Prediction of Suitable Catalyst by ¹H NMR: Asymmetric Synthesis of Multisubstituted Biaryls by Chiral Phosphoric Acid Catalyzed Asymmetric Bromination

Keiji Mori,[†] Yuki Ichikawa,[†] Manato Kobayashi,[†] Yukihiro Shibata,^{††} Masahiro Yamanaka,^{††} and Takahiko Akiyama^{*†}

Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan[†] Department of Chemistry and Research Center for Smart Molecules, Faculty of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan^{††}

takahiko.akiyama@gakushuin.ac.jp

Supporting Information

Table of contents	S 1
General experimental procedures	S2
Procedure and spectral data	S 3
The results of ¹ H NMR experiment.	S27
Determination of the association constant	S28
Control experiment	S30
Computational results	S31

General experimental procedures.

All reactions utilizing air- and moisture-sensitive reagents were performed in dried glassware under an atmosphere of dry nitrogen. Ethereal solvents (THF, Et₂O) were distilled from benzophenone ketyl. Dichloromethane and 1,2-dichloroethane were distilled over CaH₂. Benzene and toluene were distilled over CaH₂, and stored over 4A molecular sieves. *N*,*N*-Dimethylformamide (DMF) was distilled over CaH₂, and stored over 4A stored over 4A molecular sieves.

For thin-layer chromatography (TLC) analysis, Merck pre-coated plates (silica gel 60 F_{254} , Art 5715, 0.25 mm) were used. Column chromatography and preparative TLC (PTLC) were performed on PSQ 60B, Fuji Silysia Chemical Ltd. and Wakogel B-5F, Wako Pure Chemical Industries, respectively.

Melting point (mp) determinations were performed by using a AS ONE ATM-01 instrument and are uncorrected. ¹H NMR, ¹³C NMR, ¹⁹F NMR, and ³¹P NMR were measured on a varian-400 MR (Varian Ltd., 400 MHz) spectrometer. Chemical shifts are expressed in parts per million (ppm) downfield from internal standard (tetramethylsilane for ¹H, C_6F_6 for ¹⁹F, and H_3PO_4 for ³¹P NMR, 0.00 ppm), and coupling constants are reported as hertz (Hz). Splitting patterns are indicated as follows: br, broad; s, singlet; d, doublet; t, triplet; q, quartet; sep, septet; m, multiplet. Infrared (IR) spectra were recorded on a FTIR-8600PC instrument (Shimadzu Co.). Elemental analysis (EA) was carried out on Flash2000 instrument (Amco Inc.).

1. Preparation of starting materials.

All starting materials were synthesized according to the reported procedure.^{1,2} The preparation and data of new compounds are shown below.

Scheme 1. Preparation of MOM-protected boronic acid s3.¹

To a suspension of NaH (60% oil, 1.67 g, 41.8 mmol) in DMF (30.0 mL) were successively added a solution of resolcinol (s1) (2.01 g, 18.3 mmol) in DMF (30.0 mL) and MOMCl (3.04 mL, 40.2 mmol) at 0 °C. After being stirred for 4 h at room temperature, the reaction was stopped by adding 1 M aqueous HCl. The crude products were extracted with EtOAc (x4) and the combined organic extracts were washed with 1 M aqueous HCl (x6), brine, dried (Na₂SO₄), and concentrated in vacuo to give crude s2 (3.71 g). This material was used to next reaction without further purification.

To a solution of **s2** in Et₂O (72.7 mL) was added *n*-BuLi (1.60 M in hexane, 13.6 mL, 21.8 mmol) at 0 °C. After stirring for 3 h at room temperature, B(OMe)₃ (3.04 mL, 27.4 mmol) was added to the reaction mixture at 0 °C. After being stirred for 1 h at room temperature, the reaction was acidified by 2 M HCl at 0 °C. After being stirred for 1 h at room temperature, the resulting white precipitates were filtered off and washed by H₂O to afford analytically pure **s3** (3.01 g, 68%) as a white solid.

Mp. 115-116 °C.

IR (KBr) 3316, 2951, 2898, 2826, 1600, 1585, 1461, 1441, 1397, 1370, 1337, 1308, 1241, 1199, 1152, 1097, 1044, 1008, 921, 893 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 3.51 (s, 6H), 5.30 (s, 4H), 6.88 (d, 1H, *J* = 8.0 Hz), 7.23 (brs, 2H), 7.35 (dd, 1H, *J* = 8.0, 8.0 Hz).

¹³C NMR (100 MHz, CDCl₃) δ 56.5, 94.8, 108.2, 133.0, 163.0.

Anal. Calcd for C₁₀H₁₅BO₆: C, 49.62; H, 6.25. Found: C, 49.45; H, 6.55.

Scheme 2. General synthetic route to biphenol 3a.² Preparation of 3a is shown as a representative example.

Synthesis of 6-methoxy-2',6'-bis(methoxymethoxy)biphenyl-2-carbaldehyde (s5):

The mixture of boronic acid **s3** (530 mg, 2.18 mmol), iodobenzene **s4** (438 mg, 1.67 mmol),² Pd(PPh₃)₄ (290 mg, 0.250 mmol), K₃PO₄ (1.08 g, 5.09 mmol), DME (17.0 mL), and H₂O (5.6 mL) were heated at reflux for 4.5 h. After cooling to room temperature, the reaction was stopped by adding H₂O. The crude mixture was extracted with EtOAc (x3) and the combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane/EtOAc = 2/1) to give **s5** (500 mg, 90%) as a colorless amorphous.

IR (neat) 2959, 2828, 1689, 1591, 1466, 1402, 1306, 1261, 1247, 1202, 1181, 1153, 1100, 1044, 918, 894, 783, 741, 727, 666 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 3.26 (s, 6H), 3.77 (s, 3H), 5.01 (d, 2H, *J* = 6.8 Hz), 5.05 (d, 2H, *J* = 6.8 Hz), 6.92 (d, 2H, *J* = 8.4 Hz), 7.20 (d, 1H, *J* = 8.0 Hz), 7.33 (dd, 1H, *J* = 8.4, 8.4 Hz), 7.46 (dd, 1H, *J* = 8.0, 8.0 Hz), 7.64 (dd, 1H, *J* = 1.2, 8.0 Hz).

¹³C NMR (100 MHz, CDCl₃) δ 55.8, 55.9, 94.6, 108.5, 113.1, 115.9, 118.6, 128.0, 128.7, 130.0, 135.4, 155.9, 157.5, 192.9.

Anal. Calcd for $C_{18}H_{20}O_6$: C, 65.05; H, 6.07. Found: C, 64.93; H, 6.08.

Synthesis of 2'-methoxy-6'-(methoxymethyl)biphenyl-2,6-diol (3a):

To a solution of s5 (2.55 g, 7.68 mmol) in THF (38.0 mL) was added LiAlH₄ (219 mg, 5.75 mmol) at 0 °C. After being stirred for 0.5 h at 0 °C, the reaction was stopped by adding Na₂SO₄·10H₂O. After being stirred for another 1 h at room temperature, the crude material was filtered through Celite[®] pad and the resulting filtrate was concentrated in vacuo to give crude benzyl alcohol s6 (2.57 g). The crude material was used for the next reaction without further purification.

To a solution of **s6** in DMF (38.0 mL) were successively added NaH (60% oil, 590 mg, 14.7 mmol) and MeI (0.90 mL, 14.5 mmol) at 0 °C. After being stirred for 4 h at room temperature, the reaction was stopped by adding aqueous 1 M HCl at 0 °C. The crude mixture was extracted with EtOAc (x3) and the combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated in vacuo to give methyl ether **s7** (2.75 g). The crude material was used for the next reaction without further purification.

To a solution of **s7** in THF (29.0 mL) and MeOH (38.5 mL) was added aqueous 2 M HCl (19.0 mL, 38.0 mmol) at 0 °C. After being stirred for 5.5 h at 50 °C, the reaction was stopped by adding saturated aqueous NaHCO₃ at 0 °C. The crude mixture was extracted with EtOAc (x3) and the combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane/EtOAc = 2/1) to give **3a** (1.60 g, 96% from **s3**) as a white solid.

Mp. 110-111 °C.

IR (neat) 3398, 2934, 2836, 1620, 1581, 1506, 1463, 1437, 1378, 1265, 1188, 1151, 1069, 1008, 911, 787, 732, 676, 645 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 3.27 (s, 3H), 3.72 (s, 3H), 4.16 (s, 2H), 5.29 (s, 2H), 6.59 (d, 2H, *J* = 8.4 Hz), 7.00 (d, 1H, *J* = 8.0 Hz), 7.16 (dd, 1H, *J* = 8.4, 8.4 Hz), 7.18 (d, 1H, *J* = 8.0 Hz), 7.43 (dd, 1H, *J* = 8.0, 8.0 Hz).

¹³C NMR (100 MHz, CDCl₃) δ 56.0, 58.5, 73.0, 108.5, 111.0, 111.5, 118.8, 122.1, 129.6, 130.6, 140.0, 154.1, 158.0.

Anal. Calcd for C₁₅H₁₆O₄: C, 69.22; H, 6.20. Found: C, 69.37; H, 6.09.

OMOM OMOM i) *n*-BuLi Montmorillonite HC MOMC момо СНО ii) DMF MOMCI, NaH K-10 Et₂O DMF Benzene s10 s8 s9 OH OTf MOMO MOMO СНО СНО HC CHO K₂CO₃, Mel Tf₂O, Pyridine coc. HCI CH₂Cl₂ 1,4-dioxane DMF s11 s12 s13 boronic acid s3 10 mol% OTf Pd(PPh₃)₄ момо ОМОМ момо омом MeO СНО K₃PO₄ LiAIH₄ MeO .CHO MeO OH DME, H₂O THF 36% (7 steps) s14 s15 s16 омом момо HO OН NaH, Mel 2 M HCI MeO MeO OMe OMe MeOH, THF DMF 96% (3 steps) s17 3n

Scheme 3. General synthetic route to biphenol 3n.

To a suspension of NaH (60% oil, 1.68 g, 41.9 mmol) in DMF (22.0 mL) were successively added a solution of 4-methylcatecol (**s8**) (2.00 g, 16.1 mmol) in DMF (22.0 mL) and MOMCl (2.81 mL, 37.1 mmol) at 0 °C. After being stirred for 10 h at room temperature, the reaction was stopped by adding 1 M aqueous HCl. The crude products were extracted with EtOAc(x4) and the combined organic extracts were washed with 1 M aqueous HCl (x6), brine, dried (Na₂SO₄), and concentrated in vacuo to give crude **s9** (3.70 g). This material was used to next reaction without further purification.

To a solution of **s9** in Et₂O (80.6 mL) was added *n*-BuLi (1.65 M in hexane, 11.7 mL, 19.3 mmol) at 0 °C. After stirring for 3 h at room temperature, DMF (3.17 mL, 32.2

mmol) was added to the reaction mixture at 0 °C. After being stirred for 10 min at 0 °C, the reaction was stopped by adding saturated aqueous NH_4Cl . The crude products were extracted with EtOAc (x3) and the combined organic extracts were washed with brine, dried (Na_2SO_4), and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane/EtOAc = 6/1) to give **s10** (3.25g) as a pale yellow oil with inseparable impurities. This material was used to next reaction without further purification.

To a solution of **s10** in Benzene (120 mL) was added Montmorillonite K-10 (2.95 g) at room temperature. After being stirred for 20 min, the crude material was filtered through Celite[®] pad, and the resulting filtrate was concentrated in vacuo to give crude **s11** (2.56 g). This material was used to next reaction without further purification.

To a solution of s11 in CH₂Cl₂ (124 mL) were successively added pyridine (2.99 mL, 37.0 mmol) and Tf₂O (3.10 mL, 18.5 mmol) at 0 °C. After being stirred for 5 h at room temperature, the reaction was stopped by adding saturated aqueous NaHCO₃ at 0 °C. The crude products were extracted with CH₂Cl₂ (x4) and the combined organic extracts were washed with 1 M aqueous HCl (x2), brine, dried (Na₂SO₄), and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane/EtOAc = 8/1) to give s12 (2.60 g) as a pale yellow oil with inseparable impurities. This material was used to next reaction without further purification.

To a solution of **s12** in 1,4-dioxane (50.2 mL) was added 1 M HCl (10. 0 mL, 10.0 mmol) at 0 °C. After being stirred for 5 h at room temperature, the reaction was stopped by adding saturated aqueous NaHCO₃ at 0 °C. The crude products were extracted with EtOAc (x5) and the combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated in vacuo to give crude **s13** (2.35 g). This material was used to next reaction without further purification.

To a solution of **s13** in DMF (37.0 mL) were successively added K_2CO_3 (2.05 g, 14.8 mmol) and MeI (0.70 mL, 11.2 mmol) at 0 °C. After being stirred for 5 h at room temperature, the reaction was stopped by adding 1 M aqueous HCl. The crude products were extracted with EtOAc(x4) and the combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane/EtOAc = 10/1) to give **s14** (2.09 g) as a white solid with inseparable impurities. This material was used to next reaction without further purification.

The mixture of boronic acid **s3** (1.96 g, 6.20 mmol), triflate **s14**, Pd(PPh₃)₄ (718 mg, 0.621 mmol), K₃PO₄ (3.96 g, 18.6 mmol), DME (27.0 mL), and H₂O (7.0 mL) were heated at reflux for 4 h. After cooling to room temperature, the reaction was stopped by adding H₂O. The crude mixture was extracted with EtOAc (x3) and the combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane/EtOAc = 6/1) to give **s14** (2.01 g, 36% from **s8**) as a white solid.

6-Methoxy-2',6'-bis(methoxy)-4-methylbiphenyl-2-carbaldehyde (s15).

Mp. 117–119 °C.

IR (KBr) 2935, 2902, 2827, 1685, 1602, 1584, 1465, 1430, 1389, 1310, 1248, 1153, 1099, 1081, 1042, 922, 898 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 3.31 (s, 6H), 3.53 (s, 3H), 5.06 (d, 2H, *J* = 6.8 Hz), 5.09 (d, 2H, *J* = 6.8 Hz), 6.89 (d, 2H, *J* = 8.4 Hz), 7.26 (d, 1H, *J* = 2.4 Hz), 7.28 (dd, 1H, *J* = 8.4, 8.4 Hz), 7.65 (d, 1H, *J* = 2.4 Hz), 10.41 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 20.5, 55.8, 62.3, 94.5, 108.5, 117.3, 127.4, 128.6, 128.7, 129.5, 132.9, 140.0, 155.4, 160.0, 190.5.

Anal. Calcd for C₂₀H₂₆O₆: C, 66.28; H, 7.23. Found: C, 66.49; H, 6.95.

2'-Methoxy-6'-(methoxymethyl)-4'-methylbiphenyl-2,6-diol (3n).

White solid.

Yield: 96% (prepared from s15).

Mp. 115–116 °C.

IR (KBr) 3334, 3001, 2977, 2961, 2937, 2873, 2830, 1614, 1582, 1500, 1463, 1371, 1299, 1259, 1224, 1198, 1178, 1161, 1116, 1066, 1011, 997, 963, 920, 893, 876, 860, 799 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 2.36 (s, 3H), 3.48 (s, 3H), 3.52 (s, 3H), 4.54 (s, 2H), 5.51 (brs, 2H), 6.61 (d, 2H, *J* = 8.0 Hz), 7.12 (d, 1H, *J* = 1.2 Hz), 7.16 (dd, 1H, *J* = 8.0, 8.0 Hz), 7.32 (d, 1H, *J* = 1.2 Hz).

¹³C NMR (100 MHz, CDCl₃) δ 20.8, 58.6, 62.0, 69.6, 108.7, 112.7, 124.3, 129.8, 131.3, 132.2, 132.7, 135.3, 153.8, 153.9.

Anal. Calcd for C₁₆H₁₈O₄: C, 70.06; H, 6.61. Found: C, 70.25; H, 6.43.

Scheme 4. Preparation of 30.

Synthesis of 1-bromo-2-methoxynaphthalene (s20):

To a solution of **s18** (1.00 g, 6.93 mmol) in CH_2Cl_2 (50.6 mL) and MeOH (34.0 mL) was added tetrabutylammonium bromide (3.34 g, 6.93 mmol) at 0 °C. After being stirred for 10 min at 0 °C, the reaction was stopped by adding H₂O. The crude products were extracted with EtOAc (x4) and the combined organic extracts were washed with 1 M aqueous HCl (x1), brine, dried (Na₂SO₄), and concentrated in vacuo to give crude **s19** (1.65 g). This material was used to next reaction without further purification.

To a solution of **s19** in DMF (34.7 mL) were successively added NaH (60% oil, 554 mg, 11.9 mmol) and MeI (0.86 mL, 11.9 mmol) at 0 °C. After being stirred for 3 h at room

temperature, the reaction was stopped by adding 1 M aqueous HCl. The crude products were extracted with EtOAc (x4) and the combined organic extracts were washed with 1 M aqueous HCl (x6), brine, dried (Na₂SO₄), and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane/EtOAc = 15/1) to give s20 (1.65 g, quant. from s18) as a white solid.

¹H NMR (400 MHz, CDCl₃) δ 4.03 (s, 3H), 7.27 (d, 1H, *J* = 8.8 Hz), 7.40 (ddd, 1H, *J* = 0.8, 8.0, 8.0 Hz), 7.57 (ddd, 1H, *J* = 0.8, 8.0, 8.0 Hz), 7.78 (d, 1H, *J* = 8.0 Hz), 7.81 (d, 1H, *J* = 8.8 Hz), 8.23 (d, 1H, *J* = 8.0 Hz).

¹³C NMR (100 MHz, CDCl₃) δ 57.0, 108.7, 113.6, 124.3, 126.1, 127.7, 128.0, 128.9, 129.8, 133.1, 153.8.

The ¹H and ¹³C NMR spectra were in complete agreement with those in the literature.³

2-(2-methoxynaphthalen-1-yl)benzene-1,3-diol (**3o**).

Yield: 32% (prepared from s20).

Mp. 162–163 °C.

IR (KBr) 3477, 3059, 2933, 2835, 1621, 1591, 1507, 1463, 1432, 1384, 1334, 1308, 1255, 1174, 1148, 1120, 1073, 1061, 1007, 904, 812, 785 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 3.89 (s, 3H), 4.63 (brs, 2H), 6.67 (d, 2H, J = 8.4 Hz), 7.26 (dd, 1H, J = 8.4, 8.4 Hz), 7.36–7.50 (m, 4H), 7.83–7.90 (m, 1H), 8.00 (d, 1H, J = 9.2 Hz).

¹³C NMR (100 MHz, CDCl₃) δ 56.7, 107.8, 109.3, 111.2, 113.5, 124.2, 124.6, 128.0, 128.3, 129.5, 130.0, 131.9, 133.3, 154.3, 156.1.

Anal. Calcd for C₁₇H₁₄O₃: C, 76.68; H, 5.30. Found: C, 76.55; H, 5.45.

Scheme 5. Preparation of 3p.

Synthesis of 3-methoxynaphthalen-2-ol (s23):

To a solution of s22 (2.00 g, 12.5 mmol) in DMF (62.0 mL) were successively added NaH (60% oil, 500 mg, 12.5 mmol) and MeI (0.82 mL, 13.1 mmol) at 0 °C. After being stirred for 3 h at room temperature, the reaction was stopped by adding 1 M aqueous HCl. The crude products were extracted with EtOAc (x4) and the combined organic extracts were washed with 1 M aqueous HCl (x6), brine, dried (Na₂SO₄), and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane/EtOAc = 30/1) to give s23 (805 mg, 37%) as a white solid.

Mp. 128-129 °C.

IR (KBr) 3400, 3046, 2970, 2931, 1637, 1515, 1486, 1439, 1413, 1354, 1280, 1260, 1198, 1163, 1114, 1017, 951 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 4.02 (s, 3H), 5.89 (s, 1H), 7.12 (s, 1H), 7.26 (s, 1H), 7.37–7.48 (m, 2H), 7.61–7.74 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 55.8, 105.7, 109.4, 123.8, 124.3, 126.3, 126.4, 128.9, 129.6, 145.6, 147.3.

Anal. Calcd for C₁₁H₁₀O₂: C, 75.84; H, 5.79. Found: C, 75.55; H, 5.90.

Synthesis of 3-methoxy-2-(methoxymethoxy)-1-naphthaldehyde (s25):

To a suspension of NaH (60% oil, 343 mg, 8.58 mmol) in DMF (12.0 mL) were successively added a solution of **s23** (830 mg, 16.1 mmol) in DMF (12.0 mL) and MOMCl (0.54 mL, 7.15 mmol) at 0 °C. After being stirred for 20 h at room temperature, the reaction was stopped by adding 1 M aqueous HCl. The crude products were extracted with EtOAc(x4) and the combined organic extracts were washed with 1 M aqueous HCl (x6), brine, dried (Na₂SO₄), and concentrated in vacuo to give crude **s24** (1.15 g). This material was used to next reaction without further purification.

To a solution of s24 in Et₂O (23.8 mL) was added *n*-BuLi (1.65 M in hexane, 4.30 mL, 7.10 mmol) at 0 °C. After stirring for 2.5 h at room temperature, DMF (0.74 mL, 9.56 mmol) was added to the reaction mixture at 0 °C. After being stirred for 10 min at 0 °C, the reaction was stopped by adding saturated aqueous NH₄Cl. The crude products were extracted with EtOAc (x3) and the combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane/EtOAc = 10/1) to give s25 (759 mg, 67% from s23) as a yellow oil.

IR (neat) 3005, 2939, 2894, 2835, 1681, 1620, 1596, 1505, 1465, 1450, 1433, 1382, 1359, 1288, 1246, 1225, 1205, 1175, 1155, 1077, 1037, 1010, 941, 892 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 3.61 (s, 3H), 3.99 (s, 3H), 5.30 (s, 2H), 7.40 (s, 1H), 7.41–7.58 (m, 2H), 7.71 (d, 1H, *J* = 8.0 Hz), 9.12 (dd, 1H, *J* = 0.8, 8.0 Hz), 10.88 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 55.9, 58.2, 100.0, 114.1, 123.8, 125.0, 125.8, 126.3, 126.7, 126.9, 131.0, 150.5, 153.9, 192.9.

Anal. Calcd for C₁₄H₁₄O₄: C, 68.28; H, 5.73. Found: C, 68.40; H, 5.55.

Synthesis of 2-(2,6-bis(methoxymethoxy)phenyl)-3-methoxy-1-naphthaldehyde (s28):

To a solution of s25 (650 mg, 2.64 mmol) in Benzene (26.4 mL) was added Montmorillonite K-10 (650 mg) at room temperature. After being stirred for 0.5 h, the crude material was filtered through Celite[®] pad, and the resulting filtrate was concentrated in vacuo to give crude s26 (583 mg). This material was used to next reaction without further purification.

To a solution of **s26** in acetone (20.0 mL) were successively added K_2CO_3 (547 mg, 3.96 mmol) and PhNTf₂ (1.13 g, 3.17 mmol) at 0 °C. After being stirred for 3 h at room temperature, the reaction was stopped by adding saturated aqueous NaHCO₃ at 0 °C. The crude products were extracted with EtOAc (x5) and the combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated in vacuo to give vrude **s27** (1.23 g). This material was used to next reaction without further purification.

The mixture of boronic acid s3 (958 mg, 3.96 mmol), triflate s27, Pd(PPh₃)₄ (305 mg, 0.264 mmol), K₃PO₄ (1.68 g, 7.92 mmol), DME (16.0mL), and H₂O (4.0 mL) were heated at reflux for 8 h. After cooling to room temperature, the reaction was stopped by adding H₂O. The crude mixture was extracted with EtOAc (x3) and the combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane/EtOAc = 6/1) to give s28 (666 mg, 66% from s25) as a white solid.

Mp. 198-200 °C.

IR (KBr) 3001, 2959, 2900, 2830, 1688, 1619, 1590, 1466, 1401, 1362, 1285, 1251, 1222, 1200, 1180, 1154, 1099, 1044, 921, 894, 854 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 3.25 (s, 6H), 3.86 (s, 3H), 5.00 (d, 2H, *J* = 6.8 Hz), 5.03 (d, 2H, *J* = 6.8 Hz), 6.92 (d, 2H, *J* = 8.4 Hz), 7.35 (dd, 1H, *J* = 8.4, 8.4 Hz), 7.44 (s, 1H), 7.48–7.59 (m, 2H), 7.78–7.86 (m, 1H), 9.13–9.22 (m, 1H), 10.11 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 55.8, 55.8, 94.4, 108.1, 111.4, 113.4, 125.7, 125.9, 126.2, 126.9, 130.2, 130.3, 134.4, 134.8, 155.0, 155.9, 195.1.

Anal. Calcd for C₂₂H₂₂O₆: C, 69.10; H, 5.80. Found: C, 68.85; H, 5.78.

2-(3-Methoxy-1-(methoxymethyl)naphthalen-2-yl)benzene-1,3-diol (**3p**).

White solid.

Yield: 55% (prepared from s28).

Mp. 169–171 °C.

IR (neat) 3398, 3072, 2935, 2830, 1619, 1597, 1504, 1462, 1425, 1396, 1338, 1282, 1227, 1198, 1181, 1152, 1133, 1083, 1065, 1009, 953, 909, 866, 834, 813, 786, 733, 687, 647, 624 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 3.41 (s, 3H), 3.86 (s, 3H), 4.67 (s, 2H), 5.24 (brs, 2H), 6.67 (d, 2H, *J* = 8.4 Hz), 7.23 (dd, 1H, *J* = 8.4, 8.4 Hz), 7.32 (s, 1H), 7.43–7.60 (m, 2H), 7.83 (d, 1H, *J* = 8.0 Hz), 8.12 (d, 1H, *J* = 8.4 Hz).

¹³C NMR (100 MHz, CDCl₃) δ 56.0, 59.0, 69.4, 107.7, 108.8, 111.9, 122.4, 124.5, 124.9, 127.3, 127.4, 128.0, 129.9, 135.3, 136.0, 154.4, 155.1.

Anal. Calcd for C₁₉H₁₈O₄: C, 73.53; H, 5.85. Found: C, 73.56; H, 5.81.

Scheme 6. Preparation of 3r. 3t was also synthesized by this procedure.

Synthesis of 1-(2,6-bis(methoxymethoxy)phenyl)-4-methoxy-2-naphthaldehyde (s34): To a solution of s31⁴ (500 mg, 2.31 mmol) in CH₂Cl₂ (23.0 mL) was added BBr₃ (0.5 M in CH₂Cl₂, 5.10 mL, 2.55 mmol) at -20 °C. After being stirred for 1 h, the reaction was stopped by adding saturated aqueous NaHCO₃ at -20 °C. The crude products were extracted with CH₂Cl₂ (x4) and the combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated in vacuo to give crude s32 (463 mg). This material was used to next reaction without further purification.

To a solution of s32 in acetone (11.0 mL) were successively added K₂CO₃ (805 mg, 5.82 mmol) and PhNTf₂ (1.48 g, 4.14 mmol) at 0 °C. After being stirred for 13 h at room temperature, the reaction was stopped by adding saturated aqueous NaHCO₃ at 0 °C. The crude products were extracted with EtOAc (x5) and the combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated in vacuo to give crude s33 (2.041 g). This material was used to next reaction without further purification.

The mixture of boronic acid s3 (720 mg, 2.97 mmol), triflate s33, Pd(PPh₃)₄(265 mg,

0.239 mmol), K_3PO_4 (2.20 g, 6.98 mmol), DME (11.5 mL), and H_2O (3.8 mL) were heated at reflux for 4 h. After cooling to room temperature, the reaction was stopped by adding H_2O . The crude mixture was extracted with EtOAc (x3) and the combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane/EtOAc = 6/1) to give s34 (627 mg, 71% from s31) as a pale orange solid.

Mp. 159-160 °C.

IR (KBr) 2956, 2932, 2848, 1682, 1596, 1513, 1465, 1422, 1401, 1369, 1346, 1247, 1200, 1154, 1133, 1111, 1097, 1042, 922, 896 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 3.08 (s, 6H), 4.08 (s, 3H), 4.93 (s, 4H), 6.96 (d, 2H, *J* = 8.4 Hz), 7.36–7.48 (m, 3H), 7.52–7.61 (m, 2H), 8.34 (d, 1H, *J* = 8.4 Hz), 9.90 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 55.6, 55.8, 94.1, 98.9, 108.0, 114.3, 122.3, 126.6, 126.9, 128.0, 128.7, 130.3, 131.7, 133.1, 133.4, 155.2, 156.4, 193.1.

Anal. Calcd for $C_{22}H_{22}O_6$: C, 69.10; H, 5.80. Found: C, 69.40; H, 5.77.

2-(4-Methoxy-2-(methoxymethyl)naphthalen-1-yl)benzene-1,3-diol (**3r**).

White solid.

Yield: 69% (prepared from s34).

Mp. 180–182 °C.

IR (KBr) 3397, 2933, 1621, 1593, 1511, 1460, 1420, 1378, 1346, 1308, 1276, 1232, 1190, 1172, 1132, 1109, 1035, 1009, 969, 910, 849, 791 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 3.36 (s, 3H), 4.10 (s, 3H), 4.35 (s, 2H), 4.87 (brs, 2H), 6.69 (d, 2H, *J* = 8.0 Hz), 7.09 (s, 1H), 7.29 (dd, 1H, *J* = 8.0, 8.0 Hz), 7.38–7.59 (m, 3H), 8.34 (d, 1H, *J* = 8.4 Hz).

¹³C NMR (100 MHz, CDCl₃) δ 55.7, 58.8, 73.4, 104.6, 104.7, 108.2, 111.7, 117.5, 122.4, 125.0, 126.0, 128.0, 130.1, 133.5, 138.0, 154.6, 156.9.

Anal. Calcd for C₁₉H₁₈O₄: C, 73.53; H, 5.85. Found: C, 73.28; H, 5.77.

1-(2,6-bis(methoxymethoxy)phenyl)-4,5-dimethoxy-2-naphthaldehyde (s37).

Yield: 60% (prepared from known 1,4,5-trimethoxy-2-naphthaldehyde⁵).

Pale red solid.

Yield: 66%.

Mp. 140-142 °C.

IR (KBr) 2955, 2934, 2846, 1683, 1591, 1515, 1465, 1441, 1384, 1361, 1337, 1263, 1248, 1200, 1154, 1130, 1098, 1073, 1042, 922, 897, 849 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 3.09 (s, 6H), 4.00 (s, 3H), 4.08 (s, 3H), 4.95 (s, 4H), 6.95 (d, 2H, *J* = 8.4 Hz), 6.99 (d, 1H, *J* = 8.0 Hz), 7.17 (dd, 1H, *J* = 0.8, 8.4 Hz), 7.31 (dd, 1H, *J* = 8.4, 8.4 Hz), 7.36–7.46 (m, 2H), 9.84 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 55.8, 56.1, 56.6, 94.1, 100.4, 108.1, 109.4, 115.0, 119.5, 120.4, 126.9, 130.2, 131.9, 132.4, 136.3, 156.3, 157.1, 157.3, 192.9.

Anal. Calcd for C₂₃H₂₄O₇: C, 66.98; H, 5.87. Found: C, 66.71; H, 5.99.

2-(4,5-Dimethoxy-2-(methoxymethyl)naphthalen-1-yl)benzene-1,3-diol (3t).

White solid.

Yield: 66% (prepared from **s37**).

Mp. 255–257 °C.

IR (KBr) 3439, 2947, 2837, 1621, 1591, 1469, 1393, 1341, 1324, 1259, 1200, 1167, 1144, 1127, 1106, 1093, 992, 968, 860, 827, 809, 794 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 3.33 (s, 3H), 3.92 (s, 3H), 3.95 (s, 3H), 4.29 (s, 2H), 5.01 (brs, 2H), 6.68 (d, 2H, *J* = 8.0 Hz), 6.82 (d, 1H, *J* = 8.0 Hz), 7.00 (s, 1H), 7.02 (dd, 1H, *J* = 1.2, 8.4 Hz), 7.24–7.33 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 56.2, 56.4, 58.8, 73.0, 105.9, 107.1, 108.1, 112.1, 116.9, 117.6, 117.7, 127.9, 130.1, 136.4, 138.7, 154.5, 157.5, 158.5.

Anal. Calcd for C₂₀H₂₀O₅: C, 70.57; H, 5.92. Found: C, 70.76; H, 5.78.

Scheme 7. Preparation of 3s.

Synthesis of 1,5-bis(methoxymethoxy)-2-naphthaldehyde (s40):

To a suspension of NaH (60% oil, 1.30 g, 32.5 mmol) in DMF (20.0 mL) were successively added a solution of 1,5-dihydroxynaphthalene (s38) (2.00 g, 12.5 mmol) in DMF (65.0 mL) and MOMCl (2.19 mL, 28.7 mmol) at 0 °C. After being stirred for 24 h at room temperature, the reaction was stopped by adding 1 M aqueous HCl. The crude products were extracted with EtOAc(x4) and the combined organic extracts were washed with 1 M aqueous HCl (x6), brine, dried (Na₂SO₄), and concentrated in vacuo to give crude s39 (3.10 g). This material was used to next reaction without further

purification.

To a solution of s39 in Et₂O (250.0 mL) was added *n*-BuLi (1.60 M in hexane, 10.1 mL, 16.2 mmol) at 0 °C. After stirring for 4 h at room temperature, DMF (2.45 mL, 25.0 mmol) was added to the reaction mixture at 0 °C. After being stirred for 10 min at 0 °C, the reaction was stopped by adding saturated aqueous NH₄Cl. The crude products were extracted with EtOAc (x3) and the combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane/EtOAc = 6/1) to give s40 (2.59 g, 75% from s38) as a pale yellow solid.

Mp. 95–97 °C.

IR (KBr) 2949, 2901, 2828, 1677, 1622, 1596, 1505, 1464, 1424, 1371, 1332, 1253, 1230, 1155, 1076, 1016, 932, 863 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 3.55 (s, 3H), 3.65 (s, 3H), 5.27 (s, 2H), 5.40 (s, 2H), 7.28 (d, 1H, *J* = 8.4 Hz), 7.49 (dd, 1H, *J* = 8.4, 8.4 Hz), 7.85 (d, 1H, *J* = 8.4 Hz), 7.87 (d, 1H, *J* = 8.8 Hz), 8.13 (d, 1H, *J* = 8.8 Hz), 10.54 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 56.2, 58.0, 94.6, 101.7, 111.2, 116.4, 118.9, 121.8, 125.9, 127.0, 129.2, 130.1, 153.1, 158.9, 190.4.

Anal. Calcd for C₁₅H₁₆O₅: C, 65.21; H, 5.84. Found: C, 65.44; H, 5.72.

Synthesis of 1-(2,6-bis(methoxymethoxy)phenyl)-5-methoxy-2-naphthaldehyde (s45):

To a solution of **s40** (1.32 g, 4.78 mmol) in Benzene (47.8 mL) was added Montmorillonite K-10 (1.32 g) at room temperature. After being stirred for 3 h, the crude material was filtered through Celite[®] pad, and the resulting filtrate was concentrated in vacuo to give crude **s41** (1.095 g). This material was used to next reaction without further purification.

To a solution of **s41** in acetone (45.0 mL) were successively added K_2CO_3 (1.32 g, 9.55 mmol) and PhNTf₂ (2.22 g, 6.21 mmol) at 0 °C. After being stirred for 7 h at room temperature, the reaction was stopped by adding saturated aqueous NaHCO₃ at 0 °C.

The crude products were extracted with EtOAc (x5) and the combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane/EtOAc = 10/1) to give s42 (2.00 g) as a pale yellow oil with inseparable impurities. This material was used to next reaction without further purification.

To a solution of **s42** in 1,4-dioxane (30.0 mL) was added conc. HCl (6.0 mL) at 0 °C. After being stirred for 4 h at room temperature, the reaction was stopped by adding saturated aqueous NaHCO₃ at 0 °C. The crude products were extracted with EtOAc (x5) and the combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated in vacuo to give crude **s43** (1.90 g). This material was used to next reaction without further purification.

To a solution of s43 in DMF (22.0 mL) were successively added K_2CO_3 (1.52 g, 11.0 mmol) and MeI (0.62 mL, 9.96 mmol) at 0 °C. After being stirred for 3.5 h at room temperature, the reaction was stopped by adding 1 M aqueous HCl. The crude products were extracted with EtOAc(x4) and the combined organic extracts were washed with 1 M aqueous HCl (x6), brine, dried (Na₂SO₄), and concentrated in vacuo to give crude s44 (1.81 g). This material was used to next reaction without further purification.

The mixture of boronic acid **s3** (1.50 g, 6.20 mmol), triflate **s44**, Pd(PPh₃)₄ (276 mg, 0.239 mmol), K₃PO₄ (3.04 g, 14.3 mmol), DME (20.0 mL), and H₂O (5.0 mL) were heated at reflux for 4 h. After cooling to room temperature, the reaction was stopped by adding H₂O. The crude mixture was extracted with EtOAc (x3) and the combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane/EtOAc = 6/1) to give **s45** (1.10 g, 60% from **s40**) as a pale yellow solid.

Mp. 83-85 °C.

IR (KBr) 2953, 2900, 2846, 1677, 1615, 1590, 1464, 1442, 1397, 1374, 1322, 1234, 1204, 1153, 1098, 1081, 1041, 986, 922, 897, 859, 815 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 3.16 (s, 6H), 4.20 (s, 3H), 4.93 (d, 1H, *J* = 6.8 Hz), 4.97 (d, 1H, *J* = 6.8 Hz), 6.95 (d, 2H, *J* = 8.0 Hz), 7.30–7.42 (m, 2H), 7.54 (dd, 1H, *J* = 1.2, 7.6 Hz), 7.65 (dd, 1H, *J* = 7.6, 7.6 Hz), 7.72 (d, 1H, *J* = 8.8 Hz), 8.29 (d, 1H, *J* = 8.0 Hz), 10.60 (s, 1H).

S20

¹³C NMR (100 MHz, CDCl₃) δ 55.9, 65.8, 94.3, 108.6, 119.2, 122.0, 122.5, 123.0, 124.4, 126.3, 128.0, 129.6, 131.5, 133.7, 137.3, 155.7, 162.8, 189.8.
Anal. Calcd for C₂₂H₂₂O₆: C, 69.10; H, 5.80. Found: C, 68.88; H, 5.95.

2-(5-Methoxy-2-(methoxymethyl)naphthalen-1-yl)benzene-1,3-diol (3s).

White solid.

Yield: 75% (prepared from s45).

Mp. 213–215 °C.

IR (KBr) 3376, 3324, 2926, 2844, 1617, 1587, 1499, 1460, 1413, 1378, 1311, 1254, 1237, 1192, 1176, 1147, 1099, 1087, 1007, 980, 937, 861, 810, 794 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 3.44 (s, 3H), 4.02 (s, 3H), 4.60 (brs, 2H), 4.70 (s, 2H), 6.67 (d, 2H, *J* = 8.4 Hz), 7.26 (dd, 1H, *J* = 8.4, 8.4 Hz), 7.42 (d, 1H, *J* = 8.4 Hz), 7.53 (d, 1H, *J* = 8.4 Hz), 7.57 (dd, 1H, *J* = 1.2, 7.6 Hz), 7.67 (d, 1H, *J* = 7.6, 8.4 Hz), 8.31 (ddd, 1H, *J* = 1.2, 8.4, 8.4 Hz).

¹³C NMR (100 MHz, CDCl₃) δ 58.4, 63.1, 69.1, 107.7, 113.2, 121.3, 124.3, 126.2, 127.7, 128.0, 128.5, 129.0, 130.0, 130.1, 133.5, 154.0, 154.6.

Anal. Calcd for C₁₉H₁₈O₄: C, 73.53; H, 5.85. Found: C, 73.75; H, 5.97.

2. Synthesis of chiral biaryls.

General Procedure for the formation of monobrominated-biaryls.

To a suspension of biphenol **3** (0.20 mmol), chiral phosphoric acid **2j** (0.02 mmol, 10 mol%) and powered MS13X (25 mg, activated) in CH_2Cl_2 (1.0 mL) and toluene (1.0 mL) was added *N*-bromophthalimide (0.20 mmol, 1 equiv.) at -20 °C. After completion of the reaction, the reaction was stopped by adding saturated aqueous NaHCO₃. The crude mixture was extracted with EtOAc (x3) and the combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated in vacuo. The residue was purified by preparative TLC to give monobromide **4**.

(*R*)-3-Bromo-2'-methoxy-6'-(methoxymethyl)-4'-methylbiphenyl-2,6-diol (4n).

Colorless amorphous.

Yield: 70%, 17% ee (The enantioselectivity was determined after methylation of two hydoxy groups)

IR (neat) 3378, 2931, 2823, 1611, 1574, 1466, 1444, 1427, 1325, 1305, 1227, 1191, 1082, 1020, 867, 801 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 2.53 (s, 3H), 3.47 (s, 3H), 3.52 (s, 3H), 4.52 (d, 1H, J = 12.0 Hz), 4.56 (d, 1H, J = 12.0 Hz), 5.72 (s, 1H), 5.78 (brs, 1H), 6.57 (d, 1H, J = 8.8 Hz), 7.12 (d, 1H, J = 1.6 Hz), 7.31 (d, 1H, J = 1.6 Hz), 7.37 (d, 1H, J = 8.8 Hz).

¹³C NMR (100 MHz, CDCl₃) δ 20.8, 58.5, 62.1, 69.6, 101.4, 110.4, 114.0, 124.6, 131.3, 131.8, 132.1, 132.5, 134.8, 150.0, 153.6, 153.8.

Anal. Calcd for C₁₆H₁₇BrO₄: C, 54.41; H, 4.85. Found: C, 54.56; H, 4.65.

(*R*)-3-bromo-2,2',6-trimethoxy-6'-(methoxymethyl)-4'-methylbiphenyl (**s46**). Colorless oil.

Yield: 90%, 17% ee.

HPLC [DAICEL CHIRALPAK[®] AD-H, ϕ 0.46 x 25 cm, hexane/*i*-PrOH = 30/1, 0.2 mL/min, 254 nm, retention time (min) = 28.3 (41.6%), 30.3 (58.4%)].

IR (neat) 2935, 2832, 1567, 1461, 1428, 1401, 1382, 1284, 1265, 1225, 1191, 1167, 1142, 1091, 1011, 917, 866, 801 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 2.34 (s, 3H), 3.45 (s, 3H), 3.46 (s, 3H), 3.53 (s, 3H), 3.73 (s, 3H), 4.52 (d, 1H, *J* = 12.0 Hz), 4.55 (d, 1H, *J* = 12.0 Hz), 6.67 (d, 1H, *J* = 8.4 Hz), 6.93 (d, 1H, *J* = 2.0 Hz), 7.25 (d, 1H, *J* = 2.0 Hz), 7.51 (d, 1H, *J* = 8.4 Hz).

¹³C NMR (100 MHz, CDCl₃) δ 20.8, 56.0, 58.4, 60.7, 61.3, 69.7, 108.0, 108.4, 123.7, 127.0, 130.0, 130.9, 131.9, 132.3, 132.8, 154.1, 155.5, 157.5.

Anal. Calcd for C₁₈H₂₁BrO₄: C, 56.70; H, 5.55. Found: C, 56.95; H, 5.65.

(S)-4-Bromo-2-(2-methoxynaphthalen-1-yl)benzene-1,3-diol (40).

White solid.

Yield: 89%, 1% ee.

HPLC [DAICEL CHIRALCEL[®] OD-H, ϕ 0.46 x 25 cm, hexane/*i*-PrOH = 10/1, 0.5 mL/min, 220 nm, retention time (min) = 57.9 (50.4%), 64.9 (49.6%)].

IR (neat) 3498, 3059, 2938, 2840, 1619, 1593, 1573, 1508, 1480, 1466, 1446, 1381, 1334, 1306, 1277, 1258, 1173, 1148, 1108, 1066, 1018, 980, 907, 809, 732 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 3.90 (s, 3H), 4.70 (brs, 1H), 5.29 (s, 1H), 6.62 (d, 1H, J = 8.8 Hz), 7.32–7.52 (m, 5H), 7.82–7.90 (m, 1H), 8.00 (d, 1H, J = 8.8 Hz).

¹³C NMR (100 MHz, CDCl₃) δ 56.7, 100.7, 109.2, 110.7, 112.0, 113.4, 124.1, 124.4, 127.8, 128.3, 129.3, 131.8, 132.1, 133.1, 150.6, 154.1, 155.7.

Anal. Calcd for C₁₇H₁₃BrO₃: C, 59.15; H, 3.80. Found: C, 59.03; H, 4.07.

(*R*)-4-Bromo-2-(3-methoxy-1-(methoxymethyl)naphthalen-2-yl)benzene-1,3-diol (**4p**). White solid.

Yield: 90%, 29% ee.

HPLC [DAICEL CHIRALCEL[®] OJ-H, ϕ 0.46 x 25 cm, hexane/*i*-PrOH = 10/1, 1.0 mL/min, 254 nm, retention time (min) = 44.2 (35.7%), 57.9 (64.3%)].

 $[\alpha]_{D}^{25}$ +11.1 (c 1.000, CH₃COCH₃).

Mp. 195–197 °C.

IR (KBr) 3467, 3311, 3073, 2930, 2825, 1623, 1598, 1575, 1456, 1439, 1288, 1234, 1166, 1119, 1070, 1019, 998, 930, 865, 801, 745 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 3.40 (s, 3H), 3.85 (s, 3H), 4.47 (d, 1H, *J* = 10.4 Hz), 4.84 (d, 1H, *J* = 10.4 Hz), 5.52 (s, 1H), 5.64 (brs, 1H), 6.64 (d, 1H, *J* = 8.8 Hz), 7.30 (s, 1H) 7.36–7.60 (m, 3H), 7.82 (dd, 1H, *J* = 0.8, 8.4 Hz), 8.11 (d, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 56.0, 58.9, 69.4, 101.3, 107.4, 110.5, 113.0, 123.1, 124.5, 124.7, 127.1, 127.4, 127.8, 132.0, 135.1, 135.3, 150.5, 154.5, 155.1.

Anal. Calcd for C₁₉H₁₇BrO₄: C, 58.63; H, 4.40. Found: C, 58.43; H, 4.54.

(*S*)-4-Bromo-2-(4-methoxy-2-(methoxymethyl)naphthalen-1-yl)benzene-1,3-diol (**4r**). Colorless solid.

Yield: 85%, 51% ee.

HPLC [DAICEL CHIRALCEL[®] OD-H, ϕ 0.46 x 25 cm, hexane/*i*-PrOH = 10/1, 0.5 mL/min, 254 nm, retention time (min) = 23.1 (75.5%), 32.4 (24.5%)].

IR (neat) 3502, 2935, 2850, 1621, 1592, 1576, 1510, 1443, 1375, 1347, 1309, 1233, 1191, 1162, 1136, 1105, 1023, 976, 909, 851, 802, 768 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 3.40 (s, 3H), 4.09 (s, 3H), 4.29 (d, 1H, *J* = 11.2 Hz), 4.36 (d, 1H, *J* = 11.2 Hz), 5.14 (brs, 1H), 5.41 (s, 1H), 6.64 (d, 1H, *J* = 8.4 Hz), 7.07 (s, 1H), 6.35 (d, 1H, *J* = 8.4 Hz), 7.40–7.58 (m, 3H), 8.33 (d, 1H, *J* = 8.4 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 55.7, 58.7, 73.3, 100.9, 104.4, 109.8, 113.0, 118.1, 122.4, 124.8, 125.9, 126.0, 127.8, 132.4, 133.1, 137.2, 150.8, 154.5, 156.8. Anal. Calcd for C₁₉H₁₇BrO₄: C, 58.63; H, 4.40. Found: C, 58.48; H, 4.68.

(*S*)-4-Bromo-2-(5-methoxy-2-(methoxymethyl)naphthalen-1-yl)benzene-1,3-diol (**4s**). Colorless solid.

Colorless solid.

Yield: 88%, 15% ee.

HPLC [DAICEL CHIRALCEL[®] OD-H, ϕ 0.46 x 25 cm, hexane/*i*-PrOH = 10/1, 0.5 mL/min, 254 nm, retention time (min) = 40.2 (57.4%), 48.1 (42.6%)].

IR (neat) 3418, 2931, 2853, 1613, 1576, 1444, 1409, 1376, 1308, 1190, 1170, 1075, 1019, 991, 909, 862, 811, 770 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 3.43 (s, 3H), 4.00 (s, 3H), 4.66 (d, 1H, *J* = 11.6 Hz), 4.70 (d, 1H, *J* = 11.6 Hz), 4.81 (brs, 1H), 5.37 (s, 1H), 6.61 (d, 1H, *J* = 8.4 Hz), 7.35 (d, 1H, *J* = 8.4 Hz), 7.40–7.56 (m, 3H), 7.63 (dd, 1H, *J* = 7.2, 8.4 Hz), 8.26 (d, 1H, *J* = 8.4 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 58.3, 63.1, 69.1, 100.8, 109.3, 114.5, 121.3, 124.1, 126.1, 127.4, 128.3, 128.7, 128.8, 129.5, 132.1, 133.2, 150.4, 153.9, 154.5.

Anal. Calcd for C₁₉H₁₇BrO₄: C, 58.63; H, 4.40. Found: C, 58.92; H, 4.46.

(*S*)-4-Bromo-2-(4,5-dimethoxy-2-(methoxymethyl)naphthalen-1-yl)benzene-1,3-diol (**4t**).

Colorless solid.

Yield: 68%, 9% ee.

HPLC [DAICEL CHIRALPAK[®] AD-H, ϕ 0.46 x 25 cm, hexane/*i*-PrOH = 5/1, 1.0 mL/min, 220 nm, retention time (min) = 17.2 (45.5%), 31.0 (54.5%)].

IR (neat) 3420, 2931, 2842, 1613, 1591, 1463, 1389, 1339, 1262, 1166, 1090, 909, 809, 732 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 3.33 (s, 3H), 3.92 (s, 3H), 3.96 (s, 3H), 4.26 (d, 1H, J = 11.6 Hz), 4.31 (d, 1H, J = 11.6 Hz), 5.22 (brs, 1H), 5.50 (s, 1H), 6.64 (d, 1H, J = 8.0 Hz), 6.81 (d, 1H, J = 8.0 Hz), 6.95 (d, 1H, J = 8.0 Hz), 7.00 (s, 1H), 7.29 (dd, 1H, J = 8.0, 8.4 Hz), 7.48 (d, 1H, J = 8.4 Hz).

¹³C NMR (100 MHz, CDCl₃) δ 56.2, 56.4, 58.7, 72.9, 100.8, 105.7, 107.0, 109.7, 113.4, 117.5, 117.5, 127.8, 132.4, 136.0, 138.0, 150.8, 154.4, 157.4, 158.4.

Anal. Calcd for C₂₀H₁₉BrO₅: C, 57.29; H, 4.57. Found: C, 57.01; H, 4.74.

3. The results of ¹H NMR experiment.

All ¹H NMR experiments were conducted with substrate **3** (0.020 mmol) and chiral phosphoric acid **1** or **2** (0.020 mmol) in NMR solvent (0.40 mL).

Figure 1. The correlation between the selectivity and the peak difference of Ha and Hb ($\Delta\delta$ |Ha–Hb|/).

Figure 2. Substrate scope and the correlation between the selectivity and $\Delta \delta$ |Ha–Hb|.

4. Determination of the association constant.

The association constants (*K*) of catalyst **2j** and substrate **3a**, catalyst **2j** and NBS were determined by ¹H NMR studies. The data were analyzed with Igor (WaveMetrics) running on a Macintosh computer fitted to the function reported previously.⁶ In this experiment, NBS was used in place of NBP because the alternation of the chemical shift was easy to analyze. The association constant of catalyst **2j** and substrate **3a** ($K = 20.3 \text{ M}^{-1}$) was larger than that of catalyst **2j** and NBS ($K = 11.3 \text{ M}^{-1}$), which revealed the substrate **3a** was easier to interact with catalyst **2j** than NBS.

The ratio of 2j to 3a	chemical shift of Ha (ppm)
0	6.590
0.86	6.2605
1.30	6.154
1.74	6.069
3.11	5.920
4.36	5.831

ical shift by changing the ratio of 2j and 3a.

Figure 4. The alternation of the chemical shift by changing the ratio of 2j and NBS.

4. Control experiment.

The affinity difference between substrates enabled preferential bromination of high affinity substrate (eq. 1). When the mixture of high affinity substrate 3c and low affinity substrate 3o in CH₂Cl₂ was treated with 1 equivalent of NBP in the presence of catalyst 2j and activated MS13X, the corresponding bromide 4c was obtained in 85% whilst the chemical yield of 4o was low (7%). This result also supports our assumption that the degree of affinity between the substrate and the catalyst could be estimated by the peak separation of the enantiotopic hydrogens (Ha and Hb).

+ 91% recovery of 30

5. Computational results.

Cartesian coordinates of each structure

Computational details are shown in ref. 9.

Center	Atomic	Atomic	Coc x	ordinates (A Y	ngstroms) Z
	Number				
2	6	0	2.857244	2.663249	-0.373691
3	6	0	3.447374	1.432982	-0.666994
4	6	0	4.543267	0.974944	0.072562
5	6	0	5.045850	1.756817	1.112213
6	6	0	4.465484	2.986959	1.407623
8	1	0	2.09/403	2 996684	-0.941722
9	1	õ	4.872551	3.560176	2.227503
10	8	0	2.995725	0.631017	-1.653176
11	1	0	1.585429	-0.822722	0.688377
12	8	0	6.069609	1.294099	1.916283
13	1	0	6.796232	0.934020	1.360922
14	6	0	4.99/382	-0.435044	-0.144680
16	6	0	6.173901	-0.776686	-0.799379
17	6	0	4.494140	-2.780850	0.122146
18	6	0	6.500348	-2.110548	-0.990515
19	6	0	5.659093	-3.110972	-0.544253
20	1	0	3.826105	-3.531084	0.489202
21	1	0	7.413834	-2.363865	-1.491729
22	6	0	7 111404	0 309523	-1 254402
24	1	0	6.566338	1.102651	-1.747616
25	1	Ō	7.860384	-0.083954	-1.929756
26	8	0	7.767396	0.841003	-0.071499
27	8	0	3.027041	-1.133043	1.035311
28	6	0	8.607469	1.987997	-0.310366
29	1	0	9.42/818	2 202712	-0.969403
31	1	0	8.037045	2.799410	-0.746380
32	6	ō	3.233434	-0.877379	2.469855
33	1	0	3.386318	-1.820609	2.970883
34	1	0	2.329177	-0.403970	2.812551
35	1	0	4.086492	-0.231690	2.598402
36	1	0	2.041075	0.800318	-1.799963
37	8	0	0.329646	0./32512	-1.468065
39	8	0	-1.257006	-1.135117	-0.895448
40	8	õ	-1.286303	0.926086	0.580588
41	8	0	0.597208	-0.593002	0.800923
42	6	0	-2.183237	-1.702219	-0.037052
43	6	0	-2.435565	1.352451	-0.071590
44	6	0	-3.295603	-0.940528	0.323680
45	6	0	-2.007899	-3.012917	-0.471723
47	6	0	-3.451817	0.418064	-0.276860
48	6	0	-4.205113	-1.452418	1.268011
49	6	0	-2.977674	-3.529871	1.244670
50	6	0	-0.855840	-3.878241	-0.043412
51	6	0	-3.711203	3.025312	-1.159417
52	6	0	-1.542281	3.746613	-1.057206
54	6	0	-4.047945	-2 769172	1 714179
55	6	0	-5.278662	-0.543566	1.889469
56	1	0	-2.868771	-4.554751	1.579147
57	6	0	-0.839258	-4.414052	-1.334746
58	6	0	0.131929	-4.229522	0.881506
59	6	0	-4.696588	2.095579	-1.491692
61	6	0	-3.628204	4.326086	1.130824
62	6	0	-0.687584	4.235253	-1.132804
63	6	ō	-5.563964	-0.301764	-1.525537
64	6	0	-5.046281	-3.425924	2.678182
65	1	0	-5.661460	0.146462	1.154754
66	1	0	-4.785237	0.049889	2.655069
67	6	0	-6.424611	-1.336203	2.535715
68	6	0	U.185613	-5.333528	-1.700523
70	6	0	1.135695	-9.083113	0.513359
71	6	0	0.182502	-3.676033	2.207272
72	6	0	-5.918718	2.576545	-2.286605
73	6	0	-0.706819	5.432993	1.409437
74	6	0	-2.416533	3.856934	2.182951
75	6	0	0.143134	5.359670	-0.850645
76	6	0	-0.597572	3.641165	-2.438541
78	1	0	-5.104/55	-0.813231	-2.30/040
79	6	0	-6.906630	0.292398	-1.976586
80	1	0	-5.733659	-4.031649	2.093861
81	1	0	-4.509599	-4.091834	3.343873
82	6	0	-5.851805	-2.397866	3.485986
83	1	0	-7.073145	-0.653430	3.073508
84	1	0	-7.019223	-1.820825	1.767057
85	6	0	0.191956	-5.878481	-3.027034

86	6	0	1.141005	-5.699005	-0.766789
87	6	0	-1.786184	-4.618929	-3.555873
88	1	0	-2.599460	-3.392331	-2.056552
89	6	0	2.113316	-5.564890	1.488303
90	6	0	1.120432	-4.069966	3.090263
91	1	0	-0.532563	-2.927369	2.471441
92	1	0	-5.598962	3.313649	-3.013863
93	1	0	-6.599007	3.069932	-1.597673
94	6	0	-6.661260	1.426512	-2.982624
95	6	0	-0.734794	6.021865	2.716667
96	6	0	0.114099	5.930919	0.410607
97	6	0	-2.410700	4.438763	3.397499
98	1	0	-3.059273	3.026844	1.982677
99	6	0	0.990035	5.876912	-1.886907
100	6	0	0.218393	4.154942	-3.378730
101	1	0	-1.158479	2.754109	-2.633724
102	1	0	-7.447365	0.679933	-1.118247
103	1	0	-7.511813	-0.488878	-2.423074
104	1	0	-5.208717	-1.917664	4.216414
105	1	0	-6.647747	-2.900988	4.023626
106	6	0	-0.753958	-5.536039	-3.920217
107	1	0	0.973059	-6.566072	-3.287430
108	1	0	1.898568	-6.408522	-1.040953
109	1	0	-2.529028	-4.356454	-4.282469
110	1	0	2.847860	-6.293507	1.202986
111	6	0	2.102705	-5.042918	2.729316
112	1	0	1.142633	-3.648219	4.075502
113	1	0	-6.066844	1.051624	-3.809498
114	1	0	-7.599321	1.791149	-3.386066
115	6	0	-1.551612	5.545381	3.673836
116	1	0	-0.085425	6.853570	2.910460
117	1	0	0.736584	6.781191	0.616947
118	1	0	-3.053280	4.072548	4.173326
119	1	0	1.600653	6.729933	-1.662545
120	6	0	1.021043	5.304341	-3.103913
121	1	0	0.287002	3.690029	-4.341674
122	1	0	-0.742512	-5.944977	-4.910805
123	1	0	2.830704	-5.347144	3.455045
124	1	0	-1.566313	5.989300	4.649275
125	1	0	1.658496	5.693034	-3.872832

С					
ONIOM:	extrapolated	energy	=	-6284.065901895045	A.U.

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Type	х	Y	Z
			0. 201050	2 250550	
1	6	0	-0.701059	-3.350558	3.335/53
2	6	0	0.210699	-3.206614	4.757181
3	6	0	0.700928	-1.761980	4.684865
4	6	0	0.055479	-1.237205	3.414/72
5	/	0	-0.708868	-2.143432	2.831370
0	1	0	1.010370	-3.939159	4.662329
/	1	0	0.384022	-1.141086	5.523425
8	8	0	0.265148	-0.0563/5	3.031549
9	8	0	-1.315217	-4.339828	3.228013
10	1	0	1./8216/	-1.6646/3	4.586/6/
11	1	0	-0.360735	-3.438427	5.655148
12	35	0	-1.921133	-1.989241	0.968659
13	6	0	-3.930300	-3.014446	-0.689070
14	6	0	-3.004505	-1.930692	-0.924203
15	6	0	-3.563774	-0.594780	-0.953228
16	6	0	-4.903965	-0.350073	-0.618546
17	6	0	-5.723003	-1.439127	-0.322261
18	6	0	-5.220827	-2.775796	-0.365088
19	1	0	-3.535329	-4.019427	-0.730463
20	1	0	-2.168061	-2.109369	-1.589766
21	1	0	-5.918755	-3.562683	-0.125376
22	8	0	-2.822184	0.415257	-1.312815
23	1	0	0.015810	0.324971	1.846924
24	8	0	-7.020485	-1.337755	-0.006007
25	1	0	-7.493733	-0.561687	-0.401724
26	6	0	-5.324135	1.076058	-0.425300
27	6	0	-4.697823	1.777550	0.612833
28	6	0	-6.255861	1.732290	-1.212632
29	6	0	-5.000204	3.107339	0.831192
30	6	0	-6.571269	3.064413	-0.971366
31	6	0	-5.938817	3.746529	0.041789
32	1	0	-4.505680	3.649285	1.608475
33	1	0	-7.302746	3.555166	-1.581910
34	1	0	-6.170340	4.777227	0.223410
35	6	0	-6.986082	1.005431	-2.309371
36	1	0	-6.343483	0.296990	-2.813645
37	1	0	-7.386696	1.702854	-3.032520
38	8	0	-8.088601	0.295410	-1.675976
39	8	0	-3.802326	1.082019	1.360892
40	6	0	-8.922158	-0.471472	-2.570098
41	1	0	-9.397377	0.180939	-3.292099
42	1	ō	-9.673322	-0.948071	-1.960771
43	1	0	-8.342474	-1.224317	-3.091059
44	6	õ	-2.838627	1.766213	2,195362
45	1	õ	-2.263940	2.471078	1.616261
	-			4.000555	0.567040
46	1	0	-2.182329	1.003555	2.36/843

48	1	0	-1.853385	0.158789	-1.438889
49	8	0	-0 316765	-0 203540	-1 543534
12		0	0.510705	0.200040	1.040007
50	15	0	0.539771	0.320598	-0.439607
51	8	0	1.444077	1.517263	-1.072665
52	8	0	1.657239	-0.744627	0.091144
5.0	0	0	0 105205	0 047060	0.043646
55	0	0	-0.103293	0.04/005	0.043040
54	6	0	2.534221	1.936056	-0.331445
55	6	0	2.645645	-1.094648	-0.816828
56	6	0	3.660375	1.111917	-0.314756
57	c	0	2 406043	2 155060	0.224401
57	0	0	2.490045	5.155660	0.334491
58	6	0	2.653290	-2.371179	-1.368271
59	6	0	3.629702	-0.150500	-1.113700
60	6	0	4 756674	1 452770	0 499069
C1	c	0	2 620447	2 511/52	1 050570
01	0	0	3.029447	3.311433	1.038570
62	6	0	1.325803	4.101553	0.278420
63	6	0	3.631539	-2.641064	-2.318203
64	6	0	1 729016	-3 463029	-0 901209
65	6	0	4.550044	0.417062	0.140000
60	0	0	4.550844	-0.41/063	-2.143969
66	6	0	4.740487	2.677079	1.176020
67	6	0	5.894124	0.446131	0.739873
68	1	0	3.625825	4.464349	1.574422
69	6	0	1 131663	4 889447	-0.859530
0.5	0	0	1.151005	4.003447	0.0333330
70	0	0	0.5161//	4.2/1046	1.4051/6
71	6	0	4.546496	-1.678492	-2.747537
72	1	0	3.660949	-3.633237	-2.753321
73	6	0	2.037074	-4.142077	0.282166
74	6	0	0 643155	-3 859695	-1 682355
75	6	0	5.4CE00C	0.000000	2.672002
15	0	0	0.460886	0.699466	-2.6/2803
76	6	0	5.929231	3.155811	2.021279
77	1	0	6.104548	-0.108939	-0.160181
78	1	0	5.534948	-0.268375	1,476465
70	6	0	7 171766	1 111250	1 272461
19	0	0	7.171700	5.000000	1.2/3401
80	6	U	0.108/90	5.880926	-0.861150
81	6	0	1.933760	4.749351	-2.042496
82	6	0	-0.485072	5.286016	1.402490
83	6	0	0.639652	3.450981	2.579443
9.0	6	ő	5 560952	-2 064431	-3 933597
04	0	0	5.500552	-2.004451	-5.055507
85	6	0	1.224/1/	-5.235408	0.695694
86	6	0	3.159641	-3.789500	1.106605
87	6	0	-0.137202	-4.983343	-1.280534
88	6	0	0.266996	-3.171381	-2.887291
00	1	0	4 962079	1 210122	-2 221622
0.9	1	0	4.002078	1.310132	-3.331033
90	1	0	5./9602/	1.331097	-1.863036
91	6	0	6.666583	0.156129	-3.461585
92	1	0	6.516544	3.846088	1.421738
93	1	0	5.555537	3.704226	2.878088
0.4	6	0	6 032260	2 000022	2 479126
54	0	0	0.032200	2.000555	2.470120
95	1	0	7.884335	0.343567	1.554/12
96	1	0	7.626960	1.715332	0.494312
97	6	0	-0.080382	6.684450	-2.033963
98	6	0	-0 666644	6 063611	0 271485
0.0	6	0	1 722601	5 525202	-2 122465
3.9	0	0	1.722001	1.005750	-5.122405
100	1	0	2.701178	4.005/53	-2.050862
101	6	0	-1.277282	5.486239	2.582360
102	6	0	-0.129990	3.668945	3.663049
103	1	0	1.326703	2.633789	2.565376
104	1	0	E 0706E6	-2 701004	-4 560070
1.05	-	0	5.072656	-2.701004	-4.362272
105	1	0	6.352359	-2.040210	-3.308/11
106	6	0	6.181377	-0.840994	-4.524233
107	6	0	1.540076	-5.916868	1.917341
108	6	0	0.161520	-5.635026	-0.096976
109	6	0	3 432718	-4 468300	2 237945
110	1	0	3 700473	2.075400	0.700641
110	1	0	3.760473	-2.973409	0.799041
111	6	0	-1.216853	-5.416197	-2.121452
112	6	0	-0.761081	-3.606813	-3.641928
113	1	0	0.796593	-2.281953	-3.151292
114	1	0	7.358765	-0.340417	-2.787991
115	1	0	7 102202	0 002220	-3 026429
115	1	0	7.195505	0.902239	-3.920420
116	1	0	6.320686	1.409005	3.230276
117	1	0	7.735137	2.400262	2.926665
118	6	0	0.693159	6.515224	-3.121601
119	1	0	-0.857517	7.423890	-2.019915
120	1	0	-1 422752	6 925704	0.273044
1.01	1	0	2. 326406	E 4033704	3.000600
121	T	U	2.326426	5.4033/9	-3.999680
122	1	0	-2.011260	6.268932	2.571154
123	6	0	-1.099179	4.719109	3.673897
124	1	0	-0.034120	3.034696	4.521346
125	1	0	5 441633	-0 360892	-5 156577
100	-	0	7 000050	-1 150541	-5 15(004
120	1	0	1.003256	-1.138541	-0.100234
127	6	0	2.605475	-5.555065	2.657062
128	1	0	0.901140	-6.720468	2.225621
129	1	0	-0.441651	-6.465565	0.215262
130	1	0	4.280172	-4.197842	2.836587
1 21	1	0	-1 777104	-6 290304	-1 819677
120	-	0	-1.511062	-0.200394	-1.0130//
1.52	6	0	-1.511263	-4.162/50	-3.20123/
133	1	0	-1.033726	-3.079029	-4.534018
134	1	0	0.545191	7.117776	-3.995614
135	1	0	-1.689054	4.878877	4.554915
136	1	0	2.844231	-6.078346	3.561896
137	1	0	-2 314332	-5 095173	-3.888781

References

- (a) T. Matsumoto, T.Konegawa, T. Nakamura, K. Suzuki, *Synlett* 2002, 122; (b) K. Okuyama, K. Shingubara, S. Tsujiyama, K. Suzuki, T. Matsumoto, *Synlett* 2009, 941.
- 2) K. Mori, Y. Ichikawa, M. Kobayashi, Y. Shibata, M. Yamanaka, T. Akiyama, *J. Am. Chem. Soc.* 2013, **135**, 3964.
- 3) A. S. Kalgutkar, K. R. Kozak, B. C. Crews, G. P. Hochegesang, Jr., L. J. Marnett, J. Med. Chem. 1998, 41, 4800.
- 4) R. L. Nyland II, M. Luo, M. R. Kelley, R. F. Borch, J. Med. Chem. 2010, 53, 1200.
- 5) Y. Kitani, A. Morita, T. Kumamoto, T. Ishikawa, Helv. Chim. Acta. 2002, 85, 1186.
- 6) M. Eriksson, M. Leijon, C. Hiort, B. Norden, A. Graslund, *Biochemistry*. 1994, **33**, 5031.