Supporting Information

A dinuclear iridium(III) complex as a visual specific phosphorescent probe for endogenous sulphite and bisulphite in living cells

Guanying Li,^a Yu Chen,^a Jinquan Wang,^a Qian Lin,^a Jing Zhao,^b Liangnian Ji^a and Hui Chao*^a

^aMOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, China. E-mail: ceschh@mail.sysu.edu.cn ^bSchool of Chemical Biology and Biotechnology, Peking Unversity, Shenzhen 518055, China.

Table of Contents :

- Fig. S1. Phosphoresent response of SP-1 with sulphite and bisulphite.
- Fig. S2. Emission spectra of SP-2 with increasing concentrations of bisulphite.
- Fig. S3. Calibration curve of SP-2 with sulphite or bisulphite.
- Fig. S4. Determination of the observed rate constants for reaction of SP-2 and bisulphite and sulphite.
- Fig. S5. pH effect of SP-2 and its reaction with sulphite.
- Fig. S6. Cell viability assay of SP-2.
- Fig. S7. Intracellular imaging of bisulphite with SP-2.
- **Fig. S8.** Cellular responses of **SP-2** with $S_2O_3^{2-}$, GSH, CN⁻, SCN⁻ and TNBS.
- Fig. S9. Cyclic voltammograms of SP-2 with or without sulphite.
- Fig. S10. ESI-MS spectra of SP-2 and the isolated product.
- Fig. S11. FT-IR spectra of SP-2 and the isolated product.
- **Fig. S12.** ¹H NMR spectra of **SP-2** and the isolated product.
- **Fig. S13.** ¹³C-¹H COSY spectra of **SP-2** and the isolated product.
- **Fig. S14.** ¹H NMR spectra titration experiments of **SP-2** with sulphite.
- Table S1.
 Calculation of the detection limit of sulphite and bisulphite with SP-2.

Fig. S1. Emission spetra of SP-1 (10 μ M) in the absence or presence of 100 μ M sulphite or bisulphite in a mixed solution of DMSO:HEPES buffer (3:7, 10 mM, pH 7.5), $\lambda_{ex} = 405$ nm.

Fig. S2. Emission spectra of **SP-2** (10 μ M) treated with increasing concentrations of sulphite (0-30 μ M) in a mixed solution of DMSO:HEPES buffer (3:7, 10 mM, pH 7.5). Insert: the titration curve of **SP-2** reacted with sulphite. Each spectra was recorder under 405 nm excitation.

Fig. S3. Calibration curve of **SP-2** signal intensity *vs* sulphite (hollow square) or bisulphite (solid square) concentrations.

compounds	σ	М	\mathbb{R}^2	S/N	DL
sulphite	1.365	$1.740 \times 10^7 \mathrm{M}^{-1}$	0.991	3	$2.35 \times 10^{-7} \mathrm{M}$
bisulphite	1.365	$2.847 \times 10^7 \text{M}^{-1}$	0.999	3	$1.44 \times 10^{-7} \mathrm{M}$

Table S1. Calculation of the detection limit of sulphite and bisulphite with SP-2.

Fig. S4. Determination of the observed rate constants for reaction of **SP-2** and bisulphite (solid square) and sulphite (hollow square). 10 μ M **SP-2** reacted with 10 μ M bisulphite or sulphite in a mixed solution of DMSO:HEPES buffer (3:7, 10 mM, pH 7.5). And the emission intensity was recorded over time, $\lambda_{ex} = 405$ nm, $\lambda_{em} = 600$ nm.

Fig. S5. The pH effect experiments of SP-2. Phosphorescence intensity of 10.0 μ M SP-2 at 600 nm in the absence (black square) and presence of sulphite (red square, 10.0 μ M) under different pH in Britton-Robinson buffer.

Fig. S6. Potential cytotoxicity of SP-2 was evaluated by MTT assay. Tecan Infinite M200 monochromator-based multifunction microplate reader was used to measure the OD490 of each well. The cell survival rate in the control wells without SP-2 solutions was considered as 100% cell survival. The data represent the mean \pm SD of three independent experiments.

Fig. S7. HepG2 cells were incubated for 1 h with increasing concentration of bisulphite (0, 10, 50 and 250 μ M), and then replaced with PBS buffer and incubated with 5.0 μ M SP-2 for another 1 h. Confocal luminescence images were captured under excitation of 405 nm laser. Scale bar represents 50 μ m.

Fig. S8 HepG2 cells were incubated for 1 h with: (a) control, (b) 250 μ M Na₂S₂O₃, (c) 500 μ M GSH, (d) 250 μ M CN⁻, (e) 250 μ M SCN⁻ and (f) 100 mM TNBS, and then replaced with PBS buffer and incubated with 5.0 μ M **SP-2** for another 1 h. Confocal luminescence images were captured under excitation of 405 nm laser. Scale bar represents 50 μ m. Line 1, 3 represent the fluorescent field, and line 2, 4 represent the bright field.

Fig. S9. Cyclic voltammograms for 100 μ M **SP-2** in the absence (black line) or presence of 500 μ M sulphite (red line) in 0.1 M tetrabutylammonium perchlorate (TABP) CH₃CN solutions containing 5% HEPES buffer. Scan rate was 0.1 V/s.

Fig. S10. ESI-MS identification of **SP-2** (a) in CH₃OH and its reacted product with sulphite (b).

Fig. S11. FT-IR spectra of **SP-2** (black line) and its reacted product with sulphite (red line).

Fig. S12. ¹H NMR of **SP-2** (black line) and its reacted product with sulphite (red line) in CD₃CN, 400 MHz.

Fig. S13. ¹³C-¹H COSY spectrum of the isolated product in CD₃CN, 400 MHz.

Fig. S14. ¹H NMR spectra of SP-2 reacted with different concentration of sulphite in 4/1 CD₃CN/D₂O, 400 MHz.