25 H 26 H 27 C 13 C 13 C 13 C 13 N 19 H 20 C 13 C 13 N 19 H 20 C 13 C 13 N 10 C 13 N 13 C 13 N 14 C 15 O 16 C 17 O 18 N 19 H 20 C 17 C 18 N 19 H 20 C 17 C 18 H 20 C 18 H 20 C 17 C 18 H 20 H 20 C 20 H 20 H	3.625455909000 2.775191549000 6.165074053000 6.927731525000 6.087541697000 6.748719205000 4.973971002000 4.992304650000 3.246536929000 4.919771263000 5.797572694000 2.055297207000 1.137590357000 0.162411725500 -1.039057521000 0.162411725500 -1.039057521000 0.760740549400 0.413762425600 1.548027658000 2.048521538000 -1.452485635000 0.998633038100 -2.729572021000 0.124110692900 -1.946760744000 -2.631771631000 0.177478734300 -0.766258325400 -2.092761341000 -0.610086354400 2.512358107000 2.963319305000 3.319610427000 -0.127552795100 0.703936073200 -0.252165510900 3.580060954000 2.737698852000	$\begin{array}{c} 15.436171970000\\ 16.016279320000\\ 15.533260240000\\ 16.180275280000\\ 14.540890530000\\ 14.540243310000\\ 12.733551530000\\ 11.572083100000\\ 16.141009050000\\ 17.288789220000\\ 13.999644110000\\ 13.711580120000\\ 13.872040880000\\ 13.500287340000\\ 13.500287340000\\ 13.557102310000\\ 16.445707770000\\ 15.866917810000\\ 15.866917810000\\ 17.045260290000\\ 16.408287570000\\ 18.532558230000\\ 14.857177130000\\ 18.532558230000\\ 14.857177130000\\ 18.054639750000\\ 13.445908270000\\ 13.445908270000\\ 13.987489180000\\ 15.780190370000\\ 15.987489180000\\ 15.987489180000\\ 15.987489180000\\ 15.987395890000\\ 12.067846410000\\ 11.451563450000\\ 11.872322220000\\ 12.818931150000\\ 13.044555020000\\ \end{array}$	6.833872946000 7.369557951000 5.061301025000 4.471905845000 7.600201569000 8.550898227000 5.929470738000 5.929470738000 3.732563752000 3.659351401000 2.742320681000 2.046766309000 4.755454176000 5.354156604000 2.143117338000 1.899962140000 1.367636572000 0.959352911300 -0.744740731300 2.358109375000 1.407979641000 3.160072420000 -0.54592669490 3.916336346000 2.289800405000 1.034144571000 2.375183964000 2.970422718000 0.160674333100 0.729721479800 -0.161400685200 2.417208710000 2.055583359000 3.494374793000 3.799515344000 0.521412547900
GUIBONDS 1 1 18 1. 2 1 22 1. 3 1 2 3 4 2 16 2. 5 2 14 2. 6 2 12 1. 7 2 3 1.5 8 3 8 2.0 9 3 4 2.0 10 3 10 2 11 3 6 2. 12 4 5 2. 13 6 7 2. 14 8 9 2. 15 10 11 16 12 13 17 14 15 18 16 17 19 18 31 20 19 37 21 30 25 22 33 21 23 21 22 24 21 30 25 23 34	0 0 0 0 5 - 0 0 0 0 0 0 2 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1		37 38 37 1.0 38 39 37 1.0 39 37 18 1.0 40 40 2 1.0 41 41 1 1.0 END BASIS type TZP core Large createoutput None END XC GGA Becke Perdew END SCANFREQ -1000 0 AnalyticalFreq END SAVE TAPE21 TAPE13
25 23 34 26 31 33 27 30 27 28 30 20 29 31 32 30 32 28 31 32 26 32 32 29 33 33 24 34 35 34 35 36 34 36 34 22	1.0 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0		SCF diis END FULLSCF INTEGRATION 6 NoBeckeGrid NOPRINT LOGFILE eor

#! /bin/sh

|--|

#	: Co	gallyl	(syn)	

"\$ADFBIN/adf"	< <eoi< th=""></eoi<>
----------------	-----------------------

"\$ADFBI1	N/adf" < <eor< th=""><th></th><th></th></eor<>		
1 Ga 2 Co 3 Co 4 C 5 O 6 C 7 O 8 C 9 O 10 C 11 O 12 C 13 O 14 C 15 O 14 C 15 O 16 C 17 O 18 N 19 H 20 H 21 C 22 N 23 H 24 H 25 H 26 H 27 H 28 H 29 H 30 C 31 C 31 C 31 C 33 C 34 C 35 H 37 C 38 H 39 H 40 H 41 H END	2.170339723000 3.519987705000 5.055842462000 3.718829086000 2.923886363000 4.758901491000 4.620434483000 6.152207950000 6.854887159000 6.226792653000 7.054443909000 2.120946030000 1.232138650000 4.321631770000 4.883434237000 3.160736914000 3.004632064000 1.238756054000 1.238756054000 1.238756054000 1.238756054000 1.238756054000 1.618391095000 -1.618191095000 -1.456896233000 -2.327504653000 0.213967419700 -0.623085276000 -1.900503835000 0.031906820420 -0.490412129400 -0.818736501100 0.368967682000 0.326250063100 1.285986523000 2.005219400000 2.908296705000 2.318380189000 4.627257834000 2.947398175000	14.947901880000 14.73766810000 14.498660500000 13.407061130000 12.707238350000 16.295514140000 17.433619870000 14.333771800000 14.226819770000 13.862407430000 13.441154150000 15.381841610000 15.796388490000 16.238418570000 17.155143540000 13.156212010000 11.727280020000 15.215141070000 15.215141070000 15.888268170000 15.888268170000 15.25203600000 15.32550120000 16.525203600000 11.328550120000 16.604501900000 10.713063280000 11.90873780000 15.918505530000 15.918505530000 12.85707870000 11.444737040000 13.783168790000 17.347951200000 17.684526460000 17.748852240000 12.144627120000 12.606956370000 11.312439970000 14.212638390000 15.584308090000	$\begin{array}{c} 1.585582609000\\ 3.801712664000\\ 6.108017490000\\ 6.713292415000\\ 7.187623805000\\ 6.248584960000\\ 6.248584960000\\ 6.30782714000\\ 7.526399702000\\ 8.440578355000\\ 4.863185955000\\ 4.863185955000\\ 4.165652455000\\ 4.795015116000\\ 5.405237626000\\ 3.228022288000\\ 2.800664343000\\ 3.751538341000\\ 3.675456381000\\ 3.675456381000\\ 1.122115551000\\ -0.447175298600\\ 3.251896856000\\ 2.387580291000\\ 2.027930566000\\ 1.603288094000\\ 2.626035757000\\ 3.822579886000\\ 1.957313596000\\ 2.202764330000\\ 1.957313596000\\ 2.949852596000\\ 1.614407965000\\ 1.457022629000\\ 2.254935421000\\ 2.139189623000\\ 3.187774794000\\ 1.692036997000\\ 0.392588694400\\ -0.022848776270\\ 1.042804319000\\ 2.936772016000\\ 0.325844736500\end{array}$
GUIBONDS 1 1 18 2 2 1 22 2 3 1 2 3 4 2 16 2 5 2 14 2 6 2 12 7 7 2 3 1 8 3 8 2 9 3 4 2 10 3 10 11 3 6 2 12 4 5 2 13 6 7 2 14 8 9 2 15 10 12 16 12 13 17 14 15 18 16 17 19 18 33 20 19 3 21 30 25 22 33 2	S 1.0 1.0 2.0 2.0 1.5 .5 .0 .0 2.0 2.0 2.0 2.0 2.0 2.0		23 21 22 1.0 24 21 30 1.0 25 23 34 1.0 26 31 33 1.5 27 30 27 1.0 28 30 20 1.0 29 31 32 1.0 30 32 28 1.0 31 32 26 1.0 32 32 29 1.0 33 33 24 1.0 34 35 34 1.0 35 36 34 1.0 36 34 22 1.0 37 38 37 1.0 38 39 37 1.0 39 37 18 1.0 40 40 2 1.0 41 41 1 1.0 END BASIS type TZP

core Large SAVE TAPE21 TAPE13 createoutput None END SCF XC diis GGA Becke Perdew END END FULLSCF INTEGRATION 6 SCANFREO -1000 0 NoBeckeGrid NOPRINT LOGFILE AnalyticalFreq END eor #! /bin/sh # _____ # Co transition state H2 loss # ------"\$ADFBIN/adf" <<eor ATOMS 1.688673902000 14.532372470000 2.326387815000 1 Ga 2 Co 3.422045229000 14.570524730000 4.058615711000 3 Co 5.334361600000 14.617991570000 6.066891991000 4 C 4.496336787000 13.111086780000 6.686439597000 12.156966710000 5 0 4.027669336000 7.148747663000 6 C 4.567041016000 16.211341220000 6.545778476000 7 0 4.143284091000 17.223767140000 6.918805162000 8 C 6.679623387000 14.641520720000 7.260994734000 90 7.548265277000 14.656462000000 8.026233831000 10 C 6.393845374000 14.526427270000 4.581380994000 11 O 7.149686436000 14.469291170000 3.703378572000 14.658221410000 5.325359139000 12 C 2.109898261000 13 0 1,217610457000 14,712172370000 6.064335247000 14 C 16.206168110000 3.560039406000 4.025593286000 15 O 4.412576587000 17.244121320000 3.208927871000 3.948212269000 12.870188890000 3.711893127000 16 C 17 O 4.285988251000 11.787814820000 3.457344677000 1.760471476000 18 N 0.447053339900 13,004342390000 19 H 1,138323836000 11.038873090000 1.309122513000 20 H -2.136609035000 16.626741110000 -0.355724901900 21 C -0.550728661000 15.803022360000 0.857574753500 1.620174955000 22 N 0.519413706300 16.059082470000 23 H 1.300703409000 17.940629890000 0.992403580600 24 Н -1.909196868000 14.506245700000 -0.09785882187025 H -1.743259544000 17.597949450000 1.080635021000 12.384401300000 26 H -2.238614022000-0.15889155410027 H -0.65924070430017.621657210000 -0.31705731390028 H -1.885443240000 11.529943790000 1.359748160000 29 Н -0.808902334400 11.329322980000 -0.029492829380 30 C -1.317220358000 16.974291480000 0.280770907300 13,239734860000 31 C -0.611519133400 0.975410813800 32 C -1.433885827000 12.058094560000 0.506893459800 33 C -1.034832796000 14.515258970000 0.549290831500 34 C 0.918834966500 17.441837130000 1.897177662000 0.082827940820 35 H 18.035000840000 2.294781588000 36 H 1.717264752000 17.445416320000 2.645303603000 37 C 0.781609434700 11.635459500000 2.163566931000 11.662794440000 38 H 1.580098094000 2.911152745000 39 Н -0.080671346470 11.120836060000 2.611270469000 40 H 3.667734594000 14.485881160000 2.332557352000 41 H 3.162697999000 14.446633410000 1.217527322000 END GUIBONDS 11 3 6 2.0 12 4 5 2.0 1 1 18 1.0 2 1 22 1.0 13 6 7 2.0 3 1 2 3 14 8 9 2.0 4 2 16 2.0 15 10 11 2.0 5 2 14 2.0 16 12 13 2.0 6 2 12 1.5 17 14 15 2.0 7 2 3 1.5 18 16 17 2.0 8 3 8 2.0 19 18 31 1.0 20 19 37 1.0 9 3 4 2.0 10 3 10 2.0 21 30 25 1.0

22	33	21 1.5
23	21	22 1.0
2.4	21	30 1.0
25	23	34 1.0
26	31	33 1.5
27	30	27 1.0
28	30	20 1.0
29	31	32 1.0
30	32	28 1.0
31	32	26 1.0
32	32	29 1.0
33	33	24 1.0
34	35	34 1.0
35	36	34 1.0
36	34	22 1.0
37	38	37 1.0
38	39	37 1.0
39	37	18 1.0
40	40	2 1.0
41	41	1 1.0
ENI	D	

BASIS type TZP core Large createoutput None

#! /bin/sh

Co2(CO)7(MeNacNacGa) # _____

"\$ADFBIN/adf" <<eor

ATOMS			
1 Ga	1.695301557000	14.504386480000	2.545211471000
2 Co	3.408294431000	14.535545130000	4.122955032000
3 Co	5.356890509000	14.700446180000	5.981433548000
4 C	4.693517110000	16.391857000000	6.199289532000
50	4.332175514000	17.475873100000	6.394937621000
6 C	6.452777513000	14.366061020000	4.551529656000
70	7.212546172000	14.163208340000	3.700909408000
8 C	6.651965556000	14.817672690000	7.223270015000
90	7.485262945000	14.894222710000	8.023027870000
10 C	4.454986436000	13.295817850000	6.736679638000
11 O	3.943148473000	12.408096070000	7.277073531000
12 C	4.163948960000	15.922104130000	3.227559760000
13 0	4.631200677000	16.810072440000	2.637823314000
14 C	3.914730643000	12.832678250000	3.750899712000
15 O	4.229299964000	11.739702640000	3.499975500000
16 C	2.172049450000	14.856606830000	5.412800659000
17 O	1.360961523000	15.060043210000	6.222474268000
18 N	0.869576466300	13.212257190000	1.170334215000
19 H	1.856273328000	11.679543940000	0.059996708790
20 Н	-2.200359193000	16.914430670000	0.120015440200
21 C	-0.570323828900	15.941611680000	1.153734866000
22 N	0.390907663000	16.040745450000	2.081209505000
23 Н	0.793976351100	18.134086370000	2.160361690000
24 H	-1.633893087000	14.877718080000	-0.325678936300
25 Н	-2.005416141000	17.422961470000	1.814954463000
26 H	-1.529495690000	12.902467260000	-1.170440158000
27 Н	-0.876830065000	18.009619260000	0.587508195300
28 H	-1.024684643000	11.600177950000	-0.067574713340
29 Н	0.097526014770	12.192915680000	-1.298288464000
30 C	-1.465709952000	17.135070070000	0.900760700400
31 C	-0.165958657400	13.540304450000	0.379003510300
32 C	-0.688057323300	12.505035630000	-0.594488324000
33 C	-0.812858487700	14.788152490000	0.382661914900
34 C	0.556220326300	17.292975970000	2.828710870000
35 H	-0.349745206500	17.546312250000	3.399230639000
36 H	1.383302721000	17.179744570000	3.538222766000
37 C	1.458724015000	11.870356910000	1.068137474000
38 H	2.285570414000	11.780798530000	1.778469699000
39 H	0.723003153400	11.086901110000	1.304029219000
END			

END

XC GGA Becke Perdew END

SCANFREQ -1000 0 AnalyticalFreq END

SAVE TAPE21 TAPE13

SCF

diis END

FULLSCF

INTEGRATION 6

NoBeckeGrid

NOPRINT LOGFILE

eor

s**20**

GUI	BON	IDS	
1 1	. 18	31.	0
3 1	. 22 2	. ⊥. २	0
4 2	, <u> </u>	52.	0
5 2	14	2.	0
6 2	2 12	2 1.	5
7 2	3	1.5	5
8 3	8	2.0)
93	34	2.0)
10	3 1	.0 2	2.0
11	3 6	52.	0
12	4 5	2.	0
13	6 /	2.	0
14 15	10	, Z. 11	2 0
16	12	13	2.0
17	14	15	2.0
18	16	17	2.0
19	18	31	1.0
20	19	37	1.0
21	30	25	1.0
22	33	21	1.5
23	21	22	1.0
24	21	30	1.0
25	∠3 21	34	1.0
20	30	27	1.0
2.8	30	2.0	1.0
29	31	32	1.0
30	32	28	1.0
31	32	26	1.0
32	32	29	1.0
33	33	24	1.0
34	35	34	1.0
35	36	34	1.0

36 34 22 1.0 37 38 37 1.0 38 39 37 1.0 39 37 18 1.0 END BASIS type TZP core Large createoutput None END XC GGA Becke Perdew END SCANFREQ -1000 0 AnalyticalFreq END SAVE TAPE21 TAPE13 SCF diis END FULLSCF INTEGRATION 6 NoBeckeGrid NOPRINT LOGFILE eor

2c. ETS-NOCV calculation on (OC)₅W(Ga{(NMeCMe)₂CH})

#! /bin/sh

- # W(CO)5(MeNacNacGa)
- # _____

"\$ADFBIN/adf" <<eor ATOMS

111 0110				
1 W	6.555255167000	17.306178090000	15.830581080000	f=Metal b=Metal
2 Ga	4.584797417000	15.487383540000	15.824942020000	f=Ligand b=Ligand
3 N	3.023831362000	15.011966260000	14.506215440000	f=Ligand b=Ligand
4 H	3.057203333000	15.215093740000	12.379948150000	f=Ligand b=Ligand
5 Н	2.421376289000	12.564967460000	18.973349180000	f=Ligand b=Ligand
6 C	2.937792892000	13.152582140000	16.950230310000	f=Ligand b=Ligand
7 C	2.623575996000	12.102156550000	17.996051800000	f=Ligand b=Ligand
8 H	1.748426287000	11.511694280000	17.706557620000	f=Ligand b=Ligand
9 Н	3.472875905000	11.417063360000	18.135929240000	f=Ligand b=Ligand
10 O	5.845918008000	17.982866140000	18.939388080000	f=Metal b=Metal
11 H	1.290575899000	12.460176930000	15.826325040000	f=Ligand b=Ligand
12 H	0.382511168200	12.997237910000	13.947446510000	f=Ligand b=Ligand
13 H	0.438065150600	14.722162930000	13.513132380000	f=Ligand b=Ligand
14 H	1.490302730000	13.572469460000	12.679050600000	f=Ligand b=Ligand
15 N	3.981247219000	13.970635320000	17.143736270000	f=Ligand b=Ligand
16 C	2.120557982000	14.041409750000	14.700690180000	f=Ligand b=Ligand
17 C	2.092417733000	13.195983180000	15.825688440000	f=Ligand b=Ligand
18 C	1.046725621000	13.816961250000	13.655619330000	f=Ligand b=Ligand
19 C	8.063481727000	18.704102900000	15.836044670000	f=Metal b=Metal
20 O	8.915642305000	19.494656190000	15.839575020000	f=Metal b=Metal
21 C	6.963045306000	16.818759000000	13.830368530000	f=Metal b=Metal
22 0	7.188850211000	16.555038630000	12.722335200000	f=Metal b=Metal
23 C	7.884544902000	15.812339300000	16.466847050000	f=Metal b=Metal
24 O	8.622610060000	14.989682470000	16.823167660000	f=Metal b=Metal
25 C	5.172786979000	18.749627910000	15.191483900000	f=Metal b=Metal

Electronic Supplementary Material (ESI) for Chemical Science This journal is The Royal Society of Chemistry 2013

26 O 27 H 28 C 29 C 30 H 31 H 32 C 33 H 34 H END	4.412192774000 5.589743650000 6.094247006000 2.947352920000 1.995260793000 3.759158763000 4.786838721000 4.188557836000 5.252041275000	19.550427490000 14.571975380000 17.742179630000 15.825996870000 16.374580930000 16.562135460000 13.826145140000 13.988851870000 12.830662550000	14.832775640000 18.348292680000 17.830922720000 13.289170280000 13.229039110000 13.299513970000 18.360228880000 19.269946300000 18.427954090000	f=Metal b=Metal f=Ligand b=Ligand f=Metal b=Metal f=Ligand b=Ligand f=Ligand b=Ligand f=Ligand b=Ligand f=Ligand b=Ligand f=Ligand b=Ligand
GUIBONDS 1 1 25 1.5 2 1 19 1.5 3 1 23 1.5 4 1 21 1.5 5 1 28 1.0 6 1 2 3 7 2 3 1.0 8 2 15 1.0 9 3 16 1.0 10 4 29 1.1 1 19 20 2 12 21 22 2 13 23 24 2 14 25 26 2 15 15 6 1.0 16 27 32 1 17 7 5 1.0 18 7 8 1.0 19 6 7 1.0 21 28 10 2 22 16 17 1 23 16 18 12 24 17 11 1 25 17 6 1.2 26 18 14 1 25 17 6 1.2 26 18 14 1 27 18 13 1 29 30 29 1 30 31 29 3 1.3 34 32 15 1 END	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 5 1.0		NoBeckeGrid NOPRINT LOGFILE eor	
SYMMETRY NOSYM				
BASIS type TZP core Large createoutg END	e put None			
XC GGA Becke END	Perdew			
<pre>Fragments Ligand Frag_W(CO)5_Me_Ga_d6.Ligand.t21 Metal Frag_W(CO)5_Me_Ga_d6.Metal.t21 end ETSNOCV PRINT ETSLOWDIN SAVE TAPE21 TAPE13 SCF diis END</pre>				
FULLSCF INTEGRATION 6				

4. References for supporting information

5

- S1. A. Tekkaya, C. Ceyhan and S. Özkar, *Inorg. Chem.*, 1994, **33**, 2439.
- S2. S. Singh, H-J. Ahn, A. Stasch, V. Jancik, H.W. Roesky, A. Pal, M. Biadene, R. Herbst-Irmer, M. Noltemeyer, and H-G. Schmidt, *Inorg. Chem.*, 2006, 45, 1853.
- S3. N.J. Hardman, R.J. Wright, A.D. Phillips and P.P. Power, J. Am. Chem. Soc., 2003, 125, 2667.
- (a) G. te Velde, F. M. Bickelhaupt, S. J. A. van Gisbergen, C. Fonseca Guerra, E. J. Baerends, J. G. Snijders and T. Ziegler, J. Comput. Chem., 2001, 22, 931. (b) C. Fonseca Guerra, J. G. Snijders, G. te Velde and E. J. Baerends, Theor. Chem. Acc., 1998, 99, 391. (c) E.J. Baerends, T. Ziegler, J. Autschbach, D. Bashford, A. Bérces, F.M. Bickelhaupt, C. Bo, P.M. Boerrigter, L. Cavallo, D.P. Chong, L. Deng, R.M. Dickson, D.E. Ellis, M. van
- Faassen, L. Fan, T.H. Fischer, C. Fonseca Guerra, A. Ghysels, A. Giammona, S.J.A. van Gisbergen, A.W. Götz, J.A. Groeneveld, O.V. Gritsenko, M. Grüning, S. Gusarov, F.E. Harris, P. van den Hoek, C.R. Jacob, H. Jacobsen, L. Jensen, J.W. Kaminski, G. van Kessel, F. Kootstra, A. Kovalenko, M.V. Krykunov, E. van Lenthe, D.A. McCormack, A. Michalak, M. Mitoraj, J. Neugebauer, V.P. Nicu, L. Noodleman, V.P. Osinga, S. Patchkovskii, P.H.T. Philipsen, D. Post, C.C. Pye, W. Ravenek, J.I. Rodríguez, P. Ros, P.R.T. Schipper, G. Schreckenbach, J.S. Seldenthuis, M. Seth, J.G. Snijders, M. Solà, M. Swart, D. Swerhone, G. te Velde, P. Vernooijs, L. Versluis, L. Visscher, O. Visser, F. Wang, T.A. Wesolowski, E.M. van Wezenbeek, G. Wiesenekker, S.K. Wolff, T.K. Woo and A.L. Yakovlev, ADF2012, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam. The Netherlands.
- Wiesenekker, S.K. Wolff, T.K. Woo and A.L. Yakovlev, ADF2012, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam. The Netherlands. http://www.scm.com.
- S5. A. D. Becke, *Phys. Rev. A*, 1988, **38**, 3098.
- S6. J. P. Perdew, Phys. Rev. B, 1986, 33, 8822.
- S7. J. G. Snijders, P. Vernooijs and E. J. Baerends, At. Data Nucl. Data Tables, 1982, 26, 483.