

Supporting Information

Programmed Synthesis of Arylthiazoles through Sequential C–H Couplings

Satoshi Tani, Takahiro N. Uehara, Junichiro Yamaguchi, and Kenichiro Itami*

Institute of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan

E-mail: itami.kenichiro@a.mbox.nagoya-u.ac.jp

Table of Contents

1.	General	S2
2.	Assignment of Aryl Groups	S 3
3.	Synthesis of 2-Arylthiazoles	S4-S10
4.	Synthesis of 5-Arylthiazoles	S11–S17
5.	Synthesis of 4-Arylthiazoles	S18-S24
6.	Synthesis of 2,5-Diarylthiazoles	S25-S35
7.	Synthesis of 2,4-Diarylthiazoles	S36-S48
8.	Synthesis of 4,5-Diarylthiazoles	S49-S56
9.	Synthesis of Triarylthiazoles	S57–S74
10.	¹ H NMR and ¹³ C NMR spectra	S75-S400

1. General

Unless otherwise noted, all materials including dry solvents were obtained from commercial suppliers and used without further purification. Thiazole (1), $Pd(OAc)_2$, 2,2'-bipyridyl, and $Ni(OAc)_2$, $PdCl_2(dppf) \cdot CH_2Cl_2$ were obtained from Wako Chemicals. $Pd[(Pt-Bu_3)]_2$ was obtained from Strem Chemicals. $PMe(t-Bu)_2 \cdot HBF_4$ was obtained from Sigma-Aldrich. PPh₃ was obtained from Nakarai Tesque. 4-Bromo-2-propylpyridine (11)^[1], diphenyl(thiazol-2-yl)methanol (5)^[2], $[Pd(phen)_2](PF_6)_2^{[3]}$, $Pd(bipy)Cl_2^{[4]}$ was synthesized according to procedures reported in the literature. Unless otherwise noted, all reactions were performed with dry solvents under an atmosphere of argon in flame-dried glassware, using standard vacuum-line techniques. All work-up and purification procedures were carried out with reagent-grade solvents in air.

Analytical thin-layer chromatography (TLC) was performed using E. Merck silica gel 60 F₂₅₄ precoated plates (0.25 mm). The developed chromatogram was analyzed by UV lamp (254 nm) and ethanolic phosphomolybdic acid/sulfuric acid. Flash column chromatography was performed with E. Merck silica gel 60 (230–400 mesh). Preparative recycling gel permeation chromatography (GPC) was performed with a JAI LC-9204 instrument equipped with JAIGEL-1H/JAIGEL-2H columns using chloroform as an eluent. Preparative thin-layer chromatography (PTLC) was performed using Wako-gel® B5-F silica coated plates (0.75 mm) prepared in our laboratory. Chromatorex NH-DM1020 silica gel (Fuji Silysia Chemical Ltd., NH-silica) was used to remove remaining metal. Gas chromatography (GC) analysis was conducted on a Shimazu GC-2010 instrument equipped with a HP-5 column (30 m \times 0.25 mm, Hewlett-Packard). GC/MS analysis was conducted on a Shimazu GCMS-QP2010 instrument equipped with a HP-5 column (30 m × 0.25 mm, Hewlett-Packard). High-resolution mass spectra (HRMS) were obtained from a JMS-T100TD (DART). Nuclear magnetic resonance (NMR) spectra were recorded on a JEOL JNM-ECA-600 (¹H 600 MHz, ¹³C 150 MHz) spectrometer. Chemical shifts for ¹H NMR are expressed in parts per million (ppm) relative to tetramethylsilane (δ 0.00 ppm). Chemical shifts for ¹³C NMR are expressed in ppm relative to $CDCl_3$ (δ 77.0 ppm). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, dd = doublet of doublets, t = triplet, q = quartet, m = multiplet, brs = broad signal), coupling constant (Hz), and integration.

^[1] Comins, D. L.; Mantlo, N. B. J. Org. Chem. 1985, 50, 4410.

^[2] Furukawa, H.; Matsumura, S.; Sugie, A.; Monguchi, D.; Mori, A. Heterocycles 2009, 79, 303.

^[3] Bontempi, A.; Alessio, E.; Chanos, G.; Mestroni, G. J. Mol. Catal. 1987, 42, 67.

^[4] Deshpande, R. M.; Diwakar, M. M.; Chaudhari, R. V. US20060142620

 $5 \frac{4}{\sqrt{5}} \frac{3}{\sqrt{2}} 2$

2. Assignment of Aryl Groups

For simplification, we assigned each aryl groups alphabet as follows and used them in compound assignment.

$$_{5} \swarrow^{4}_{S} \overset{3}{\nearrow}_{2}^{2}$$

3. Synthesis of 2-Arylthiazoles

3.1 Screening of Reaction Conditions

Table S1. Screening of Reaction Conditions

Method A: Pd(OAc)₂ (5 mol%), Cul (2.0 equiv), DMF (0.4 M), 140 °C, 16 h. Method B: Ni(OAc)₂ (10 mol%), bipy (10 mol%), LiO*t*-Bu (2.0 equiv), 1,4-dioxane (0.4 M), 120 °C, 20 h.

 $^{a)}$ GC yield. $^{b)}$ Reaction was conducted with 0.2 M solvent at 150 $^{\circ}\text{C}$ for 48 h. $^{c)}$ Isolated yield.

Method A^[5]

A 20-mL glass vessel equipped with J. Young[®] O-ring tap, containing a magnetic stirring bar, was flame-dried under vacuum and filled with argon after cooling to room temperature. To this vessel were added $Pd(OAc)_2$ (4.5 mg, 0.02 mmol, 5 mol%), CuI (152 mg, 0.8 mmol, 2.0 equiv), iodoarene 2 (0.4 mmol, 1.0 equiv), thiazole (1: 0.8 mmol, 68.1 mg, 2.0 equiv) and DMF (1.0 mL). The vessel was sealed and then stirred at 140 °C for 40 h. After cooling the reaction mixture to room temperature, the mixture was passed through a silica gel pad with EtOAc. The filtrate was evaporated and the residue was purified by PTLC to afford 2-arylthiazole **3**. For further purification, the obtained product **3** was passed through NH-silica gel pad (EtOAc) and then the residue was purified by GPC to afford desired product **3**.

Method B^[6]

^[5] Yamamoto, T.; Muto, K.; Komiyama, M.; Canivet, J.; Yamaguchi, J.; Itami, K. Chem. Eur. J. 2011, 17, 10113.

^[6] Bellina, F.; Cauteruccio, S.; Rossi, R. Eur. J. Org. Chem. 2006, 1379.

 $5 \begin{pmatrix} 4 \\ 5 \end{pmatrix} \\ 1 \end{pmatrix} \\ 1 \end{pmatrix} 2$

Supporting Information (Tani, Uehara, Yamaguchi, Itami) Programmed Synthesis of Arylthiazoles through Sequential C–H Couplings

A 20-mL glass vessel equipped with J. Young[®] O-ring tap, containing a magnetic stirring bar and $Ni(OAc)_2 \cdot 4H_2O$ (10.0 mg, 0.04 mmol, 10 mol%), was flame-dried under vacuum and filled with argon after cooling to room temperature. To this vessel were added 2,2'-bipyridyl (bipy: 6.4 mg, 0.04 mmol, 10 mol%), subliminated LiOt-Bu (68.9 mg, 0.8 mmol, 2.0 equiv), iodoarene **2** (0.4 mmol, 1.0 equiv), thiazole (**1**: 0.6 mmol, 51.1 mg, 1.5 equiv) and 1,4-dioxane (1.0 mL) under a stream of argon. The vessel was sealed and then stirred at 120 °C for 36 h. After cooling the reaction mixture to room temperature, the mixture was passed through a short silica gel pad (EtOAc). The filtrate was evaporated and the residue was purified by PTLC to afford desired product **3**.

Method C^[7]

A 20-mL glass vessel equipped with J. Young[®] O-ring tap, containing a magnetic stirring bar, was flame-dried under vacuum and filled with argon after cooling to room temperature. To this vessel were added $Pd[P(t-Bu)_3]_2$ (4.4 mg, 0.008 mmol, 2 mol%), LiOt-Bu (48 mg, 0.6 mmol, 1.5 equiv), bromoarene **2** (0.4 mmol, 1.0 equiv), thiazole (**1**: 0.6 mmol, 51.1 mg, 1.5 equiv), and dry 1,4-dioxane (1.6 mL). The vessel was sealed and then stirred at 100 °C for 12 h. After cooling the reaction mixture to room temperature, the mixture was passed through a short silica gel pad (EtOAc). The filtrate was evaporated and the residue was purified by GPC and PTLC to afford desired product **3**.

2-Phenylthiazole (3a)^[6]

Purification by PTLC (hexane/EtOAc = 10:1) and GPC gave **3a** as a colorless oil (Method A: 93% yield, Method B: 61% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.31 (d, *J* = 3.0 Hz, 1H), 7.39–7.46 (m, 3H), 7.86 (d, *J* = 3.0 Hz, 1H), 7.97 (dd, *J* = 8.2, 2.0 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 118.8, 126.6, 128.9, 129.9,

^[7] Tamba, S.; Okubo, Y.; Tanaka, S.; Monguchi, D.; Mori, A. J. Org. Chem. 2010, 75, 6998.

133.6, 143.6, 168.4. HRMS (DART) m/z = 162.0377 calcd for C₉H₈NS [M+H]⁺, found: 162.0377.

2-(4-Methylphenyl)thiazole (3b)^[8]

Purification by PTLC (hexane/EtOAc = 10:1) and GPC gave **3b** as a colorless oil (Method A: 84% yield). ¹H NMR (600 MHz, CDCl₃) δ 2.39 (s, 3H), 7.25 (d, *J* = 8.2 Hz, 2H), 7.28 (d, *J* = 3.5 Hz, 1H), 7.84 (d, *J* = 3.5 Hz, 1H), 7.88 (d, *J* = 8.2 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 21.4, 118.3, 126.5, 129.6, 130.9, 140.2, 143.5, 168.6. HRMS (DART) *m*/*z* = 176.0534 calcd for C₁₀H₁₀NS [M+H]⁺, found: 176.0534.

2-(4-(*tert*-Butyl)phenyl)thiazole (3c)

Purification by PTLC (hexane/EtOAc = 5:1) and GPC gave **3c** as a light yellow solid (Method A: 71% yield). ¹H NMR (600 MHz, CDCl₃) δ 1.35 (s, 9H), 7.28 (d, *J* = 3.4 Hz, 1H), 7.46 (d, *J* = 8.6 Hz, 2H), 7.84 (d, *J* = 3.4 Hz, 1H), 7.90 (d, *J* = 8.6 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 31.2, 34.8, 118.3, 125.9, 126.3, 130.9, 143.5, 153.3, 168.5; HRMS (DART) *m*/*z* = 218.1003 calcd for C₁₃H₁₆NS [M+H]⁺, found: 218.1006.

2-(3,5-Dimethylphenyl)thiazole (3e)

Purification by PTLC (hexane/EtOAc = 10:1) and GPC gave **3e** as a light yellow oil (Method A: 80% yield). ¹H NMR (600 MHz, CDCl₃) δ 2.37 (s, 6H), 7.05 (s, 1H), 7.28 (d, *J* = 3.4 Hz, 1H), 7.59 (s, 2H), 7.84 (d, *J* = 3.4 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 21.2, 118.5, 124.4, 131.7, 133.4, 138.6, 143.4, 168.8; HRMS (DART) *m*/*z* = 190.0690 calcd for C₁₁H₁₂NS [M+H]⁺, found: 190.0691.

2-(2-Methylphenyl)thiazole (3f)^[9]

^[8] Turner, G. L.; Morris, J. A.; Greaney, M. F. Angew. Chem., Int. Ed. 2007, 46, 7996.

^[9] Feuerstein, M.; Doucet, H.; Santelli, M. J. Organomet. Chem. 2003, 687, 327.

Purification by PTLC (hexane/EtOAc = 10:1) gave **3f** as a light yellow oil (Method B: 76% yield). ¹H NMR (600 MHz, CDCl₃) δ 2.58 (s, 3H), 7.24–7.34 (m, 3H), 7.37 (d, *J* = 2.8 Hz, 1H), 7.71 (d, *J* = 7.6 Hz, 1H), 7.91 (d, *J* = 2.8 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 21.3, 119.3, 126.0, 129.3, 130.0, 131.4, 132.9, 136.5, 142.9, 167.9. HRMS (DART) *m*/*z* = 176.0534 calcd for C₁₀H₁₀NS [M+H]⁺, found: 176.0533.

2-(4-Methoxyphenyl)thiazole (3g)^[8]

Purification by PTLC (hexane/EtOAc = 10:1) and GPC gave **3g** as a colorless oil (Method A: 77% yield). ¹H NMR (600 MHz, CDCl₃) δ 3.83 (s, 3H), 6.94 (dt, *J* = 8.9, 2.4 Hz, 2H), 7.23 (d, *J* = 3.5 Hz, 1H), 7.79 (d, *J* = 3.5 Hz, 1H), 7.89 (dt, *J* = 8.9, 2.4 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 55.3, 114.2, 117.8, 126.6, 128.0, 143.3, 161.0, 168.2. HRMS (DART) *m*/*z* = 192.0483 calcd for C₁₀H₁₀NOS [M+H]⁺, found: 192.0483.

2-(Benzo[d][1,3]dioxol-5-yl)thiazole (3h)^[10]

Purification by PTLC (hexane/EtOAc = 5:1) and GPC gave **3h** as a white solid (Method A: 77% yield). ¹H NMR (600 MHz, CDCl₃) δ 6.01 (s, 2H), 6.85 (d, *J* = 8.3 Hz, 1H), 7.24 (d, *J* = 3.5 Hz, 1H), 7.44–7.48 (m, 2H), 7.79 (d, *J* = 3.5 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 101.5, 106.8, 108.5, 118.0, 121.0, 128.1, 143.3, 148.2, 149.1, 168.0; HRMS (DART) *m*/*z* = 206.0276 calcd for C₁₀H₈NO₂S [M+H]⁺, found: 206.0274.

2-(3,4,5-Trimethoxylphenyl)thiazole (3i)

^[10] Hwan, M. S.; Jin, C. H.; Jin, L. S.; Uk, C. J.; Ryul, H. J.; Won, J. K.; Woong, O. S. WO9955318

5 5

Supporting Information (Tani, Uehara, Yamaguchi, Itami) Programmed Synthesis of Arylthiazoles through Sequential C–H Couplings

Purification by GPC and then isolated product in CHCl₃ was passed through NH-silica (EtOAc) gave **3i** as a yellow oil (Method C: 70% yield). ¹H NMR (600 MHz, CDCl₃) δ 3.90 (s, 3H), 3.95 (s, 6H), 7.20 (s, 2H), 7.31 (d, *J* = 3.5 Hz, 1H), 7.84 (d, *J* = 3.5 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 56.2, 60.9, 103.7, 118.6, 129.1, 139.7, 143.4, 153.5, 168.2; HRMS (DART) *m*/*z* = 252.0694 calcd for C₁₂H₁₄NO₃S [M+H]⁺, found: 252.0696.

2-(4-Chlorophenyl)thiazole (3j)^[11]

Purification by PTLC (hexane/EtOAc = 10:1) and GPC gave **3j** as a colorless oil (Method A: 88% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.34 (d, *J* = 3.4 Hz, 1H), 7.41 (dt, *J* = 8.9, 2.1 Hz, 2H), 7.86 (d, *J* = 3.4 Hz, 1H), 7.90 (dt, *J* = 8.9, 2.1 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 119.1, 127.8, 129.2, 132.1, 135.9, 143.8, 167.0. HRMS (DART) *m*/*z* = 195.9888 calcd for C₉H₆ClNS [M+H]⁺, found: 195.9989.

2-(4-Trifluoromethylphenyl)thiazole(3k)^[8]

Purification by PTLC (hexane/EtOAc = 10:1) and GPC gave **3k** as a light yellow solid (Method A: 71% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.41 (d, *J* = 3.2 Hz, 1H), 7.70 (d, *J* = 8.2 Hz, 2H), 7.92 (d, *J* = 3.2 Hz, 1H), 8.08 (d, *J* = 8.2 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 119.9, 123.9 (q, *J*_{C-F} = 270.3 Hz), 126.0 (q, *J*_{C-F} = 4.3 Hz), 126.8, 131.6 (q, *J*_{C-F} = 31.7 Hz), 136.7, 144.2, 166.5. HRMS (DART) *m*/*z* = 230.0251 calcd for C₁₀H₇F₃NS [M+H]⁺, found: 230.0252.

Methyl 4-(thiazol-2-yl)benzoate (3n)

Purification by PTLC (hexane/EtOAc = 5:1) and GPC gave 3n as a light yellow solid (Method A: 82% yield).

^[11] Lapointe, D.; Fagnou, K. Org. Lett. 2009, 11, 4160.

₅ **∠**

Supporting Information (Tani, Uehara, Yamaguchi, Itami) Programmed Synthesis of Arylthiazoles through Sequential C–H Couplings

¹H NMR (600 MHz, CDCl₃) δ 3.95 (s, 3H), 7.41 (d, *J* = 3.4 Hz, 1H), 7.93 (d, *J* = 3.4 Hz, 1H), 8.05 (d, *J* = 8.2 Hz, 2H), 8.12 (d, *J* = 8.2 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 52.2, 119.9, 126.4, 130.2, 131.2, 137.4, 144.1, 166.4, 166.9. HRMS (DART) *m*/*z* = 220.0432 calcd for C₁₁H₁₀NO₂S [M+H]⁺, found: 220.0430.

2-(4-Acetylphenyl)thiazole (3o)^[12]

Purification by PTLC (hexane/EtOAc = 3:1) and GPC gave **30** as a white solid (Method A: 75% yield). ¹H NMR (600 MHz, CDCl₃) δ 2.64 (s, 3H), 7.42 (d, *J* = 2.8 Hz, 1H), 7.93 (d, *J* = 2.8 Hz, 1H), 8.03 (d, *J* = 8.2 Hz, 2H), 8.07 (d, *J* = 8.2 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 26.7, 120.0, 126.6, 129.0, 137.5, 137.9, 144.2, 166.9, 197.3. HRMS (DART) *m*/*z* = 204.0483 calcd for C₁₁H₁₀NOS [M+H]⁺, found: 204.0484.

2-(4-(Methylsulfonyl)phenyl)thiazole (3p)

3p

Purification by PTLC (hexane/EtOAc = 2:1) gave **3p** as a white solid (Method C: 41% yield). ¹H NMR (600 MHz, CDCl₃) δ 3.10 (s, 3H), 7.47 (d, *J* = 3.1 Hz, 1H), 7.95 (d, *J* = 3.1 Hz, 1H), 8.02 (d, *J* = 8.6 Hz, 2H), 8.16 (d, *J* = 8.6 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 44.4, 120.6, 127.2, 128.1, 138.2, 141.2, 144.4, 165.7; HRMS (DART) *m*/*z* = 240.0153 calcd for C₁₀H₁₀NO₂S₂[M+H]⁺, found: 240.0153.

2-(4-Nitrophenyl)thiazole (3q)

3q

Purification by PTLC (hexane/EtOAc = 2:1) and GPC gave **3q** as a yellow solid (Method A: 78% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.50 (d, *J* = 3.5 Hz, 1H), 7.97 (d, *J* = 3.5 Hz, 1H), 8.13 (d, *J* = 8.2 Hz, 2H), 8.29 (d, *J* = 8.2 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 121.0, 124.3, 127.1, 138.9, 144.6, 148.3, 165.2; HRMS (DART) *m*/*z* = 207.0228 calcd for C₉H₇N₂O₂S [M+H]⁺, found: 207.0228.

^[12] Jensen, J.; Skjærbæk, N.; Vedsø, P. Synthesis 2001, 128.

2-(5-Methylthiophen-2-yl)thiazole (3r)^[13]

Purification by GPC and PTLC (hexane/EtOAc = 10:1) gave **3r** as a colorless oil (Method C: 50% yield). ¹H NMR (600 MHz, CDCl₃) δ 2.51 (s, 3H), 6.73 (d, J = 4.1 Hz, 1H), 7.19 (d, J = 3.5 Hz, 1H), 7.31 (d, J = 4.1 Hz, 1H), 7.72 (d, J = 3.5 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 15.5, 117.4, 126.1, 126.6, 134.9, 142.7, 143.0, 162.2; HRMS (DART) m/z = 182.0098 calcd for C₈H₈NS₂ [M+H]⁺, found: 182.0099.

2-(3-Pyridyl)thiazole (3t)^[14]

3t

Purification by PTLC (hexane/EtOAc = 1:1) gave **3t** as a yellow solid (Method B: 49% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.39 (dd, *J* = 8.2, 4.8 Hz, 1H), 7.42 (d, *J* = 3.4 Hz, 1H), 7,93 (d, *J* = 3.4 Hz, 1H), 8.26 (dt, *J* = 8.2 Hz, 2.0 Hz, 1H), 8.66 (dd, *J* = 4.8, 1.4 Hz, 1H), 9.19 (d, *J* = 2.0 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 119.6, 123.7, 129.5, 133.6, 144.1, 147.7, 150.7, 164.8; HRMS (DART) *m*/*z* = 163.0330 calcd for C₈H₇N₂S [M+H]⁺, found: 163.0328.

^[13] Kaniskan, N.; Elmali, D.; Civcir, P. U. ARKIVOC 2008, 12, 17.

^[14] Denton, T. T.; Zhang, X.; Cashman, J. R. J. Med. Chem. 2005, 48, 224.

$$5 \frac{4}{\sqrt{5}} \frac{3}{2} 2$$

4. Synthesis of 5-Arylthiazoles

Screening of Reaction Conditions

Table S2. Screening of Reaction Conditions

$ \begin{array}{c} \begin{bmatrix} [Pd] (10 \text{ mol}\%) \\ \text{Ligand (20 mol}\%) \\ \text{Base (1.0 equiv)} \\ \hline \end{bmatrix} \begin{array}{c} \begin{bmatrix} Pd] (10 \text{ mol}\%) \\ \text{Ligand (20 mol}\%) \\ \text{Base (1.0 equiv)} \\ \hline \end{bmatrix} \begin{array}{c} \begin{bmatrix} N \\ S \\ S \\ \end{array} \end{array} $ $ \begin{array}{c} \begin{bmatrix} N \\ S \\ Ph \\ \end{array} $ $ \begin{array}{c} N \\ Ph \\ \hline \end{array} $ $ \begin{array}{c} N \\ Ph \\ $ Ph \\ $ \begin{array}{c} N \\ Ph \\ $ Ph \\ Ph \\												
Entry	Х	Y	[Pd]	Ligand	Solvent	Base	Temp.	Time	3a ^[b]	4a ^[b]	9aa ^[b]	
1	Ι	1.25	PdCl ₂ (bipy)	none	DMF	Cs_2CO_3	120 °C	12 h	4%	14%	5%	
2	Ι	1.25	PdCl ₂ (bipy)	none	DMF	Cs_2CO_3	120 °C	12 h	9%	21%	32%	
3	Ι	1.25	Pd(OAc) ₂	dppp ^[a]	DMF	Cs_2CO_3	120 °C	12 h	2%	44%	3%	
4	I	1.25	Pd(OAc) ₂	PCy ₃ ·HBF ₄	DMF	Cs_2CO_3	120 °C	12 h	1%	36%	8%	
5	Ι	1.25	Pd(OAc) ₂	PMe(<i>t</i> -Bu) ₂ ·HBF ₄	DMF	Cs_2CO_3	120 °C	12 h	0%	48%	7%	
6 ^[c]	Br	1.25	Pd(OAc) ₂	PMe(<i>t</i> -Bu)₂⋅HBF₄	DMF	Cs_2CO_3	100 °C	12 h	2%	74%	19%	
7 ^[c]	Br	1.25	Pd(OAc) ₂	PMe(t-Bu) ₂ ·HBF ₄	t-BuOH	Cs_2CO_3	100 °C	12 h	0%	67%	12%	
8 [c,d] Br	1.5	Pd(OAc) ₂	PMe(<i>t</i> -Bu) ₂ ·HBF ₄	DMF	K ₂ CO ₃	120 °C	12 h	2%	60%	11%	
9 [c,d]	1.5	Pd(OAc) ₂	PMe(t-Bu) ₂ ·HBF ₄	<i>t</i> -AmylOH	Cs_2CO_3	80 °C	36 h	0%	82%(80%)	8%	

^[a] 10 mol% Ligand was used. ^[b] GC yield. Isolated yield is given in parenthesis. ^[c] 5 mol% Pd(OAc)₂ and 10 mol% PMe(*t*-Bu)₂·HBF₄ were used. ^[d] 1.5 equiv of base was used.

Methpd D^[15]

A 25-mL test tube equipped with screw cap containing a magnetic stirring bar, was flame-dried under vacuum and then cooling to room temperature. To this vessel were added $Pd(OAc)_2$ (4.5 mg, 0.02 mmol, 5 mol%), $PMe(t-Bu)_2$ ·HBF₄ (10.0 mg, 0.04 mmol, 10 mol%), Cs_2CO_3 (195.5 mg, 0.6 mmol, 1.5 equiv), iodoarene **2** (0.4 mmol, 1.0 equiv), thiazole (**1**: 0.6 mmol, 51.1 mg, 1.5 equiv), and *t*-AmylOH (1.0 mL) under argon atmosphere. The vessel was sealed and then stirred at 80 °C for 36 h. After cooling the reaction mixture to room temperature, the mixture was passed through a short silica gel pad (EtOAc). The filtrate was evaporated and the residue was purified by PTLC and/or GPC to afford 5-arylthiazole **4**. For further purification was passed through NH-silica gel pad (EtOAc) to afford desired product **4**.

Method E^[16]

^[15] Liégault, B.; Lapointe, D.; Caron, L.; Vlassova, A.; Fagnou, K. J. Org. Chem. 2009, 74, 1826.

^[16] Roger, J.; Požgan, F. Doucet, H. J. Org. Chem. 2009, 74, 1179.

5 K 2

Supporting Information (Tani, Uehara, Yamaguchi, Itami) Programmed Synthesis of Arylthiazoles through Sequential C–H Couplings

A 7-mL test tube equipped with screw cap containing a magnetic stirring bar, was flame-dried under vacuum and then cooling to room temperature. To this vessel were added $Pd(OAc)_2$ (0.9 mg, 0.004 mmol, 1 mol%), KOAc (79.4 mg, 0.8 mmol, 2.0 equiv), bromoarene **2** (0.4 mmol, 1.0 equiv), thiazole (**1**: 0.8 mmol, 68.1 mg, 2.0 equiv), and DMAc (1 mL). The vessel was sealed and then stirred at 130 °C for 20 h. After cooling the reaction mixture to room temperature, the mixture was passed through a short silica gel pad (EtOAc). The filtrate was evaporated and the residue was purified by PTLC to afford desired product **4**.

5-Phenylthiazole (4a)^[17]

Purification by PTLC (hexane/EtOAc = 10:1) gave **4a** as a white solid (Method D: 80% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.35 (t, *J* = 7.6 Hz, 1H), 7.41 (t, *J* = 7.6 Hz, 2H), 7.58 (d, *J* = 7.6 Hz, 2H), 8.08 (s, 1H), 8.75 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 127.0, 128.4, 129.1, 131.1, 139.0, 139.4, 152.0; HRMS (DART) *m*/*z* = 162.0377 calcd for C₉H₈NS [M+H]⁺, found: 162.0378.

5-(4-Methylphenyl)thiazole (4b)]^[12]

Purification by PTLC (hexane/EtOAc = 10:1) gave **4b** as a white solid (Method D: 78% yield). ¹H NMR (600 MHz, CDCl₃) δ 2.36 (s, 3H), 7.20 (d, *J* = 7.6 Hz, 2H), 7.45 (d, *J* = 7.6 Hz, 2H), 8.03 (s, 1H), 8.70 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 21.1, 126.8, 128.2, 129.7, 138.4, 138.5, 139.4, 151.5; HRMS (DART) *m*/*z* = 176.0534 calcd for C₁₀H₁₀NS [M+H]⁺, found: 176.0535.

5-(4-(tert-Butyl)phenyl)thiazole (4c)

^[17] Pavlik, J. W.; Tongcharoensirikul, P.; Bird, N. P.; Day, A. C.; Barltrop, J. A. J. Am. Chem. Soc. 1994, 116, 2292.

$$5 \frac{4}{\sqrt{5}} \frac{3}{\sqrt{2}} 2$$

Purification by PTLC (hexane/EtOAc = 5:1) gave **4c** as a yellow solid (Method D: 71% yield). ¹H NMR (600 MHz, CDCl₃) δ 1.33 (s, 9H), 7.42 (d, *J* = 8.6 Hz, 2H), 7.50 (d, *J* = 8.6 Hz, 2H), 8.04 (s, 1H), 8.70 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 31.1, 34.6, 126.0, 126.7, 128.2, 138.6, 139.3, 151.57, 151.63; HRMS (DART) *m*/*z* = 218.1003 calcd for C₁₃H₁₇NS [M+H]⁺, found: 218.1008.

5-(3,5-Dimethylphenyl)thiazole (4e)

Purification by PTLC (hexane/EtOAc = 10:1) gave **4e** as a yellow oil (Method D: 57% yield). ¹H NMR (600 MHz, CDCl₃) δ 2.35 (s, 6H), 6.98 (s, 1H), 7.19 (s, 2H), 8.05 (s, 1H), 8.71 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 21.2, 124.8, 130.1, 130.8, 138.7, 138.8, 139.6, 151.7; HRMS (DART) *m*/*z* = 190.0690 calcd for C₁₁H₁₂NS [M+H]⁺, found: 190.0691.

5-(2-Methylphenyl)thiazole (4f)^[9]

Purification by PTLC (hexane/EtOAc = 10:1) gave **4f** as a light yellow oil (Method D: 76% yield). ¹H NMR (600 MHz, CDCl₃) δ 2.38 (s, 3H), 7.21–7.31 (m, 3H), 7.36 (d, *J* = 7.6 Hz, 1H), 7.84 (s, 1H), 8.81 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 20.9, 126.0, 128.6, 130.2, 130.67, 130.73, 136.4, 137.3, 141.6, 152.6; HRMS (DART) *m*/*z* = 176.0534 calcd for C₁₀H₁₀NS [M+H]⁺, found: 176.0534.

5-(4-Methoxyphenyl)thiazole (4g)^[15]

Purification by PTLC (hexane/EtOAc = 5:1) gave 4g as a white solid (Method D: 81% yield). ¹H NMR

(600 MHz, CDCl₃) δ 3.83 (s, 3H), 6.93 (dt, *J* = 8.9, 2.1 Hz, 2H), 7.50 (d, *J* = 8.9, 2.1 Hz, 2H), 7.97 (s, 1H), 8.69 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 55.3, 114.5, 123.6, 128.2, 138.0, 139.2, 151.2, 159.8; HRMS (DART) *m*/*z* = 192.0483 calcd for C₁₀H₁₀NOS [M+H]⁺, found: 192.0483.

5-(Benzo[d][1,3]dioxol-5-yl)thiazole (4h)

Purification by PTLC (hexane/EtOAc = 3:1) and GPC gave **4h** as a white solid (Method D: 77% yield). ¹H NMR (600 MHz, CDCl₃) δ 6.00 (s, 2H), 6.83 (d, *J* = 7.6 Hz, 1H), 7.03–7.07 (m, 2H), 7.95 (s, 1H), 8.69 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 101.4, 107.3, 108.8, 120.9, 125.0, 138.3, 139.2, 147.8, 148.2, 151.3; HRMS (DART) *m*/*z* = 206.0276 calcd for C₁₀H₈NO₂S [M+H]⁺, found: 206.0276.

2-(3,4,5-Trimethoxylphenyl)thiazole (4i)

5-Bromo-1,2,3-trimethoxylbenzene was used and the reaction was performed at 100 °C for 18 h. Purification by GPC gave **4i** as a light yellow solid (Method D: 58% yield). ¹H NMR (600 MHz, CDCl₃) δ 3.88 (s, 3H), 3.92 (s, 6H), 6.77 (s, 2H), 8.01 (s, 1H), 8.74 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 56.1, 60.8, 104.4, 126.5, 138.4, 138.7, 139.3, 151.7, 153.5; HRMS (DART) *m*/*z* = 252.0694 calcd for C₁₂H₁₄NO₃S [M+H]⁺, found: 252.0695.

5-(4-Chlorophenyl)thiazole (4j)

Purification by GPC gave **4j** as a yellow solid (Method D: 63% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.37 (d, J = 8.3 Hz, 2H), 7.49 (d, J = 8.3 Hz, 2H), 8.05 (s, 1H), 8.76 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 128.1, 129.3, 129.6, 134.3, 138.1, 139.3, 152.3; HRMS (DART) m/z = 195.9988 calcd for C₉H₇ClNS [M+H]⁺, found: 195.9988.

$$5 \frac{4}{\sqrt{5}} \frac{3}{2} 2$$

5-(4-Trifluoromethylphenyl)thiazole (4k)^[18]

Purification by PTLC (hexane/EtOAc = 10:1) and GPC gave **4k** as a light yellow solid (Method D: 75% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.65–7.70 (m, 4H), 8.16 (s, 1H), 8.82 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 123.9 (q, $J_{C-F} = 271.7$ Hz), 126.1 (q, $J_{C-F} = 4.3$ Hz), 127.1, 130.3 (q, $J_{C-F} = 31.6$ Hz), 134.6, 137.7, 140.2, 153.1; HRMS (DART) m/z = 230.0251 calcd for C₁₀H₇F₃NS [M+H]⁺, found: 230.0250.

5-(4-Trifluoromethoxyphenyl)thiazole (4m)

Purification by PTLC (hexane/EtOAc = 5:1) gave **4m** as a colorless oil (Method D: 72% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.27 (d, *J* = 8.6 Hz, 2H), 7.60 (dt, *J* = 8.6, 2H), 8.06 (s, 1H), 8.78 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 120.4 (q, *J*_{C-F} = 257.3 Hz), 121.6, 128.4, 129.9, 137.8, 139.5, 149.1, 152.5; HRMS (DART) *m*/*z* = 246.0200 calcd for C₁₀H₇F₃NOS [M+H]⁺, found: 246.0201.

Methyl 4-(thiazol-5-yl)benzoate (4n)

Purification by PTLC (hexane/EtOAc = 3:1) and GPC gave **4n** as a white solid (Method D: 61% yield). ¹H NMR (600 MHz, CDCl₃) δ 3.94 (s, 3H), 7.64 (d, *J* = 8.3 Hz, 2H), 8.07 (d, *J* = 8.3 Hz, 2H), 8.17 (s, 1H), 8.82 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 52.2, 126.6, 129.8, 130.3, 135.4, 138.2, 140.1, 153.0, 166.3; HRMS (DART) *m*/*z* = 220.0432 calcd for C₁₁H₁₀NO₂S [M+H]⁺, found: 220.0434.

5-(4-Acetylphenyl)thiazole (40)

^[18] Mamada, M.; Nishida, J.; Kumaki, D.; Tokito, S.; Yamashita, Y. Chem. Mater. 2007, 19, 5404.

$$5 \frac{4}{\sqrt{5}} \frac{3}{\sqrt{2}} 2$$

Purification by PTLC (hexane/EtOAc = 3:1) gave **4o** as a white solid (Method E: 82% yield). ¹H NMR (600 MHz, CDCl₃) δ 2.63 (s, 3H), 7.67 (d, *J* = 8.2 Hz, 2H), 8.00 (d, *J* = 8.2 Hz, 2H), 8.19 (s, 1H), 8.83 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 26.5, 126.8, 129.1, 135.5, 136.5, 138.1, 140.2, 153.1, 197.0; HRMS (DART) *m*/*z* = 204.0483 calcd for C₁₁H₁₀NOS [M+H]⁺, found: 204.0484.

5-(4-(Methylsulfonyl)phenyl)thiazole (4p)

4p

Purification by PTLC (hexane/EtOAc = 2:1) gave **4p** as a yellow solid (Method E: 66% yield). ¹H NMR (600 MHz, CDCl₃) δ 3.10 (s, 3H), 7.78 (d, *J* = 8.3 Hz, 2H), 8.00 (d, *J* = 8.3 Hz, 2H), 8.22 (s, 1H), 8.87 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 44.4, 127.5, 128.3, 136.4, 137.2, 139.9, 140.8, 153.7; HRMS (DART) *m*/*z* = 240.0153 calcd for C₁₀H₁₀NO₂S₂ [M+H]⁺, found: 240.0512.

5-(4-Nitrophenyl)thiazole (4q)

Purification by PTLC (hexane/EtOAc = 2:1) gave **4q** as a yellow solid (Method D: 41% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.75 (d, *J* = 8.2 Hz, 2H), 8.24 (s, 1H), 8.29 (d, *J* = 8.2 Hz, 2H), 8.89 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 124.5, 127.3, 136.9, 137.4, 141.1, 147.3, 154.1; HRMS (DART) *m*/*z* = 207.0228 calcd for C₉H₇NO₂S [M+H]⁺, found: 207.0228.

5-(5-Ethylthiophen-2-yl)thiazole (4s)

Purification by PTLC (hexane/EtOAc = 10:1) and GPC gave 4s as a yellow oil (Method D: 26% yield). ¹H

 $5 \frac{4}{\sqrt{5}} \frac{3}{2}$

Supporting Information (Tani, Uehara, Yamaguchi, Itami) Programmed Synthesis of Arylthiazoles through Sequential C–H Couplings

NMR (600 MHz, CDCl₃) δ 1.33 (t, *J* = 7.6 Hz, 3H), 2.85 (q, *J* = 7.6 Hz, 2H), 6.73 (d, *J* = 3.4 Hz, 1H), 7.02 (d, *J* = 3.4 Hz, 1H), 7.89 (s, 1H), 8.65 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 15.8, 23.5, 124.2, 125.7, 130.1, 133.0, 138.6, 148.4, 150.9; HRMS (DART) *m*/*z* = 196.0255 calcd for C₉H₁₀NS₂ [M+H]⁺, found: 196.0256.

5-(3-Pyridyl)thiazole (4t)^[19]

Purification by PTLC (hexane/EtOAc = 3:1) gave **4t** as a light yellow oil (Method E: 65% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.36 (dd, J = 7.6, 4.8 Hz, 1H), 7.87 (dt, J = 7.6, 2.1 Hz, 1H), 8.14 (s, 1H), 8.59 (d, J = 4.8 Hz, 1H), 8.85 (s, 1H), 8.86 (d, J = 2.1 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 123.7, 127.3, 134.0, 135.4, 139.9, 147.7, 149.4, 153.0; HRMS (DART) m/z = 163.0330 calcd for C₇H₇N₂S [M+H]⁺, found: 163.0331.

5-(4-Pyridyl)thiazole (4u)^[19]

Purification by PTLC (hexane/EtOAc = 3:1) gave **4u** as a colorless oil (Method E: 62% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.47 (d, *J* = 6.2 Hz, 2H), 8.27 (s, 1H), 8.65 (d, *J* = 6.2 Hz, 2H), 8.88 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 120.9, 136.5, 138.4, 141.0, 150.5, 153.8; HRMS (DART) *m*/*z* = 163.0330 calcd for C₇H₇N₂S [M+H]⁺, found: 163.0332.

^[19] Haginoya, N.; Kobayashi, S.; Komoriya, S.; Yoshino, T.; Nagata, T.; Hirokawa, Y.; Nagahara, T. *Bioorg. Med. Chem.* **2004**, *12*, 5579.

$$5 \frac{4}{\sqrt{5}} \frac{3}{2} 2$$

5. Synthesis of 4-Arylthiazoles

Method F^[20]

A 25-mL test tube equipped with screw cap, containing a magnetic stirring bar, was added Pd(OAc)₂ (5.6 mg, 0.025 mmol, 10 mol%), 1,10-phenanthroline (phen: 4.5 mg, 0.025 mmol, 10 mol%), arylboronic acid 6 (1.0 mmol, 4.0 equiv), LiBF₄ (35.5 mg, 0.38 mmol, 1.5 equiv), TEMPO (19.5 mg, 0.13 mmol, 0.5 equiv), diphenyl(thiazol-2-yl)methanol (5: 0.25 mmol, 1.0 equiv) and undried DMAc (0.5 mL). The vessel was sealed under air and then stirred at 100 °C for 48 h. After cooling the reaction mixture to room temperature, the mixture was passed through a short silica gel pad (EtOAc). The filtrate was evaporated and the residue PTLC and/or GPC and/or was purified by flash column chromatography to afford 4-aryl-diphenyl(thiazol-2-yl)methanol 8.

Diphenyl(4-phenylthiazol-2-yl)methanol (7a)

Purification by PTLC (hexane/EtOAc = 10:1) gave **7a** as a colorless oil (Method F: 71% yield). ¹H NMR (600 MHz, CDCl₃) δ 4.38 (s, 1H), 7.29–7.35 (m, 7H), 7.40 (t, *J* = 6.9 Hz, 2H), 7.45 (d, *J* = 6.9 Hz, 4H), 7.47 (s, 1H), 7.89 (d, *J* = 6.9 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 80.7, 113.9, 126.4, 127.5, 127.9, 128.1, 128.2, 128.7, 134.2, 145.4, 155.1, 176.6; HRMS (DART) *m*/*z* = 344.1109 calcd for C₂₂H₁₈NOS [M+H]⁺, found: 344.1100.

(4-(4-Methylphenyl)thiazol-2-yl)diphenylmethanol (7b)

^[20] Kirchberg, S.; Tani, S.; Ueda, K.; Yamaguchi, J.; Studer, A.; Itami, K. Angew. Chem., Int. Ed. 2011, 50, 2387.

Purification by flash column chromatography (hexane/EtOAc = 10:1) gave **7b** as a colorless oil (Method F: 75% yield). ¹H NMR (600 MHz, CDCl₃) δ 2.35 (s, 3H), 4.48 (s, 1H), 7.18 (d, *J* = 8.3 Hz, 2H), 7.27–7.33 (m, 6H), 7.37 (s, 1H), 7.44 (d, *J* = 7.6 Hz, 2H), 7.77 (d, *J* = 8.3 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 21.2, 80.6, 113.1, 126.3, 127.5, 127.9, 128.0, 129.4, 131.5, 138.1, 145.5, 155.2, 176.4; HRMS (DART) *m*/*z* = 358.1266 calcd for C₂₃H₂₀NOS [M+H]⁺, found: 358.1264.

(4-(3-Methylphenyl)thiazol-2-yl)diphenylmethanol (7d)

7d

Purification by flash column chromatography (hexane/EtOAc = 10:1) gave **7d** as a colorless oil (Method F: 77% yield). ¹H NMR (600 MHz, CDCl₃) δ 2.38 (s, 3H), 4.47 (s, 1H), 7.13 (d, *J* = 7.6 Hz, 1H), 7.27–7.35 (m, 7H), 7.41–7.48 (m, 5H), 7.67 (d, *J* = 7.6 Hz, 1H), 7.72 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 21.4, 80.6, 113.8, 123.5, 127.1, 127.5, 127.9, 128.1, 128.6, 129.0, 134.1, 138.3, 145.4, 155.2, 176.5; HRMS (DART) *m*/*z* = 358.1266 calcd for C₂₃H₂₀NOS [M+H]⁺, found: 358.1267.

(4-(3,5-Dimethylphenyl)thiazol-2-yl)diphenylmethanol (7e)

7e

Purification by flash column chromatography (hexane/EtOAc = 10:1) gave **7e** as a colorless oil (Method F: 62% yield). ¹H NMR (600 MHz, CDCl₃) δ 2.34 (s, 6H), 4.51 (s, 1H), 6.96 (s, 1H), 7.28–7.35 (m, 6H), 7.42 (s, 1H), 7.43 (d, *J* = 6.9 Hz, 4H), 7.51 (s, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 21.3, 80.6, 113.7, 124.3, 127.5,

127.9, 128.1, 129.9, 134.0, 138.2, 145.5, 155.4, 176.3; HRMS (DART) m/z = 372.1422 calcd for C₂₄H₂₂NOS [M+H]⁺, found: 372.1421.

(4-(4-Chlorophenyl)thiazol-2-yl)diphenylmethanol (7j)

Purification by flash column chromatography (hexane/EtOAc = 10:1) gave **7j** as a colorless oil (Method F: 66% yield). ¹H NMR (600 MHz, CDCl₃) δ 4.25 (brs, 1H), 7.28–7.37 (m, 8H), 7.41–7.47 (m, 5H), 7.80 (d, J = 8.3 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 80.0, 113.6, 126.8, 127.0, 127.3, 127.5, 128.2, 132.0, 133.3, 144.6, 153.4, 176.4; HRMS (DART) m/z = 378.0719 calcd for C₂₂H₁₇CINOS [M+H]⁺, found: 378.0722.

(4-(4-Fluorophenyl)thiazol-2-yl)diphenylmethanol (7l)

Purification by flash column chromatography (hexane/EtOAc = 10:1) gave **7l** as a colorless oil (Method F: 56% yield). ¹H NMR (600 MHz, CDCl₃) δ 4.36 (s, 1H), 7.06 (t, *J* = 8.3 Hz, 2H), 7.27–7.35 (m, 6H), 7.37 (s, 1H), 7.44 (dd, *J* = 8.3, 1.4 Hz, 4H), 7.82–7.86 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 80.6, 113.4, 115.6 (d, *J*_{C-F} = 21.6 Hz), 127.5, 127.9, 128.06, 128.09, 130.5 (d, *J*_{C-F} = 2.7 Hz), 145.3, 154.2, 162.7 (d, *J*_{C-F} = 247.2 Hz), 176.9; HRMS (DART) *m*/*z* = 362.1015 calcd for C₂₂H₁₇FNOS [M+H]⁺, found: 362.1017.

(4-(4-Methoxycarbonylphenyl)thiazol-2-yl)diphenylmethanol (7n)

7n

5 5

Supporting Information (Tani, Uehara, Yamaguchi, Itami) Programmed Synthesis of Arylthiazoles through Sequential C–H Couplings

Purification by GPC gave **7n** as a white solid (Method F: 63% yield). ¹H NMR (600 MHz, CDCl₃) δ 3.91 (s, 3H), 4.35 (s, 1H), 7.29–7.36 (m, 6H), 7.45 (dd, J = 8.2, 1.4 Hz, 4H), 7.58 (s, 1H), 7.95 (d, J = 8.3 Hz, 2H), 8.05 (d, J = 8.3 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 52.1, 80.7, 115.8, 126.2, 127.5, 128.0, 128.1, 129.5, 130.1, 138.3, 145.2, 154.1, 166.8, 177.2; HRMS (DART) m/z = 402.1164 calcd for C₂₄H₂₀NO₃S [M+H]⁺, found: 402.1165.

General Procedure for Deprotection of C4-Arylated Diphenyl-(2-thiazolyl)methanols 7^[2]

A 25-mL test tube equipped with screw cap containing a magnetic stirring bar, was flame-dried under vacuum and then cooling to room temperature. To this vessel was added 7 (ca. 0.1-0.2 mmol), Cs₂CO₃ (325.9 mg, 1 mmol, 5–10 equiv), and *m*-xylene (0.8 mL). The vessel was sealed and then stirred at 150 °C for 40 h. After cooling the reaction mixture to room temperature, the mixture was passed through a short silica gel pad (EtOAc). The filtrate was evaporated and the residue was purified by PTLC or GPC to afford 4-arylthiaozle **8**.

4-Phenylthiazole (8a)^[17]

Purification by PTLC (hexane/EtOAc = 10:1) gave **8a** as a white solid (95% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.35 (t, *J* = 8.2 Hz, 1H), 7.44 (t, *J* = 8.2 Hz, 2H), 7.54 (s, 2H), 7.94–8.00 (m, 2H), 8.88 (s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 112.5, 126.5, 128.2, 128.8, 134.2, 152.8, 156.4. HRMS (DART) *m*/*z* = 162.0378 calcd for C₉H₈NS [M+H]⁺, found: 162.0378.

4-(4-Methylphenyl)thiazole (8b)^[21]

^[21] Adam, W.; Hartung, J.; Okamoto, H.; Marquardt, S.; Nau, W. M.; Pischel, U.; Saha-Möller, C. R.; Špehar, K. J. Org. Chem. 2002, 67, 6041.

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2013

Supporting Information (Tani, Uehara, Yamaguchi, Itami) Programmed Synthesis of Arylthiazoles through Sequential C–H Couplings

Purification by PTLC (hexane/EtOAc = 10:1) gave **8b** as a white solid (78% yield). ¹H NMR (600 MHz, CDCl₃) δ 2.38 (s, 3H), 7.24 (d, *J* = 8.3 Hz, 2H), 7.46 (s, 1H), 7.82 (d, *J* = 8.3 Hz, 2H), 8.85 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 21.2, 111.7, 126.3, 129.5, 131.5, 138.1, 152.6, 156.5; HRMS (DART) *m*/*z* = 176.0534 calcd for C₁₀H₁₀NS [M+H]⁺, found: 176.0536.

4-(3-Methylphenyl)thiazole (8d)

Purification by PTLC (hexane/EtOAc = 10:1) gave **8d** as a yellow oil (84% yield). ¹H NMR (600 MHz, CDCl₃) δ 2.42 (s, 3H), 7.17 (d, *J* = 7.6 Hz, 1H), 7.32 (t, *J* = 7.6 Hz, 1H), 7.51 (d, *J* = 2.1 Hz, 1H), 7.71 (d, *J* = 7.6 Hz, 1H), 7.78 (s, 1H), 8.87 (d, *J* = 2.1 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 21.4, 112.4, 123.5, 127.2, 128.7, 129.0, 134.1, 138.5, 152.7, 156.5; HRMS (DART) *m*/*z* = 176.0534 calcd for C₁₀H₁₀NS [M+H]⁺, found: 176.0534.

4-(3,5-Dimethylphenyl)thiazole (8e)

Purification by GPC gave **8e** as a colorless oil (66% yield). ¹H NMR (600 MHz, CDCl₃) δ 2.37 (s, 6H), 7.00 (s, 1H), 7.49 (d, J = 2.0 Hz, 1H), 7.55 (s, 2H), 8.86 (d, J = 2.0 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 21.3, 112.2, 124.3, 129.9, 134.0, 138.3, 152.6, 156.7; HRMS (DART) m/z = 190.0690 calcd for C₁₁H₁₂NS [M+H]⁺, found: 190.0691.

4-(4-Methoxyphenyl)thiazole (8g)^[22]

.

C-H arylation of **5** with 4-methoxyphenylboronic acid following by Method F produced an inseparable mixture of **7g** and **5**. Yield of **7g** was determined by ¹H NMR (53% yield). Then the mixture was used without further purification. The deprotection reaction of **7g** produced **8g**. Purification by PTLC (hexane/EtOAc = 5:1) gave **8g** as a white solid (74% yield). ¹H NMR (600 MHz, CDCl₃) δ 3.85 (s, 3H), 6.96 (d, *J* = 8.9 Hz, 2H), 7.39 (d, *J* = 1.4 Hz, 1H), 7.86 (d, *J* = 8.9 Hz, 2H), 8.84 (d, *J* = 1.4 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 55.3, 110.7, 114.2, 127.2, 127.7, 152.6, 156.2, 159.7. HRMS (DART) *m*/*z* = 192.0483 calcd for C₁₀H₁₀NOS [M+H]⁺, found: 192.0484.

4-(4-Chlorophenyl)thiazole (8j)^[22]

Purification by PTLC (hexane/EtOAc = 10:1) gave **8j** as a white solid (87% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.39 (d, J = 8.2 Hz, 2H), 7.49 (d, J = 1.4 Hz, 1H), 7.85 (d, J = 8.2 Hz, 2H), 8.85 (d, J = 1.4 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 112.8, 127.7, 128.9, 132.7, 134.0, 152.9, 155.2; HRMS (DART) m/z = 195.9988 calcd for C₉H₇CINS [M+H]⁺, found: 195.9989.

4-(4-Fluorophenyl)thiazole (81)^[22]

^[22] Fujii, H.; Nishimura, Y.; Nitta, A.; Sakami, S.; Nakaki, J.; Kozono, H. WO2007063928

Electronic Supplementary Material (ESI) for Chemical Science This journal is O The Royal Society of Chemistry 2013

Supporting Information (Tani, Uehara, Yamaguchi, Itami) Programmed Synthesis of Arylthiazoles through Sequential C–H Couplings

Purification by PTLC (hexane/EtOAc = 10:1) gave **81** as a white solid (80% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.12 (t, *J* = 8.9 Hz, 2H), 7.47 (d, *J* = 2.0 Hz, 1H), 7.91 (dd, *J* = 8.9, 5.5 Hz, 2H), 8.87 (d, *J* = 2.0 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 112.1, 115.7 (d, *J*_{C-F} = 21.6 Hz), 128.15, 128.21, 130.5 (d, *J*_{C-F} = 2.9 Hz), 152.9, 155.4, 162.8 (d, *J*_{C-F} = 245.8 Hz); HRMS (DART) *m*/*z* = 180.0283 calcd for C₉H₇FNS [M+H]⁺, found: 180.0285.

Methyl 4-(thiazol-4-yl)benzoate (8n)

Purification by PTLC (hexane/EtOAc = 5:1) gave **8n** as a white solid (88% yield). ¹H NMR (600 MHz, CDCl₃) δ 3.94 (s, 3H), 7.67 (s, 1H), 8.01 (d, *J* = 8.3 Hz, 2H), 8.11 (d, *J* = 8.3 Hz, 2H), 8.90 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 52.1, 114.5, 126.3, 129.6, 130.2, 138.2, 153.2, 155.3, 166.8; HRMS (DART) m/z = 220.0432 calcd for C₁₀H₁₀NO₂S [M+H]⁺, found: 220.0432.

 $5 \left< \frac{4}{\sqrt{5}} \right> 2$

Supporting Information (Tani, Uehara, Yamaguchi, Itami) Programmed Synthesis of Arylthiazoles through Sequential C–H Couplings

6. Synthesis of 2,5-Diarylthiazoles

Method G^[23]

A 20-mL glass vessel equipped with J. Young[®] O-ring tap, containing a magnetic stirring bar, was flame-dried under vacuum and filled with argon after cooling to room temperature. To this vessel were added PdCl₂(bipy) (4.2 mg, 0.013 mmol, 5 mol%), Ag₂CO₃ (68.9 mg, 0.25 mmol, 1.0 equiv), iodoarene **2** (0.25 mmol, 1.0 equiv), 2-arylthiazole **3** (0.375 mmol, 1.5 equiv) and 1,4-dioxane (1.0 mL) under a stream of argon. The vessel was sealed and then stirred at 120 °C for 22 h. After cooling the reaction mixture to room temperature, the mixture was passed through a short silica gel pad (EtOAc). The filtrate was evaporated and the residue was purified by GPC to afford 2,5-diarylthiazole **9**.

Method H^[24]

A 25-mL test tube equipped with screw cap, containing a magnetic stirring bar, was flame-dried under vacuum and then cooling to room temperature. To this vessel were added $[Pd(phen)_2](PF_6)_2$ (7.6 mg, 0.01 mmol, 5 mol%), Cs₂CO₃ (71.7 mg, 0.22 mmol, 1.1 equiv), iodoarene **2** (0.22 mmol, 1.1 equiv) and 5-diarylthiazole **4** (0.2 mmol, 1.0 equiv) and DMAc (0.8 mL) under argon atmosphere. The vessel was sealed and then stirred at 150 °C for 18 h. After cooling the reaction mixture to room temperature, the mixture was passed through a short silica gel pad (EtOAc). The filtrate was evaporated and the residue was purified by PTLC and/or GPC to afford the desired product **9**.

^[23] Yanagisawa, S.; Itami, K. Tetrahedron 2011, 67, 4425.

^[24] Shibahara, F.; Yamaguchi, E.; Murai, T. J. Org. Chem. 2011, 76, 2680.

Method I^[8]

A 25-mL test tube equipped with screw cap, containing a magnetic stirring bar, were added $PdCl_2(dppf)\cdot CH_2Cl_2$ (8.2 mg, 0.01 mmol, 5 mol%), PPh_3 (5.2 mg, 0.02 mmol, 10 mol%), Ag_2CO_3 (110.3 mg, 0.4 mmol, 2.0 equiv), iodoarene **2** (0.24 mmol, 1.2 equiv), 5-arylthiazole **4** (0.2 mmol, 1.0 equiv) and distilled water (1 mL). The test tube was purged with argon and then stirred at 60 °C for 24 h. After cooling the reaction mixture to room temperature, the mixture was suspended in acetone (2 mL) and dichloromethane (5 mL), and then passed through a short silica gel pad (EtOAc). The filtrate was evaporated and the residue was purified by PTLC to afford the desired product **9**.

2,5-Diphenylthiazole (9aa)^[23]

9aa

Purification by GPC (Method G) or PTLC (hexane/EtOAc = 10:1) (Method I) gave **9aa** as a white solid (Method G: 89% yield, Method I: 83% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.34 (t, *J* = 7.6 Hz, 1H), 7.39–7.47 (m, 5H), 7.60 (d, *J* = 7.6 Hz, 2H), 7.97 (dd, *J* = 8.3 Hz, 1.4 Hz, 2H), 8.02 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 126.4, 126.7, 128.3, 129.0, 129.1, 130.0, 131.4, 133.7, 139.2, 139.3, 167.2; HRMS (DART) *m*/*z* = 238.0690 calcd for C₁₅H₁₂NS [M+H]⁺, found: 238.0688.

5-(4-Methylphenyl)-2-phenylthiazole (9ab)^[8]

9ab

Purification by GPC (Method G) or PTLC (hexane/EtOAc = 10:1) (Method H) gave **9ab** as a white solid (Method G: 85% yield, Method H: 92% yield). ¹H NMR (600 MHz, CDCl₃) δ 2.36 (s, 3H), 7.20 (d, J = 8.3 Hz, 2H), 7.35–7.45 (m, 3H), 7.48 (d, J = 8.3 Hz, 2H), 7.90–8.00 (m, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 21.2, 126.3, 126.5, 128.5, 128.9, 129.7, 129.8, 133.7, 138.3, 138.7, 139.4, 166.6; HRMS (DART) m/z = 252.0847 calcd for C₁₆H₁₄NS [M+H]⁺, found: 252.0844.

5-(4-Methoxyphenyl)-2-phenylthiazole (9ag)^[8]

9ag

Purification by GPC (Method G) or PTLC (hexane/EtOAc = 10:1) (Method H) gave **9ag** as a white solid (Method G: 81% yield, Method H: 70% yield). ¹H NMR (600 MHz, CDCl₃) δ 3.82 (s, 3H), 6.93 (dd, *J* = 8.9, 2.1 Hz, 2H), 7.37–7.45 (m, 3H), 7.51 (dd, *J* = 8.9, 2.1 Hz, 2H), 7.90 (s, 1H), 7.94 (dd, *J* = 6.9, 1.4 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 55.3, 114.5, 124.0, 126.2, 127.9, 128.9, 129.8, 133.8, 138.2, 139.2, 159.8, 166.2; HRMS (DART) *m/z* = 268.0796 calcd for C₁₆H₁₄NOS [M+H]⁺, found: 268.0799.

2-(Benzo[d][1,3]dioxol-5-yl)-5-phenylthiazole (9ah)

Purification by PTLC (hexane/EtOAc = 2:1) and GPC gave **9ah** as a white solid (Method G: quant). ¹H NMR (600 MHz, CDCl₃) δ 5.97 (s, 2H), 6.81 (d, *J* = 7.9 Hz, 1H), 7.03–7.08 (m, 2H), 7.37–7.46 (m, 3H), 7.87 (s, 1H), 7.92 (dd, *J* = 7.9, 1.7 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 101.3, 106.9, 108.8, 120.6, 125.3, 126.2, 128.9, 129.8, 133.6, 138.4, 139.1, 147.8, 148.2, 166.3; HRMS (DART) *m*/*z* = 282.0589 calcd for C₁₆H₁₂NO₂S [M+H]⁺, found: 282.0580.

2-Phenyl-5-(4-(trifluoromethyl)phenyl)thiazole (9ak)^[8]

9ak

Purification by PTLC (hexane/EtOAc = 10:1) gave **9ak** as a white solid (Method H: 93% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.42–7.49 (m, 3H), 7.66 (d, *J* = 8.3 Hz, 2H), 7.69 (d, *J* = 8.3 Hz, 2H), 7.95–7.99 (m, 2H), 8.08 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 123.9 (q, *J*_{C-F} = 270.2 Hz), 126.1 (q, *J*_{C-F} = 4.3 Hz), 126.5, 126.7, 129.0, 130.0 (q, *J*_{C-F} = 33.1 Hz), 130.4, 133.3, 134.9, 137.5, 140.4, 168.4; HRMS (DART) *m*/*z* = 306.0564 calcd for C₁₆H₁₁F₃NS [M+H]⁺, found: 306.0565.

Methyl 4-(2-phenylthiazol-5-yl)benzoate (9an)^[8]

9an

Purification by PTLC (hexane/EtOAc = 5:1) gave **9an** as a light yellow solid (Method I: 58% yield). ¹H NMR (600 MHz, CDCl₃) δ 3.93 (s, 3H), 7.41–7.49 (m, 3H), 7.65 (d, *J* = 8.3 Hz, 2H), 7.97 (dd, *J* = 7.6 Hz, 2.1 Hz, 2H), 8.07 (d, *J* = 8.3 Hz, 2H), 8.10 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 52.2, 126.2, 126.4, 129.0, 129.5, 130.3, 130.4, 133.4, 135.7, 137.9, 140.4, 166.4, 168.3; HRMS (DART) *m*/*z* = 296.0745 calcd for C₁₇H₁₄NO₂S [M+H]⁺, found: 296.0746.

2-(4-Methylphenyl)-5-phenylthiazole (9ba)

Purification by PTLC (hexane/EtOAc = 10:1) gave **9ba** as a white solid (Method H: 87% yield). ¹H NMR (600 MHz, CDCl₃) δ 2.40 (s, 3H), 7.26 (d, *J* = 8.3 Hz, 2H), 7.33 (t, *J* = 7.6 Hz, 1H), 7.41 (t, *J* = 7.6 Hz, 2H), 7.60 (d, *J* = 8.3 Hz, 2H), 7.86 (d, *J* = 8.3 Hz, 2H), 7.99 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 21.4, 126.3, 126.6, 128.2, 129.1, 129.6, 131.0, 131.5, 138.7, 139.0, 140.3, 167.4; HRMS (DART) *m*/*z* = 252.0847 calcd for C₁₆H₁₄NS [M+H]⁺, found: 252.0847.

5-(4-Methoxyphenyl)-2-(4-methylphenyl)thiazole (9bg)^[8]

9bg

The reaction was performed at 130 °C. Purification by PTLC (hexane/EtOAc = 10:1) gave **9bg** as a light yellow solid (Method H: 82% yield). ¹H NMR (600 MHz, CDCl₃) δ 2.39 (s, 3H), 3.84 (s, 3H), 6.94 (d, J = 8.9 Hz, 2H), 7.24 (d, J = 8.2 Hz, 2H), 7.52 (d, J = 8.9 Hz, 2H), 7.84 (d, J = 8.2 Hz, 2H), 7.88 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 21.4, 55.4, 114.5, 124.2, 126.2, 127.9, 129.6, 131.2, 138.1, 138.7, 140.1, 159.7, 166.5; HRMS (DART) m/z = 282.0953 calcd for C₁₇H₁₆NOS [M+H]⁺, found: 282.0953.

$$5 \frac{4}{\sqrt{5}} \frac{3}{\sqrt{2}} 2$$

5-(Benzo[d][1,3]dioxol-5-yl)-2-(4-methylphenyl)thiazole (9bh)

Purification by GPC gave **9bh** as a white solid (Method G: 89% yield). ¹H NMR (600 MHz, CDCl₃) δ 2.38 (s, 3H), 5.97 (s, 2H), 6.81 (d, *J* = 7.6 Hz, 1H), 7.02–7.06 (m, 2H), 7.22 (d, *J* = 7.6 Hz, 2H), 7.81 (d, *J* = 7.6 Hz, 2H), 7.84 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 21.3, 101.3, 106.9, 108.8, 120.5, 125.5, 126.1, 129.6, 131.0, 138.3, 138.6, 140.1, 147.7, 148.2, 166.6; HRMS (DART) *m/z* = 296.0745 calcd for C₁₇H₁₄NO₂S [M+H]⁺, found: 296.0747.

5-(4-Chlorophenyl)-2-(4-methylphenyl)thiazole (9bj)^[8]

Purification by GPC gave **9bj** as a white solid (Method G: 73% yield). ¹H NMR (600 MHz, CDCl₃) δ 2.40 (s, 3H), 7.25 (d, J = 8.2 Hz, 2H), 7.37 (d, J = 8.2 Hz, 2H), 7.50 (d, J = 8.2 Hz, 2H), 7.84 (d, J = 8.2 Hz, 2H), 7.95 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 21.4, 126.3, 127.7, 129.2, 129.7, 130.0, 130.8, 134.0, 137.4, 139.3, 140.5, 167.7; HRMS (DART) m/z = 286.0457 calcd for C₁₆H₁₃ClNS [M+H]⁺, found: 286.0456.

5-(4-Acetylphenyl)-2-(4-methylphenyl)thiazole (9bo)

9bo

Purification by GPC gave **9bo** as a light yellow solid (Method G: 68% yield). ¹H NMR (600 MHz, CDCl₃) δ 2.40 (s, 3H), 2.61 (s, 3H), 7.26 (d, *J* = 7.6 Hz, 2H), 7.67 (d, *J* = 7.6 Hz, 2H), 7.86 (d, *J* = 7.6 Hz, 2H), 7.98 (d, *J* = 7.6 Hz, 2H), 8.09 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 21.4, 26.5, 126.4, 129.2, 129.7, 130.7, 136.0, 136.2, 137.3, 140.4, 140.7, 140.9, 168.7, 197.1; HRMS (DART) *m*/*z* = 294.0953 calcd for C₁₈H₁₆NOS [M+H]⁺, found: 294.0956.

2-(4-Methylphenyl)-5-(4-nitrophenyl)thiazole (9bq)^[8]

$$5 \frac{4}{\sqrt{5}} \frac{3}{\sqrt{2}} \frac{3}{2}$$

9bq

Purification by PTLC (hexane/EtOAc = 10:1) and GPC gave **9bq** as a white solid (Method G: 64% yield). ¹H NMR (600 MHz, CDCl₃) δ 2.42 (s, 3H), 7.28 (d, *J* = 8.2 Hz, 2H), 7.74 (d, *J* = 8.9 Hz, 2H), 7.87 (d, *J* = 8.2 Hz, 2H), 8.13 (s, 1H), 8.27 (d, *J* = 8.9 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 21.5, 124.5, 126.5, 126.8, 129.8, 130.5, 136.0, 137.9, 141.2, 141.3, 147.0, 169.7; HRMS (DART) *m*/*z* = 297.0698 calcd for C₁₆H₁₃N₂O₂S [M+H]⁺, found: 297.0698.

2-(3,5-Dimethylphenyl)-5-(4-methoxyphenyl)thiazole (9eg)

Purification by PTLC (hexane/EtOAc = 10:1) gave **9eg** as a white solid (Method H: 71% yield). ¹H NMR (600 MHz, CDCl₃) δ 2.38 (s, 6H), 3.84 (s, 3H), 6.94 (d, *J* = 8.9 Hz, 2H), 7.05 (s, 1H), 7.52 (d, *J* = 8.9 Hz, 2H), 7.58 (s, 2H), 7.89 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 21.2, 55.4, 114.5, 124.05, 124.07, 127.9, 131.6, 133.5, 138.0, 138.6, 138.9, 159.7, 166.7; HRMS (DART) *m*/*z* = 296.1109 calcd for C₁₈H₁₈NOS [M+H]⁺, found: 296.1110.

2-(4-Methoxyphenyl)-5-phenylthiazole (9ga)^[24]

The reaction was performed at 130 °C. Purification by PTLC (hexane/EtOAc = 10:1) gave **9ga** as a white solid (Method H: 86% yield). ¹H NMR (600 MHz, CDCl₃) δ 3.87 (s, 3H), 6.97 (d, *J* = 8.9 Hz, 2H), 7.33 (t, *J* = 7.6 Hz, 1H), 7.41 (t, *J* = 7.6 Hz, 2H), 7.60 (d, *J* = 8.3 Hz, 2H), 7.91 (d, *J* = 8.3 Hz, 2H), 7.97 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 55.4, 114.4, 126.6, 126.7, 127.9, 128.1, 129.1, 131.6, 138.3, 138.9, 161.2, 167.2; HRMS (DART) *m*/*z* = 268.0796 calcd for C₁₂H₁₄NO₃S [M+H]⁺, found: 268.0795.

2-(4-Methoxyphenyl)-5-(4-methylphenyl)thiazole (9gb)^[8]

Purification by GPC (Method G) or PTLC (hexane/EtOAc = 10:1) (Method H) gave **9gb** as a light yellow solid (Method G: 75% yield, Method H: 59% yield). ¹H NMR (600 MHz, CDCl₃) δ 2.37 (s, 3H), 3.85 (s, 3H), 6.95 (d, *J* = 8.3 Hz, 2H), 7.20 (d, *J* = 8.3 Hz, 2H), 7.47 (d, *J* = 8.3 Hz, 2H), 7.89 (d, *J* = 8.3 Hz, 2H), 7.92 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 21.2, 55.4, 114.3, 126.4, 126.7, 127.8, 128.7, 129.7, 138.1, 138.4, 161.0, 166.6; HRMS (DART) *m*/*z* = 282.0953 calcd for C₁₇H₁₆NOS [M+H]⁺, found: 282.0954.

5-(Benzo[d][1,3]dioxol-5-yl)-2-(4-methoxyphenyl)thiazole (9gh)

Purification by GPC gave **9gh** as a white solid (Method G: 82% yield). ¹H NMR (600 MHz, CDCl₃) δ 3.84 (s, 3H), 5.98 (s, 2H), 6.82 (d, *J* = 8.9 Hz, 1H), 6.94 (dd, *J* = 8.9 Hz, 2.0 Hz, 2H), 7.02–7.06 (m, 2H), 7.81 (s, 1H), 7.86 (dd, *J* = 8.9 Hz, 2.0 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 55.3, 101.3, 106.9, 108.7, 114.2, 120.5, 125.5, 126.6, 127.7, 138.1, 138.2, 147.6, 148.2, 161.0, 166.3; HRMS (DART) *m*/*z* = 312.0694 calcd for C₁₇H₁₄NO₃S [M+H]⁺, found: 312.0695.

2-(4-Methoxyphenyl)-5-(4-(trifluoromethyl)phenyl)thiazole (9gk)

9gk

Purification by GPC gave **9gk** as a light yellow solid (Method G: 89% yield). ¹H NMR (600 MHz, CDCl₃) δ 3.87 (s, 3H), 6.97 (d, *J* = 8.9 Hz, 2H), 7.65 (d, *J* = 8.3 Hz, 2H), 7.68 (d, *J* = 8.3 Hz, 2H), 7.91 (d, *J* = 8.9 Hz, 2H), 8.03 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 55.4, 114.4, 124.0 (q, *J*_{C-F} = 271.6 Hz), 126.1 (q, *J*_{C-F} F = 4.3 Hz), 126.3, 126.6, 128.0, 129.8 (q, *J*_{C-F} = 33.1 Hz), 135.1, 136.5, 140.1, 161.5, 168.3; HRMS (DART) *m*/*z* = 336.0670 calcd for C₁₇H₁₃F₃NOS [M+H]⁺, found: 336.0671.

2-(4-Methoxyphenyl)-5-(4-pyridyl)thiazole (9gu)

$$5 \begin{pmatrix} 4 & 3 \\ 5 \end{pmatrix} 2$$

9gu

The reaction was performed at 150 °C. Purification by GPC gave **9gu** as a white solid (Method G: 52% yield). ¹H NMR (600 MHz, CDCl₃) δ 3.88 (s, 3H), 6.98 (d, *J* = 8.9 Hz, 2H), 7.46 (dd, *J* = 4.8, 1.4 Hz, 2H), 7.92 (d, *J* = 8.9 Hz, 2H), 8.14 (s, 1H), 8.63 (dd, *J* = 4.8, 1.4 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 55.4, 114.4, 120.4, 126.1, 128.1, 135.1, 138.9, 141.2, 150.5, 161.6, 169.2; HRMS (DART) *m*/*z* = 269.07479 calcd for C₁₅H₁₃N₂OS [M+H]⁺, found: 269.0749.

2-(Benzo[d][1,3]dioxol-5-yl)-5-(4-methoxyphenyl)thiazole (9hg)

Purification by PTLC (hexane/EtOAc = 3:1) gave **9hg** as a yellow solid (Method I: 87% yield). ¹H NMR (600 MHz, CDCl₃) δ 3.84 (s, 3H), 6.02 (s, 2H), 6.85 (d, *J* = 8.2 Hz, 1H), 6.93 (d, *J* = 8.9 Hz, 2H), 7.42–7.47 (m, 2H), 7.50 (d, *J* = 8.9 Hz, 2H), 7.84 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 55.4, 101.5, 106.5, 108.6, 114.5, 120.8, 124.0, 127.8, 128.3, 137.9, 138.4, 148.2, 149.1, 159.7, 165.9; HRMS (DART) *m*/*z* = 312.0694 calcd for C₁₇H₁₄NO₃S [M+H]⁺, found: 312.0691.

2-(4-Chlorophenyl)-5-phenylthiazole (9ja)

Purification by PTLC (hexane/EtOAc = 10:1) gave **9ja** as a white solid (Method H: 67% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.34 (t, *J* = 7.6 Hz, 1H), 7.37–7.44 (m, 4H), 7.58 (d, *J* = 7.6 Hz, 2H), 7.89 (d, *J* = 8.2 Hz, 2H), 8.00 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 126.7, 127.5, 128.4, 129.1, 129.2, 131.2, 132.1, 135.9, 139.2, 139.7, 165.7; HRMS (DART) *m*/*z* = 272.0301 calcd for C₁₅H₁₁CINS [M+H]⁺, found: 272.0300.

2-(4-Chlorophenyl)-5-(4-methylphenyl)thiazole (9jb)

9jb

S32

The reaction was performed at 130 °C. Purification by PTLC (hexane/EtOAc = 10:1) gave **9jb** as a white solid (Method H: 63% yield). ¹H NMR (600 MHz, CDCl₃) δ 2.39 (s, 3H), 7.22 (d, *J* = 8.3 Hz, 2H), 7.41 (d, *J* = 8.9 Hz, 2H), 7.48 (d, *J* = 8.3 Hz, 2H), 7.89 (d, *J* = 8.9 Hz, 2H), 7.96 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 21.2, 126.6, 127.5, 128.3, 129.2, 129.8, 132.2, 135.8, 138.5, 138.8, 139.8, 165.2; HRMS (DART) *m*/*z* = 286.0457 calcd for C₁₆H₁₃CINS [M+H]⁺, found: 286.0455.

5-Phenyl-2-(4-(trifluoromethyl)phenyl)thiazole (9ka)^[25]

Purification by PTLC (hexane/EtOAc = 10:1) gave **9ka** as a white solid (Method H: 85% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.37 (t, *J* = 7.6 Hz, 1H), 7.43 (t, *J* = 7.6 Hz, 2H), 7.61 (d, *J* = 7.6 Hz, 2H), 7.71 (d, *J* = 8.2 Hz, 2H), 8.06 (s, 1H), 8.08 (d, *J* = 8.2 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 123.9 (q, *J*_{C-F} = 271.7 Hz), 126.0 (q, *J*_{C-F} = 2.9 Hz), 126.5, 126.8, 128.7, 129.2, 131.0, 131.5 (q, *J*_{C-F} = 31.6 Hz), 136.7, 139.6, 140.6, 165.1; HRMS (DART) *m*/*z* = 306.0564 calcd for C₁₆H₁₁F₃NS [M+H]⁺, found: 306.0563.

5-(4-Methoxyphenyl)-2-(4-(trifluoromethyl)phenyl)thiazole (9kg)^[8]

Purification by PTLC (hexane/EtOAc = 10:1) gave **9kg** as a white solid (Method H: 72% yield). ¹H NMR (600 MHz, CDCl₃) δ 3.84 (s, 3H), 6.95 (d, *J* = 8.9 Hz, 2H), 7.52 (d, *J* = 8.9 Hz, 2H), 7.69 (d, *J* = 8.2 Hz, 2H), 7.95 (s, 1H), 8.04 (d, *J* = 8.2 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 55.4, 114.6, 123.5, 123.9 (q, *J*_{C-} = 270.2 Hz), 125.9 (q, *J*_{C-F} = 4.3 Hz), 126.3, 128.1, 131.3 (q, *J*_{C-F} = 33.1 Hz), 136.8, 138.6, 140.5, 160.0, 164.1; HRMS (DART) *m*/*z* = 336.0670 calcd for C₁₇H₁₃F₃NOS [M+H]⁺, found: 336.0672.

Methyl 4-(2-(4-(trifluoromethyl)phenyl)thiazol-5-yl)benzoate (9kn)

^[25] Li, Z.; Ma, L.; Xu, J.; Kong, L.; Wu, X.; Yao, H. Chem. Comm. 2012, 48, 3763.

₅ Ľ

Supporting Information (Tani, Uehara, Yamaguchi, Itami) Programmed Synthesis of Arylthiazoles through Sequential C–H Couplings

Purification by GPC gave **9kn** as a white solid (Method G: 79% yield). ¹H NMR (600 MHz, CDCl₃) δ 3.95 (s, 3H), 7.67 (d, *J* = 8.3 Hz, 2H), 7.72 (d, *J* = 8.3 Hz, 2H), 8.06–8.11 (m, 4H), 8.15 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 52.3, 123.8 (q, *J*_{C-F} = 270.2 Hz), 126.0 (q, *J*_{C-F} = 4.3 Hz), 126.4, 126.6, 130.0, 130.5, 131.8 (q, *J*_{C-F} = 33.1 Hz), 135.3, 136.5, 139.3, 140.8, 166.2, 166.4; HRMS (DART) *m*/*z* = 364.0619 calcd for C₁₈H₁₃F₃NO₂S [M+H]⁺, found: 364.0619.

Methyl 4-(5-(4-chlorophenyl)thiazol-2-yl)benzoate (9nj)

9nj

The reaction was performed for 36 h. Purification by GPC gave **9nj** as a white solid (Method G: 48%). ¹H NMR (600 MHz, CDCl₃) δ 3.95 (s, 3H), 7.40 (d, *J* = 8.3 Hz, 2H), 7.54 (d, *J* = 8.9 Hz, 2H), 8.00–8.07 (m, 3H), 8.12 (d, *J* = 8.3 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 52.3, 126.2, 127.9, 129.4, 129.6, 130.3, 131.2, 134.5, 137.3, 139.2, 139.9, 165.9, 166.4; HRMS (DART) *m*/*z* = 330.0356 calcd for C₁₇H₁₃CINOS [M+H]⁺, found: 330.0357.

2-(4-Acetylphenyl)-5-(3,5-dimethylphenyl)thiazole (90e)

Purification by GPC gave **90e** as a white solid (Method G: 69% yield). ¹H NMR (600 MHz, CDCl₃) δ 2.36 (s, 6H), 2.62 (s, 3H), 6.99 (s, 1H), 7.21 (s, 2H), 7.99–8.05 (m, 5H); ¹³C NMR (150 MHz, CDCl₃) δ 21.2, 26.6, 124.5, 126.2, 129.0, 130.4, 130.7, 137.55, 137.58, 138.8, 139.4, 141.0, 165.0, 197.2; HRMS (DART) m/z = 308.1109 calcd for C₁₉H₁₈NOS [M+H]⁺, found: 308.1109.

2-(4-Nitrophenyl)-5-phenylthiazole (9qa)

9qa

Purification by PTLC (CHCl₃/MeOH = 80:1) gave **9qa** as a yellow solid (Method I: 60% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.39 (t, *J* = 7.6 Hz, 1H), 7.45 (d, *J* = 7.6 Hz, 2H), 7.63 (d, *J* = 7.6 Hz, 2H), 8.11 (s, 1H), 8.13 (d, *J* = 8.9 Hz, 2H), 8.31 (d, *J* = 8.9 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 124.4, 126.9, 129.0, 129.3,

130.7, 139.1, 140.1, 141.8, 148.3, 163.8; There is one overlapping carbon signal as 1 peak is missing even with prolonged scans. HRMS (DART) m/z = calcd 283.0541 for C₁₅H₁₁N₂O₂S [M+H]⁺, found: 283.0545.

5-Phenyl-2-(4-pyridyl)thiazole (9ua)

9ua

Purification by PTLC (hexane/EtOAc = 2:1) gave **9ua** as a light yellow solid (Method H: 65% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.38 (t, *J* = 7.6 Hz, 1H), 7.46 (t, *J* = 7.6 Hz, 2H), 7.61 (d, *J* = 8.3 Hz, 2H), 7.81 (dd, *J* = 4.8, 2.0 Hz, 2H), 8.09 (s, 1H), 8.71 (dd, *J* = 4.8, 2.0 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 120.0, 126.8, 128.9, 129.2, 130.7, 139.8, 140.2, 141.3, 150.6, 163.8; HRMS (DART) *m*/*z* = 239.0643 calcd for C₁₄H₁₁N₂S [M+H]⁺, found: 239.0644.

2-(2-Pyrazin-2-yl)-5-(4-methylphenyl)thiazole (9vb)

9vb

Purification by PTLC (hexane/EtOAc = 3:1) gave **9vb** as a light yellow solid (Method I: 33% yield). ¹H NMR (600 MHz, CDCl₃) δ 2.39 (s, 3H), 7.24 (d, *J* = 7.6 Hz, 2H), 7.53 (d, *J* = 8.2 Hz, 2H), 8.09 (s, 1H), 8.55–8.57 (m, 1H), 8.58 (d, *J* = 2.7 Hz, 1H), 9.43 (d, *J* = 1.4 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 21.3, 126.7, 128.2, 129.9, 139.0, 139.6, 141.3, 142.9, 143.8, 144.7, 147.0, 164.4; HRMS (DART) *m*/*z* = 254.0752 calcd for C₁₄H₁₂N₃S [M+H]⁺, found: 254.0750.

7. Synthesis of 2,4-Diarylthiazoles

Table S3. Screening of Reaction Conditions

[a] GC yield

^[b] Ni(OAc)₂ (10 mol%), bipy (10 mol%), LiO*t*-Bu (2.0 equiv), 120 °C, 20 h.

^[c] Pd(OAc)₂ (5 mol%), Cul (2.0 equiv), 140 °C, 16 h.

^[d] Pd(OAc)₂ (5 mol%), P(*o*-tol)₃ (10 mol%), Cs₂CO₃ (2.0 equiv), 110 °C, 18 h.

[e] Condition C with Johnphos instead of P(o-tol)₃.

^[f] Pd[P(*t*-Bu)₃]₂ (2 mol%), LiO*t*-Bu (1.2 equiv), 100 °C, 9 h.

Method C^{*[7]}

A 25-mL test tube equipped with screw cap, containing a magnetic stirring bar, was flame-dried under vacuum and then cooling to room temperature. To this vessel were added $Pd[P(t-Bu)_3]_2$ (2.2 mg, 0.004 mol, 2 mol%), LiOt-Bu (24.0 mg, 0.3 mmol, 1.5 equiv), bromoarene 2 (0.24 mmol, 1.2 equiv), 4-arylthiazole 8 (0.2 mmol, 1.0 equiv), and 1,4-dioxane (0.6 mL) under argon atmosphere. The vessel was sealed and then stirred at 80 °C for 48 h. After cooling the reaction mixture to room temperature, the mixture was passed through a short silica gel pad (EtOAc). The filtrate was evaporated and the residue was purified by PTLC and/or GPC to afford 2,4-diarylthiazole 10.

Method F^[20]

A 25-mL test tube equipped with screw cap, containing a magnetic stirring bar, were added $Pd(OAc)_2$ (5.6 mg, 0.025 mmol, 10 mol%), 1,10-phenanthroline (phen: 4.5 mg, 0.025 mmol, 10 mol%), arylboronic acid **6** (1 mmol, 4.0 equiv), LiBF₄ (35.5 mg, 0.38 mmol, 1.5 equiv), TEMPO (19.5 mg, 0.13 mmol, 0.5 equiv), 2-arylthiazole **3** (0.25 mmol, 1.0 equiv) and undried DMAc (0.5 mL). The vessel was sealed under air and then stirred at 100 °C for 24 h. After cooling the reaction mixture to room temperature, the mixture was passed through a short silica gel pad (EtOAc). The filtrate was evaporated and the residue was purified by PTLC and/or GPC and/or flash column chromatography to afford desired product **10**.

2,4-Diphenylthiazole (10aa)^[20]

10aa

Purification by PTLC (hexane/EtOAc = 20:1 (Method C') or 10:1 (Method F)) gave **10aa** as a white solid (Method C': 77% yield, Method F: 83% yield, 90% C4-selectivity). ¹H NMR (600 MHz, CDCl₃) δ 7.35 (t, J = 7.8 Hz, 1H),7.41–7.50 (m, 6H), 8.00 (dd, J = 8.3, 1.4 Hz, 2H), 8.05 (dd, J = 8.3, 1.4 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 112.6, 126.4, 126.6, 128.2, 128.7, 128.9, 130.0, 133.7, 134.5, 156.3, 167.9; HRMS (DART) m/z = 238.0690 calcd for C₁₅H₁₂NS [M+H]⁺, found: 238.0690.

4-(4-Methylphenyl)-2-phenylthiazole (10ab)^[20]

10ab

Purification by PTLC (hexane/EtOAc = 10:1) gave **10ab** as a white solid (Method F: 84% yield, 89% C4-selectivity). ¹H NMR (600 MHz, CDCl₃) δ 2.40 (s, 3H), 7.25 (d, *J* = 7.6 Hz, 2H), 7.41–7.50 (m, 4H), 7.89

5

Supporting Information (Tani, Uehara, Yamaguchi, Itami) Programmed Synthesis of Arylthiazoles through Sequential C–H Couplings

 $(d, J = 7.6 \text{ Hz}, 2\text{H}), 8.04 (d, J = 6.9 \text{ Hz}, 2\text{H}); {}^{13}\text{C} \text{ NMR} (150 \text{ MHz}, \text{CDCl}_3) \delta 21.3, 111.8, 126.3, 126.6, 128.9, 129.4, 129.9, 131.8, 133.8, 138.0, 156.4, 167.7; HRMS (DART) <math>m/z = 252.0847$ calcd for $C_{16}H_{14}\text{NS} [\text{M}+\text{H}]^+$, found: 252.0850.

4-(t-Butylphenyl)-2-phenylthiazole (10ac)

10ac

The reaction was performed at 80 °C for 48 h. Purification by PTLC (hexane/EtOAc = 10:1) and GPC gave **10ac** as a white solid (Method F: 88% yield, 90% C4-selectivity). ¹H NMR (600 MHz, CDCl₃) δ 1.35 (s, 9H), 7.40 (s, 1H), 7.41–7.48 (m, 5H), 7.91 (d, *J* = 8.2 Hz, 2H), 8.03 (d, *J* = 6.8 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 31.3, 34.6, 112.0, 125.6, 126.2, 126.6, 128.9, 129.9, 131.8, 133.8, 151.2, 156.4, 167.7; HRMS (DART) *m*/*z* = 294.1316 calcd for C₁₉H₂₀NS [M+H]⁺, found: 294.1317.

4-(3,5-Dimethylphenyl)-2-phenylthiazole (10ae)

Purification by PTLC (hexane/EtOAc = 10:1) and GPC gave **10ae** as a white solid (Method F: 78% yield, 92% C4-selectivity). ¹H NMR (600 MHz, CDCl₃) δ 2.38 (s, 6H), 6.99 (s, 1H), 7.38–7.47 (m, 4H), 7.61 (s, 2H), 8.03 (d, *J* = 7.6 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 21.4, 112.4, 124.3, 126.6, 128.9, 129.86, 129.93, 133.8, 134.3, 138.2, 156.6, 167.7; HRMS (DART) *m*/*z* = 266.1003 calcd for C₁₇H₁₆NS [M+H]⁺, found: 266.1003.

4-(4-Methoxyphenyl)-2-phenylthiazole (10ag)^[20]

Me

10ag

Purification by PTLC (hexane/EtOAc = 10:1) gave **10ag** as a white solid (Method C': 46% yield, Method F: 71% yield, 88% C4-selectivity). ¹H NMR (600 MHz, CDCl₃) δ 3.86 (s, 3H), 6.98 (d, *J* = 8.9 Hz, 2H), 7.34 (s, 1H), 7.40–7.48 (m, 3H), 7.93 (d, *J* = 8.3 Hz, 2H), 8.04 (d, *J* = 8.3 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 55.3, 110.9, 114.1, 126.6, 127.5, 127.7, 128.9, 129.9, 133.8, 156.1, 159.7, 167.7; HRMS (DART) *m*/*z* = 268.0796 calcd for C₁₆H₁₄NOS [M+H]⁺, found: 268.0794.

4-(4-Chlorophenyl)-2-phenylthiazole (10aj)^[26]

10aj

4-MeO-TEMPO (0.125 mmol) was used instead of TEMPO and the reaction was performed for 48 h. Purification by PTLC (hexane/EtOAc = 10:1) gave **10aj** as a white solid (Method F: 59% yield, 75% C4-selectivity). ¹H NMR (600 MHz, CDCl₃) δ 7,40 (d, *J* = 8.3 Hz, 2H) 7.43–7.48 (m, 4H), 7.92 (d, *J* = 8.9 Hz, 2H), 8.02 (dd, *J* = 8.3, 2.0 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 112.9, 126.6, 127.7, 128.88, 128.94, 130.2, 133.0, 133.6, 133.9, 155.1, 168.1; HRMS (DART) *m*/*z* = 272.0301 calcd for C₁₅H₁₁CINS [M+H]⁺, found: 272.0301.

Methyl 4-(2-phenylthiazol-4-yl)benzoate (10an)

10an

The reaction was performed for 48 h. Purification by flash column chromatography (hexane/EtOAc = 5:1)

^[26] Zhu, D.; Chen, J.; Xiao, H.; Liu, M.; Ding, J.; Wu, H. Synth. Commun. 2009, 39, 2895.

gave 10an as a colorless solid (Method F: 63% yield, >99% C4-selectivity). ¹H NMR (600 MHz, CDCl₃) δ 3.93 (s, 3H), 7.41–7.49 (m, 3H), 7.58 (s, 1H), 8.01–8.08 (m, 4H), 8.11 (d, *J* = 8.2 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 52.1, 114.5, 126.2, 126.6, 128.9, 129.5, 130.1, 130.2, 133.5, 138.5, 155.1, 166.8, 168.2; HRMS (DART) *m*/*z* = 296.0745 calcd for C₁₇H₁₄NO₂S [M+H]⁺, found: 296.0747.

4-(4-Methylphenyl)-2-phenylthiazole (10ba)^[27]

Purification by PTLC (hexane/EtOAc = 10:1) gave **10ba** as a white solid (Method F: 84% yield, 95% C4-selectivity). ¹H NMR (600 MHz, CDCl₃) δ 2.39 (s, 3H), 7.25 (d, *J* = 8.2 Hz, 2H), 7.33 (t, *J* = 8.2 Hz, 1H), 7.40–7.45 (m, 3H), 7.92 (d, *J* = 7.6 Hz, 2H), 7.98 (d, *J* = 8.3 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 21.4, 112.1, 126.4, 126.5, 128.1, 128.7, 129.6, 131.2, 134.6, 140.2, 156.1, 168.0; HRMS (DART) *m*/*z* = 252.0847 calcd for C₁₆H₁₄NS [M+H]⁺, found: 252.0846.

2-(4-Methoxyphenyl)-4-(4-methylphenyl)thiazole (10bg)

Purification by PTLC (hexane/EtOAc = 10:1) gave **10bg** as a white solid (Method C': 65% yield). ¹H NMR (600 MHz, CDCl₃) δ 2.39 (s, 3H), 3.84 (s, 3H), 6.96 (d, *J* = 8.2 Hz, 2H), 7.24 (d, *J* = 8.2 Hz, 2H), 7.28 (s, 1H), 7.91 (d, *J* = 8.2 Hz, 4H); ¹³C NMR (150 MHz, CDCl₃) δ 21.4, 55.3, 110.4, 114.0, 126.4, 127.6, 127.7, 129.5, 131.2, 140.1, 155.9, 159.6, 167.8; HRMS (DART) *m*/*z* = calcd 282.0953 for C₁₇H₁₆NOS [M+H]⁺, found: 282.0950.

4-(4-Chlorophenyl)-2-(4-methylphenyl)thiazole (10bj)

^[27] Ishikawa, Y.; Togo, H. Synlett 2008, 2637.

Supporting Information (Tani, Uehara, Yamaguchi, Itami) Programmed Synthesis of Arylthiazoles through Sequential C–H Couplings

The reaction was performed for 48 h. Purification by flash column chromatography (hexane/EtOAc = 20:1) gave **10bj** as a light yellow solid (Method F: 59% yield, 78% C4-selectivity). ¹H NMR (600 MHz, CDCl₃) δ 2.40 (s, 3H), 7.25 (d, *J* = 7.6 Hz, 2H), 7.37–7.41 (m, 3H), 7.90 (d, *J* = 7.6 Hz, 2H), 7.91 (d, *J* = 8.2 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 21.4, 112.4, 126.5, 127.7, 128.8, 129.6, 130.9, 133.0, 133.8, 140.4, 154.9, 168.3; HRMS (DART) *m*/*z* = 286.0457 calcd for C₁₆H₁₃CINS [M+H]⁺, found: 286.0457.

2-(3,5-Dimethylphenyl)-4-phenylthiazole (10ea)

The reaction was performed at 100°C. Purification by PTLC (hexane/EtOAc = 20:1) gave **10ea** as a white solid (Method C': 72% yield). ¹H NMR (600 MHz, CDCl₃) δ 2.39 (s, 6H), 7.06 (s, 1H), 7.34 (t, *J* = 7.6 Hz, 1H), 7.41–7.46 (m, 3H), 7.66 (s, 2H), 7.99 (d, *J* = 8.3 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 21.2, 112.4, 124.4, 126.4, 128.1, 128.7, 131.8, 133.5, 134.6, 138.5, 156.1, 168.3; HRMS (DART) *m*/*z* = 266.1003 calcd for C₁₇H₁₆NS [M+H]⁺, found: 266.1001.

2-(4-Methoxyphenyl)-4-phenylthiazole (10ga)^[27]

10ga

Purification by PTLC (hexane/EtOAc = 10:1) gave **10ga** as a white solid (Method F: 99% yield, >96% C4-selectivity). ¹H NMR (600 MHz, CDCl₃) δ 3.85 (s, 3H) 6.96 (d, *J* = 8.2 Hz, 2H), 7.33 (t, *J* = 7.6 Hz, 1H), 7.39 (s, 1H), 7.43 (t, *J* = 7.6 Hz, 2H), 7.95–8.00 (m, 4H); ¹³C NMR (150 MHz, CDCl₃) δ 55.2, 111.5, 114.0, 126.2, 126.6, 127.8, 127.9, 128.5, 134.4, 155.8, 161.0, 167.5; HRMS (DART) *m*/*z* = 268.0796 calcd for

 $5 \frac{4}{\sqrt{5}} \frac{3}{2}$

Supporting Information (Tani, Uehara, Yamaguchi, Itami) Programmed Synthesis of Arylthiazoles through Sequential C–H Couplings

C₁₆H₁₄NOS [M+H]⁺, found: 268.0797.

2-(4-Methoxyphenyl)-4-(4-methylphenyl)thiazole (10gb)

10gb

Purification by PTLC (hexane/EtOAc = 10:1) gave **10gb** as a white solid (Method F: 58% yield, 96% C4-selectivity). ¹H NMR (600 MHz, CDCl₃) δ 2.38 (s, 3H), 3.85 (s, 3H), 6.95 (d, *J* = 8.9 Hz, 2H), 7.23 (d, *J* = 8.2 Hz, 2H), 7.33 (s, 1H), 7.87 (d, *J* = 8.2 Hz, 2H), 7.96 (d, *J* = 8.9 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 21.2, 55.4, 110.9, 114.2, 126.3, 126.9, 128.0, 129.3, 131.9, 137.8, 156.1, 161.1, 167.5; HRMS (DART) m/z = 282.0953 calcd for C₁₇H₁₆NOS [M+H]⁺, found: 282.0953.

4-(4-Chlorophenyl)-2-(4-methoxyphenyl)thiazole (10gj)

10gj

Purification by PTLC (hexane/EtOAc = 10:1) gave **10gj** as a white solid (Method C': 67% yield). ¹H NMR (600 MHz, CDCl₃) δ 3.86 (s, 3H), 6.96 (d, *J* = 8.2 Hz, 2H), 7.37 (s, 1H), 7.39 (d, *J* = 8.9 Hz, 2H), 7.91 (d, *J* = 8.2 Hz, 2H), 7.95 (d, *J* = 8.9 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 55.4, 112.0, 114.2, 126.5, 127.6, 128.1, 128.8, 133.1, 133.8, 154.7, 161.2, 167.9; HRMS (DART) *m*/*z* = 302.0406 calcd for C₁₆H₁₃ClNOS [M+H]⁺, found: 302.0406.

2-(Benzo[d][1,3]dioxol-5-yl)-4-phenylthiazole (10ha)

Purification by PTLC (hexane/EtOAc = 10:1) gave **10ha** as a white solid (Method C': 78% yield).¹H NMR

(600 MHz, CDCl₃) δ 6.01 (s, 2H), 6.86 (d, J = 8.2 Hz, 1H), 7.33 (t, J = 8.2 Hz, 1H), 7.38 (s, 1H), 7.43 (t, J = 8.2 Hz, 2H), 7.51 (d, J = 8.2 Hz, 1H), 7.56 (s, 1H), 7.96 (d, J = 8.2 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 101.5, 106.9, 108.5, 111.9, 121.1, 126.4, 128.1, 128.2, 128.7, 134.5, 148.2, 149.2, 155.9, 167.4; HRMS (DART) m/z = 282.0589 calcd for C₁₆H₁₂NO₂S [M+H]⁺, found: 282.0588.

2-(Benzo[d][1,3]dioxol-5-yl)-4-(4-methylphenyl)thiazole (10hb)

Purification by PTLC (hexane/EtOAc = 20:1) gave **10hb** as a white solid (Method F: 82% yield, 97% C4-selectivity). ¹H NMR (600 MHz, CDCl₃) δ 2.38 (s, 3H), 6.00 (s, 2H), 6.85 (d, *J* = 8.2 Hz, 1H), 7.23 (d, *J* = 8.2 Hz, 2H), 7.31 (s, 1H), 7.50 (dd, J = 7.6, 1.4 Hz, 1H), 7.55 (d, *J* = 1.4 Hz, 1H), 7.85 (d, *J* = 7.6 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 21.2, 101.5, 106.9, 108.5, 111.1, 121.0, 126.3, 128.4, 129.4, 131.8, 137.9, 148.2, 149.2, 156.0, 167.3; HRMS (DART) *m*/*z* = 296.0745 calcd for C₁₇H₁₄NO₂S [M+H]⁺, found: 296.0746.

2-(Benzo[d][1,3]dioxol-5-yl)-4-(4-methoxyphenyl)thiazole (10hg)

Purification by PTLC (hexane/EtOAc = 10:1) and GPC gave **10hg** as a light yellow solid (Method C': 74% yield). ¹H NMR (600 MHz, CDCl₃) δ 3.85 (s, 3H), 6.03 (s, 2H), 6.87 (d, *J* = 7.6 Hz, 1H), 6.96 (d, *J* = 8.9 Hz, 2H), 7.26 (s, 1H), 7.52 (dd, *J* = 7.6, 1.4 Hz, 1H), 7.56 (d, *J* = 1.4 Hz, 1H), 7.90 (d, *J* = 8.9 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 55.3, 101.5, 106.9, 108.5, 110.2, 114.0, 121.0, 127.5, 127.7, 128.3, 148.2, 149.1, 155.8, 159.6, 167.3; HRMS (DART) *m*/*z* = 312.0694 calcd for C₁₇H₁₄NO₃S [M+H]⁺, found: 312.0696.

4-(4-Methoxylphenyl)-2-(3,4,5-trimethoxyphenyl)thiazole (10ig)

Supporting Information (Tani, Uehara, Yamaguchi, Itami) Programmed Synthesis of Arylthiazoles through Sequential C–H Couplings

Purification by PTLC (hexane/EtOAc = 3:1) gave **10ig** as a light yellow solid (Method C': 57% yield). ¹H NMR (600 MHz, CDCl₃) δ 3.85 (s, 3H), 3.91 (s, 3H), 3.97 (s, 6H), 6.97 (d, *J* = 8.2 Hz, 2H), 7.26 (s, 2H), 7.31 (s, 1H), 7.92 (d, *J* = 8.2 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 55.3, 56.3, 60.9, 103.8, 110.8, 114.0, 127.4, 127.7, 129.4, 139.7, 153.5, 155.9, 159.6, 167.5; HRMS (DART) *m*/*z* = 358.1113 calcd for C₁₉H₂₀NO₄S [M+H]⁺, found: 358.1114.

2-(4-Chlorophenyl)-4-phenylthiazole (10ja)

The reaction was performed for 48 h. Purification by PTLC (hexane/EtOAc = 10:1) gave **10ja** as a white solid (Method F: 64% yield, 82% C4-selectivity). ¹H NMR (600 MHz, CDCl₃) δ 7.35 (t, *J* = 8.2 Hz, 1H), 7.40–7.48 (m, 5H), 7.94–8.01 (m, 4H); ¹³C NMR (150 MHz, CDCl₃) δ 112.8, 126.4, 127.8, 128.3, 128.7, 129.1, 132.3, 134.3, 135.9, 156.5, 166.5; HRMS (DART) *m*/*z* = 272.0301 calcd for C₁₅H₁₁ClNS [M+H]⁺, found: 272.0301.

2-(4-Chlorophenyl)-4-(4-methylphenyl)thiazole (10jb)

Purification by PTLC (hexane/EtOAc = 20:1) gave **10jb** as a white solid (Method C': 70% yield). ¹H NMR (600 MHz, CDCl₃) δ 2.40 (s, 3H), 7.25 (d, *J* = 8.2 Hz, 2H), 7.41–7.44 (m, 3H), 7.87 (d, *J* = 8.2 Hz, 2H), 7.97 (d, *J* = 8.9 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 21.3, 112.1, 126.3, 127.7, 129.1, 129.4, 131.6, 132.3,

$$5 \frac{4}{\sqrt{5}} \frac{3}{\sqrt{2}} 2$$

135.8, 138.1, 156.5, 166.3; HRMS (DART) m/z = 286.0457 calcd for C₁₆H₁₃ClNS [M+H]⁺, found: 286.0456.

Methyl 4-(4-(4-chlorophenyl)thiazol-4-yl)benzoate (10jn)

10jn

The reaction was performed for 48 h. Purification by flash column chromatography (hexane/EtOAc = 5:1) gave **10jn** as a white solid (Method F: 45% yield, >99% C4-selectivity). ¹H NMR (600 MHz, CDCl₃) δ 3.94 (s, 3H), 7.43 (d, *J* = 8.2 Hz, 2H), 7.59 (s, 1H), 7.95–7.97 (m, 2H), 8.04 (d, *J* = 8.2 Hz, 2H), 8.10 (d, *J* = 8.2 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 52.1, 114.7, 126.2, 127.2, 127.8, 129.2, 129.6, 129.6, 130.10, 130.2, 131.9, 136.2, 138.3, 155.2, 166.80, 166.83; HRMS (DART) *m*/*z* = calcd 330.0356 for C₁₇H₁₃CINO₂S [M+H]⁺, found: 330.0357.

2-(4-(Trifluoromethyl)phenyl)-4-phenylthiazole (10ka)

Purification by PTLC (hexane/EtOAc = 10:1) gave **10ka** as a white solid (Method F: 69% yield, 77% C4-selectivity). ¹H NMR (600 MHz, CDCl₃) δ 7.37 (t, *J* = 7.6 Hz, 1H), 7.45 (t, *J* = 7.6 Hz, 2H), 7.52 (s, 1H), 7.70 (d, *J* = 8.2 Hz, 2H), 7.99 (d, *J* = 7.6 Hz, 2H), 8.14 (d, *J* = 8.2 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 113.6, 124.0 (q, *J*_{C-F} = 271.7 Hz), 125.9 (q, *J*_{C-F} = 4.3 Hz), 126.5, 126.8, 128.4, 128.8, 131.6 (q, *J*_{C-F} = 33.1 Hz), 134.2, 136.8, 156.9, 165.9; HRMS (DART) *m*/*z* = 306.0564 calcd for C₁₆H₁₁F₃NS [M+H]⁺, found: 306.0563.

2-(4-(Trifluoromethyl)phenyl)-4-(4-methylphenyl)thiazole (10kb)

10kb

Purification by GPC gave **10kb** as a white solid (Method C': 63% yield). ¹H NMR (600 MHz, CDCl₃) δ 2.39 (s, 3H), 7.24 (d, *J* = 8.3 Hz, 2H), 7.40–7.43 (m, 3H), 7.86 (d, *J* = 8.3 Hz, 2H), 7.96 (d, *J* = 8.3 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 21.3, 112.8, 123.9 (q, *J*_{C-F} = 271.7 Hz), 125.9 (q, *J*_{C-F} = 2.9 Hz), 126.3, 126.7, 129.5, 131.4, 131.5 (q, *J*_{C-F} = 33.1 Hz), 136.9, 138.3, 156.9, 165.8; HRMS (DART) *m*/*z* = 320.0721 calcd for C₁₇H₁₃F₃NS [M+H]⁺, found: 320.0720.

Methyl 4-(4-phenylthiazol-2-yl)benzoate (10na)

Purification by flash column chromatography (hexane/EtOAc = 10:1) gave **10na** as a white solid (Method F: 65% yield, 82% C4-selectivity). ¹H NMR (600 MHz, CDCl₃) δ 3.93 (s, 3H), 7.35 (t, *J* = 7.6 Hz, 1H), 7.44 (d, *J* = 7.6 Hz, 2H), 7.51 (s, 1H), 7.98 (d, *J* = 8.2 Hz, 2H), 8.07–8.13 (m, 4H); ¹³C NMR (150 MHz, CDCl₃) δ 52.2, 113.6, 126.35, 126.44, 128.3, 128.7, 130.2, 131.1, 134.2, 137.5, 156.8, 166.3, 166.5; HRMS (DART) *m*/*z* = 296.0745 calcd for C₁₇H₁₄NO₂S [M+H]⁺, found: 296.0746.

2-(4-Acetylphenyl)-4-phenylthiazole (10oa)

Purification by PTLC (hexane/EtOAc = 10:1) gave **10oa** as a white solid (Method F: 71% yield, 77% C4-selectivity). ¹H NMR (600 MHz, CDCl₃) δ 2.64 (s, 3H), 7.37 (t, *J* = 7.6 Hz, 1H), 7.46 (t, *J* = 7.6 Hz, 2H), 7.55 (s, 1H), 8.00 (d, *J* = 8.3 Hz, 2H), 8.04 (d, *J* = 8.9 Hz, 2H), 8.13 (d, *J* = 8.9 Hz, 2H); ¹³C NMR (150 MHz,

CDCl₃) δ 26.7, 113.7, 126.5, 126.6, 128.4, 128.8, 129.0, 134.2, 137.6, 137.9, 156.9, 166.3, 197.3; HRMS (DART) m/z = 280.0796 calcd for C₁₇H₁₄NOS [M+H]⁺, found: 280.0796.

2-(5-Methylthiophen-2-yl)-4-phenylthiazole (10ra)

10ra

Purification by PTLC (hexane/EtOAc = 20:1) gave **10ra** as a light yellow solid (Method C': 62% yield). ¹H NMR (600 MHz, CDCl₃) δ 2.51 (s, 3H), 6.73 (d, *J* = 2.8 Hz, 1H), 7.30–7.36 (m, 3H), 7.42 (t, *J* = 7.6 Hz, 2H), 7.94 (d, *J* = 7.6 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 15.5, 111.2, 126.1, 126.4, 126.6, 128.1, 128.7, 134.2, 135.1, 142.8, 155.6, 161.7; HRMS (DART) *m*/*z* = 258.0411 calcd for C₁₄H₁₂NS₂ [M+H]⁺, found: 258.0410.

2-(3-Pyridyl)-4-(4-methylphenyl)thiazole (10tb)

4b (1.5 equiv), 3-bromopyridine (1.0 equiv) and LiO*t*-Bu (2.0 equiv) were used and the reaction was performd at 100 °C. Purification by PTLC (hexane/EtOAc = 5:1) gave **10tb** as a light yellow solid (Method C': 82% yield). ¹H NMR (600 MHz, CDCl₃) δ 2.40 (s, 3H), 7.27 (d, *J* = 8.3 Hz, 2H), 7.40 (dd, *J* = 8.2 Hz, 4.8 Hz, 1H), 7.49 (s, 1H), 7.89 (d, *J* = 8.3 Hz, 2H), 8.33 (dt, *J* = 7.6 Hz, 2.0 Hz, 1H), 8.67 (dd, *J* = 4.8 Hz, 1.4 Hz, 1H), 9.24 (d, *J* = 2.0 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 21.3, 112.5, 123.7, 126.4, 129.5, 129.8, 131.4, 133.6, 138.3, 147.8, 150.7, 156.9, 164.2; HRMS (DART) *m*/*z* = 253.0799 calcd for C₁₅H₁₃N₂S [M+H]⁺, found: 253.0799.

2-(6-Methoxylnaphthalen-2-yl)-4-phenylthiazole (10wa)

The reaction was performed at 100 °C. GPC gave **10wa** as light yellow solid (Method C': 68% yield). ¹H NMR (600 MHz, CDCl₃) δ 3.94 (s, 3H), 7.16 (s, 1H), 7.19 (dd, *J* = 8.3, 2.1 Hz, 1H), 7.36 (t, *J* = 7.6 Hz, 1H), 7.44–7.49 (m, 3H), 7.80 (d, *J* = 8.2 Hz, 1H), 7.84 (d, *J* = 8.2 Hz, 1H), 8.03 (d, *J* = 7.6 Hz, 2H), 8.13 (dd, *J* = 8.2, 2.1 Hz, 1H), 8.43 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 55.3, 105.8, 112.3, 119.6, 124.7, 125.8, 126.5, 127.4, 128.1, 128.65, 128.73, 129.1, 130.1, 134.6, 135.5, 156.3, 158.5, 168.1; HRMS (DART) *m/z* = 318.0953 calcd for C₂₀H₁₆NOS [M+H]⁺, found: 318.0953.

Synthesis of Fatostatin^[28]

4b (1.25 equiv), 4-bromo-2-propylpyridine (1.0 equiv) and LiO*t*-Bu (1.5 equiv) at 100 °C for 48 h. PTLC (hexane/EtOAc = 2:1) gave Fatostatin as a light yellow solid (Method C': 53% yield). ¹H NMR (600 MHz, CDCl₃) δ 1.02 (t, *J* = 7.6 Hz, 3H), 1.80–1.87 (m, 2H), 2.40 (s, 3H), 2.86 (t, *J* = 7.6 Hz, 2H), 7.26 (d, *J* = 8.2 Hz, 2H), 7.50 (s, 1H), 7.67 (dd, *J* = 4.9, 2.0 Hz, 1H), 7.76 (s, 1H), 7.88 (d, *J* = 8.2 Hz, 2H), 8.62 (d, *J* = 8.1 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 13.9, 21.3, 23.1, 40.4, 113.3, 117.8, 119.3, 126.3, 129.5, 131.3, 138.4, 140.6, 150.0, 157.1, 163.4, 165.2; HRMS (DART) *m*/*z* = 295.1269 calcd for C₁₈H₁₉N₂S [M+H]⁺, found: 295.1268.

^[28] Kamisuki, S.; Mao, Q.; Abu-Elheiga, L.; Gu, Z.; Kugimiya, A.; Kwon, Y.; Shinohara, T.; Kawazoe, Y.; Sato, S.;
Asakura, K.; Choo, H. -Y. P.; Sakai, J.; Wakil, S. J.; Uesugi, M. Chem. Biol. 2009, 16, 882.

8. Synthesis of 4,5-Diarylthiazoles

Table S4. Screening of Reaction Conditions

^[a] GC ratio of **7a**/*n*-dodecane. The nunmer in bracket was isolated yield. ^[b] GC yield.

Method D^[15]

A 7-mL test tube equipped with screw cap, containing a magnetic stirring bar, was flame-dried under vacuum and then cooling to room temperature. To this vessel were added $Pd(OAc)_2$ (2.2 mg, 0.01 mmol, 5 mol%), $PMe(t-Bu)_2 \cdot HBF_4$ (5.0 mg, 0.02 mmol, 10 mol%), Cs_2CO_3 (97.8 mg, 0.3 mmol, 1.5 equiv), iodoarene **2** (0.2 mmol, 1.0 equiv), 4-arylthiazole **8** (0.2 mmol, 1.0 equiv), and *t*-AmylOH (0.5 mL) under argon atmosphere. The vessel was sealed and then stirred at 80 °C for 36 h. After cooling the reaction mixture to room temperature, the mixture was passed through a short silica gel pad (EtOAc). The filtrate was evaporated and the residue was purified by PTLC and GPC. For further purification, the obtained product was passed through NH-silica gel pad (EtOAc) to afford 4,5-diarlthiazole **12**.

4,5-Diphenylthiazole (12aa)^[29]

^[29] Lingaraju, G. S.; Swaroop, T. R.; Vinayaka, A. C.; Kumar, K. S. S.; Sadashiva, M. P.; Rangappa, K. S. Synthesis2012, 44, 1373.

Supporting Information (Tani, Uehara, Yamaguchi, Itami) Programmed Synthesis of Arylthiazoles through Sequential C–H Couplings

12aa

Purification by PTLC (hexane/EtOAc = 10:1) gave **12aa** as a white solid (Method D: 77% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.27–7.38 (m, 8H), 7.51–7.55 (m, 2H), 8.81 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 127.8, 128.27, 128.30, 128.8, 129.0, 129.7, 131.8, 132.9, 134.6, 150.7, 151.0; HRMS (DART) m/z = 238.0690 calcd for C₁₅H₁₂NS [M+H]⁺, found: 238.0690.

5-(4-Methylphenyl)-4-phenylthiazole (12ab)^[29]

Purification by GPC gave **12ab** as a white solid (Method D: 69% yield). ¹H NMR (600 MHz, CDCl₃) δ 2.36 (s, 3H), 7.13 (d, *J* = 8.3 Hz, 2H), 7.25 (d, *J* = 8.3 Hz, 2H), 7.27–7.32 (m, 3H), 7.54 (dd, *J* = 7.6, 1.4 Hz, 2H), 8.78 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 21.2, 127.7, 128.3, 128.8, 129.0, 129.48, 129.54, 133.1, 134.8, 138.2, 150.3, 150.7; HRMS (DART) *m*/*z* = 252.0847 calcd for C₁₆H₁₄NS [M+H]⁺, found: 252.0847.

5-(4-Methoxyphenyl)-4-phenylthiazole (12ag)^[29]

12ag

Purification by GPC gave **12ag** as a light yellow oil (Method D: 75% yield). ¹H NMR (600 MHz, CDCl₃) δ 3.81 (s, 3H), 6.86 (d, *J* = 8.2 Hz, 2H), 7.24–7.31 (m, 5H), 7.54 (dd, *J* = 8.2, 1.4 Hz, 2H), 8.76 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 55.3, 114.2, 123.9, 127.7, 128.3, 128.9, 130.9, 132.8, 134.8, 150.1, 150.5, 159.7; HRMS (DART) *m*/*z* = 268.0796 calcd for C₁₆H₁₄NOS [M+H]⁺, found: 268.0798.

5-(3,4,5-Trimethoxyphenyl)-4-phenylthiazole (12ai)^[29]

Supporting Information (Tani, Uehara, Yamaguchi, Itami) Programmed Synthesis of Arylthiazoles through Sequential C–H Couplings

3,4,5-Trimethoxybromobenzene (**2i**) (1.0 equiv) was used and the reaction was performed at 100 °C for 18 h. Purification by GPC gave **12ai** as a light yellow solid (Method D: 60% yield). ¹H NMR (600 MHz, CDCl₃) δ 3.70 (s, 6H), 3.88 (s, 3H), 6.55 (s, 2H), 7.27–7.34 (m, 3H), 7.57 (dd, *J* = 8.3 Hz, 1.4 Hz, 2H), 8.79 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 56.0, 60.9, 106.9, 127.0, 127.9, 128.3, 129.0, 132.9, 134.7, 138.1, 150.57, 150.61, 153.3. HRMS (DART) *m*/*z* = 328.1007 calcd for C₁₈H₁₈NO₃S [M+H]⁺, found: 328.1005.

5-(4-Chlorophenyl)-4-phenylthiazole (12aj)

12aj

Purification by GPC gave **12aj** as a light yellow solid (Method D: 66% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.26–7.34 (m, 7H), 7.51 (dd, *J* = 7.6, 2.0 Hz, 2H), 8.81 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 128.1, 128.4, 128.97, 129.02, 130.3, 130.9, 131.5, 134.3, 151.1, 151.2; There is one overlapping carbon signal as 1 peak is missing even with prolonged scans. HRMS (DART) *m*/*z* = 272.0301 calcd for C₁₅H₁₁ClNS [M+H]⁺, found: 272.0301.

5-(4-(Trifluoromethyl)phenyl)-4-phenylthiazole (12ak)

Purification by GPC gave **12ak** as a white solid (Method D: 59% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.29–7.35 (m, 3H), 7.47 (d, *J* = 8.3 Hz, 2H), 7.50 (dd, *J* = 7.6, 2.0 Hz, 2H), 7.58 (d, *J* = 8.3 Hz, 2H), 8.86 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 123.9 (q, *J*_{C-F} = 270.2 Hz), 125.7 (q, *J*_{C-F} = 2.9 Hz), 128.3, 128.5, 129.1,

 $5 \frac{4}{\sqrt{5}} \frac{3}{\sqrt{2}} 2$

Supporting Information (Tani, Uehara, Yamaguchi, Itami) Programmed Synthesis of Arylthiazoles through Sequential C–H Couplings

129.9, 130.2 (q, $J_{C-F} = 31.6 \text{ Hz}$), 131.2, 134.1, 135.7, 151.7; There is one overlapping carbon signal as 1 peak is missing even with prolonged scans. HRMS (DART) m/z = 306.0564 calcd for $C_{16}H_{11}F_3NS [M+H]^+$, found: 306.0565.

Methyl-4-(4-phenylthiazol-5-yl)benzoate (12an)

The reaction was performed at 100 °C for 18 h. Purification by GPC gave **12an** as a light yellow oil (Method D: 49% yield). ¹H NMR (600 MHz, CDCl₃) δ 3.92 (s, 3H), 7.29–7.33 (m, 3H), 7.43 (d, *J* = 8.2 Hz, 2H), 7.48–7.52 (m, 2H), 7.99 (d, *J* = 8.2 Hz, 2H), 8.86 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 52.2, 128.2, 128.4, 129.1, 129.6, 129.7, 130.0, 131.7, 134.2, 136.6, 151.7, 166.5; There is one overlapping carbon signal as 1 peak is missing even with prolonged scans. HRMS (DART) *m*/*z* = 296.0745 calcd for C₁₇H₁₄NO₂S [M+H]⁺, found: 296.0746.

4-(4-Methylphenyl)-5-phenylthiazole (12ba)

Purification by GPC gave **12ba** as a white solid (Method D: 77% yield). ¹H NMR (600 MHz, CDCl₃) δ 2.34 (s, 3H), 7.10 (d, *J* = 7.6 Hz, 2H), 7.30–7.40 (m, 5H), 7.42 (d, *J* = 7.6 Hz, 2H), 8.80 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 21.2, 128.2, 128.7, 128.8, 129.0, 129.7, 131.8, 132.0, 132.3, 137.6, 150.7, 150.8; HRMS (DART) *m*/*z* = 252.0847 calcd for C₁₆H₁₄NS [M+H]⁺, found: 252.0845.

5-(4-Methoxyphenyl)-4-(4-methylphenyl)thiazole (12bg)

Supporting Information (Tani, Uehara, Yamaguchi, Itami) Programmed Synthesis of Arylthiazoles through Sequential C–H Couplings

12bg

Purification by GPC gave **12bg** as a light yellow solid (Method D: 66% yield). ¹H NMR (600 MHz, CDCl₃) δ 2.33 (s, 3H), 3.81 (s, 3H), 6.86 (d, *J* = 8.2 Hz, 2H), 7.10 (d, *J* = 8.2 Hz, 2H), 7.28 (d, *J* = 8.2 Hz, 2H), 7.43 (d, *J* = 8.2 Hz, 2H), 8.75 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 21.2, 55.2, 114.2, 124.1, 128.7, 129.0, 130.9, 131.9, 132.2, 137.4, 150.1, 150.3, 159.6; HRMS (DART) *m*/*z* = 282.0953 calcd for C₁₇H₁₆NOS [M+H]⁺, found: 282.0954.

5-(4-(Trifluoromethyl)phenyl)-4-(4-methylphenyl)thiazole (12bk)

12bk

Purification by PTLC (hexane/EtOAc = 2:1) gave **12bk** as a yellow solid (Method D: 40% yield). ¹H NMR (600 MHz, CDCl₃) δ 2.35 (s, 3H), 7.13 (d, *J* = 7,9 Hz, 2H), 7.39 (d, *J* = 8.2 Hz, 2H), 7.48 (d, *J* = 8.2 Hz, 2H), 7.58 (d, *J* = 7.9 Hz, 2H), 8.85 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 21.2, 123.9 (q, *J*_{C-F} = 270.2 Hz), 125.7 (q, *J*_{C-F} = 2.9 Hz), 128.9, 129.2, 129.9, 130.1 (q, *J*_{C-F} = 33.1 Hz), 130.5, 131.3, 135.9, 138.2, 151.6, 151.9; HRMS (DART) *m*/*z* = 320.0721 calcd for C₁₇H₁₃F₃NS [M+H]⁺, found: 320.0729.

5-(4-Chlorophenyl)-4-(4-methylphenyl)thiazole (12bj)

Purification by PTLC (hexane/EtOAc = 2:1) gave **12bj** as a yellow solid (Method D: 58% yield). ¹H NMR (600 MHz, CDCl₃) δ 2.34 (s, 3H), 7.12 (d, *J* = 7.9 Hz, 2H), 7.27–7.32 (m, 4H), 7.40 (d, *J* = 7.9 Hz, 2H), 8.80 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 21.2, 128.8, 129.0, 129.1, 130.5, 130.89, 130.92, 131.4, 134.2, 137.9,

151.08, 151.13; HRMS (DART) m/z = 286.0457 calcd for $C_{16}H_{13}CINS [M+H]^+$, found: 286.0460.

4-(4-Methoxyphenyl)-5-phenylthiazole (12ga)^[30]

12ga

Purification by GPC gave **12ga** as a white solid (Method D: 81% yield). ¹H NMR (600 MHz, CDCl₃) δ 3.80 (s, 3H), 6.82 (d, *J* = 8.9 Hz, 2H), 7.31–7.39 (m, 5H), 7.47 (d, *J* = 8.9 Hz, 2H), 8.78 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 55.2, 113.7, 127.2, 128.1, 128.7, 129.7, 130.2, 131.5, 132.1, 150.4, 150.8, 159.3; HRMS (DART) *m*/*z* = 268.0796 calcd for C₁₆H₁₄NOS [M+H]⁺, found: 268.0795.

4-(4-Methoxyphenyl)-5-(4-methylphenyl)thiazole (12gb)

12gb

Purification by GPC gave **12gb** as a white solid (Method D: 78% yield). ¹H NMR (600 MHz, CDCl₃) δ 2.35 (s, 3H), 3.79 (s, 3H), 6.82 (d, J = 8.2 Hz, 2H), 7.13 (d, J = 7.6 Hz, 2H), 7.25 (d, J = 8.2 Hz, 2H), 7.48 (d, J = 7.6 Hz, 2H), 8.75 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 21.2, 55.1, 113.7, 127.4, 129.0, 129.4, 129.5, 130.1, 131.7, 138.0, 150.0, 150.5, 159.2; HRMS (DART) m/z = 282.0953 calcd for C₁₇H₁₆NOS [M+H]⁺, found: 282.0952.

5-(4-Methoxyphenyl)-4-(3,4,5-trimethoxyphenyl)thiazole (12gi)

^[30] Maeda, M.; Kojima, M. J. Chem. Soc., Perkin Trans. 1, 1978, 685.

Supporting Information (Tani, Uehara, Yamaguchi, Itami) Programmed Synthesis of Arylthiazoles through Sequential C–H Couplings

3,4,5-trimethoxybromobenzene (**2i**) was used and the reaction was performed at 100 °C for 36 h. Purification by GPC gave **12gi** as a light yellow oil (Method D: 55% yield). ¹H NMR (600 MHz, CDCl₃) δ 3.73 (s, 6H), 3.81 (s, 3H), 3.88 (s, 3H), 6.57 (s, 2H), 6.85 (d, *J* = 8.9 Hz, 2H), 7.51 (d, *J* = 8.9 Hz, 2H), 8.77 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 55.2, 56.1, 60.9, 106.8, 113.6, 127.2, 127.3, 130.2, 131.5, 138.0, 150.3, 150.5, 153.3, 159.3; HRMS (DART) *m*/*z* = 358.1113 calcd for C₁₉H₂₀NO₄S [M+H]⁺, found: 358.1113.

4-(4-Chlorophenyl)-5-phenylthiazole (12ja)

Purification by GPC gave **12ja** as a colorless oil (Method D: 80% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.25 (d, *J* = 8.9 Hz, 2H), 7.32–7.38 (m, 5H), 7.47 (d, *J* = 8.9 Hz, 2H), 8.80 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 128.5, 128.9, 129.7, 130.2, 131.5, 133.1, 133.4, 133.7, 149.4, 151.2; There is one overlapping carbon signal as 1 peak is missing even with prolonged scans. HRMS (DART) *m*/*z* = 272.0301 calcd for C₁₅H₁₁ClNS [M+H]⁺, found: 272.0303.

5-(Benzo[d][1,3]dioxol-5-yl)-4-(4-chlorophenyl)thiazole (12jh)

12jh

Purification by GPC gave **12jh** as a yellow solid (Method D: 35% yield). ¹H NMR (600 MHz, CDCl₃) δ 6.00 (s, 2H), 6.78 (d, *J* = 1.4 Hz, 1H), 6.80 (d, *J* = 8.2 Hz, 1H), 6.84 (dd, *J* = 8.2, 1.4 Hz, 1H), 7.28 (d, *J* = 8.9 Hz, 1H), 6.84 (dd, *J* = 8.2, 1.4 Hz, 1H), 7.28 (d, *J* = 8.9 Hz, 1H), 6.84 (dd, *J* = 8.2, 1.4 Hz, 1H), 7.28 (d, *J* = 8.9 Hz, 1H), 6.84 (dd, *J* = 8.2, 1.4 Hz, 1H), 7.28 (d, *J* = 8.9 Hz, 1H), 6.80 (d, *J* = 8.2 Hz, 1H), 6.84 (dd, *J* = 8.2, 1.4 Hz, 1H), 7.28 (d, *J* = 8.9 Hz, 1H), 6.84 (dd, *J* = 8.2, 1.4 Hz, 1H), 7.28 (d, *J* = 8.9 Hz, 1H), 6.84 (dd, *J* = 8.2, 1.4 Hz, 1H), 7.28 (d, *J* = 8.9 Hz, 1H), 7.28 (d, J = 8.9 Hz, 1H), 7.28 (d, J = 8.9 Hz, 1H), 7.28 (d, J =

2H), 7.49 (d, J = 8.9 Hz, 2H), 8.76 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 101.4, 108.8, 110.0, 123.7, 124.9, 128.6, 130.2, 133.0, 133.1, 133.7, 147.99, 148.02, 149.1, 150.8; HRMS (DART) m/z = 316.0199 calcd for C₁₆H₁₁CINO₂S [M+H]⁺, found: 316.0200.

9. Synthesis of Triarylthiazoles

Method H'^[24]

A 25-mL test tube equipped with screw cap, containing a magnetic stirring bar, was flame-dried under vacuum and then cooling to room temperature. To this vessel were added $[Pd(phen)_2](PF_6)_2$ (7.6 mg, 0.01 mmol, 5 mol%), Cs₂CO₃ (78.2 mg, 0.24 mmol, 1.2 equiv), iodoarene **2** (0.3 mmol, 1.5 equiv), 2,5-diarylthiazole **9** (0.2 mmol, 1.0 equiv) and DMAc (0.8 mL) under argon atmosphere. The vessel was sealed and then stirred at 130 °C for 40 h. After cooling the reaction mixture to room temperature, the mixture was passed through a short silica gel pad (EtOAc). The filtrate was evaporated and the residue was purified by PTLC and/or GPC to afford triarylthiazole **13**.

Method G^[23]

A 20-mL glass vessel equipped with J. Young[®] O-ring tap, containing a magnetic stirring bar, was flame-dried under vacuum and filled with argon after cooling to room temperature. To this vessel were added PdCl₂(bipy) (4.2 mg, 0.013 mmol, 5 mol%), Ag₂CO₃ (0.25 mmol, 68.9 mg, 1.0 equiv), iodoarene **2** (0.375 mmol, 1.5 equiv), 2,4-diarylthiazole **10** (0.25 mmol, 1.0 equiv) and 1,4-dioxane (1.0 mL) under a stream of argon. The vessel was sealed and then stirred at 120 °C for 12 h. After cooling the reaction mixture to room temperature, the mixture was passed through a short silica gel pad (EtOAc). The filtrate was evaporated and the residue was purified by PTLC, and/or GPC to afford triarylthiazole **13**.

Method H"^[24]

A 25-mL test tube equipped with screw cap, containing a magnetic stirring bar, was flame-dried under vacuum and then cooling to room temperature. To this vessel were added $[Pd(phen)_2](PF_6)_2$ (5.7 mg, 0.0075 mmol, 5 mol%), Cs₂CO₃ (48.9 mg, 0.15 mmol, 1.0 equiv), iodoarene **2** (0.225 mmol, 1.5 equiv), 4,5-diarylthiazole **12** (0.15 mmol, 1.0 equiv) and DMAc (0.6 mL) under argon atmosphere. The vessel was sealed and then stirred at 140 °C for 40 h. After cooling the reaction mixture to room temperature, the mixture was passed through a short silica gel pad (EtOAc). The filtrate was evaporated and the residue was purified by PTLC and/or GPC to afford triarylthiazole **13**.

Method I^[8]

A 25-mL test tube equipped with screw cap, containing a magnetic stirring bar, were added $PdCl_2(dppf)\cdot CH_2Cl_2$ (6.2 mg, 0.0075 mmol, 5 mol%), PPh_3 (3.9 mg, 0.015 mol, 10 mol%), Ag_2CO_3 (82.7 mg, 0.3 mmol, 2.0 equiv), iodoarene **2** (0.18 mmol, 1.2 equiv), 4,5-diarylthiazole **12** (0.15 mmol, 1.0 equiv) and distilled water (1 mL). The test tube was purged with argon and then stirred at 100 °C for 24 h. After cooling the reaction mixture to room temperature, the mixture was suspended in acetone (2.0 mL) and dichloromethane (5 mL), and then passed through a short silica gel pad (EtOAc). The filtrate was evaporated and the residue was purified by PTLC to afford triarylthiazole **13**.

2,4,5-Triphenylthiazole (13aaa)^[31]

^[31] Hodgetts, K. J.; Kershaw, M. T. Org. Lett. 2002, 4, 1363.

Supporting Information (Tani, Uehara, Yamaguchi, Itami) Programmed Synthesis of Arylthiazoles through Sequential C–H Couplings

13aaa

Purification by PTLC (hexane/EtOAc = 20:1) gave **13aaa** as a white solid (Method H': 68% yield, Method G: 90% yield, Method I: 95% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.26–7.36 (m, 6H), 7.37–7.49 (m, 5H), 7.60 (d, *J* = 7.6 Hz, 2H) 8.02 (dd, *J* = 8.3, 1,4 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 126.4, 127.8, 128.1, 128.3, 128.7, 128.9, 129.1, 129.6, 130.0, 132.1, 133.1, 133.6, 134.9, 150.8, 165.5; HRMS (DART) *m*/*z* = 314.1003 calcd for C₂₁H₁₆NS [M+H]⁺, found: 314.1006.

5-(4-Methylphenyl)-2,4-diphenylthiazole (13aab)

Purification by PTLC (hexane/EtOAc = 20:1) gave **13aab** as a white solid (Method G: 90% yield). ¹H NMR (600 MHz, CDCl₃) δ 2.36 (s, 3H), 7.13 (d, *J* = 8.3 Hz, 2H), 7.26–7.33 (m, 5H), 7.38–7.46 (m, 3H), 7.61 (d, *J* = 8.2 Hz, 2H), 8.00 (dd, *J* = 8.3, 1.4 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 21.3, 126.4, 127.7, 128.2, 128.9, 129.06, 129.09, 129.4, 129.9, 133.3, 133.7, 135.1, 138.1, 150.5, 165.1; There is one overlapping carbon signal as 1 peak is missing even with prolonged scans. HRMS (DART) *m*/*z* = 328.1160 calcd for C₂₂H₁₈NS [M+H]⁺, found: 328.1159.

5-(4-Methoxyphenyl)-2,4-diphenylthiazole (13aag)

Purification by PTLC (hexane/EtOAc = 10:1) gave **13aag** as a white solid (Method G: 90% yield). ¹H NMR (600 MHz, CDCl₃) δ 3.82 (s, 3H), 6.86 (d, *J* = 8.9 Hz, 2H), 7.26–7.33 (m, 5H), 7.39–7.46 (m, 3H), 7.61 (d, *J* = 8.3 Hz, 2H), 8.00 (dd, *J* = 8.3, 1.4 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 55.3, 114.2, 124.3, 126.4, 127.7, 128.2, 128.9, 129.1, 129.8, 130.8, 133.0, 133.7, 135.1, 150.2, 159.6, 164.9; HRMS (DART) *m*/*z* = 344.1109 calcd for C₂₂H₁₈NOS [M+H]⁺, found: 344.1112.

5-(4-Chlorophenyl)-2,4-diphenylthiazole (13aaj)

The reaction was performed for 22 h. Purification by PTLC (hexane/EtOAc = 20:1) gave **13aaj** as a white solid (Method G: 74% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.27–7.35 (m, 7H), 7.40–7.47 (m, 3H), 7.58 (dd, J = 8.2, 1.4 Hz, 2H), 8.00 (dd, J = 8.2, 1.4 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 126.4, 128.0, 128.4, 128.9, 129.0, 129.1, 130.1, 130.6, 130.8, 131.6, 133.5, 134.1, 134.7, 151.2, 165.8; HRMS (DART) m/z = 348.0614 calcd for C₂₁H₁₅CINS [M+H]⁺, found: 348.0613.

Methyl 4-(2,4-diphenylthiazol-5-yl)benzoate (13aan)

The reaction was performed at 140 °C for 22 h. Purification by PTLC (hexane/EtOAc = 5:1) gave **13aan** as a light yellow solid (Method G: 71% yield). ¹H NMR (600 MHz, CDCl₃) δ 3.90 (s, 3H), 7.28–7.33 (m, 3H), 7.39–7.46 (m, 5H), 7.54–7.59 (m, 2H), 7.97 (d, *J* = 8.3 Hz, 2H), 8.00 (dd, *J* = 6.9, 1.4 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 52.1, 126.4, 128.2, 128.4, 128.9, 129.1, 129.4, 129.5, 129.9, 130.2, 131.7, 133.3, 134.6, 136.8, 151.8, 166.2, 166.5; HRMS (DART) *m*/*z* = 372.1058 calcd for C₂₃H₁₈NO₂S [M+H]⁺, found: 372.1060.

5-(4-Acetylphenyl)-2,4-diphenylthiazole (13aao)

The reaction was performed at 140 °C for 22 h. Purification by PTLC (hexane/EtOAc = 3:1) gave **13aao** as a light yellow solid (Method G: 51% yield). ¹H NMR (600 MHz, CDCl₃) δ 2.60 (s, 3H), 7.31–7.35 (m, 3H), 7.43–7.49 (m, 5H), 7.57 (dd, J = 6.9, 2.8 Hz, 2H), 7.90 (d, J = 8.3 Hz, 2H), 8.02 (dd, J = 7.6, 1.4 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 26.6, 126.5, 128.2, 128.4, 128.7, 128.9, 129.2, 129.6, 130.3, 131.6, 133.3,

134.6, 136.3, 137.0, 152.0, 166.4, 197.3; HRMS (DART) m/z = 356.1109 calcd for C₂₃H₁₈NOS [M+H]⁺, found: 356.1108.

5-(4-Pyridyl)-2,4-diphenylthiazole (13aau)

The reaction was performed at 140 °C for 22 h. Purification by PTLC (hexane/EtOAc = 2:1) gave **13aau** as light yellow solid (Method G: 69% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.25 (dd, *J* = 4.8, 1.4 Hz, 2H), 7.33–7.38 (m, 3H), 7.43–7.48 (m, 3H), 7.57 (dd, *J* = 6.9, 2.8 Hz, 2H), 8.01 (dd, *J* = 7.6, 1.5 Hz, 2H), 8.54 (dd, *J* = 4.8, 1.4 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 123.5, 126.5, 128.5, 128.9, 129.2, 129.7, 130.5, 133.1, 134.3, 140.0, 150.2, 152.9, 166.9; There is one overlapping carbon signal as 1 peak is missing even with prolonged scans. HRMS (DART) *m*/*z* = 315.0956 calcd for C₂₀H₁₅N₂S [M+H]⁺, found: 315.0955.

4-(4-Methylphenyl)-2,5-diphenylthiazole (13aba)

Purification by PTLC (hexane/EtOAc = 20:1) gave **13aba** as a white solid (Method H': 64% yield). ¹H NMR (600 MHz, CDCl₃) δ 2.34 (s, 3H), 7.11 (d, *J* = 8.3 Hz, 2H), 7.30–7.36 (m, 3H), 7.38–7.47 (m, 5H), 7.49 (d, *J* = 8.2 Hz, 2H), 8.01 (d, *J* = 6.9 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 21.3, 126.4, 128.0, 128.7, 128.85, 128.95, 129.0, 129.6, 129.9, 132.1, 132.2, 132.4, 133.7, 137.6, 150.8, 165.3; HRMS (DART) *m*/*z* = 328.1160 calcd for C₂₂H₁₈NS [M+H]⁺, found: 328.1156.

5-(4-Methoxyphenyl)-4-(4-methylphenyl)-2-phenylthiazole (13abg)

Purification by PTLC (hexane/EtOAc = 10:1) gave **13abg** as a white solid (Method G: 91% yield). ¹H NMR (600 MHz, CDCl₃) δ 2.33 (s, 3H), 3.80 (s, 3H), 6.84 (d, *J* = 8.3 Hz, 2H), 7.11 (d, *J* = 7.6 Hz, 2H), 7.31 (d, *J* = 8.9 Hz, 2H), 7.36–7.44 (m, 3H), 7.50 (d, *J* = 8.3 Hz, 2H), 7.99 (d, *J* = 6.8 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 21.3, 55.2, 114.1, 124.4, 126.3, 128.8, 128.88, 128.94, 129.7, 130.8, 132.2, 132.4, 133.7, 137.4, 150.3, 159.5, 164.7; HRMS (DART) *m*/*z* = 358.1266 calcd for C₂₃H₂₀NOS [M+H]⁺, found: 358.1269.

4-(4-Methoxyphenyl)-2,5-diphenylthiazole (13aga)

 $[Pd(phen)_2](PF_6)_2$ (10 mol%) and Cs₂CO₃ (1.5 equiv) were used and the reaction was performed at 150°C for 18 h. Purification by PTLC (hexane/EtOAc = 10:1) gave **13aga** as a white solid (Method H': 42% yield). ¹H NMR (600 MHz, CDCl₃) δ 3.81 (s, 3H), 6.84 (d, *J* = 8.9 Hz, 2H), 7.30–7.37 (m, 3H), 7.39–7.50 (m, 5H), 7.54 (d, *J* = 8.3 Hz, 2H), 8.01 (d, *J* = 6.2 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 55.2, 113.7, 126.4, 127.6, 128.0, 128.7, 128.9, 129.6, 129.9, 130.3, 131.8, 132.3, 133.7, 150.6, 159.2, 165.3; HRMS (DART) *m*/*z* = 344.1109 calcd for C₂₂H₁₈NOS [M+H]⁺, found: 344.1107.

4-(4-Methoxyphenyl)-5-(4-methylphenyl)-2-phenylthiazole (13agb)

Purificcation by PTLC (hexane/EtOAc = 10:1) gave **13agb** as a white solid (Method H': 43% yield). ¹H NMR (600 MHz, CDCl₃) δ 2.37 (s, 3H), 3.81 (s, 3H), 6.84 (d, *J* = 8.9 Hz, 2H), 7.14 (d, *J* = 7.6 Hz, 2H), 7.29 (d, *J* = 7.6 Hz, 2H), 7.39–7.47 (m, 3H), 7.55 (d, *J* = 8.9 Hz, 2H), 8.00 (d, *J* = 7.6 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 21.3, 55.2, 113.6, 126.3, 127.7, 128.8, 129.3, 129.40, 129.43, 129.8, 130.3, 132.0, 133.7, 138.0, 150.2, 159.2, 164.9; HRMS (DART) *m*/*z* = 358.1266 calcd for C₂₃H₂₀NOS [M+H]⁺, found: 358.1265.

5-(Benzo[d][1,3]dioxol-5-yl)-4-(4-chlorophenyl)-2-phenylthiazole (13ajh)

Supporting Information (Tani, Uehara, Yamaguchi, Itami) Programmed Synthesis of Arylthiazoles through Sequential C–H Couplings

Purification by PTLC (hexane/EtOAc 10:1) gave **13ajh** as a white solid (Method G: 87% yield). ¹H NMR (600 MHz, CDCl₃) δ 5.99 (s, 2H), 6.77–6.84 (m, 2H), 6.87 (dd, J = 7.6, 1.4 Hz, 1H), 7.28 (d, J = 8.9 Hz, 2H), 7.40–7.47 (m, 3H), 7.56 (d, J = 8.9 Hz, 2H), 7.97 (dd, J = 8.3, 1.4 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 101.4, 108.7, 109.8, 123.5, 125.2, 126.3, 128.5, 128.9, 130.0, 130.3, 133.2, 133.3, 133.4, 133.6, 147.86, 147.94, 149.1, 165.2; HRMS (DART) m/z = 392.0512 calcd for C₂₂H₁₅ClNO₂S [M+H]⁺, found: 392.0516.

2,5-Diphenyl-4-(4-(trifluoromethyl)phenyl)thiazole (13aka)

[Pd(phen)₂](PF₆)₂ (10 mol%) and Cs₂CO₃ (1.5 equiv) were used and the reaction was performed at 150°C for 18 h. Purification by PTLC (hexane/EtOAc = 20:1) and GPC gave **13aka** as a white solid (Method H': 54% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.35–7.43 (m, 5H), 7.44–7.52 (m, 3H), 7.55 (d, *J* = 8.3 Hz, 2H), 7.73 (d, *J* = 8.3 Hz, 2H), 8.01 (dd, *J* = 7.9, 1.4 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 124.2 (q, *J*_{C-F} = 270.2 Hz), 125.2 (q, *J*_{C-F} = 4.3 Hz), 126.4, 128.6, 129.0, 129.3, 129.58 (q, *J*_{C-F} = 33.1 Hz), 129.61, 130.2, 131.5, 133.3, 134.6, 138.4, 149.1, 166.0; There is one overlapping carbon signal as 1 peak is missing even with prolonged scans. HRMS (DART) *m/z* = 382.0877 calcd for C₂₂H₁₅F₃NS [M+H]⁺, found: 382.0878.

2-(4-Methylphenyl)-4,5-diphenylthiazole (13baa)

Purification by PTLC (hexane/EtOAc 20:1) gave **13baa** as white solid (Method H'': 76% yield). ¹H NMR (600 MHz, CDCl₃) δ 2.39 (s, 3H), 7.24 (d, *J* = 7.6 Hz, 2H), 7.27–7.34 (m, 6H), 7.36–7.40 (m, 2H), 7.60 (dd,

5 E

Supporting Information (Tani, Uehara, Yamaguchi, Itami) Programmed Synthesis of Arylthiazoles through Sequential C–H Couplings

J = 7.6, 1.4 Hz, 2H), 7.90 (d, J = 8.3 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 21.4, 126.3, 127.7, 128.0, 128.2, 128.7, 129.1, 129.5, 130.9, 132.1, 132.5, 135.0, 140.2, 150.6, 165.6; There is one overlapping carbon signal as 1 peak is missing even with prolonged scans. HRMS (DART) m/z = 328.1160 calcd for C₂₂H₁₈NS [M+H]⁺, found: 328.1158.

5-(4-Methoxyphenyl)-2-(4-methylphenyl)-4-phenylthiazole (13bag)

Purification by PTLC (hexane/EtOAc = 10:1) gave **13bag** as a white solid (Method G: 89% yield). ¹H NMR (600 MHz, CDCl₃) δ 2.38 (s, 3H), 3.80 (s, 3H), 6.84 (d, *J* = 8.9 Hz, 2H), 7.23 (d, *J* = 8.3 Hz, 2H), 7.25–7.32 (m, 5H), 7.61 (d, *J* = 6.8 Hz, 2H), 7.89 (d, *J* = 8.3 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 21.4, 55.2, 114.1, 124.3, 126.3, 127.6, 128.2, 129.0, 129.5, 130.8, 131.1, 132.5, 135.2, 140.0, 150.0, 159.5, 165.0; HRMS (DART) *m*/*z* = 358.1266 calcd for C₂₃H₂₀NOS [M+H]⁺, found: 358.1264.

2-(4-Methylphenyl)-4-phenyl-5-(4-(trifluoromethyl)phenyl)thiazole (13bak)

Purification by PTLC (hexane/EtOAc = 10:1) gave **13bak** as a white solid (Method G: 63% yield). ¹H NMR (600 MHz, CDCl₃) δ 2.40 (s, 3H), 7.26 (d, *J* = 8.2 Hz, 2H), 7.30–7.36 (m, 3H), 7.48 (d, *J* = 8.2 Hz, 2H), 7.56 (d, *J* = 8.2 Hz, 4H), 7.90 (d, *J* = 8.3 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 21.5, 124.0 (q, *J*_{C-F} = 270.2 Hz), 125.6 (q, *J*_{C-F} = 4.3 Hz), 126.4, 128.2, 128.5, 129.2, 129.6, 129.7, 129.8 (q, *J*_{C-F} = 31.6 Hz), 130.6, 130.7, 134.6, 136.0, 140.6, 151.8, 166.6; HRMS (DART) *m*/*z* = 396.1034 calcd for C₂₃H₁₇F₃NS [M+H]⁺, found: 396.1036.

5-(4-Nitrophenyl)-2-(4-methylphenyl)-4-phenylthiazole (13baq)

Supporting Information (Tani, Uehara, Yamaguchi, Itami) Programmed Synthesis of Arylthiazoles through Sequential C–H Couplings

13baq

Purification by PTLC (hexane/EtOAc 5:1) and GPC gave **13baq** as a yellow solid (Method G: 61% yield). ¹H NMR (600 MHz, CDCl₃) δ 2.41 (s, 3H), 7.27 (d, *J* = 8.2 Hz, 2H), 7.33–7.37 (m, 3H), 7.51 (d, *J* = 8.9 Hz, 2H), 7.55 (dd, *J* = 7.6, 2.0 Hz, 2H), 7.91 (d, *J* = 7.6 Hz, 2H), 8.15 (d, *J* = 8.9 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 21.5, 124.0, 126.5, 128.56, 128.62, 129.2, 129.7, 130.0, 130.4, 134.3, 139.1, 141.0, 147.0, 152.8, 167.3; There is one overlapping carbon signal as 1 peak is missing even with prolonged scans. HRMS (DART) *m*/*z* = 373.1011 calcd for C₂₂H₁₇N₂O₂S [M+H]⁺, found: 373.1011.

4-(4-Methoxyphenyl)-2-(4-methylphenyl)-5-phenylthiazole (13bga)

Purification by PTLC (hexane/EtOAc = 10:1) gave **13bga** as a white solid (Method H': 37% yield). ¹H NMR (600 MHz, CDCl₃) δ 2.40 (s, 3H), 3.81 (s, 3H), 6.84 (d, *J* = 8.9 Hz, 2H), 7.25 (d, *J* = 7.6 Hz, 2H), 7.30–7.36 (m, 3H), 7.39 (dd, *J* = 7.6, 1.4 Hz, 2H), 7.53 (d, *J* = 8.9 Hz, 2H), 7.90 (d, *J* = 8.3 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 21.4, 55.2, 113.7, 126.3, 127.7, 127.9, 128.7, 129.5, 129.6, 130.3, 131.0, 131.2, 132.4, 140.1, 150.4, 159.2, 165.4; HRMS (DART) *m*/*z* = 358.1266 calcd for C₂₃H₂₀NOS [M+H]⁺, found: 358.1267.

4-(4-Chlorophenyl)-5-(4-methoxyphenyl)-2-(4-methylphenyl)thiazole (13bjg)

13bjg

Purification by GPC gave **13bjg** as a white solid (Method H': 64% yield). ¹H NMR (600 MHz, CDCl₃) δ 2.39 (s, 3H), 3.82 (s, 3H), 6.86 (dd, J = 8.6, 1.4 Hz, 2H), 7.17–7.30 (m, 6H), 7.54 (dd, J = 8.3, 2.0 Hz, 2H),

7.87 (dd, J = 7.9, 1.4 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 21.4, 55.3, 114.3, 123.9, 126.2, 128.4, 129.6, 130.3, 130.8, 130.9, 132.9, 133.4, 133.6, 140.2, 148.7, 159.6, 165.3; HRMS (DART) m/z = calcd 392.0876 for C₂₃H₁₉ClNOS [M+H]⁺, found: 392.0880.

Methyl 4-(4-(4-chlorophenyl)-2-(4-methylphenyl)thiazol-5-yl)benzoate (13bjn)

Purification by GPC gave **13bjn** as a light yellow solid (Method G: 51% yield). ¹H NMR (600 MHz, CDCl₃) δ 2.40 (s, 3H), 3.93 (s, 3H), 7.26 (d, *J* = 7.6 Hz, 2H), 7.29 (d, *J* = 8.3 Hz, 2H), 7.43 (d, *J* = 8.2 Hz, 2H), 7.51 (d, *J* = 8.3 Hz, 2H), 7.89 (d, *J* = 7.9 Hz, 2H), 8.00 (d, *J* = 8.3 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 21.4, 52.2, 126.4, 128.6, 129.4, 129.6, 129.7, 130.0, 130.4, 130.6, 131.5, 133.1, 134.0, 136.6, 140.7, 150.3, 166.4, 166.7; HRMS (DART) *m*/*z* = calcd 420.0825 for C₂₄H₁₉ClNO₂S [M+H]⁺, found: 420.0825.

2-(4-Methylphenyl)-5-phenyl-4-(3-pyridyl)thiazole (13bta)

[Pd(phen)₂](PF₆)₂ (10 mol%) and Cs₂CO₃ (1.5 equiv) were used and the reaction was performed at 150°C for 18 h. Purification by PTLC (hexane/EtOAc = 2:1) gave **13bta** as a light yellow solid (Method H': 28% yield). ¹H NMR (600 MHz, CDCl₃) δ 2.42 (s, 3H), 7.24 (dd, *J* = 7.9, 4.8 Hz, 1H) 7.27 (d, *J* = 7.9 Hz, 2H), 7.33–7.40 (m, 5H), 7.88–7.94 (m, 3H), 8.52 (dd, *J* = 4.8, 1.4 Hz, 1H), 8.83 (d, *J* = 1.4 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 21.5, 123.1, 126.3, 128.6, 129.0, 129.5, 129.7, 130.7, 131.0, 131.4, 134.0, 136.2, 140.6, 147.4, 148.6, 150.0, 166.5; HRMS (DART) *m*/*z* = 329.1112 calcd for C₂₁H₁₇N₂S [M+H]⁺, found: 329.1110.

2-(4-Methoxyphenyl)-4,5-diphenylthiazole (13gaa)

Supporting Information (Tani, Uehara, Yamaguchi, Itami) Programmed Synthesis of Arylthiazoles through Sequential C–H Couplings

13gaa

Purification by PTLC (hexane/EtOAc = 10:1) gave **13gaa** as a white solid (Method H'': 68% yield). ¹H NMR (600 MHz, CDCl₃) δ 3.85 (s, 3H), 6.96 (d, *J* = 8.9 Hz, 2H), 7.26–7.34 (m, 6H), 7.36–7.40 (m, 2H), 7.59 (dd, *J* = 7.6, 1.4 Hz, 2H), 7.95 (d, *J* = 8.9 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 55.4, 114.2, 126.6, 127.7, 127.9, 128.0, 128.2, 128.7, 129.1, 129.5, 132.1, 132.2, 135.0, 150.5, 161.1, 165.4; HRMS (DART) *m*/*z* = 344.1109 calcd for C₂₂H₁₈NOS [M+H]⁺, found: 344.1106.

2-(4-Methoxyphenyl)-5-(4-methylphenyl)-4-phenylthiazole (13gab)

Purification by PTLC (hexane/EtOAc = 10:1) gave **13gab** as a white solid (Method H'': 79% yield). ¹H NMR (600 MHz, CDCl₃) δ 2.35 (s, 3H), 3.85 (s, 3H), 6.95 (d, *J* = 8.9 Hz, 2H), 7.12 (d, *J* = 8.3 Hz, 2H), 7.25–7.32 (m, 5H), 7.60 (d, *J* = 6.9 Hz, 2H), 7.94 (d, *J* = 8.9 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 21.3, 55.4, 114.2, 126.6, 127.6, 127.8, 128.2, 129.1, 129.2, 129.4, 132.3, 135.2, 137.9, 150.1, 161.0, 165.0; There is one overlapping carbon signal as 1 peak is missing even with prolonged scans. HRMS (DART) m/z = 358.1266 calcd for C₂₃H₂₀NOS [M+H]⁺, found: 358.1267.

2-(4-Methoxyphenyl)-4-phenyl-5-(4-(trifluoromethyl)phenyl)thiazole (13gak)

 $[Pd(phen)_2](PF_6)_2$ (10 mol%) and Cs₂CO₃ (1.5 equiv) were used and the reaction was performed at 150°C for 18 h. Purification by PTLC (hexane/EtOAc = 10:1) gave **13gak** as a light yellow solid (Method H': 54% yield). ¹H NMR (600 MHz, CDCl₃) δ 3.87 (s, 3H), 6.97 (d, *J* = 8.6 Hz, 2H), 7.31–7.36 (m, 3H), 7.48 (d, *J* = 8.2 Hz, 2H), 7.56 (d, *J* = 7.9 Hz, 4H), 7.95 (d, *J* = 8.6 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 55.4, 114.3, 124.0 (q, *J*_{C-F} = 271.7 Hz), 125.6 (q, *J*_{C-F} = 4.3 Hz), 126.3, 128.0, 128.2, 128.5, 129.2, 129.7, 129.8 (q,

 $\int_{2}^{4} \int_{2}^{3} \int_{2}^{N} Programmed Synthesis of Arylthiazoles through Sequential C-H Couplings$ $J_{C-F} = 31.6 \text{ Hz}, 130.2, 134.7, 136.1. 151.7, 161.4, 166.3; \text{ HRMS (DART)} m/z = 412.0983 \text{ calcd for } C_{23}H_{17}F_{3}NOS \text{ [M+H]}^{+}, \text{ found: } 412.0994.$

2-(4-Methoxyphenyl)-4-(4-methylphenyl)-5-phenylthiazole (13gba)

Purification by PTLC (hexane/EtOAc = 10:1) gave **13gba** as a white solid (Method G: 86% yield). ¹H NMR (600 MHz, CDCl₃) δ 2.33 (s, 3H), 3.83 (s, 3H), 6.94 (d, *J* = 8.9 Hz, 2H), 7.10 (d, *J* = 8.3 Hz, 2H), 7.27–7.33 (m, 3H), 7.38 (dd, *J* = 7.6, 1.4 Hz, 2H), 7.48 (d, *J* = 7.6 Hz, 2H), 7.94 (d, *J* = 8.2 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 21.2, 55.3, 114.2, 126.7, 127.8, 128.6, 128.92, 128.94, 129.5, 131.4, 132.2, 132.4, 137.5, 150.5, 161.1, 165.2; There is one overlapping carbon signal as 1 peak is missing even with prolonged scans. HRMS (DART) *m*/*z* = 358.1266 calcd for C₂₃H₂₀NOS [M+H]⁺, found: 358.1265.

2-(4-Methoxyphenyl)-4-(4-methylphenyl)-5-(4-(trifluoromethyl)phenyl)thiazole (13gbk)

Purificatio by PTLC (hexane/EtOAc = 10:1) gave **13gbk** as a white solid (Method G: 88% yield). ¹H NMR (600 MHz, CDCl₃) δ 2.35 (s, 3H), 3.84 (s, 3H), 6.94 (d, *J* = 8.3 Hz, 2H), 7.13 (d, *J* = 8.2 Hz, 2H), 7.44 (d, *J* = 8.2 Hz, 2H), 7.46 (d, *J* = 8.2 Hz, 2H), 7.54 (d, *J* = 8.2 Hz, 2H), 7.93 (d, *J* = 8.2 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 21.3, 55.4, 114.2, 124.0 (q, *J*_{C-F} = 271.7 Hz), 125.6 (q, *J*_{C-F} = 2.9 Hz), 126.3, 128.0, 129.0, 129.2, 129.55, 129.61 (q, *J*_{C-F} = 31.7 Hz), 129.64, 131.7, 136.2, 138.0, 151.7, 161.3, 166.1; HRMS (DART) *m*/*z* = 426.1139 calcd for C₂₄H₁₉F₃NOS [M+H]⁺, found: 426.1135.

2-(4-Methoxyphenyl)-4-(3,5-dimethylphenyl)-5-(4-(trifluoromethyl)phenyl)thiazole (13gek)

Supporting Information (Tani, Uehara, Yamaguchi, Itami) Programmed Synthesis of Arylthiazoles through Sequential C–H Couplings

Purification by PTLC (hexane/EtOAc = 10:1) and GPC gave **13gek** as a white solid (Method H': 42% yield). ¹H NMR (600 MHz, CDCl₃) δ 2.26 (s, 6H), 3.87 (s, 3H), 6.95–6.99 (m, 3H), 7.15 (s, 2H), 7.48 (d, *J* = 8.3 Hz, 2H), 7.55 (d, *J* = 8.3 Hz, 2H), 7.96 (d, *J* = 8.9 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 21.3, 55.4, 114.3, 124.0 (q, *J*_{C-F} = 270.2 Hz), 125.5 (q, *J*_{C-F} = 4.3 Hz), 126.3, 126.9, 128.0, 129.59, 129.60 (q, *J*_{C-F} = 34.5 Hz), 129.9, 134.5, 136.2, 138.0, 152.1, 161.3, 166.1; There is one overlapping carbon signal as 1 peak is missing even with prolonged scans. HRMS (DART) *m*/*z* = 440.1296 calcd for C₂₅H₂₁F₃NOS [M+H]⁺, found: 440.1295.

4-(4-Chlorophenyl)-2-(4-methoxyphenyl)-5-phenylthiazole (13gja)

Purification by PTLC (hexane/EtOAc = 10:1) gave **13gja** as a white solid (Method I: 90% yield). ¹H NMR (600 MHz, CDCl₃) δ 3.86 (s, 3H), 6.96 (d, *J* = 8.9 Hz, 2H), 7.26 (d, *J* = 8.9 Hz, 2H), 7.31–7.38 (m, 5H), 7.53 (d, *J* = 8.3 Hz, 2H), 7.93 (d, *J* = 8.9 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 55.4, 114.2, 126.4, 127.9, 128.2, 128.4, 128.8, 129.5, 130.4, 131.9, 132.4, 133.5, 133.6, 149.2, 161.2, 165.6; HRMS (DART) *m*/*z* = 378.0719 calcd for C₂₂H₁₇CINOS [M+H]⁺, found: 378.0719.

2-(4-Chlorophenyl)-4-(4-Methoxyphenyl)-5-(4-methylphenyl)thiazole (13haa)

Purification by PTLC (hexane/EtOAc = 10:1) gave **13haa** as a light yellow solid (Method I: 63% yield). ¹H NMR (600 MHz, CDCl₃) δ 6.02 (s, 2H), 6.86 (d, *J* = 7.6 Hz, 1H), 7.27–7.34 (m, 6H), 7.35–7.39 (m, 2H),

7.50 (dd, J = 8.2, 2.0 Hz, 1H), 7.54 (d, J = 2.0 Hz, 1H), 7.58 (dd, J = 7.6, 2.0 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 101.5, 106.7, 108.5, 120.9, 127.8, 128.06, 128.11, 128.2, 128.7, 129.1, 129.6, 132.1, 132.3, 134.9, 148.2, 149.2, 150.4, 165.1; HRMS (DART) m/z = 358.0902 calcd for C₂₂H₁₆NO₂S [M+H]⁺, found: 358.0903.

2-(4-Chlorophenyl)-4,5-diphenylthiazole (13jaa)

13jaa

Purification by PTLC (hexane/EtOAc = 20:1) gave **13jaa** as a light yellow solid (Method H'': 58% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.27–7.35 (m, 6H), 7.38 (dd, *J* = 6.9, 2.8 Hz, 2H), 7.41 (d, *J* = 8.9 Hz, 2H), 7.58 (dd, *J* = 8.2, 1.4 Hz, 2H), 7.94 (d, *J* = 8.2 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 127.5, 127.9, 128.26, 128.29, 128.7, 129.05, 129.09, 129.5, 131.8, 132.1, 133.4, 134.7, 135.8, 150.9, 164.0; HRMS (DART) *m*/*z* = 348.0614 calcd for C₂₁H₁₅CINS [M+H]⁺, found: 344.0615.

2-(4-Chlorophenyl)-4-(4-Methoxyphenyl)-5-(4-methylphenyl)thiazole (13jgb)

Purification by PTLC (hexane/EtOAc = 10:1) gave **13jgb** as a light yellow solid (Method I: 46% yield). ¹H NMR (600 MHz, CDCl₃) δ 2.37 (s, 3H), 3.81 (s, 3H), 6.84 (d, *J* = 8.3 Hz, 2H), 7.14 (d, *J* = 7.6 Hz, 2H), 7.28 (d, *J* = 8.3 Hz, 2H), 7.41 (d, *J* = 8.9 Hz, 2H), 7.53 (d, *J* = 8.9 Hz, 2H), 7.93 (d, *J* = 8.3 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 21.3, 55.2, 113.7, 127.47, 127.50, 129.0, 129.1, 129.4, 129.5, 130.3, 132.2, 132.3, 135.7, 138.1, 150.4, 159.2, 163.5; HRMS (DART) *m*/*z* = 392.0876 calcd for C₂₃H₁₉CINOS [M+H]⁺, found: 392.0876.

4,5-Diphenyl-2-(4-(trifluoromethyl)phenyl)thiazole (13kaa)

Supporting Information (Tani, Uehara, Yamaguchi, Itami) Programmed Synthesis of Arylthiazoles through Sequential C–H Couplings

13kaa

Purification by PTLC (hexane/EtOAc = 20:1) gave **13kaa** as a white solid (Method H'': 80% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.28–7.36 (m, 6H), 7.37–7.41 (m, 2H), 7.59 (dd, *J* = 7.6, 2.0 Hz, 2H), 7.70 (d, *J* = 8.2 Hz, 2H), 8.12 (d, *J* = 8.2 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 123.9 (q, *J*_{C-F} = 270.2 Hz), 125.9 (q, *J*_{C-F} = 2.9 Hz), 126.5, 128.0, 128.3, 128.4, 128.8, 129.1, 129.6, 131.5 (q, *J*_{C-F} = 31.6 Hz), 131.6, 134.3, 134.6, 136.7, 151.3, 163.4; HRMS (DART) *m*/*z* = 382.0877 calcd for C₂₂H₁₅F₃NS [M+H]⁺, found: 382.0878.

4-(4-Methoxyphenyl)-5-(4-methylphenyl)-2-(4-(trifluoromethyl)phenyl)thiazole (13kgb)

Purification by PTLC (hexane/EtOAc = 10:1) gave **13kgb** as a light yellow solid (Method H'': 80% yield). ¹H NMR (600 MHz, CDCl₃) δ 2.38 (s, 3H), 3.82 (s, 3H), 6.86 (d, *J* = 8.9 Hz, 2H), 7.16 (d, *J* = 8.2 Hz, 2H), 7.29 (d, *J* = 8.3 Hz, 2H), 7.54 (d, *J* = 8.9 Hz, 2H), 7.70 (d, *J* = 8.2 Hz, 2H), 8.11 (d, *J* = 8.3 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 21.3, 55.2, 113.7, 124.0 (q, *J*_{C-F} = 273.1 Hz), 125.9 (q, *J*_{C-F} = 4.3 Hz), 126.5, 127.3, 128.9, 129.4, 129.5, 130.3, 131.3 (q, *J*_{C-F} = 33.1 Hz), 133.2, 136.8, 138.3, 150.8, 159.4, 162.9; HRMS (DART) *m*/*z* = 426.1139 calcd for C₂₄H₁₉F₃NOS [M+H]⁺, found: 426.1137.

Methyl 4-(4,5-diphenylthiazol-2-yl)benzoate (13naa)

13naa

Purification by PTLC (hexane/EtOAc = 10:1) gave **13naa** as a light yellow solid (Method I: 45% yield). ¹H NMR (600 MHz, CDCl₃) δ 3.95 (s, 3H), 7.29–7.36 (m, 6H), 7.39 (dd, *J* = 6.8, 2.0 Hz, 2H), 7.60 (dd, *J* = 7.6, 2.0 Hz, 2H), 8.08 (d, *J* = 8.9 Hz, 2H), 8.12 (d, *J* = 8.2 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 52.3, 126.2, 128.0, 128.3, 128.4, 128.8, 129.1, 129.6, 130.2, 131.1, 131.7, 134.3, 134.6, 137.4, 151.3, 163.9, 166.5;

HRMS (DART) m/z = 372.1058 calcd for $C_{23}H_{18}NO_2S$ [M+H]⁺, found: 372.1060.

Methyl 4-(5-(4-Methoxyphenyl)-4-(4-methylphenyl)thiazol-2-yl)benzoate (13nbg)

Purification by PTLC (hexane:EtOAc = 5:1) gave **13ngb** as a yellow solid (Method I: 87% yield). ¹H NMR (600 MHz, CDCl₃) δ 2.35 (s, 3H), 3.82 (s, 3H), 3.94 (s, 3H), 6.87 (d, *J* = 8.2 Hz, 2H), 7.12 (d, *J* = 7.6 Hz, 2H), 7.31 (d, *J* = 8.3 Hz, 2H), 7.50 (d, *J* = 7.6 Hz, 2H), 8.06 (d, *J* = 8.9 Hz, 2H), 8.10 (d, *J* = 8.3 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 21.3, 52.2, 55.3, 114.2, 124.0, 126.1, 128.9, 129.0, 130.2, 130.78, 130.84, 132.0, 133.7, 137.59, 137.64, 150.9, 159.6, 163.1, 166.6; HRMS (DART) *m*/*z* = 416.1320 calcd for C₂₅H₂₂NO₃S [M+H]⁺, found: 416.1320.

2-(4-Acetylphenyl)-5-(4-methylphenyl)-4-phenylthiazole (13oab)

Purification by PTLC (hexane/EtOAc = 3:1) gave **130ab** as a yellow solid (Method I: 82% yield). ¹H NMR (600 MHz, CDCl₃) δ 2.37 (s, 3H), 2.63 (s, 3H), 7.14 (d, *J* = 8.2 Hz, 2H), 7.28 (d, *J* = 8.2 Hz, 2H), 7.29–7.35 (m, 3H), 7.61 (dd, *J* = 7.6, 1.4 Hz, 2H), 8.02 (d, *J* = 8.2 Hz, 2H), 8.09 (d, *J* = 8.2 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 21.3, 26.7, 126.3, 127.9, 128.3, 128.6, 129.0, 129.1, 129.4, 129.5, 134.7, 134.8, 137.6, 137.7, 138.4, 151.1, 163.4, 197.3; HRMS (DART) *m*/*z* = 370.1266 calcd for C₂₄H₂₀NOS [M+H]⁺, found: 370.1264.

4,5-Diphenyl-2-(4-pyridyl)thiazole (13uaa)

13uaa
Supporting Information (Tani, Uehara, Yamaguchi, Itami) Programmed Synthesis of Arylthiazoles through Sequential C–H Couplings

Purification by PTLC (hexane/EtOAc = 2:1) gave **13uaa** as a light yellow solid (Method H'': 53% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.30–7.37 (m, 6H), 7.40 (dd, J = 6.9, 2.8 Hz, 2H), 7.59 (dd, J = 8.3, 1.4 Hz, 2H), 7.86 (dd, J = 6.4, 2.0 Hz, 2H), 8.72 (dd, J = 6.4, 2.0 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 120.1, 128.1, 128.4, 128.6, 128.8, 129.0, 129.6, 131.4, 134.4, 135.0, 140.2, 150.6, 151.6, 162.3; HRMS (DART) m/z = 315.0956 calcd for C₂₀H₁₅N₂S [M+H]⁺, found: 315.0959.

4-(4-Chlorophenyl)-5-phenyl-2-(2-pyrazin-2-yl)thiazole (13vja)

Purification by PTLC (hexane/EtOAc = 3:1) gave **13vja** as a light yellow oil (Method I: 86% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.30 (d, J = 8.3 Hz, 2H), 7.32–7.42 (m, 5H), 7.54 (d, J = 8.3 Hz, 2H), 8.56 (d, J = 1.4 Hz, 1H), 8.61 (d, J = 2.0 Hz, 1H), 9.50 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 128.6, 128.8, 129.0, 129.5, 130.3, 131.4, 133.0, 134.0, 137.0, 141.4, 143.8, 145.1, 146.8, 150.4, 163.7; HRMS (DART) m/z = 350.0519 calcd for C₁₉H₁₃ClN₃S [M+H]⁺, found: 350.0519.

Gram Scale Synthesis of Triarylthiazole

A 50-mL sealed tube vessel were added $Pd(OAc)_2$ (134.8 mg, 0.6 mmol, 5 mol%), CuI (4.57 g, 24 mmol, 2 equiv), iodobenzene (**2a**: 2.45 g, 12 mmol, 1.0 equiv), thiazole (**1**: 1.53 g, 18 mmol, 1.5 equiv) and DMF (24 mL). The vessel was sealed and then stirred at 140 °C for 40 h. After cooling the reaction mixture to room temperature, the mixture was quenched with 1M NaOH aq. (15 mL), neutralized by sat. NH₄Cl aq. (10 mL), and added water (25 mL) and EtOAc (50 mL). The mixture was extracted by EtOAc (50 mL × 2), combined organic layer was washed with water (50 mL × 2) and brine (50 mL), dried over Na₂SO₄. The organic layer was evaporated and the residue was purified by flash column chromatography to afford 2-phenylthiazole (**3a**). Finally, distillation gave desired product (Method A: 1.38 g, 72% yield) as a colorless oil.

A 100-mL flask, containing a magnetic stirring bar, was added $Pd(OAc)_2$ (179.6 mg, 0.8 mmol, 10 mol%), 1,10-phenanthroline (144.2 mg, 0.8 mmol, 10 mol%), 4-methylphenylboronic acid (**6b**: 3.26 g, 24 mmol, 3 equiv), LiBF₄ (1.13 g, 12 mmol, 1.5 equiv), TEMPO (613 mg, 4 mmol, 0.5 equiv), the corresponding 2-phenylthiazole (**2a**: 1.29 g, 8 mmol, 1.0 equiv) and undried DMAc (16 mL). The vessel was equipped with vigreux column (for open air condition) and then stirred at 100 °C for 48 h under air. After cooling the reaction mixture to room temperature, the mixture was added water (40 mL) and EtOAc (40 mL). After further more extraction by EtOAc (40 mL × 2), combined organic layer was washed with water (40 mL × 2) and brine (40 mL), dried over Na₂SO₄. The organic layer was evaporated and the residue was purified by flash column chromatography to afford **10ab** (Method F: 1.51 g, 75% yield) as a light yellow solid.

A 100-mL sealed tube, containing a magnetic stirring bar, was flame-dried under vacuum and filled with argon after cooling to room temperature. To this vessel were added PdCl₂(bipy) (75.2 mg, 0.23 mmol, 5 mol%), Ag₂CO₃ (1.25 g, 4.5 mmol, 1.0 equiv), 5-iodobenzo[*d*][1,3]dioxole (**2h**: 1.67 g, 6.75 mmol, 1.5 equiv), **10ab** (1.13 g, 4.5 mmol, 1.0 equiv) and 1,4-dioxane (18 mL, 0.2~0.25 M) under a stream of argon. The vessel was sealed and then stirred at 120 °C for 22 h. After cooling the reaction mixture to room temperature, the mixture was passed through a short silica gel pad (EtOAc). The filtrate was evaporated and the residue was purified by flash column chromatography to afford **13abh** as a light yellow solid (Method G: 1.50g, 92% yield). ¹H NMR (600 MHz, CDCl₃) δ 2.33 (s, 3H), 5.94 (s, 2H), 6.75 (d, *J* = 8.3 Hz, 1H), 6.82 (s, 1H), 6.88 (d, *J* = 8.3 Hz, 1H), 7.11 (d, *J* = 7.6 Hz, 2H), 7.36–7.46 (m, 3H), 7.50 (d, *J* = 8.3 Hz, 2H), 7.97 (d, *J* = 6.9 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 21.3, 101.3, 108.6, 109.9, 123.5, 125.7, 126.3, 128.8, 128.9, 129.0, 129.8, 132.0, 132.2, 133.6, 137.5, 147.6, 147.8, 150.5, 164.8; HRMS (DART) *m*/*z* = 372.1058 calcd for C₂₃H₁₈NO₂S [M+H]⁺, found: 372.1058.