Supporting Information

Diatomic PN – Trapped in a *Cyclo*-Tetraphosphazene

Christian Hering, Axel Schulz* and Alexander Villinger

This file includes:

p.2
p.3
p.31
p.43
p.50
p.60

1. Experimental

General Information. All manipulations were carried under oxygen- and moisture free conditions using standard Schlenk and Drybox techniques.

Dichloromethane was purified according to a literature procedure¹, dried over P_4O_{10} , stored over CaH_2 and was freshly distilled prior to use, as was C_6H_5F . Toluene and benzene were dried over Na/benzophenone and freshly distilled prior to use. *N*-hexane was dried over Na/Benzophenone/Tetraglyme and freshly distilled prior to use. *N*,*N*-bis(trimethylsilyl)amiodichlorophosphane¹, silver trifluoromethylsulfonate AgOTf² and W(CO)₃(C_2H_5CN)₃³ have been reported previously and were prepared according to a modified literature procedure. 2,3-dimethyl-1,3-butadiene (98 %, Aldrich) and 1,3-*cyclo*-hexadiene (*stabilized for synthesis*, Merck) were stirred over NaBH₄ for 24 h and stored over mole sieves. Mo(CO)₆ (pract., Fluka) was freshly sublimed prior to use.

NMR: ³¹P{¹H}-, ²⁹Si INEPT-, 19F{¹H}-, ¹³C{¹H}- and ¹H-NMR spectra were recorded on BRUKER spectrometers AVANCE 250, AVANCE 300 and AVANCE 500, respectively. The ¹H- and ¹³C-NMR chemical shifts were referenced to the solvent signals (CDHCl₂: δ (¹H) = 5.31; δ (¹³C) = 54.0). The ¹⁹F, ²⁹Si-NMR and ³¹P-NMR chemical shifts are referred to CFCl₃, TMS and H₃PO₄ (85%) respectively. CD₂Cl₂ was dried over P₄O₁₀ and was degased prior to use.

CHN analysis: Analysator Flash EA 1112 from Thermo Quest.

IR: Nicolet 380 FT-IR with a Smart Orbit ATR module.

RAMAN: LabRAM HR 800 Horiba Jobin YVON equipped with a High Stability BX40 Microscope (Focus 1 μ m) or an Olympus Mplan 50xNA 0.70 lens, the laser is variable and was chosen prior to the measurement (Wavelength Laser (x.x aperture), number of accumulations@accumulation time).

Melting Points are uncorrected (EZ-Melt, Stanford Research Systems). Heating-rate 20 °C/min (clearing points are reported).

DSC: DSC 823e from Mettler-Toledo (Heating rate 5°C/min) was used.

MS: Finnigan MAT 95-XP from Thermo Electron was used.

2. Structure elucidation

X-ray Structure Determination: X-ray quality crystals of **5**, **5b**, **7**, **8**, **9**, **5·Mo**, **5·W**₂ and **Mo**(**CO**)₃(**C**₂**H**₅**CN**)₃ were selected in Fomblin YR-1800 perfluoroether (Alfa Aesar) at ambient temperature. The data was collected on a Bruker Kappa Apex-II CCD diffractometer using graphite monochromated Mo-K α radiation ($\lambda = 0.71073$). The structures were solved by direct methods (*SHELXS-97*)⁴ and refined by full-matrix least squares procedures (*SHELXL-97*).⁵ Semi-empirical absorption corrections were applied (*SADABS*).⁶ All non hydrogen atoms were refined anisotropically, hydrogen atoms were included in the refinement at calculated positions using a riding model.

Both CH_2Cl_2 molecules in **5_1** were found to be disordered and were split in two parts, respectively. The occupation of each part was refined freely (0.918(2)/0.082(2)//0.58(2)/0.42(2)).

A C_6H_8 moiety in one of the cations, along with an anion in **8** were found to be disordered and were split in two parts, respectively. The occupation of each part was refined freely (0.796(5)/0.204(5)//0.65(2)/0.35(2)).

The cation in **9** was found to be disordered and was split in two parts. The occupation of each part was refined freely (0.896(3)/0.104(3))

One of the toluene molecules in $5 \cdot Mo_2$ was found to be disordered and was split in three parts. The occupation of each part was refined freely (0.328(7)/0.340(7)/0.233(5))

Compound	5_1	5_2	5b
Chem. Formula	$C_{26}H_{44}N_4P_4Cl_4$	$C_{25}H_{42}N_4P_4Cl_2$	$C_{30}H_{50}N_5P_5$
Form. Wght. [g mol ⁻¹]	678.33	593.41	635.60
Colour	Colourless	Colourless	Colourless
Cryst. system	triclinic	monoclinic	monoclinic
Space group	<i>P</i> -1	<i>C</i> 2/c	$P2_1$
<i>a</i> [Å]	11.5705(5)	18.4786(14)	5.817(2)
<i>b</i> [Å]	12.2221(3)	10.3968(7)	20.654(7)
<i>c</i> [Å]	13.6923(3)	16.6760(12)	14.186(5)
α [°]	111.408(1)	90	90
β[°]	105.640(1)	109.266(3)	90.25(2)
γ [°]	97.431(1)	90	90
V [Å ³]	1679.02(9)	3024.3(4)	1704.2(1)
Ζ	2	4	2
$\rho_{\text{calc.}} [\text{g cm}^{-3}]$	1.342	1.303	1.239
$\mu [\mathrm{mm}^{-1}]$	0.57	0.45	0.30
<i>T</i> [K]	173(2)	173(2)	173(2)
Measured reflections	48693	11916	9224
Independent reflections	8903	2669	3961
Reflections with $I > 2\sigma(I)$	6414	1440	1767
R _{int}	0.051	0.113	0.143
<i>F</i> (000)	712	1256	680
$R_1(R[F^2>2\sigma(F^2)])$	0.043	0.056	0.035
$wR_2 (F^2)$	0.1184	0.1231	0.4032
GooF	1.014	1.002	1.086
Parameters	380	163	172

Table S1. Crystallographic Details of **5_1**, **5_2** and **5b**.

Compound	7	8	9
Chem. Formula	$C_{16}H_{29}NPSiF_3O_3S$	C ₁₅ H ₂₅ NPSiF ₃ O ₃ S	$C_{13}H_{25}F_3NO_4SCl_2$
Form. Wght. [g mol ⁻¹]	431.52	427.49	462.28
Colour	Colourless	Colourless	Colourless
Cryst. system	triclinic	Monoclinic	Orthorhombic
Space group	<i>P</i> -1	$P2_{1}/n$	$Pna2_1$
<i>a</i> [Å]	11.1833(3)	8.7479(3)	17.3330(14)
<i>b</i> [Å]	16.4208(4)	10.5358(4)	8.3372(6)
<i>c</i> [Å]	19.4337(5)	42.671(1)	14.4037(10)
α [°]	67.276(1)	90	90
β[°]	82.190(1)	93.724(2)	90
γ [°]	83.22381)	90	90
V[Å ³]	3252.8(1)	3924.5	2081.5(3)
Ζ	6	8	4
$\rho_{\text{calc.}} [\text{g cm}^{-3}]$	1.322	1.255	1.475
$\mu \ [\mathrm{mm}^{-1}]$	0.32	0.35	0.53
<i>T</i> [K]	173(2)	173(2)	173(2)
Measured reflections	54016	48811	14093
Independent reflections	15669	9008	4994
Reflections with $I > 2\sigma(I)$	8972	5097	3252
R _{int}	0.061	0.089	0.062
<i>F</i> (000)	1368	1792	960
$R_1(R[F^2>2\sigma(F^2)])$	0.052	0.055	0.053
$wR_2 (F^2)$	0.1225	0.1360	0.1300
GooF	1.014	1.016	0.967
Parameters	724	561	299

Table S2. Crystallographic Details of 9, 10 and 11.

Compound	5·Mo(CO)3_1	5·Mo(CO) ₃ _2	5·W ₂ (CO) ₇
	$C_{27}H_{40}N_4P_4MoO_3$	$C_{27}H_{40}N_4P_4MoO_{3*}1.4(C_7$	$C_{31}H_{40}N_4P_4W_2O_7\\$
Chem. Formula		H ₈)	
Form. Wght. [g mol ⁻¹]	688.45	817.50	1072.25
Colour	Yellow	Colourless	Colourless
Cryst. system	Monoclinic	Triclinic	Monoclinic
Space group	$P2_{1}/c$	<i>P</i> -1	$P2_{1}/c$
<i>a</i> [Å]	9.0715(4)	9.1199(3)	20.4707(8)
<i>b</i> [Å]	18.1902(6)	13.8435(5)	20.2868(7)
<i>c</i> [Å]	18.4948(7)	17.1181(7)	18.9919(6)
α [°]	90	70.892(2)	90
β[°]	94.483(2)	88.485(2)	110.519(2)
γ [°]	90	89.599(2)	90
V[Å ³]	3042.5(2)	2041.4(1)	7386.7(5)
Ζ	4	2	8
$\rho_{\text{calc.}} [\text{g cm}^{-3}]$	1.503	1.330	1.928
$\mu \text{ [mm]}^1$]	0.68	1.48	6.45
<i>T</i> [K]	173(2)	173(2)	173(2)
Measured reflections	39864	60358	132908
Independent reflections	7327	12924	26725
Reflections with $I > 2\sigma(I)$	4492	9108	15113
R _{int}	0.107	0.056	0.095
<i>F</i> (000)	1424	852	4144
$R_1(R[F^2>2\sigma(F^2)])$	0.052	0.046	0.048
wR_2 (F^2)	0.1104	0.1217	0.1003
GooF	1.013	1.034	1.013
Parameters	360	425	881

Table S3. Crystallographic Details of $5 \cdot Mo_1$, $5 \cdot Mo_2$ and $5 \cdot W_2(CO)_7$.

X
$C_{12}H_{15}N_3MoO_3$
345.21
Colourless
Monoclinic
$P2_{1}/m$
5.9362(2)
13.8472(5)
9.4000(3)
90
97.888(2)
90
765.37(5)
2
1.498
0.86
173(2)
14262
2862
2611
0.041
348
0.023
0.0478
1.059
99

Table S4. Crystallographic Details of X.

Table S4. Selected bond lenghts (Å) angles (°) and torsion angles (°) of 5_1.

P1—N1	1.7146 (16)	C1—C2	1.509 (3)
P1—N4	1.7297 (16)	С2—С3	1.334 (3)
P1—C1	1.835 (2)	C2—C5	1.507 (3)
P2—N2	1.7111 (16)	C3—C6	1.504 (3)
P2—N1	1.7262 (16)	C3—C4	1.505 (3)
P2—C7	1.836 (2)	С7—С8	1.507 (3)
P3—N3	1.7122 (16)	С8—С9	1.333 (3)
P3—N2	1.7228 (17)	C8—C11	1.511 (3)
P3—C13	1.830 (2)	С9—С10	1.506 (3)
P4—N4	1.7101 (16)	С9—С12	1.511 (3)
P4—N3	1.7232 (16)	C13—C14	1.514 (3)
P4—C19	1.832 (2)	C14—C15	1.328 (3)

N1—C4	1.470 (2)	C14—C17	1.508 (3)
N2—C10	1.469 (2)	C15—C16	1.507 (3)
N3—C16	1.472 (2)	C15—C18	1.511 (3)
N4—C22	1.473 (2)	C19—C20	1.513 (3)
C20—C21	1.332 (3)	C21—C22	1.508 (3)
C20—C23	1.507 (3)	C21—C24	1.513 (3)
C25—Cl1B	1.711 (11)	C26A—Cl3A	1.733 (8)
C25—Cl2B	1.74 (2)	C26A—Cl4A	1.737 (15)
C25—Cl2A	1.753 (3)	C26B—Cl3B	1.734 (9)
C25—Cl1A	1.759 (3)	C26B—Cl4B	1.737 (15)
N1—P1—N4	108.77 (8)	C4—N1—P1	123.24 (12)
N1—P1—C1	98.72 (8)	C4—N1—P2	122.71 (12)
N4—P1—C1	101.29 (8)	P1—N1—P2	111.10 (9)
N2—P2—N1	108.65 (8)	C10—N2—P2	122.85 (13)
N2—P2—C7	98.58 (9)	C10—N2—P3	122.94 (13)
N1—P2—C7	101.44 (8)	P2—N2—P3	110.96 (9)
N3—P3—N2	108.49 (8)	C16—N3—P3	123.14 (12)
N3—P3—C13	98.79 (8)	C16—N3—P4	123.02 (12)
N2—P3—C13	102.46 (9)	P3—N3—P4	111.39 (9)
N4—P4—N3	109.07 (8)	C22—N4—P4	123.60 (13)
N4—P4—C19	98.59 (9)	C22—N4—P1	122.77 (13)
N3—P4—C19	101.79 (9)	P4—N4—P1	111.06 (9)
C3—C2—C5	123.09 (19)	C2—C3—C6	123.89 (18)
C3—C2—C1	123.67 (17)	C2—C3—C4	125.15 (18)
C5—C2—C1	113.24 (17)	C6—C3—C4	110.96 (17)
C1—P1—N1—C4	40.21 (16)	C1—C2—C3—C6	-179.64 (18)
N2—P2—N1—P1	-96.76 (10)	C7—P2—N1—C4	-38.86 (16)

Table S5. Selected bond lenghts (Å) angles (°) and torsion angles (°) of 5_2.

P1—N1	1.709 (3)	С2—С3	1.332 (6)
P1—N2i	1.719 (3)	C2—C5	1.507 (6)
P1—C1	1.848 (4)	C3—C4	1.494 (6)
P2—N2	1.717 (3)	С3—С6	1.526 (5)
P2—N1	1.732 (3)	С7—С8	1.517 (5)
P2—C7	1.827 (4)	С8—С9	1.323 (5)
N1—C4	1.477 (5)	C8—C11	1.516 (5)
N2—C10	1.476 (5)	С9—С10	1.506 (5)
N2—P1i	1.719 (3)	С9—С12	1.512 (5)
C1—C2	1.508 (5)	C13—Cl1ii	1.756 (4)
Cl1—C13	1.756 (4)	C3—C2—C5	124.1 (4)
N1—P1—N2i	108.40 (16)	C3—C2—C1	122.9 (4)

N1—P1—C1	99.89 (17)	C5—C2—C1	113.0 (4)
N2i—P1—C1	100.81 (17)	C2—C3—C4	126.4 (4)
N2—P2—N1	107.94 (16)	C2—C3—C6	122.5 (4)
N2—P2—C7	97.54 (17)	C4—C3—C6	111.1 (4)
N1—P2—C7	102.21 (18)	C10—N2—P2	121.6 (3)
C4—N1—P1	124.1 (3)	C10—N2—P1i	121.5 (2)
C4—N1—P2	122.9 (3)	P2—N2—P1i	113.81 (18)
P1—N1—P2	110.48 (17)	C1—C2—C3—C6	178.8 (4)
C1—P1—N1—C4	33.3 (3)	C7—P2—N1—C4	-27.8 (3)
N2—P2—N1—P1	-88.1 (2)		

Symmetry codes: (i) -x+1, y, -z+1/2; (ii) -x+2, y, -z+1/2.

Table S6. Selected bond lenghts (Å) angles (°) and torsion angles (°) of 5b.

P1—N5	1.692 (17)	P1—C1	1.86 (2)
P1—N1	1.699 (17)	Р2—С7	1.82 (2)
P2—N1	1.680 (18)	P3—C13	1.84 (2)
P2—N2	1.699 (17)	P4—C19	1.80 (2)
P3—N2	1.692 (18)	P5—C25	1.86 (2)
P3—N3	1.703 (18)	N1—C4	1.47 (3)
P4—N3	1.680 (18)	N2—C10	1.45 (3)
P4—N4	1.704 (19)	N3—C16	1.46 (2)
P5—N4	1.691 (18)	N4—C22	1.48 (3)
P5—N5	1.73 (2)	N5—C28	1.45 (3)

Scheme S4. Numbering scheme of [Me₃SiN(C₆H₁₀)P(C₆H₁₀)][O₃SCF₃] (7).

Table S7. Selected bond lenghts (Å) angles (°) and torsion angles (°) of **7**.

C1—P1	1.773 (3)	C15—Si1	1.855 (3)
C4—N1	1.504 (3)	C16—F2	1.321 (3)
N1—P1	1.634 (2)	C16—F1	1.328 (3)
C1—C2	1.518 (3)	C16—F3	1.330 (3)
С2—С3	1.331 (3)	01—S1	1.422 (2)
C2—C5	1.492 (3)	O2—S1	1.428 (2)
С3—С6	1.497 (4)	O3—S1	1.421 (2)
C3—C4	1.508 (3)	C16—S1	1.811 (3)
N1—Si1	1.769 (2)	С7—Р1	1.801 (3)
Si1—C13	1.853 (3)	C10—P1	1.797 (3)
C14—Si1	1.833 (3)	С8—С9	1.322 (4)
С7—С8	1.498 (4)	C17—P2	1.782 (3)
N2—P2	1.630 (2)	N2—Si2	1.767 (2)

C17—C18	1.522 (3)	C23—C24	1.509 (3)
C18—C19	1.328 (3)	C24—C25	1.334 (3)
C18—C21	1.491 (3)	C24—C27	1.514 (4)
С19—С22	1.501 (3)	C25—C28	1.505 (4)
С19—С20	1.508 (3)	C25—C26	1.512 (3)
С23—Р2	1.805 (2)	C26—P2	1.798 (3)
Si2—C29	1.851 (3)	C32—F6	1.328 (3)
C30—Si2	1.853 (3)	C32—F5	1.333 (3)
C31—Si2	1.843 (3)	C32—F4	1.334 (3)
O4—S2	1.4337 (19)	C32—S2	1.817 (3)
O5—S2	1.435 (2)	O6—S2	1.4304 (19)
С33—Р3	1.781 (3)	C36—N3	1.515 (3)
N3—P3	1.632 (2)	N3—Si3	1.765 (2)
C33—C34	1.512 (3)	C39—P3	1.790 (3)
C34—C35	1.330 (3)	C39—C40	1.509 (3)
C34—C37	1.505 (3)	C40—C41	1.330 (3)
C35—C38	1.500 (3)	C40—C43	1.502 (3)
C35—C36	1.517 (3)	C41—C44	1.496 (3)
C36—N3	1.515 (3)	C41—C42	1.517 (4)
C45—Si3	1.854 (3)	C42—P3	1.804 (2)
Si3—C46	1.852 (3)	07—\$3	1.4316 (19)
C47—Si3	1.849 (3)	08—\$3	1.4420 (19)
C48—F9	1.324 (3)	09—\$3	1.4309 (19)
C48—F8	1.325 (3)	C48—S3	1.818 (3)
C48—F7	1.325 (3)	N1—Si1—C14	109.34 (13)
03-51-01	115.08 (14)	N1—Si1—C13	108.43 (13)
03—S1—O2	116.49 (15)	C14—Si1—C13	111.13 (15)
01—S1—O2	113.53 (14)	C4—N1—P1	115.06 (17)
N1—P1—C1	104.99 (11)	C4—N1—Si1	116.38 (16)
N1—P1—C10	116.24 (12)	P1—N1—Si1	127.82 (13)

C1—P1—C10	110.37 (13)	F2—C16—F1	106.9 (3)
N1—P1—C7	117.46 (12)	F2—C16—F3	106.9 (3)
C1—P1—C7	110.98 (13)	F1—C16—F3	107.3 (2)
C10—P1—C7	96.80 (12)	C9—C8—C7	117.0 (2)
C3—C2—C5	126.9 (2)	C9—C8—C11	126.7 (3)
C3—C2—C1	117.4 (2)	C7—C8—C11	116.3 (2)
C5—C2—C1	115.7 (2)	P1—C1—C2—C5	129.2 (2)
C2—C3—C4—N1	51.4 (3)	P1—C7—C8—C9	6.8 (3)
C5—C2—C3—C4	-179.7 (2)	C11—C8—C9—C10	177.4 (3)
Si1—N1—P1—C7	59.5 (2)	C4—N1—P1—C10	115.27 (19)
C4—N1—P1—C1	-7.0 (2)	C2—C1—P1—N1	51.2 (2)

Scheme S5. Numbering scheme of $[Me_3SiN(C_6H_8)P(C_6H_8)][O_3SCF_3]$ (8).

Table S8. Selected bond lenghts (Å) angles (°) and torsion angles (°) of 8.

P1—N1	1.625 (2)	Si1—C3	1.844 (3)
P1—C4A	1.806 (9)	Si1—C1	1.851 (4)
P1—C13	1.825 (3)	Si1—C2	1.855 (4)
P1—C10	1.829 (3)	C4A—C5A	1.500 (9)
P1—C4B	1.83 (4)	С4А—С9А	1.577 (8)
N1—C7B	1.49 (2)	C5A—C6A	1.309 (7)
N1—C7A	1.588 (5)	C6A—C7A	1.487 (6)
N1—Si1	1.779 (2)	C7A—C8A	1.528 (6)
C4B—C5B	1.44 (3)	C8A—C9A	1.511 (7)
C5B—C6B	1.32 (3)	С6В—С7В	1.59 (3)
С7В—С8В	1.50 (3)	С8В—С9В	1.43 (3)

C10—C11	1.507 (5)	C12—C13	1.470 (5)
C10—C15	1.537 (5)	C13—C14	1.538 (4)
C11—C12	1.339 (5)	C14—C15	1.544 (4)
<u>\$1—01</u>	1.429 (2)	S1—C16	1.797 (4)
S1—O2	1.431 (2)	C16—F1	1.306 (4)
<u>\$1—03</u>	1.439 (3)	C16—F3	1.337 (4)
P2—N2	1.643 (2)	C16—F2	1.350 (4)
P2—C23	1.812 (3)	N2—C20	1.539 (3)
P2—C26	1.824 (3)	N2—Si2	1.790 (2)
P2—C29	1.833 (3)	Si2—C19	1.850 (3)
Si2—C17	1.856 (3)	Si2—C18	1.854 (3)
C20—C21	1.499 (4)	C21—C22	1.328 (4)
C20—C25	1.515 (4)	C22—C23	1.500 (5)
C23—C24	1.548 (4)	C24—C25	1.499 (4)
C26—C27	1.538 (5)	C28—C29	1.478 (4)
C26—C31	1.542 (4)	C29—C30	1.544 (4)
C27—C28	1.298 (5)	C30—C31	1.551 (4)
S2A—O4A	1.394 (8)	S2B—O5B	1.395 (15)
S2A—O5A	1.420 (9)	S2B—O4B	1.420 (16)
S2A	1.426 (8)	S2B—O6B	1.429 (15)
S2A—C32A	1.802 (7)	S2B—C32B	1.793 (12)
C32A—F4A	1.339 (5)	C32B—F4B	1.272 (19)
C32A—F6A	1.318 (13)	C32B—F6B	1.32 (2)
C32A—F5A	1.338 (15)	C32B—F5B	1.34 (2)
N2—P2—C23	101.82 (13)	C20—N2—P2	110.36 (16)
N2—P2—C26	121.58 (13)	C20—N2—Si2	116.85 (16)
C23—P2—C26	117.39 (15)	P2—N2—Si2	129.53 (13)
N2—P2—C29	120.08 (13)	N2—Si2—C19	110.41 (12)
C23—P2—C29	112.69 (15)	N2—Si2—C18	107.92 (13)
C26—P2—C29	83.65 (15)	C19—Si2—C18	106.93 (15)

01—S1—O2	114.25 (16)	F1—C16—F3	108.4 (3)
01—S1—O3	115.38 (15)	F1—C16—F2	106.0 (3)
02—S1—O3	116.52 (15)	F3—C16—F2	107.1 (3)
C23—P2—N2—C20	14.4 (2)	C26—P2—N2—C20	147.32 (18)
C23—P2—N2—Si2	-144.14 (18)	P2—N2—C20—C21	45.1 (3)
C29—P2—N2—Si2	90.64 (19)	C21—C22—C23—C24	-54.4 (4)
C31—C26—C27—C28	61.5 (4)	C29—P2—C26—C27	53.4 (2)
C29—P2—C26—C31	-54.0 (2)	N2—P2—C29—C28	-177.77 (2)

Symmetry codes: (i) -x, -y, -z.

Table S9. Selected bond lenghts (Å) angles (°) and torsion angles (°) of $5 \cdot Mo_1$.

Mo1-C25	1.960 (5)	P1—P2	2.6644 (16)
Mo1-C26	1.942 (5)	P2—N2	1.681 (3)
Mo1—C27	1.949 (5)	P2—N3	1.709 (3)
Mo1—P1	2.4690 (12)	Р2—С7	1.814 (4)
Mo1—P2	2.4557 (12)	P2—P3	2.6385 (16)
Mo1—P3	2.4970 (12)	P3—N4	1.681 (3)
Mo1—P1	2.5275 (6)	P3—N3	1.703 (3)
P1—N1	1.674 (3)	P3—C13	1.820 (4)

P1—N2	1.719 (4)	P4—N4	1.727 (3)
Р1—С1	1.814 (4)	P4—N1	1.749 (4)
O3—C3	1.152 (3)	P4—C19	1.850 (4)
N1—C4	1.477 (5)	O1—C25	1.165 (5)
N2—C10	1.462 (5)	O2—C26	1.174 (6)
N3—C16	1.462 (5)	O3—C27	1.163 (5)
N4—C22	1.490 (5)	O1—C25	1.165 (5)
C1—C2	1.507 (6)	C19—C20	1.516 (6)
С2—С3	1.333 (6)	C20—C21	1.329 (6)
C3—C4	1.512 (6)	C21—C22	1.515 (6)
C2—C5	1.504 (6)	C20—C23	1.507 (6)
С3—С6	1.492 (6)	C21—C24	1.500 (6)
C26—Mo1—C27	89.2 (2)	C27—Mo1—P2	98.61 (15)
C26—Mo1—C25	92.0 (2)	C25—Mo1—P2	159.49 (13)
C27—Mo1—C25	95.81 (19)	C26—Mo1—P1	90.34 (14)
N1—P1—N2	109.98 (18)	N2—P2—N3	111.21 (17)
N1—P1—C1	100.88 (19)	N2—P2—C7	100.49 (19)
N2—P1—C1	104.64 (19)	N3—P2—C7	106.82 (19)
N4—P3—N3	108.64 (18)	N4—P4—N1	106.66 (17)
N4—P3—C13	104.93 (19)	N4—P4—C19	95.75 (18)
N3—P3—C13	98.37 (19)	N1—P4—C19	100.55 (18)
C4—N1—P1	121.0 (3)	C10—N2—P2	125.0 (3)
C4—N1—P4	125.1 (3)	C10—N2—P1	130.1 (3)
P1—N1—P4	112.77 (19)	P2—N2—P1	103.20 (19)
C16—N3—P3	123.3 (3)	C22—N4—P3	124.4 (3)
C16—N3—P2	133.0 (3)	C22—N4—P4	119.9 (3)
P3—N3—P2	101.32 (18)	P3—N4—P4	115.65 (19)
P2—P3—N4—P4	78.4 (2)	N1—P4—N4—C22	101.7 (3)
P4—C19—C20—	57.7 (5)	P1—P2—P3—C13	176.7 (2)
P1—C1—C2—C5	160.4 (3)	P2—C7—C8—C11	-177.3 (3)

P3-C13-C14-	167.5 (3)	
C17		

Scheme S7. Numbering scheme of [PN(C₆H₁₀)]₄·(Mo(CO)₃ (5·Mo_2)

Table S10. Selected bond lenghts (Å) angles (°) and torsion angles (°) of 5·Mo_2.

Mo1—C1	1.985 (3)	P1—N4	1.685 (2)
Mo1—C2	1.972 (3)	P1—N1	1.7019 (19)
Mo1—C3	1.975 (3)	P1—C4	1.816 (2)

Mo1—P1	2.5275 (6)	P1—P2	2.6493 (8)
Mo1—P2	2.4778 (6)	P2—N2	1.690 (2)
Mo1—P3	2.4973 (6)	P2—N1	1.705 (2)
Mo1—P1	2.5275 (6)	P2	1.805 (2)
P1—P2	2.6493 (8)	P2—P3	2.6823 (9)
O1—C2	1.155 (3)	P3—N3	1.679 (2)
O2—C1	1.155 (3)	P3—N2	1.718 (2)
O3—C3	1.152 (3)	P3—C16	1.800 (3)
N1—C7	1.460 (3)	P4—N4	1.718 (2)
N2—C13	1.463 (3)	P4—N3	1.744 (2)
N3—C19	1.473 (3)	P4—C22	1.855 (3)
N4—C25	1.490 (3)	С22—С23	1.514 (4)
C4—C5	1.517 (3)	C23—C24	1.332 (4)
C5—C6	1.339 (3)	C23—C26	1.497 (4)
С5—С8	1.506 (4)	C24—C27	1.502 (4)
C6—C7	1.498 (3)	C24—C25	1.511 (4)
С6—С9	1.509 (3)	C2—Mo1—P2	101.25 (7)
C2—Mo1—C3	89.63 (11)	C3—Mo1—P2	102.82 (8)
C2—Mo1—C1	92.40 (10)	C1—Mo1—P2	159.98 (7)
C3—Mo1—C1	91.74 (10)	N2—P2—N1	112.06 (10)
N4—P1—N1	109.19 (9)	N2—P2—C10	100.04 (10)
N4—P1—C4	105.03 (11)	N1—P2—C10	104.63 (11)
N1—P1—C4	98.72 (10)	N4—P4—N3	105.91 (10)
N3—P3—N2	109.96 (10)	N4—P4—C22	96.07 (11)
N3—P3—C16	100.03 (11)	N3—P4—C22	101.02 (11)
N2—P3—C16	104.03 (11)	C13—N2—P2	123.98 (17)
C7—N1—P1	124.12 (16)	C13—N2—P3	128.87 (17)
C7—N1—P2	131.45 (15)	P2—N2—P3	103.84 (10)
P1—N1—P2	102.09 (10)	C25—N4—P1	123.47 (17)
C19—N3—P3	122.16 (16)	C25—N4—P4	120.67 (16)

C19—N3—P4	125.28 (15)	P1—N4—P4	115.66 (10)
P3—N3—P4	111.50 (11)	O1—C2—Mo1	177.6 (2)
O2-C1-Mo1	178.7 (2)	O3—C3—Mo1	178.9 (3)
P4—C22—C23— C26	123.6 (2)	P1—C4—C5—C8	-168.0 (2)
P2—C10—C11— C14	-164.9 (2)	P3—C16—C17— C20	-152.1 (2)

Symmetry code: (i) -x, -y+1, -z+2.

Scheme S8. Numbering scheme of N,N-bis(trimethylsilyl)aminochlorostibenium hexachloro- μ -[N,N-bis(trimethylsilyl)amino]-digallate (5·W₂)

Table S11. Selected bond lenghts (Å) angles (°) and torsion angles (°) of 5•W₂(CO)₇.

W1—C26	1.939 (6)	W2-C30	1.940 (6)
W1—C27	1.994 (6)	W2—C29	1.981 (6)
W1—C25	2.021 (6)	W2—C31	1.999 (6)
W1—C28	2.021 (6)	W2—P1	2.4322 (13)
W1—P3	2.4568 (13)	W2—P2	2.4818 (13)
W1—W2	3.0984 (3)	W2—P4	2.5340 (14)
P1—N4	1.671 (5)	P3—N3	1.703 (4)
P1—N1	1.674 (4)	P3—N2	1.727 (4)
P1—C1	1.789 (5)	P3—C13	1.828 (5)
P1—P4	2.606 (2)	P4—N3	1.693 (4)
P1—P2	2.6149 (19)	P4—N4	1.694 (4)
P2—N2	1.687 (4)	P4—C19	1.812 (5)
P2—N1	1.698 (4)	N1—C4	1.474 (6)

P2C7	1.803 (6)	N2	1.465 (6)
01—C25	1.141 (7)	N3—C16	1.475 (7)
O2—C26	1.169 (6)	N4—C22	1.458 (7)
O3—C27	1.164 (6)	C1—C2	1.511 (7)
O4—C28	1.155 (7)	С2—С3	1.332 (7)
O5—C29	1.159 (6)	C2—C5	1.502 (8)
06—C30	1.178 (7)	C3—C4	1.495 (8)
07—C31	1.178 (7)	W4—C62	1.934 (7)
C3—C6	1.519 (7)	W4—C61	1.990 (7)
W3—C57	1.929 (6)	W4—C60	2.010 (6)
W3-C58	2.007 (6)	W4—P6	2.4187 (14)
W3—C59	2.008 (7)	W4—P7	2.4969 (15)
W3-C56	2.013 (7)	W4—P5	2.5261 (13)
W3—P8	2.4548 (13)	P7—N7	1.691 (4)
W3—W4	3.0805 (3)	P7—N8	1.704 (4)
P5—N5	1.678 (4)	P7—C47	1.798 (5)
P5—N6	1.704 (4)	P8—N8	1.710 (4)
P5—C35	1.801 (5)	P8—N5	1.721 (4)
P5—P6	2.6093 (19)	P8—C50	1.826 (5)
P6—N6	1.670 (4)	N5—C32	1.470 (6)
P6—N7	1.676 (5)	N6—C38	1.469 (6)
P6-C41	1.789 (5)	N7—C44	1.473 (7)
P6—P7	2.601 (2)	N8—C53	1.466 (7)
Cl4—Ga1—Cl3	108.49 (4)	O12—C60	1.167 (7)
Si4—N2—Si3	113.04 (13)	O13—C61	1.158 (7)
O8—C56	1.148 (7)	O14—C62	1.192 (7)
O9—C57	1.180 (7)	C25—W1—C28	171.9 (2)
O10—C58	1.146 (6)	C30—W2—C29	87.8 (3)
011—С59	1.154 (7)	C30—W2—C31	81.0 (3)
C26—W1—C27	95.0 (2)	C29—W2—C31	97.7 (2)

C26—W1—C25	84.9 (2)	N2—P2—N1	113.1 (2)
C27—W1—C25	87.3 (2)	N2—P2—C7	98.9 (2)
N4—P1—N1	111.2 (2)	N1—P2—C7	104.3 (2)
N4—P1—C1	107.6 (3)	N3—P4—N4	110.0 (2)
N1—P1—C1	102.7 (2)	N3—P4—C19	107.3 (3)
N3—P3—N2	107.3 (2)	N4—P4—C19	98.1 (2)
N3—P3—C13	97.6 (2)	C10—N2—P2	120.6 (3)
N2—P3—C13	103.0 (2)	C10—N2—P3	124.8 (4)
C4—N1—P1	123.9 (4)	P2—N2—P3	113.5 (2)
C4—N1—P2	133.1 (4)	C22—N4—P1	133.0 (4)
P1—N1—P2	101.7 (2)	C22—N4—P4	125.0 (4)
C16—N3—P4	123.7 (4)	P1—N4—P4	101.5 (2)
C16—N3—P3	124.0 (4)	O12—C60—W4	161.8 (6)
P4—N3—P3	112.3 (2)	P4—W2—P2—C7	175.2 (3)
07—C31—W2	163.3 (6)	P2	-149.8 (5)
W1—W2—P2—C7	92.2 (3)	P4—C19—C20—C23	-166.6 (4)
P1—C1—C2—C5	-158.7 (4)	P3-C13-C14-C17	-139.9 (5)

Scheme 9. Numbering scheme of bis-[*N*,*N*-bis(trimethylsilyl)amino](trifalto)stibane (11)

Table S12. Selected bond lenghts (Å) angles (°) and torsion angles (°) of 11.

P1A—O1A	1.500 (3)	C1A—C2A	1.514 (6)
P1A—C1A	1.795 (5)	C2A—C3A	1.334 (6)
P1A—C7A	1.795 (4)	C2A—C5A	1.528 (6)
P1A—H1I	1.30 (5)	C3A—C4A	1.485 (6)
N1A—C10A	1.497 (6)	СЗА—С6А	1.518 (6)
N1A—C4A	1.509 (6)	C7A—C8A	1.515 (5)
N1A—H1E	0.92 (3)	С8А—С9А	1.327 (6)
N1A—H1F	0.91 (4)	C8A—C11A	1.506 (6)
C9A—C12A	1.513 (5)	С9А—С10А	1.501 (6)
P1B—O1B	1.513 (10)	C1B—C2B	1.512 (11)

Р1В—С7В	1.787 (10)	C2B—C3B	1.333 (10)
P1B—C1B	1.793 (11)	C2B—C5B	1.533 (11)
P1B—H1J	1.2971	C3B—C4B	1.486 (11)
N1B—C10B	1.499 (12)	C3B—C6B	1.524 (11)
N1B—C4B	1.506 (11)	C7B—C8B	1.513 (11)
N1B—H1G	0.9200	С8В—С9В	1.326 (10)
N1B—C10B	1.499 (12)	C8B—C11B	1.508 (11)
C9B—C12B	1.513 (11)	C9B—C10B	1.506 (11)
S1—O2	1.397 (4)	Cl1—C14	1.745 (6)
S1—O4	1.420 (3)	Cl2—C14	1.751 (6)
S1—O3	1.425 (3)	F2—C13	1.305 (6)
S1—C13	1.798 (5)	F3—C13	1.335 (5)
F1—C13	1.310 (6)	C10A—N1A—C4A	114.3 (4)
O1A—P1A—C1A	112.5 (2)	C10A—N1A—H1E	108 (3)
O1A—P1A—C7A	115.3 (2)	C4A—N1A—H1E	110 (3)
C1A—P1A—C7A	106.3 (2)	C10A—N1A—H1F	111 (3)
O1A—P1A—H1I	117 (2)	C4A—N1A—H1F	115 (4)
C1A—P1A—H1I	103 (2)	H1E—N1A—H1F	96 (5)
C7A—P1A—H1I	102 (2)	C9A—C8A—C11A	121.8 (4)
C3A—C2A—C1A	124.5 (4)	С9А—С8А—С7А	124.2 (4)
C3A—C2A—C5A	122.4 (4)	C11A—C8A—C7A	114.1 (4)
C1A—C2A—C5A	113.1 (4)	C7A—P1A— C1A—C2A	-64.4 (4)
O1A—P1A—C1A— C2A	168.5 (3)	P1A—C1A— C2A—C3A	114.8 (5)
C1A—C2A— C3A—C4A	0.4 (8)	O1A—P1A— C7A—C8A	64.1 (4)
P1A—C7A—C8A— C9A	111.7 (4)	C1A—P1A— C7A—C8A	-61.3 (4)

Scheme 10. Numbering scheme of Tricarbonyltris(propionitrile)molybdenum(0) (X)

Table S13. Selected bond lenghts (Å) angles (°) and torsion angles (°) of X.

Mo1—C2	1.9307 (19)	N2—C6	1.1414 (16)
Mo1—C1i	1.9315 (13)	01—C1	1.1719 (16)
Mo1—C1	1.9315 (13)	O2—C2	1.171 (2)
Mo1—N1	2.2185 (16)	C3—C4	1.465 (4)
Mo1—N2	2.2206 (11)	C4—C5	1.526 (4)
Mo1—N2i	2.2205 (11)	C6—C7	1.4620 (18)
N1—C3	1.140 (2)	С7—С8	1.510 (2)
C2—Mo1—C1i	89.16 (5)	C3—N1—Mo1	179.43 (15)
C2—Mo1—C1	89.16 (5)	C6—N2—Mo1	177.01 (11)
C1i—Mo1—C1	87.08 (7)	O1-C1-Mo1	179.07 (11)
C3—C4—C5	112.42 (19)	O2-C2-Mo1	179.91 (16)

Symmetry code: (i) x, -y+1/2, z.

3. Synthesis

3.1. Synthesis of cyclo-tetraphosphazane [PN(C₆H₁₀)]₄ (5)

$$(Me_{3}Si)_{2}NPCI_{2} \xrightarrow{2.44 \text{ dmb}} 0.25 [PN(C_{6}H_{10})]_{4}$$

$$C_{7}H_{8,} 115^{\circ}C, 4.5 \text{ h}$$
-2 Me_{3}SiCl

(Me₃Si)₂NPCl₂ (0.821 g, 3.3 mmol) and 2,3-dimethyl-1,3-butadiene (0.662 g, 8.06 mmol) are combined in 10 ml toluene and the mixture is degased properly by three freeze-pump-thaw cycles. Afterwards the flask is placed in an oil bath and is refluxed *in vacuo* at 115°C over a period of 4.5 h. The resulting white suspension is slowly cooled to room temperature and polymers are removed by filtration. Afterwards the solvent is removed from the filtrate *in vacuo* and the residual oily liquid is redissolved in CH₂Cl₂, yielding after concentration to 0.2 ml and placement in the freezer for 12 h (-40 °C) colourless crystals of [PN(C₆H₁₀)]₄ (0.112 g, 0.18 mmol, 22%). Taking on the residual oily liquid in C₆H₅F resulted in the deposition of colorless blocks of **5** together with small plates of [P₅N₅(dmb)₅] (**5b**).

Mp. 70 °C (dec). **Anal.** calc. % (found) [PN(C₆H₁₀)]₄·CH₂Cl₂: C 50.60 (50.74); H 7.13 (7.27); N 9.44 (10.10). ¹H NMR (25 °C, CD₂Cl₂, 250.13 MHz): 1.54 (*s*, 12H, CH₃), 1.73 (*s*, 12H, CH₃), 1.74 (*m*, $J(^{13}C^{-1}H) = 119.16$ Hz, 8H, PCH₂), 3.59 (*m*, 8H, NCH₂); ¹³C{¹H} NMR (25 °C, CD₂Cl₂, 62.90 MHz): 18.2 (*s*, CH₃) 20.9 (*s*, CH₃) 32.1 (*m*, PCH₂), 51.1 (*m*, NCH₂), 122.0 (*s*, C_{vinyl}) 125.3 (*s*, C_{vinyl}); ³¹P NMR (25 °C, CD₂Cl₂, 101.27 MHz): (**5**) 69.65 (*s*), (**5b**) 71.6 (*s*). **IR** (ATR, 25 °C, 32 scans, cm⁻¹): 2978 (w), 2906 (m), 2855 (m), 2821 (m), 1436 (m), 1393 (w), 1382 (m), 1361 (w), 1275 (m), 1250 (m), 1218 (m), 1166 (m), 1135 (m), 1091 (m), 1044 (m), 956 (m), 920 (m), 862 (s), 839 (s), 805 (m), 778 (s), 751 (s), 724 (s), 695 (m), 645 (s), 563 (m). **RAMAN**: 2907 (7), 2865 (5), 2832 (1), 2797 (1), 1695 (5), 1442 (4), 1397 (6), 1277 (4), 1260 (4), 1166 (1), 1138 (1) 1104 (1), 962 (1), 780 (1), 758 (3), 696 (3), 642 (10), 566 (4), 495 (5), 423 (3), 368 (4), 321 (3), 288 (4), 264 (3), 248 (3). **MS** (CI, isobutane, m/z, > 10 %): {[PN(C₆H₁₀)]₄+H}⁺ 509 (15.8), {[PN(C₆H₁₀)]₄+H}⁺ 509.22, {[PN(C₆H₁₀)]₅+H}⁺ 636.28.

Crystals suitable for X-ray crystallographic analysis were obtained from a saturated CH_2Cl_2 solution solution of 5 at -40 °C.

3.2. Synthesis of [Me₃SiN(dmb)P(dmb)][CF₃SO₃] (7)

$$(Me_{3}Si)_{2}NPCI_{2} \xrightarrow{1) 2 AgOTf} [Me_{3}SiN(C_{6}H_{10})P(C_{6}H_{10})][O_{3}SCF_{3}]$$

$$- 2 AgCI$$

$$- Me_{3}SiOTf$$

(Me₃Si)₂NPCl₂ (0.269 g, 1.05 mmol) in CH₂Cl₂ (3 ml) is combined with dmb (0.170 g, 2.1 mmol) and added to a slurry of AgOTf (0.523 g, 2.1 mmol) in CH₂Cl₂ (3 ml) at -80 °C. The greyish suspension is allowed to slowly warm to room temperature and is further stirred for one hour. Afterwards the solvent is removed *in vacuo* and the residual off-white solids are extracted with CH₂Cl₂ (5 ml). Removal of the solvents and washing of the crude material with minimal amounts of n-hexane yields [Me₃SiN(dmb)P(dmb)][CF₃SO₃] (**7**) as a white powder (0.325 g, 0.75 mmol, 72 %).

When a CH_2Cl_2 of **7** was placed in the freezer at -24 °C for 72 h the formation of small colorless needles was observed. These needles were crystallographically analysed to be the hydrolysis product of **9** [(O)PH(dmb)₂NH₂][CF₃SO₃] (**9**). Crystals of **9** decompose rapidly at room temperature.

Mp. 58 °C (dec). ¹**H NMR** (25 °C, CD₂Cl₂, 500.13 MHz): 0.31 (*s*, $J(^{29}Si^{-1}H) = 6.59$ Hz, $J(^{13}C^{-1}H) = 120.02$ Hz, 9H, Si(CH₃)₃), 1.79 (*m*, 3 CH₃), 1.91 (*s*, CH₃), 2.76-2.97 (*m*, 4H, PCH₂), 3.00 (d, $J(^{31}P^{-1}H) = 12.8$ Hz, 2H, PCH₂), 3.58 (d, $J(^{31}P^{-1}H) = 18.00$ Hz, 2H, NCH₂); ¹³C{¹H} **NMR** (25 °C, CD₂Cl₂, 125.76 MHz): 0.16 (*s*, Si(CH₃)₃) 16.5 (*d*, $J(^{31}P^{-13}C) = 14.50$ Hz, 2 CH₃) 18.7 (*d*, $J(^{31}P^{-13}C) = 1.99$ Hz, CH₃), 21.0 (*d*, $J(^{31}P^{-13}C) = 6.47$ Hz, CH₃), 27.2 (*d*, $J(^{31}P^{-13}C) = 56.01$ Hz, PCH₂), 36.6 (*d*, $J(^{31}P^{-13}C) = 60.47$ Hz, 2 PCH₂), 50.0 (*d*, $J(^{31}P^{-13}C) = 3.56$ Hz, NCH₂), 122.0 (*d*, $J(^{31}P^{-13}C) = 10.84$ Hz, C_{vinyl}), 128.6 (*d*, $J(^{31}P^{-13}C) = 10.93$ Hz, 2 C_{vinyl}), 134.15 (*d*, $J(^{31}P^{-13}C) = 14.73$ Hz, C_{vinyl}); ¹⁹F NMR (25 °C, CD₂Cl₂, 282.40 MHz): -78.8 (*s*, CF₃SO₃); ²⁹Si NMR (25 °C, CD₂Cl₂, 59.63 MHz): 7.7 (*m*, Si(CH3)₃). ³¹P NMR (25 °C, CD₂Cl₂, 202.46 MHz): 59.9 (*s*). IR (ATR, 25 °C, 32 scans, cm⁻¹): 2954 (w), 2920 (w), 2864 (w), 1444 (w), 1418 (w), 1395 (w), 1255 (s), 1221 (s), 1188 (m), 1149 (s), 1113 (m), 1054 (m), 1028 (s), 978 (m), 904 (m), 841 (s), 802 (m), 755 (m), 711 (m), 695 (m), 666 (m), 634 (s), 572 (m).

Crystals suitable for X-ray crystallographic analysis were obtained from a saturated toluene solution of **7** at 25°C.

Figure S1. ¹H NMR spectrum of **7**⁺. Distinguishable protons are highlighted.

Figure S2. ¹³C NMR spectrum of 7⁺.

3.3. Synthesis of Me₃SiN(chd)P(chd) (8)

$$(Me_{3}Si)_{2}NPCI_{2} \xrightarrow{1) 2 AgOTf} [Me_{3}SiN(C_{6}H_{10})P(C_{6}H_{10})][O_{3}SCF_{3}]$$

$$- 2 AgCI$$

$$- Me_{3}SiOTf$$

(Me₃Si)₂NPCl₂ (0.269 g, 1.05 mmol) in CH₂Cl₂ (3 ml) is combined with chd (0.166 g, 2.1 mmol) and added to a slurry of AgOTf (0.527 g, 2.1 mmol) in CH₂Cl₂ (3 ml) at -80 °C. The greyish suspension is allowed to slowly warm to room temperature and is further stirred for one hour. Afterwards the solvent is removed *in vacuo* and the residual off-white solids are extracted with CH₂Cl₂ (5 ml). Removal of the solvents and washing of the crude material with minimal amounts of *n*-hexane yields [Me₃SiN(chd)P(chd)][CF₃SO₃] (8) as a greyish powder (0.171 g, 0.40 mmol, 38 %).

Mp. 87 °C (dec). ¹H NMR (25 °C, CD₂Cl₂, 300.13 MHz): 0.45 (s, J(²⁹Si-¹H) = 6.42 Hz, $J(^{13}C^{-1}H) = 120.30$ Hz, 9H, Si(CH₃)₃), 1.45-2.53 (m, 8 CH₂), 3.08 (m, 1H, PCH), 3.49 (m, 1H, PCH), 3.58 (m, 1H, PCH), 4.60-4.46 (m, 1H, NCH), 6.81-6.46 (m, 4H, vinyl-CH); ¹³C{¹H} NMR (25 °C, CD₂Cl₂, 75.47 MHz): 2.8 (s, Si(CH₃)₃), 19.1 (d, $J({}^{31}P-{}^{13}C) = 5.07$ Hz, 1 CH₂) 22.0 (d, $J({}^{31}P-{}^{13}C) = 15.52$ Hz, CH₂), 23.9 (d, $J({}^{31}P-{}^{13}C) = 42.28$ Hz, PC3), 24.0 (d, $J({}^{31}P-{}^{13}C) = 59.97$ Hz, PCH), 24.4 (d, $J({}^{31}\text{P}-{}^{13}\text{C}) = 14.86$ Hz, PCH₂), 28.2 (d, $J({}^{31}\text{P}-{}^{13}\text{C}) = 9.1$ Hz, PCH₂) 37.9 (d, $J({}^{31}\text{P}-{}^{13}\text{C}$ 13 C) = 54.0 Hz, PCH), 40.0 (*d*, $J(^{31}$ P- 13 C) = 48.2 Hz, PCH), 56.4 (*d*, $J(^{31}$ P- 13 C) = 6.01 Hz, NCH), 130.6 (d, $J({}^{31}P{}^{-13}C) = 10.85$ Hz, C_{vinvl}), 133.0 (d, $J({}^{31}P{}^{-13}C) = 12.13$ Hz, C_{vinyl}), 134.3 (d, $J({}^{31}\text{P}{}^{-13}\text{C}) = 12.97$ Hz, C_{vinyl}), 139.2 (d, $J({}^{31}\text{P}{}^{-13}\text{C}) = 13.65$ Hz, C_{vinyl}); ¹⁹F{¹H} NMR (25 °C, CD₂Cl₂, 282.40 MHz): -78.6; ²⁹Si NMR (25 °C, CD₂Cl₂, 59.63 MHz): 19.2 (*m*). ³¹P NMR (25 °C, CD₂Cl₂, 75.46 MHz): 82.1 (*s*). IR (ATR, 25 °C, 16 scans, cm⁻¹): 3068 (w), 3016 (w), 2954 (w), 2918 (w), 2881 (w), 1622 (w), 1467 (w), 1451 (w), 1423 (w), 1391 (w), 1360 (w), 1330 (w), 1259 (s), 1222 (m), 1143 (s), 1111 (m), 1084 (m), 1073 (m), 1028 (m), 990 (m), 968 (m), 951 (m), 914 (m), 842 (s), 813 (m), 773 (m), 752 (m), 714 (m), 694 (m), 680 (m), 664 (m), 633 (s), 610 (m), 594 (m), 570 (m).

Crystals suitable for X-ray crystallographic analysis were obtained from a saturated toluene solution of **8** at 25° C.

3.4. Synthesis of [PN(dmb)]₄ Mo(CO)₃

Procedure 1:

Procedure 1: **5** (0.150 g, 0.30 mmol) and Mo(CO)₆ (0.132 g, 0.5 mmol) are combined in 20 ml toluene and the yellow mixture is refluxed for 2 h at 95°C. Afterwards the solvent is evaporated and residual Mo(CO)₆ is removed by sublimation (10^{-3} mbar) at 50°C over a period of 6 h. The residual brownish solids are extracted with toluene (5 ml) and from the filtrate colorless needles of [PN(dmb)]₄ Mo(CO)₃ (0.045 g, 0.05 mmol, 18%) were grown.

$$[PN(C_6H_{10})]_4 \xrightarrow{Mo(CO)_3(C_2H_5CN)_3} PN(C_6H_{10})]_{4*}Mo(CO)_3 + 3 C_2H_5CN$$

Procedure 2:

5 (0.080 g, 0.16 mmol) and Mo(CO)₃(C₂H₅CN)₃ (0.055 g, 0.16 mmol) are combined in 6 ml CH₂Cl₂ at -50° C. The clear brownish solution was allowed to slowly warm to ambient temperatures over a period of 5 h. Afterwards the solvent was removed *in vacuo* and residues were dried at 60°C for 2 h. The brownish residual solids were re-dissolved in 1 ml CH₂Cl₂ and crystals of [PN(dmb)]₄ Mo(CO)₃ (0.065 g, 0.09 mmol; 54 %) were grown by vapour diffusion of *n*-hexane into this CH₂Cl₂ solution.

Mp. 207 °C (dec). **Anal**. calc. % (found) [PN(dmb)]₄ Mo(CO)₃ 0.65(CH₂Cl₂): C 44.65 (44.63); H 5.60 (5.58); N 7.53 (7.69). ¹H NMR (25 °C, CD₂Cl₂, 250.13 MHz): 1.60 (*s*, 12H, CH₃), 1.80 (*s*, 12H, CH₃), 2.2-3.8 ((12H, CH₂); ¹³C{¹H} NMR (25 °C, CD₂Cl₂, 62.90 MHz): 18.2 (*s*, CH₃) 21.4 (*s*, CH₃) 33.3 (*m*, PCH₂), 50.4 (*m*, NCH₂), 122.6 (*s*, C_{vinyl}) 126.0 (*s*, C_{vinyl}). ³¹P NMR (25 °C, CD₂Cl₂, 101.27 MHz): 79.8 (*s*). **IR** (ATR, 25 °C, 32 scans, cm⁻¹): 2981 (w), 2912 (m), 2856 (m), 1930 (s), 1828 (s), 1435 (m), 1384 (m), 1267 (m), 1251 (m), 1215 (m), 1160 (m), 1097 (m), 1049 (m), 957 (m), 869 (m), 843 (m), 808 (m), 780 (s), 728 (s), 695 (m), 653 (s), 603 (m), 574 (s). **RAMAN**: 2907 (3), 2876 (2), 1928 (7), 1854 (8), 1847 (8), 1837 (9), 1679 (8), 1453 (8), 1398 (8), 1380 (8), 1397 (6), 1245 (7), 784 (5), 745 (5), 721 (5), 705 (5), 696 (3), 676 (5), 668 (5), 656 (6), 606 (4), 571 (4), 505 (5), 482 (5), 452 (8), 445 (10), 382 (2), 288 (1), 264 (1), 239 (3), 230 (4), 211 (2). **MS** (ESI-TOF, m/z): $\{[PN(C_6H_{10})_4Mo(CO)_2+H\}^+ 657.12.$

Crystals suitable for X-ray crystallographic analysis were obtained from a saturated toulene solution of $[PN(dmb)]_4 Mo(CO)_3$ at $-24^{\circ}C$ or by *n*-hexane diffusion into a saturated CH₂Cl₂ solution of $[PN(dmb)]_4 Mo(CO)_3$.

Figure S3. ³¹P NMR spectra of **5**·**Mo** at $-80 \degree$ C (red) and 25°C (black) with a signal ratio of 1:2:1 at $-80 \degree$.

Figure S4. Simulated ³¹P NMR of the gas phase structure of **5·Mo** with the GIAO method on the B3LYP/6-31g(d,p) level of density functional theory, displaying an ABCD spectrum, visualized using gNMR.¹⁵

Figure S5. Simulated ³¹P NMR shifts (red, bigger Ps corresponding to coordinated P atoms) and coupling constants in Hz (values on double arrows) of the gas phase structure of **5**•Mo calculated with the GIAO method on the B3LYP/6-31g(d,p) level of density functional theory.

3.5. Synthesis of [PN(dmb)]₄ W₂(CO)₇

$$[PN(C_6H_{10})]_4 \xrightarrow{W(CO)_3(C_2H_5CN)_3} P(PN(C_6H_{10})]_{4^*}W_2(CO)_7 + \dots$$

5 (0.080 g, 0.16 mmol) and W(CO)₃(C₂H₅CN)₃ (0.055 g, 0.16 mmol) are combined in 6 ml CH₂Cl₂ at -50° C. The clear reddish solution was allowed to slowly warm to ambient temperatures over a period of 2 h and was further stirred for 21 days. Afterwards the solvent is removed *in vacuo* and the residues dried at 60°C for 2 h. The residual solids were redisolved in 1 ml CH₂Cl₂ and orange crystals of [PN(dmb)]₄ W₂(CO)₇ besides other unidentified products could be selected by crystal picking.

3.5.1. Structure Discussion of [PN(dmb)]₄ W₂(CO)₇

Figure S6. ORTEP drawing of **5**·**W**₂. Ellipsoids are drawn at 50% probability. Selected bond lengths (Å) and angles (°): P1-N1 1.674(4), P1-N4 1.671(5), P2-N2 1.687(4), P2-N1 1.698(4), P3-N2 1.727(4), P3-N3 1.703(4), P4-N3 1.693(4), P4-N4 1.694(4), C25-O1 1.141(7), C28-O4 1.155(7), C29-O5 1.59(6), C31-O7 1.178(7), W1-C25 2.021(6), W1-C28 2.021(6), W2-C29 1.981(6), W2-C30 1.940(6), W2-C31 1.999(6), C31-W1 2.786, P1-W2 2.432(1), P2-W2 2.482(1), P3-W1 2.457(1), P4-W2 2.534(1); Σ (<P1) 321.5, Σ (<P2) 316.3, Σ (<P3) 307.9, Σ (<P4) 315.4, Σ (<N) 360.0, W2-C31-O7 163.3(6).

Scheme S1. Different types of bridging carbonyl ligands: (A) terminal, (B) symmetrically bridging,(C) bent semi-bridging, (D) linear semi-bridging.

5.W₂ crystallizes solvent-free in the monoclinic space group $P2_1/c$ with eight molecules in the unit cell. One of the two tungsten centers (W2) is coordinated by three of the four phosphorus atoms of 5 and shows a distorted octahedral coordination environment similar to that of the molybdenum atom in 5.Mo. W1 possesses only five ligands and thus can formally be considered a 16-electron species. The C31-O7 carbonyl group on W2 is located in a semi-bridging position between the two tungsten centers and seems to partly compensate the electron deficit on W1.⁷ The semibridging character is nicely illustrated by the W2-C31-O7 angle of 163.3(6)° as all of the remaining carbonyl groups are essentially linear. Additionally, a considerable elongation of the W2-C31 and C31-O7 bonds (W2-C31 1.999(6), C31-O7 1.178(7) Å) is observed together with a close contact to W1 (W1-C31 2.786 Å). These structural parameters in $5 \cdot W_2$ are similar to those found in X (cf. W-C-O $157(1)^{\circ}$; W–C 2.67(1) Å; Scheme S2)⁸ and comparable to other metal complexes with carbonyl groups characterized as semi-bridging (Scheme 9).⁷ Furthermore, some degree of metal-metal interaction can be assumed as the W1-W2 distance (W1-W2 3.0984(3) Å) is in the range of complexes which necessarily poses a tungsten-tungsten single bond (cf. $[(\eta^5 - (C_5H_5)_2W_2(CO)_6]^9$ (Y): W-W 3.222(1); $[W_2(CO)_8(MeCCMe-CHCHCMe_2)]^{10}$: W-W 3.049(1) Å; Scheme S2). Within the ligand the P-N distances are rather short compared to uncoordinated 5 and the three phosphorus atoms coordinated to W2 are forced into a tetrahedral coordination mode, whereas P3 retains its trigonal environment. In contrast to 5. Mo all PNC₄ moieties point downwards to form a CH-cage below the P_4N_4 crown.

Scheme S2. Structure of ditungsten complex X (left) with a bridging carbonyl ligand and ditungsten complex Y (right) that possesses a W–W bond.

3.6. Synthesis of Tricarbonyltris(propionitrile)molybdenum(0).

A 100 ml is charged with freshly sublimed $Mo(CO)_6$ (2.363 g; 8.95 mmol) and dissolved in C₂H₅CN (25 ml). The colorless mixture is refluxed for 24 h and in the course of the reaction the mixture becomes deep brown. The reaction mixture was concentrated to ca. 10 ml and Et₂O (15 ml) is added to induce crystallization. Storage of the mixture in the freezer at -24°C for 24 h yields $Mo(CO)_3(C_2H_5CN)_3$ as yellow crystalline solid (2.050 g, 5.98 mmol, 67 %).

Crystals suitable for X-ray analysis of $Mo(CO)_3(C_2H_5CN)_3$ (Figure S6) were obtained from the above reaction mixture at room temperature.

Figure S7. ORTEP drawing of **Mo(CO)**₃(**C**₂**H**₅**CN)**₃. Ellipsoids are drawn at 50% probability. Selected bond lengths (Å) and angles (°) are presented in Table S12.

4. Computational Details

Our goal was to study the bonding and enthalpy of formation for tetraphosphazane **5**. Utilizing the experimental structural data and the postulated structure for intermediate **6**, all calculations were carried out with the Gaussian 09 package of molecular orbital programs.¹¹ The wave functions for the crystal structures were optimized with a 6-31G(d,p) basis set (C, H, N, O, F, Si, P, S, Cl) on the B3LYP level of density functional theory and the optimized structures were checked to be a minimum on the energy hypersurface. A natural bond orbital analysis (NBO)¹² was performed on the B3LYP level of density functional theory. For **5·Mo** the ³¹P NMR chemical shifts and P–P coupling constants were calculated using the GIAO package implemented in Gaussian 09.¹³ The calculated absolute shifts (σ_{iso}) were referenced to the extrapolated absolute chemical shift of 85% H₃PO₄ in the gas phase ($\sigma_{ref} = 328.35$), using the formula $\delta_{calc} = \sigma_{ref} - \sigma_{iso}$.¹⁴ The calculated spectrum was visualized using gNMR.¹⁵

It should be emphasized that the computation was carried out for a single, isolated (gas-phase) molecule.

4.1. Optimized Structure of 6.

Figure S8. Ball and Stick drawing of the optimized structure of **6**. Selected bond lengths (Å) are presented in the drawing.

Table S14. Gas phase B3LYP/6-31G(d,p) determined xyz coordinates (in Å) for intermediate **6**. Energies given in Hartrees. Calculated ³¹P NMR shift given in ppm.

H(B3LYP) = -1500,023812 $\delta(^{31}P) = 121.58 \text{ ppm}$

Center	Atomic	Coordinates (A	ngstroms)	
Number	Number	X	Y	Z
1	С	-2,38917	0,78732	1,82886
2	Si	-2,27775	0,22942	0,02863
3	С	-3,16101	1,46838	-1,09153
4	Ν	-0,55444	0,17279	-0,45935
5	Р	0,20557	-1,29991	-0,79098
6	CI	0,96561	-2,07960	1,12869
7	С	-3,04042	-1,48089	-0,15981
8	С	0,18860	1,47141	-0,44648
9	С	1,63294	1,40493	0,00931
10	С	2,42288	0,42541	-0,46413
11	С	3,85799	0,17872	-0,08115

Center	Atomic	Coordinates (A	ngstroms)	
Number	Number	Х	Y	Z
12	С	2,04213	2,48789	0,97290
13	С	1,82165	-0,58858	-1,41053
14	Н	4,26905	0,94727	0,57501
15	Н	3,10610	2,46880	1,21140
16	Н	3,94420	-0,78551	0,43475
17	Н	1,48619	2,39648	1,91527
18	Н	4,49400	0,12249	-0,97381
19	Н	1,81233	3,48215	0,56722
20	Н	-1,84614	0,09306	2,47804
21	Н	-1,97301	1,78779	1,98715
22	Н	-3,43391	0,81285	2,15947
23	Н	2,50308	-1,42172	-1,60188
24	Н	-0,35291	2,17187	0,19832
25	Н	1,57117	-0,14328	-2,38526
26	Н	0,14088	1,89347	-1,46276
27	Н	-2,55883	-2,21971	0,48777
28	Н	-2,71836	2,46856	-1,03541
29	Н	-4,09877	-1,43146	0,12288
30	Н	-4,21471	1,56179	-0,80503
31	Н	-2,98584	-1,84894	-1,18843
32	Н	-3,12747	1,14700	-2,13794

4.2. Optimized Structure of 5.

Figure S9. Ball and Stick drawing of the optimized structure of **5**. Selected bond lengths (Å) are presented in the drawing.

Figure S10. Visualization of the ELF of **5** at isovalue 0.92.

Table S15. Gas phase B3LYP/6-31G(d,p) determined xyz coordinates (in Å) for **5**. Energies given in Hartrees.

 $\begin{array}{l} H(B3LYP) = -2522,\!459967 \\ \delta(^{31}P) = 30.70 \ ppm \end{array}$

Center	Atomic	Coordinates (Ang	gstroms)	
Number	Number	X	Y	Z
1	С	1,47405	3,83499	2,28072
2	С	0,85774	3,43060	0,95990
3	С	-0,02547	4,17271	0,27044
4	С	-0,49217	5,55036	0,68471
5	С	1,36309	2,06691	0,52488
6	Ν	1,12185	1,67001	-0,86824
7	Р	-0,38352	2,00397	-1,68238
8	С	-0,64047	3,73404	-1,04360
9	Р	2,00364	0,38356	-1,68287
10	С	3,73404	0,64011	-1,04474
11	С	4,17298	0,02507	0,26907
12	С	5,55139	0,49063	0,68219
13	Ν	1,66899	-1,12102	-0,86766
14	С	2,06637	-1,36180	0,52545
15	С	3,43059	-0,85712	0,95945
16	С	3,83525	-1,47290	2,28042
17	Р	0,38354	-2,00396	-1,68237
18	С	0,64047	-3,73403	-1,04358
19	С	0,02547	-4,17270	0,27044
20	С	0,49217	-5,55036	0,68469
21	N	-1,12184	-1,67000	-0,86824
22	С	-0,36310	-2,06691	0,52487
23	С	-0,85776	-3,43060	0,95989
24	С	-0,47409	-3,83501	2,28070
25	Р	-2,00363	-0,38355	-1,68287
26	С	-3,73403	-6,40110	-1,04474
27	С	-4,17298	-0,02507	0,26906
28	С	-5,55139	-0,49066	0,68216
29	Ν	-1,66899	1,12103	-0,86765
30	С	-2,06637	1,36180	0,52545
31	С	-3,43059	0,85711	0,95945
32	С	-3,83526	1,47289	2,28042
33	Н	0,96138	4,66494	2,76701
34	н	2,52797	4,11738	2,15452
35	н	1,46291	2,98939	2,98041
36	н	-0,00463	5,93402	1,58143
37	Н	-2,98978	1,46161	2,98025

Center	Atomic	Coordinates (An	gstroms)	
Number	Number	Х	Y	Z
38	Н	-0,96145	-4,66496	2,76700
39	Н	4,66523	-0,95995	2,76641
40	Н	-4,66524	0,95994	2,76641
41	Н	2,98977	-1,46162	2,98024
42	Н	-1,46297	-2,98941	2,98039
43	Н	-2,52802	-4,11737	2,15445
44	Н	-4,11778	2,52681	2,15456
45	Н	-1,57646	5,55869	0,85925
46	Н	-0,30671	6,26931	-0,12398
47	Н	5,93531	0,00300	1,57877
48	Н	4,11777	-2,52682	2,15456
49	Н	5,56084	1,57496	0,85648
50	Н	0,00462	-5,93404	1,58140
51	Н	-5,93533	-0,00304	1,57874
52	Н	0,95292	1,31906	1,22502
53	Н	-1,31914	0,95067	1,22575
54	Н	2,44537	2,05351	0,70245
55	Н	1,31913	-0,95066	1,22574
56	Н	-0,95294	-1,31906	1,22502
57	Н	-2,05228	2,44393	0,70378
58	Н	-5,56083	-1,57499	0,85643
59	Н	1,57646	-5,55868	0,85927
60	Н	-2,44538	-2,05350	0,70242
61	Н	6,26955	0,30433	-0,12699
62	Н	2,05228	-2,44393	0,70377
63	Н	0,30673	-6,26929	-0,12401
64	Н	-6,26954	-0,30436	-0,12703
65	Н	-1,72525	3,90933	-1,02719
66	Н	3,90960	1,72486	-1,02825
67	Н	-0,26581	4,38689	-1,84563
68	Н	-3,90958	-1,72486	-1,02826
69	Н	4,38664	0,26551	-1,84698
70	Н	1,72525	-3,90933	-1,02715
71	Н	-4,38663	-0,26551	-1,84698
72	Н	0,26583	-4,38689	-1,84560

4.3. Optimized Structure of Me₃SiCl.

Table S16. Gas phase B3LYP/6-31G(d,p) determined xyz coordinates (in Å) for Me₃SiCl. Energies given in Hartrees.

H(B3LYP) = -869,414341

		Coordinates		
Center	Atomic	(Angstroms)		
Number	Number	Х	Υ	Z
1	Si	0,00000	0,00000	-0,34027
2	CI	0,00000	0,00000	1,77071
3	С	-1,55486	-0,89770	-0,89838
4	С	0,00000	1,79540	-0,89838
5	С	1,55486	-0,89770	-0,89838
6	Н	0,00000	1,85574	-1,99307
7	Н	-0,88499	2,32402	-0,53138
8	Н	0,88499	2,32402	-0,53138
9	Н	1,60712	-0,92787	-1,99307
10	Н	2,45515	-0,39559	-0,53138
11	Н	1,57017	-1,92843	-0,53138
12	Н	-1,60712	-0,92787	-1,99307
13	н	-1,57017	-1,92843	-0,53138
14	Н	-2,45515	-0,39559	-0,53138

6. Cif-File for 5b.

Crystals of **5b** were of rather poor quality. The positions of the atoms could be refined freely, however the quality of the data did not allow anisotropic refinement. Nevertheless, the connectivity in **5b** is proven. In the following a full Cif-file for **5b** is included.

#= data_is_ch331 _audit_author_name 'Villinger, A.' SHELXL-97 _audit_creation_method **# CHEMICAL DATA** _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety 'C30 H50 N5 P5' _chemical_formula_sum 'C30 H50 N5 P5' _chemical_formula_weight 635.60 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source 'C' 'C' 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'H' 'H' 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'N' 'N' 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'P' 'P' 0.1023 0.0942 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' **# CRYSTAL DATA** _symmetry_cell_setting monoclinic _symmetry_space_group_name_H-M 'P 21' _symmetry_space_group_name_Hall 'P 2yb' _symmetry_Int_Tables_number 4 loop _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, y+1/2, -z' _cell_length_a 5.817(2) 20.654(7) _cell_length_b 14.186(5) _cell_length_c _cell_angle_alpha 90.00 90.247(18) _cell_angle_beta _cell_angle_gamma 90.00 1704.2(10) _cell_volume _cell_formula_units_Z 2 _cell_measurement_temperature 173(2) _cell_measurement_refIns_used 577 _cell_measurement_theta_min 5.743 29.017 _cell_measurement_theta_max

_exptl_crystal_description plate

```
_exptl_crystal_colour
                           colourless
_exptl_crystal_size_max
                             0.18
_exptl_crystal_size_mid
                            0.06
_exptl_crystal_size_min
                            0.05
_exptl_crystal_density_meas
                               ?
_exptl_crystal_density_diffrn
                              1.239
_exptl_crystal_density_method
                                'not measured'
_exptl_crystal_F_000
                           680
_exptl_absorpt_coefficient_mu 0.296
_exptl_absorpt_correction_type multi-scan
_exptl_absorpt_correction_T_min 0.9486
_exptl_absorpt_correction_T_max 0.9853
_exptl_absorpt_process_details '(SADABS; Sheldrick, 2004)'
```

EXPERIMENTAL DATA

_exptl_special_details

; ? ;

> _diffrn_ambient_temperature 173(2) _diffrn_radiation_wavelength 0.71073 MoK\a _diffrn_radiation_source 'sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Bruker Apex Kappa II-CCD-diffractometer' _diffrn_measurement_method 'phi and omega scans' _diffrn_detector_area_resol_mean ? _diffrn_standards_number diffrn standards interval count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? 9224 _diffrn_reflns_av_R_equivalents 0.1433 _diffrn_reflns_av_sigmaI/netI 0.2738 _diffrn_reflns_limit_h_min -3 diffrn reflns limit h max 6 diffrn reflns limit k min -22 _diffrn_reflns_limit_k_max 19 _diffrn_reflns_limit_l_min -14 _diffrn_refIns_limit_l_max 15 _diffrn_reflns_theta_min 2.44 _diffrn_reflns_theta_max 22.48 3961 _refIns_number_total _refIns_number_gt 1767 _reflns_threshold_expression >2\s(I) computing data collection 'Bruker Apex V7.51A'

_computing_uuuu_concetion	Draner repent v vie 202
_computing_cell_refinement	'Bruker Apex V7.51A'
_computing_data_reduction	'Bruker SAINT'
_computing_structure_solution	'SHELXS-97 (Sheldrick, 1997)'
_computing_structure_refineme	nt 'SHELXL-97 (Sheldrick, 1997)'
_computing_molecular_graphics	s 'ORTEP-3v2.01 (Farrugia, 1997)'
_computing_publication_materia	al 'SHELXL-97'

REFINEMENT DATA

_refine_special_details

All H atoms

#=====

were positioned geometrically and refined using a riding model, with C---H = 0.98 (methyl groups), 0.99\%A (methylene groups), 1.00\%A (methine groups) or 0.95 \%A (aryl CH) and with <i>U</i>-iso~(H) = 1.5 times <i>U</i>-eq~(C) (methyl groups) or with <i>U</i>-iso~(H) = 1.2 times <i>U</i>-eq~(C) (methylene groups, aryl CH, methine groups). Torsion angles of all methyl groups were allowed to refine.

Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based

on F, with F set to zero for negative F^2^. The threshold expression of $F^2^> 2 (F^2^)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on $F^2^$ are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

_refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.2000P)^2^+0.0000P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap atom sites solution hydrogens geom _refine_ls_hydrogen_treatment constr _refine_ls_extinction_method SHELXL _refine_ls_extinction_coef 0.013(6) _refine_ls_extinction_expression 'Fc^*^=kFc[1+0.001xFc^2^\l^3^/sin(2\q)]^-1/4^' _refine_ls_abs_structure_details 'Flack H D (1983), Acta Cryst. A39, 876-881' _refine_ls_abs_structure_Flack 0.2(5) _refine_ls_number_reflns 3961 _refine_ls_number_parameters 172 _refine_ls_number_restraints 0 2586 _refine_ls_R_factor_all _refine_ls_R_factor_gt 0.1443 _refine_ls_wR_factor_ref 0.4032 _refine_ls_wR_factor_gt 0.3270 _refine_ls_goodness_of_fit_ref 1.086 _refine_ls_restrained_S_all 1.086 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000

ATOMIC COORDINATES AND DISPLACEMENT PARAMETERS

loop _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group P1 P -0.2101(10) 0.8684(3) 0.9121(4) 0.0512(18) Uiso 1 1 d . . . P2 P -0.2040(11) 0.9908(3) 0.8191(4) 0.0514(19) Uiso 1 1 d ... P3 P -0.1953(11) 0.9663(3) 0.6199(4) 0.0518(19) Uiso 1 1 d . . . P4 P -0.1958(11) 0.8295(3) 0.5924(5) 0.0534(19) Uiso 1 1 d . . . P5 P -0.2013(11) 0.7673(3) 0.7738(4) 0.0515(18) Uiso 1 1 d ... N1 N -0.067(3) 0.9386(7) 0.8908(12) 0.050(5) Uiso 1 1 d . . . N2 N -0.058(3) 0.9959(8) 0.7160(11) 0.044(5) Uiso 1 1 d . . . N3 N -0.050(3) 0.8994(9) 0.5831(12) 0.053(5) Uiso 1 1 d . . . N4 N -0.058(3) 0.7818(8) 0.6726(12) 0.049(5) Uiso 1 1 d . . . N5 N -0.062(3) 0.8053(8) 0.8664(13) 0.052(5) Uiso 1 1 d . . . C1 C -0.134(4) 0.8595(10) 1.0391(15) 0.053(6) Uiso 1 1 d . . . H1A H -0.2733 0.8691 1.0762 0.064 Uiso 1 1 calc R . . H1B H -0.0954 0.8134 1.0502 0.064 Uiso 1 1 calc R . C2 C 0.051(4) 0.8979(12) 1.0774(17) 0.065(7) Uiso 1 1 d . . . C3 C 0.186(4) 0.9368(11) 1.0388(17) 0.059(7) Uiso 1 1 d . . . C4 C 0.167(4) 0.9487(11) 0.9281(16) 0.059(7) Uiso 1 1 d . . . H4A H 0.2153 0.9936 0.9141 0.071 Uiso 1 1 calc R . . H4B H 0.2736 0.9190 0.8954 0.071 Uiso 1 1 calc R . . C5 C 0.072(5) 0.8892(15) 1.188(2) 0.102(9) Uiso 1 1 d . . . H5A H -0.0362 0.9185 1.2195 0.153 Uiso 1 1 calc R . . H5B H 0.2289 0.8994 1.2085 0.153 Uiso 1 1 calc R . . H5C H 0.0353 0.8444 1.2051 0.153 Uiso 1 1 calc R . .

C6 C 0.381(4) 0.9754(13) 1.0707(18) 0.076(8) Uiso 1 1 d . . . H6A H 0.4405 0.9576 1.1301 0.114 Uiso 1 1 calc R ... H6B H 0.3318 1.0202 1.0805 0.114 Uiso 1 1 calc R . . H6C H 0.5025 0.9742 1.0230 0.114 Uiso 1 1 calc R . . C7 C -0.120(4) 1.0690(10) 0.8675(17) 0.051(6) Uiso 1 1 d ... H7A H -0.2573 1.0972 0.8635 0.062 Uiso 1 1 calc R . . H7B H -0.0895 1.0620 0.9355 0.062 Uiso 1 1 calc R . . C8 C 0.076(4) 1.1078(12) 0.8311(18) 0.067(8) Uiso 1 1 d . . . C9 C 0.218(4) 1.0860(10) 0.7591(14) 0.045(6) Uiso 1 1 d . . . C10 C 0.174(4) 1.0218(11) 0.7122(17) 0.061(7) Uiso 1 1 d . . . H10A H 0.2172 1.0260 0.6450 0.074 Uiso 1 1 calc R . . H10B H 0.2791 0.9896 0.7409 0.074 Uiso 1 1 calc R . . C11 C 0.095(5) 1.1744(12) 0.8715(19) 0.080(9) Uiso 1 1 d ... H11A H 0.2138 1.1986 0.8378 0.120 Uiso 1 1 calc R . . H11B H 0.1358 1.1716 0.9384 0.120 Uiso 1 1 calc R . . H11C H -0.0530 1.1967 0.8647 0.120 Uiso 1 1 calc R . . C12 C 0.401(4) 1.1222(11) 0.7178(17) 0.067(8) Uiso 1 1 d . . . H12A H 0.4324 1.1606 0.7563 0.100 Uiso 1 1 calc R . . H12B H 0.3565 1.1356 0.6540 0.100 Uiso 1 1 calc R . . H12C H 0.5393 1.0952 0.7147 0.100 Uiso 1 1 calc R . . C13 C -0.102(4) 1.0239(11) 0.5293(16) 0.058(7) Uiso 1 1 d . . . H13A H -0.2344 1.0324 0.4871 0.070 Uiso 1 1 calc R . . H13B H -0.0640 1.0652 0.5612 0.070 Uiso 1 1 calc R . . C14 C 0.102(4) 1.0057(10) 0.4679(16) 0.055(7) Uiso 1 1 d ... C15 C 0.226(4) 0.9557(11) 0.4728(15) 0.050(6) Uiso 1 1 d ... C16 C 0.187(3) 0.9028(10) 0.5503(14) 0.040(5) Uiso 1 1 d ... H16A H 0.2315 0.8600 0.5245 0.048 Uiso 1 1 calc R . . H16B H 0.2890 0.9121 0.6047 0.048 Uiso 1 1 calc R . . C17 C 0.136(6) 1.0565(13) 0.387(2) 0.087(9) Uiso 1 1 d . . . H17A H 0.2625 1.0425 0.3458 0.130 Uiso 1 1 calc R ... H17B H 0.1731 1.0989 0.4138 0.130 Uiso 1 1 calc R . . H17C H -0.0055 1.0599 0.3492 0.130 Uiso 1 1 calc R ... C18 C 0.417(4) 0.9358(10) 0.4084(16) 0.058(7) Uiso 1 1 d ... H18A H 0.4250 0.9659 0.3551 0.087 Uiso 1 1 calc R . . H18B H 0.3884 0.8919 0.3850 0.087 Uiso 1 1 calc R . . H18C H 0.5633 0.9367 0.4431 0.087 Uiso 1 1 calc R . . C19 C -0.103(4) 0.7875(10) 0.4885(16) 0.054(7) Uiso 1 1 d ... H19A H -0.2373 0.7631 0.4646 0.064 Uiso 1 1 calc R . . H19B H -0.0681 0.8210 0.4408 0.064 Uiso 1 1 calc R . . C20 C 0.087(4) 0.7435(10) 0.4883(17) 0.056(7) Uiso 1 1 d ... C21 C 0.222(4) 0.7278(11) 0.5597(16) 0.049(6) Uiso 1 1 d . . . C22 C 0.179(4) 0.7590(11) 0.6541(17) 0.061(7) Uiso 1 1 d . . . H22A H 0.2205 0.7275 0.7039 0.073 Uiso 1 1 calc R . . H22B H 0.2838 0.7964 0.6605 0.073 Uiso 1 1 calc R . . C23 C 0.130(5) 0.7137(12) 0.3884(18) 0.077(8) Uiso 1 1 d ... H23A H 0.2500 0.6805 0.3930 0.115 Uiso 1 1 calc R . . H23B H 0.1805 0.7479 0.3452 0.115 Uiso 1 1 calc R . . H23C H -0.0120 0.6942 0.3646 0.115 Uiso 1 1 calc R . . C24 C 0.410(4) 0.6800(11) 0.5632(17) 0.065(7) Uiso 1 1 d . . . H24A H 0.4877 0.6789 0.5021 0.098 Uiso 1 1 calc R . . H24B H 0.3463 0.6371 0.5772 0.098 Uiso 1 1 calc R ... H24C H 0.5197 0.6923 0.6125 0.098 Uiso 1 1 calc R . . C25 C -0.104(4) 0.6835(11) 0.7998(17) 0.062(7) Uiso 1 1 d . . . H25A H -0.2354 0.6606 0.8286 0.074 Uiso 1 1 calc R . . H25B H -0.0746 0.6623 0.7384 0.074 Uiso 1 1 calc R . . C26 C 0.101(4) 0.6703(11) 0.8608(16) 0.056(7) Uiso 1 1 d . . . C27 C 0.216(4) 0.7182(11) 0.9024(16) 0.054(6) Uiso 1 1 d ... C28 C 0.169(4) 0.7850(10) 0.8926(17) 0.056(7) Uiso 1 1 d ... H28A H 0.2755 0.8025 0.8448 0.068 Uiso 1 1 calc R ... H28B H 0.2075 0.8062 0.9532 0.068 Uiso 1 1 calc R . . C29 C 0.153(5) 0.5979(12) 0.8640(18) 0.072(8) Uiso 1 1 d ... H29A H 0.2715 0.5894 0.9116 0.108 Uiso 1 1 calc R . . H29B H 0.2072 0.5836 0.8022 0.108 Uiso 1 1 calc R . . H29C H 0.0125 0.5741 0.8803 0.108 Uiso 1 1 calc R . . C30 C 0.424(4) 0.7063(11) 0.9639(17) 0.066(7) Uiso 1 1 d . . . H30A H 0.4705 0.6608 0.9589 0.100 Uiso 1 1 calc R . . H30B H 0.3869 0.7164 1.0296 0.100 Uiso 1 1 calc R . . H30C H 0.5511 0.7341 0.9431 0.100 Uiso 1 1 calc R . .

MOLECULAR GEOMETRY

_geom_special_details

;

All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

loop_

_geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag **P1** N5 1.692(17). ? P1 N1 1.699(17) . ? P1 C1 1.86(2) . ? P2 N1 1.680(18) . ? P2 N2 1.699(17) . ? P2 C7 1.82(2) . ? P3 N2 1.692(18) . ? P3 N3 1.703(18) . ? P3 C13 1.84(2) . ? P4 N3 1.680(18) . ? P4 N4 1.704(19) . ? P4 C19 1.80(2).? P5 N4 1.691(18) . ? P5 N5 1.73(2) . ? P5 C25 1.86(2).? N1 C4 1.47(3).? N2 C10 1.45(3) . ? N3 C16 1.46(2) . ? N4 C22 1.48(3).? N5 C28 1.45(3) . ? C1 C2 1.44(3).? C1 H1A 0.9900.? C1 H1B 0.9900.? C2 C3 1.25(3) . ? C2 C5 1.59(3).? C3 C6 1.46(3).? C3 C4 1.59(3).? C4 H4A 0.9900 . ? C4 H4B 0.9900 . ? C5 H5A 0.9800.? C5 H5B 0.9800.? C5 H5C 0.9800.? C6 H6A 0.9800 . ? C6 H6B 0.9800 . ? C6 H6C 0.9800 . ? C7 C8 1.49(3) . ? C7 H7A 0.9900.? C7 H7B 0.9900.? C8 C9 1.39(3).? C8 C11 1.49(3) . ? C9 C12 1.43(3) . ? C9 C10 1.50(3) . ? C10 H10A 0.9900 . ? C10 H10B 0.9900 . ? C11 H11A 0.9800 . ? C11 H11B 0.9800 . ? C11 H11C 0.9800 . ? C12 H12A 0.9800 . ? C12 H12B 0.9800 . ? C12 H12C 0.9800 . ? C13 C14 1.52(3) . ? C13 H13A 0.9900 . ? C13 H13B 0.9900 . ? C14 C15 1.26(3) . ? C14 C17 1.57(3).? C15 C18 1.50(3) . ? C15 C16 1.57(3) . ? C16 H16A 0.9900 . ? C16 H16B 0.9900 . ? C17 H17A 0.9800 . ? C17 H17B 0.9800 . ?

C17 H17C 0.9800 . ? C18 H18A 0.9800 . ? C18 H18B 0.9800 . ? C18 H18C 0.9800 . ? C19 C20 1.43(3) . ? C19 H19A 0.9900 . ? C19 H19B 0.9900 . ? C20 C21 1.32(3) . ? C20 C23 1.57(3).? C21 C24 1.47(3) . ? C21 C22 1.51(3) . ? C22 H22A 0.9900.? C22 H22B 0.9900 . ? C23 H23A 0.9800 . ? C23 H23B 0.9800 . ? C23 H23C 0.9800 . ? C24 H24A 0.9800 . ? C24 H24B 0.9800 . ? C24 H24C 0.9800 . ? C25 C26 1.49(3) . ? C25 H25A 0.9900 . ? C25 H25B 0.9900 . ? C26 C27 1.33(3) . ? C26 C29 1.53(3) . ? C27 C28 1.41(3) . ? C27 C30 1.51(3) . ? C28 H28A 0.9900 . ? C28 H28B 0.9900 . ? C29 H29A 0.9800 . ? C29 H29B 0.9800 . ? C29 H29C 0.9800 . ? C30 H30A 0.9800 . ? C30 H30B 0.9800 . ? C30 H30C 0.9800 . ? loop _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag N5 P1 N1 109.8(8)..? N5 P1 C1 100.1(10) . . ? N1 P1 C1 98.1(10) . . ? N1 P2 N2 108.8(9) ...? N1 P2 C7 102.4(11) ...? N2 P2 C7 97.8(9) ...? N2 P3 N3 107.8(9) . . ? N2 P3 C13 100.9(10) . . ? N3 P3 C13 99.3(10) ...? N3 P4 N4 108.2(9) ...? N3 P4 C19 101.4(10)..? N4 P4 C19 97.2(10) . . ? N4 P5 N5 109.5(9) ...? N4 P5 C25 100.5(10) ...? N5 P5 C25 97.5(10) ...? C4 N1 P2 124.2(14)..? C4 N1 P1 120.6(14) ...? P2 N1 P1 115.0(11) ...? C10 N2 P3 122.6(14) . . ? C10 N2 P2 121.6(14) ...? P3 N2 P2 115.8(10) ...? C16 N3 P4 123.0(14) ...? C16 N3 P3 122.1(14) ...? P4 N3 P3 114.8(9) . . ? C22 N4 P5 123.9(15)..? C22 N4 P4 120.2(14) ...? P5 N4 P4 115.9(11) . . ? C28 N5 P1 126.5(16) . . ? C28 N5 P5 119.5(14) ...? P1 N5 P5 113.8(11) . . ? C2 C1 P1 119.0(16) . . ? C2 C1 H1A 107.6 ...?

P1 C1 H1A 107.6 ?
$C_{2} C_{1} U_{1} D_{1} D_{7} C_{2} Q_{1}$
C2 CI HIB 107.0
P1 C1 H1B 107.6 ?
H1A C1 H1B 107.0 ?
$C_{3}C_{2}C_{1}(131(2)) = 2$
$C_{2} C_{2} C_{1} I_{3} I_{(2)} \dots$
$C_3 C_2 C_5 \Pi_7(2) \dots ?$
C1 C2 C5 111(2)?
C2 C3 C6 135(2) ?
$C_2 C_3 C_0 133(2) \dots$
$C_2 C_3 C_4 \Pi_9(2) \dots ?$
C6 C3 C4 106(2) ?
N1 C4 C3 113 3(18) ?
N1 C4 H4A 108 0 2
NI C4 H4A 108.9 :
C3 C4 H4A 108.9 ?
N1 C4 H4B 108.9 ?
C2 C4 H4D 1000 2
C3 C4 H4B 108.9 ?
H4A C4 H4B 107.7 ?
C2 C5 H5A 109.5 ?
C2 C5 U5D 100 5 2
C2 C5 H5B 109.5 ?
H5A C5 H5B 109.5 ?
C2 C5 H5C 109.5 ?
H5A C5 H5C 100 5 2
Н5В С5 Н5С 109.5?
C3 C6 H6A 109.5 ?
C3 C6 H6B 100 5 2
H6A C6 H6B 109.5 ?
C3 C6 H6C 109.5 ?
H6A C6 H6C 109 5 2
H6B C6 H6C 109.5 ?
C8 C7 P2 123.5(17) ?
C8 C7 H7A 106 5 ?
P2 C/ H/A 106.5 ?
C8 C7 H7B 106.5 ?
P2 C7 H7B 106.5 ?
H/A C/ H/B 106.5 ?
C9 C8 C7 123(2) ?
C9 C8 C11 122(2) ?
C7 C8 C11 115(2) 2
$C/C\delta CII II5(2)$
C8 C9 C12 125(2) ?
C8 C9 C10 121(2) ?
C8 C9 C10 121(2) ?
C8 C9 C10 121(2) ? C12 C9 C10 113.9(19) ?
C8 C9 C10 121(2) ? C12 C9 C10 113.9(19) ? N2 C10 C9 117.7(19) ?
C8 C9 C10 121(2) ? C12 C9 C10 113.9(19) ? N2 C10 C9 117.7(19) ? N2 C10 H10A 107.9 ?
C8 C9 C10 121(2) ? C12 C9 C10 113.9(19) ? N2 C10 C9 117.7(19) ? N2 C10 H10A 107.9 ? C9 C10 H10A 107.9 ?
C8 C9 C10 121(2) ? C12 C9 C10 113.9(19) ? N2 C10 C9 117.7(19) ? N2 C10 C9 117.7(19) ? N2 C10 H10A 107.9 ? C9 C10 H10A 107.9 ?
C8 C9 C10 121(2) ? C12 C9 C10 113.9(19) ? N2 C10 C9 117.7(19) ? N2 C10 H10A 107.9 ? C9 C10 H10A 107.9 ? N2 C10 H10B 107.9 ?
C8 C9 C10 121(2) ? C12 C9 C10 113,9(19) ? N2 C10 C9 117.7(19) ? N2 C10 H10A 107.9 ? C9 C10 H10A 107.9 ? N2 C10 H10B 107.9 ? C9 C10 H10B 107.9 ?
C8 C9 C10 121(2) ? C12 C9 C10 113.9(19) ? N2 C10 C9 117.7(19) ? N2 C10 C9 117.7(19) ? N2 C10 H10A 107.9 ? C9 C10 H10B 107.9 ? N2 C10 H10B 107.9 ? H10A C10 H10B 107.2 . ?
C8 C9 C10 121(2) ? C12 C9 C10 113.9(19) ? N2 C10 C9 117.7(19) ? N2 C10 C9 117.7(19) ? N2 C10 H10A 107.9 ? C9 C10 H10B 107.9 ? C9 C10 H10B 107.9 ? H10A C10 H10B 107.2 ?
C8 C9 C10 121(2) ? C12 C9 C10 113,9(19) ? N2 C10 C9 117.7(19) ? N2 C10 H10A 107.9 ? C9 C10 H10A 107.9 ? N2 C10 H10B 107.9 ? C9 C10 H10B 107.9 ? H10A C10 H10B 107.2 ? C8 C11 H11A 109.5 ?
C8 C9 C10 121(2)? C12 C9 C10 113.9(19)? N2 C10 C9 117.7(19)? N2 C10 C9 117.7(19)? N2 C10 H10A 107.9? C9 C10 H10B 107.9? C9 C10 H10B 107.9? H10A C10 H10B 107.2? C8 C11 H11A 109.5?
C8 C9 C10 121(2)? C12 C9 C10 113.9(19)? N2 C10 C9 117.7(19)? N2 C10 C9 117.7(19)? N2 C10 H10A 107.9? C9 C10 H10B 107.9? C9 C10 H10B 107.9? H10A C10 H10B 107.2? C8 C11 H11A 109.5? C8 C11 H11B 109.5?
C8 C9 C10 121(2) ? C12 C9 C10 113.9(19) ? N2 C10 C9 117.7(19) ? N2 C10 H10A 107.9 ? C9 C10 H10A 107.9 ? C9 C10 H10B 107.9 ? C9 C10 H10B 107.9 ? H10A C10 H10B 107.2 ? C8 C11 H11A 109.5 ? C8 C11 H11B 109.5 ? H11A C11 H11B 109.5 ?
C8 C9 C10 121(2) ? C12 C9 C10 113.9(19) ? N2 C10 C9 117.7(19) ? N2 C10 C9 117.7(19) ? N2 C10 H10A 107.9 ? C9 C10 H10B 107.9 ? C9 C10 H10B 107.9 ? H10A C10 H10B 107.2 ? C8 C11 H11A 109.5 ? C8 C11 H11B 109.5 ? H11A C11 H11B 109.5 ? C8 C11 H11C 109.5 ?
C8 C9 C10 121(2)? C12 C9 C10 113.9(19)? N2 C10 C9 117.7(19)? N2 C10 C9 117.7(19)? N2 C10 H10A 107.9? C9 C10 H10B 107.9? C9 C10 H10B 107.9? H10A C10 H10B 107.2? C8 C11 H11A 109.5? C8 C11 H11B 109.5? H11A C11 H11B 109.5? H11A C11 H11C 109.5?
C8 C9 C10 121(2) ? C12 C9 C10 113.9(19) ? N2 C10 C9 117.7(19) ? N2 C10 C9 117.7(19) ? N2 C10 H10A 107.9 ? C9 C10 H10B 107.9 ? C9 C10 H10B 107.9 ? H10A C10 H10B 107.2 ? C8 C11 H11A 109.5 ? H11A C11 H11B 109.5 ? H11A C11 H11C 109.5 ? H11B C11 H11C 109.5 ?
C8 C9 C10 121(2) ? C12 C9 C10 113.9(19) ? N2 C10 C9 117.7(19) ? N2 C10 C9 117.7(19) ? N2 C10 H10A 107.9 ? C9 C10 H10B 107.9 ? C9 C10 H10B 107.9 ? H10A C10 H10B 107.2 ? C8 C11 H11A 109.5 ? C8 C11 H11B 109.5 ? H11A C11 H11B 109.5 ? C8 C11 H11C 109.5 ? H11A C11 H11C 109.5 ? H11A C11 H11C 109.5 ? H11B C11 H11C 109.5 ?
C8 C9 C10 121(2) ? C12 C9 C10 113.9(19) ? N2 C10 C9 117.7(19) ? N2 C10 C9 117.7(19) ? N2 C10 H10A 107.9 ? C9 C10 H10B 107.9 ? C9 C10 H10B 107.9 ? H10A C10 H10B 107.2 ? C8 C11 H11A 109.5 ? C8 C11 H11B 109.5 ? C8 C11 H11B 109.5 ? C8 C11 H11C 109.5 ? H11A C11 H11C 109.5 ? H11A C11 H11C 109.5 ? C9 C12 H12A 109.5 ?
C8 C9 C10 121(2)? C12 C9 C10 113.9(19)? N2 C10 C9 117.7(19)? N2 C10 C9 117.7(19)? N2 C10 H10A 107.9? C9 C10 H10B 107.9? C9 C10 H10B 107.9? H10A C10 H10B 107.2? C8 C11 H11A 109.5? C8 C11 H11B 109.5? C8 C11 H11B 109.5? C8 C11 H11C 109.5? H11A C11 H11C 109.5? H11B C11 H11C 109.5? C9 C12 H12A 109.5? C9 C12 H12A 109.5?
C8 C9 C10 121(2)? C12 C9 C10 113.9(19)? N2 C10 C9 117.7(19)? N2 C10 C9 117.7(19)? N2 C10 H10A 107.9? C9 C10 H10B 107.9? C9 C10 H10B 107.9? H10A C10 H10B 107.2? C8 C11 H11A 109.5? C8 C11 H11A 109.5? C8 C11 H11B 109.5? C8 C11 H11B 109.5? H11A C11 H11B 109.5? C8 C11 H11C 109.5? H11A C11 H11C 109.5? C9 C12 H12A 109.5? C9 C12 H12A 109.5?
C8 C9 C10 121(2)? C12 C9 C10 113.9(19)? N2 C10 C9 117.7(19)? N2 C10 C9 117.7(19)? N2 C10 H10A 107.9? C9 C10 H10B 107.9? C9 C10 H10B 107.9? H10A C10 H10B 107.9? C8 C11 H11A 109.5? C8 C11 H11B 109.5? C8 C11 H11B 109.5? H11A C11 H11B 109.5? C8 C11 H11C 109.5? H11A C11 H11C 109.5? H11B C11 H11C 109.5? C9 C12 H12A 109.5? H12A C12 H12B 109.5? C9 C12 H12B 109.5?
C8 C9 C10 121(2)? C12 C9 C10 113.9(19)? N2 C10 C9 117.7(19)? N2 C10 C9 117.7(19)? N2 C10 H10A 107.9? C9 C10 H10B 107.9? C9 C10 H10B 107.9? H10A C10 H10B 107.2? C8 C11 H11A 109.5? C8 C11 H11B 109.5? H11A C11 H11B 109.5? C8 C11 H11C 109.5? H11A C11 H11C 109.5? H11B C11 H11C 109.5? C9 C12 H12A 109.5? H12A C12 H12B 109.5? C9 C12 H12B 109.5?
C8 C9 C10 121(2)? C12 C9 C10 113.9(19)? N2 C10 C9 117.7(19)? N2 C10 C9 117.7(19)? N2 C10 H10A 107.9? C9 C10 H10B 107.9? C9 C10 H10B 107.9? H10A C10 H10B 107.2? C8 C11 H11A 109.5? C8 C11 H11A 109.5? C8 C11 H11B 109.5? C8 C11 H11B 109.5? C8 C11 H11C 109.5? H11A C11 H11C 109.5? C9 C12 H12A 109.5? C9 C12 H12B 109.5? C9 C12 H12B 109.5? C9 C12 H12C 109.5? H12A C12 H12C 109.5?
C8 C9 C10 121(2)? C12 C9 C10 113.9(19)? N2 C10 C9 117.7(19)? N2 C10 C9 117.7(19)? N2 C10 H10A 107.9? C9 C10 H10B 107.9? C9 C10 H10B 107.9? H10A C10 H10B 107.2? C8 C11 H11A 109.5? C8 C11 H11B 109.5? C8 C11 H11B 109.5? C8 C11 H11B 109.5? C8 C11 H11C 109.5? H11A C11 H11C 109.5? H11A C11 H11C 109.5? C9 C12 H12A 109.5? C9 C12 H12B 109.5? H12A C12 H12B 109.5? H12A C12 H12C 109.5? H12A C12 H12C 109.5?
C8 C9 C10 121(2)? C12 C9 C10 113.9(19)? N2 C10 C9 117.7(19)? N2 C10 C9 117.7(19)? N2 C10 H10A 107.9? C9 C10 H10B 107.9? C9 C10 H10B 107.9? C9 C10 H10B 107.9? H10A C10 H10B 107.2? C8 C11 H11A 109.5? C8 C11 H11B 109.5? C8 C11 H11B 109.5? C8 C11 H11C 109.5? H11A C11 H11C 109.5? C9 C12 H12A 109.5? C9 C12 H12A 109.5? C9 C12 H12B 109.5? H12A C12 H12B 109.5? H12A C12 H12C 109.5?
C8 C9 C10 121(2)? C12 C9 C10 113.9(19)? N2 C10 C9 117.7(19)? N2 C10 C9 117.7(19)? N2 C10 H10A 107.9? C9 C10 H10B 107.9? C9 C10 H10B 107.9? C9 C10 H10B 107.9? C8 C11 H11A 109.5? C8 C11 H11A 109.5? C8 C11 H11B 109.5? C8 C11 H11C 109.5? C8 C11 H11C 109.5? H11A C11 H11C 109.5? C9 C12 H12A 109.5? C9 C12 H12B 109.5? C9 C12 H12B 109.5? H12A C12 H12C 109.5? H12A C12 H12C 109.5? H12B C12 H12C 109.5? C14 C13 P3 118.4(16)?
C8 C9 C10 121(2)? C12 C9 C10 113.9(19)? N2 C10 C9 117.7(19)? N2 C10 C9 117.7(19)? N2 C10 H10A 107.9? C9 C10 H10B 107.9? C9 C10 H10B 107.9? H10A C10 H10B 107.2? C8 C11 H11A 109.5? C8 C11 H11B 109.5? C8 C11 H11B 109.5? C8 C11 H11B 109.5? C8 C11 H11C 109.5? H11A C11 H11C 109.5? C9 C12 H12A 109.5? C9 C12 H12A 109.5? H12A C12 H12B 109.5? C9 C12 H12C 109.5? H12A C12 H12C 109.5? H12B C12 H12C 109.5? C14 C13 P3 118.4(16)? C14 C13 H13A 107.7?
C8 C9 C10 121(2) ? C12 C9 C10 113.9(19) ? N2 C10 C9 117.7(19) ? N2 C10 C9 117.7(19) ? N2 C10 H10A 107.9 ? C9 C10 H10B 107.9 ? C9 C10 H10B 107.9 ? C9 C10 H10B 107.9 ? H10A C10 H10B 107.2 ? C8 C11 H11A 109.5 ? C8 C11 H11B 109.5 ? C8 C11 H11B 109.5 ? C8 C11 H11C 109.5 ? H11A C11 H11C 109.5 ? C9 C12 H12A 109.5 ? C9 C12 H12A 109.5 ? C9 C12 H12B 109.5 ? H12A C12 H12B 109.5 ? H12A C12 H12C 109.5 ? H12A C12 H12C 109.5 ? H12B C12 H12C 109.5 ? C14 C13 P3 118.4(16) ? C14 C13 H13A 107.7 ? P3 C13 H13A 107.7 ?
C8 C9 C10 121(2)? C12 C9 C10 113.9(19)? N2 C10 C9 117.7(19)? N2 C10 C9 117.7(19)? N2 C10 H10A 107.9? C9 C10 H10B 107.9? C9 C10 H10B 107.9? C9 C10 H10B 107.9? C8 C11 H11A 109.5? C8 C11 H11A 109.5? C8 C11 H11B 109.5? C8 C11 H11B 109.5? C8 C11 H11C 109.5? H11A C11 H11C 109.5? C9 C12 H12A 109.5? C9 C12 H12B 109.5? C9 C12 H12B 109.5? H12A C12 H12C 109.5? H12A C12 H12C 109.5? H12A C12 H12C 109.5? C14 C13 H13A 107.7? C14 C13 H13A 107.7?
C8 C9 C10 121(2)? C12 C9 C10 113.9(19)? N2 C10 C9 117.7(19)? N2 C10 C9 117.7(19)? N2 C10 H10A 107.9? C9 C10 H10B 107.9? C9 C10 H10B 107.9? H10A C10 H10B 107.2? C8 C11 H11A 109.5? C8 C11 H11A 109.5? C8 C11 H11B 109.5? C8 C11 H11B 109.5? H11A C11 H11B 109.5? C8 C11 H11C 109.5? H11A C11 H11C 109.5? C9 C12 H12A 109.5? H12A C12 H12B 109.5? C9 C12 H12B 109.5? H12A C12 H12C 109.5? H12B C12 H12C 109.5? C14 C13 P13 H13A 107.7? P3 C13 H13A 107.7? P3 C13 H13B 107.7?
C8 C9 C10 121(2) ? C12 C9 C10 113.9(19) ? N2 C10 C9 117.7(19) ? N2 C10 C9 117.7(19) ? N2 C10 H10A 107.9 ? C9 C10 H10B 107.9 ? C9 C10 H10B 107.9 ? H10A C10 H10B 107.9 ? C8 C11 H11A 109.5 ? C8 C11 H11B 109.5 ? C8 C11 H11B 109.5 ? C8 C11 H11B 109.5 ? C9 C12 H12A 109.5 ? H11A C11 H11C 109.5 ? C9 C12 H12A 109.5 ? C9 C12 H12A 109.5 ? H12A C12 H12B 109.5 ? H12A C12 H12C 109.5 ? H12B C12 H12C 109.5 ? H12B C12 H12C 109.5 ? C14 C13 P1 II3A 107.7 ? P3 C13 H13A 107.7 ? P3 C13 H13B 107.7 ?
C8 C9 C10 121(2)? C12 C9 C10 113.9(19)? N2 C10 C9 117.7(19)? N2 C10 C9 117.7(19)? N2 C10 H10A 107.9? C9 C10 H10B 107.9? C9 C10 H10B 107.9? C9 C10 H10B 107.9? C8 C11 H11A 109.5? C8 C11 H11A 109.5? C8 C11 H11B 109.5? C8 C11 H11B 109.5? C8 C11 H11C 109.5? H11A C11 H11C 109.5? C9 C12 H12A 109.5? C9 C12 H12A 109.5? C9 C12 H12B 109.5? C9 C12 H12B 109.5? H12A C12 H12B 109.5? C14 C13 P3 118.4(16)? C14 C13 H13A 107.7? P3 C13 H13B 107.7? P3 C13 H13B 107.7? H13A C13 H13B 107.7?
C8 C9 C10 121(2)? C12 C9 C10 113.9(19)? N2 C10 C9 117.7(19)? N2 C10 C9 117.7(19)? N2 C10 H10A 107.9? C9 C10 H10B 107.9? C9 C10 H10B 107.9? C9 C10 H10B 107.9? H10A C10 H10B 107.2? C8 C11 H11A 109.5? C8 C11 H11A 109.5? C8 C11 H11B 109.5? C8 C11 H11B 109.5? C8 C11 H11C 109.5? H11A C11 H11C 109.5? C9 C12 H12A 109.5? C9 C12 H12A 109.5? H12A C12 H12B 109.5? H12A C12 H12C 109.5? H12B C12 H12C 109.5? C14 C13 H13A 107.7? P3 C13 H13A 107.7? P3 C13 H13B 107.7? H13A C13 H13B 107.7? P1 C14 C13 H13B 107.7?
C8 C9 C10 121(2)? C12 C9 C10 113.9(19)? N2 C10 C9 117.7(19)? N2 C10 C9 117.7(19)? N2 C10 H10A 107.9? C9 C10 H10B 107.9? C9 C10 H10B 107.9? H10A C10 H10B 107.2? C8 C11 H11B 109.5? C8 C11 H11B 109.5? C8 C11 H11B 109.5? H11A C11 H11B 109.5? C9 C12 H12A 109.5? C9 C12 H12A 109.5? H12A C12 H12B 109.5? H12A C12 H12B 109.5? H12A C12 H12C 109.5? H12A C12 H12C 109.5? C14 C13 P3 118.4(16)? C14 C13 H13B 107.7? P3 C13 H13B 107.7? P3 C13 H13B 107.7? H13A C13 H13B 107.7? C15 C14 C13 128(2)?
C8 C9 C10 121(2)? C12 C9 C10 113.9(19)? N2 C10 C9 117.7(19)? N2 C10 C9 117.7(19)? N2 C10 H10A 107.9? C9 C10 H10B 107.9? C9 C10 H10B 107.9? C9 C10 H10B 107.9? C8 C11 H11A 109.5? C8 C11 H11A 109.5? C8 C11 H11B 109.5? C8 C11 H11B 109.5? C8 C11 H11C 109.5? H11A C11 H11B 109.5? C9 C12 H12A 109.5? C9 C12 H12A 109.5? C9 C12 H12B 109.5? C9 C12 H12B 109.5? C9 C12 H12B 109.5? H12A C12 H12B 109.5? C14 C13 P3 118.4(16)? C14 C13 H13B 107.7? P3 C13 H13B 107.7? P3 C13 H13B 107.7? H13A C13 H13B 107.7? H13A C13 H13B 107.7? C15 C14 C13 128(2)? C14 C14 C15 C19.5?
$\begin{array}{c} C8 \ C9 \ C10 \ 121(2) \dots ?\\ C12 \ C9 \ C10 \ 113.9(19) \dots ?\\ N2 \ C10 \ C9 \ 117.7(19) \dots ?\\ N2 \ C10 \ C9 \ 117.7(19) \dots ?\\ N2 \ C10 \ H10A \ 107.9 \dots ?\\ C9 \ C10 \ H10B \ 107.9 \dots ?\\ C9 \ C10 \ H10B \ 107.9 \dots ?\\ C9 \ C10 \ H10B \ 107.9 \dots ?\\ C8 \ C11 \ H11B \ 109.5 \dots ?\\ C8 \ C11 \ H11B \ 109.5 \dots ?\\ C8 \ C11 \ H11B \ 109.5 \dots ?\\ C8 \ C11 \ H11B \ 109.5 \dots ?\\ C8 \ C11 \ H11B \ 109.5 \dots ?\\ C11 \ H11B \ 109.5 \dots ?\\ C9 \ C12 \ H12B \ 109.5 \dots ?\\ H11A \ C11 \ H11C \ 109.5 \dots ?\\ C9 \ C12 \ H12B \ 109.5 \dots ?\\ C9 \ C12 \ H12B \ 109.5 \dots ?\\ H12A \ C12 \ H12B \ 109.5 \dots ?\\ H12A \ C12 \ H12B \ 109.5 \dots ?\\ H12B \ C12 \ H12C \ 109.5 \dots ?\\ C14 \ C13 \ H13B \ 107.7 \dots ?\\ P3 \ C13 \ H13B \ 107.7 \dots ?\\ P3 \ C13 \ H13B \ 107.7 \dots ?\\ H13A \ C13 \ H13B \ 107.7 \dots ?\\ C15 \ C14 \ C13 \ H13B \ 107.7 \dots ?\\ C15 \ C14 \ C13 \ H13B \ 107.7 \dots ?\\ C15 \ C14 \ C13 \ H13B \ 107.7 \dots ?\\ C15 \ C14 \ C13 \ H13B \ 107.7 \dots ?\\ C15 \ C14 \ C13 \ H13B \ 107.7 \dots ?\\ C15 \ C14 \ C13 \ H13B \ 107.7 \dots ?\\ C15 \ C14 \ C13 \ H13B \ 107.7 \dots ?\\ C15 \ C14 \ C13 \ H13B \ 107.7 \dots ?\\ C15 \ C14 \ C13 \ H13B \ 107.7 \dots ?\\ C15 \ C14 \ C13 \ H13B \ 107.7 \dots ?\\ C15 \ C14 \ C13 \ H13B \ 107.1 \dots ?\\ C15 \ C14 \ C13 \ H13B \ 107.1 \dots ?\\ C15 \ C14 \ C13 \ H13B \ 107.1 \dots ?\\ C15 \ C14 \ C17 \ 121(2) \dots ?\\ C15 \ C14 \ C17 \ 121(2) \dots ?\\ C15 \ C14 \ C17 \ 121(2) \dots ?\\ C15 \ C14 \ C17 \ 121(2) \dots ?\\ C15 \ C14 \ C17 \ 121(2) \dots ?\\ C15 \ C14 \ C17 \ 121(2) \dots ?\\ C15 \ C14 \ C17 \ 121(2) \dots ?\\ C15 \ C14 \ C17 \ 121(2) \dots ?\\ C15 \ C14 \ C17 \ 121(2) \dots ?\\ C15 \ C14 \ C17 \ 121(2) \dots ?\\ C15 \ C14 \ C17 \ 121(2) \dots ?\\ C15 \ C14 \ C17 \ 121(2) \dots ?\\ C15 \ C14 \ C17 \ 121(2) \dots ?\\ C15 \ C14 \ C17 \ 121(2) \dots ?\\ C15 \ C14 \ C17 \ 121(2) \dots ?\\ C15 \ C14 \ C17 \ 121(2) \dots ?\\ C15 \ C14 \ C17 \ 121(2) \dots ?\\ C15 \ C14 \ C17 \ 121(2) \dots ?\\ C15 \ C14 \ C17 \ 121(2) \dots ?\\ C15 \ C14 \ C17 \ C15 \ C14 \ C17 \ 121(2) \dots ?\\ C15 \ C14 \ C17 \ $
C8 C9 C10 121(2)? C12 C9 C10 113.9(19)? N2 C10 C9 117.7(19)? N2 C10 C9 117.7(19)? N2 C10 H10A 107.9? C9 C10 H10B 107.9? C9 C10 H10B 107.9? C9 C10 H10B 107.9? H10A C10 H10B 107.2? C8 C11 H11B 109.5? C8 C11 H11B 109.5? C8 C11 H11B 109.5? C8 C11 H11B 109.5? C9 C12 H12A 109.5? H11A C11 H11C 109.5? C9 C12 H12A 109.5? C9 C12 H12B 109.5? H12A C12 H12B 109.5? H12A C12 H12C 109.5? H12A C12 H12C 109.5? C14 C13 P3 118.4(16)? C14 C13 H13B 107.7? P3 C13 H13B 107.7? P3 C13 H13B 107.7? P1 C14 C13 P3 (2)? C15 C14 C17 P3 (2)? C14 C13 P3 (2)? C14 C13 P3 (2)? C14 C15 C18 (2)?
C8 C9 C10 $121(2)?$ C12 C9 C10 $113.9(19)?$ N2 C10 C9 117.7(19)? N2 C10 C9 117.7(19)? N2 C10 H10A 107.9? C9 C10 H10B 107.9? C9 C10 H10B 107.9? H10A C10 H10B 107.9? C8 C11 H11A 109.5? C8 C11 H11B 109.5? C8 C11 H11B 109.5? C8 C11 H11C 109.5? C9 C12 H12A 109.5? H12A C12 H12B 109.5? C9 C12 H12C 109.5? H12A C12 H12C 109.5? C14 C13 H13A 107.7? P3 C13 H13A 107.7? P3 C13 H13B 107.7? P3 C13 H13B 107.7? P3 C13 H13B 107.7? C15 C14 C13 128(2)? C15 C14 C17 121(2)? C14 C15 C18 128(2)? C14 C15 C18 128(2)?
C8 C9 C10 121(2)? C12 C9 C10 113.9(19)? N2 C10 C9 117.7(19)? N2 C10 C9 117.7(19)? N2 C10 H10A 107.9? C9 C10 H10B 107.9? C9 C10 H10B 107.9? C9 C10 H10B 107.9? C8 C11 H11A 109.5? C8 C11 H11A 109.5? C8 C11 H11B 109.5? C8 C11 H11B 109.5? C8 C11 H11C 109.5? C9 C12 H12A 109.5? C9 C12 H12A 109.5? C9 C12 H12B 109.5? H12A C12 H12B 109.5? H12A C12 H12B 109.5? H12B C12 H12C 109.5? H12B C12 H12C 109.5? C14 C13 H13B 107.7? P3 C13 H13B 107.7? P3 C13 H13B 107.7? C15 C14 C13 H13B 107.7? C15 C14 C13 H13B 107.7? C13 C14 C17 111.0(19)? C14 C15 C18 128(2)? C14 C15 C18 128(2)? C15 C14 C15 C18 28(2)? C15 C14 C15 C18 28(2)? C15 C14 C15 C18 28(2)? C15 C14 C15 C18 2
$\begin{array}{c} C8 \ C9 \ C10 \ 121(2) \dots ?\\ C12 \ C9 \ C10 \ 113.9(19) \dots ?\\ N2 \ C10 \ C9 \ 117.7(19) \dots ?\\ N2 \ C10 \ C9 \ 117.7(19) \dots ?\\ N2 \ C10 \ H10A \ 107.9 \dots ?\\ C9 \ C10 \ H10B \ 107.9 \dots ?\\ C9 \ C10 \ H10B \ 107.9 \dots ?\\ C9 \ C10 \ H10B \ 107.9 \dots ?\\ C8 \ C11 \ H11B \ 109.5 \dots ?\\ C8 \ C11 \ H11B \ 109.5 \dots ?\\ C8 \ C11 \ H11B \ 109.5 \dots ?\\ C11 \ H11B \ 109.5 \dots ?\\ C8 \ C11 \ H11B \ 109.5 \dots ?\\ H11A \ C11 \ H11B \ 109.5 \dots ?\\ H11A \ C11 \ H11B \ 109.5 \dots ?\\ H11A \ C11 \ H11C \ 109.5 \dots ?\\ H11A \ C11 \ H11C \ 109.5 \dots ?\\ C9 \ C12 \ H12A \ 109.5 \dots ?\\ C9 \ C12 \ H12B \ 109.5 \dots ?\\ H12A \ C12 \ H12B \ 109.5 \dots ?\\ H12A \ C12 \ H12B \ 109.5 \dots ?\\ H12B \ C12 \ H12C \ 109.5 \dots ?\\ H12B \ C12 \ H12C \ 109.5 \dots ?\\ C14 \ C13 \ H13B \ 107.7 \dots ?\\ C14 \ C13 \ H13B \ 107.7 \dots ?\\ P3 \ C13 \ H13B \ 107.7 \dots ?\\ P3 \ C13 \ H13B \ 107.7 \dots ?\\ C15 \ C14 \ C13 \ H13B \ 107.7 \dots ?\\ C15 \ C14 \ C13 \ H13B \ 107.7 \dots ?\\ C15 \ C14 \ C13 \ H13B \ 107.7 \dots ?\\ C15 \ C14 \ C13 \ H13B \ 107.7 \dots ?\\ C15 \ C14 \ C13 \ H13B \ 107.7 \dots ?\\ C15 \ C14 \ C13 \ H13B \ 107.7 \dots ?\\ C15 \ C14 \ C13 \ H13B \ 107.7 \dots ?\\ C15 \ C14 \ C13 \ H13B \ 107.7 \dots ?\\ C15 \ C14 \ C13 \ H13B \ 107.7 \dots ?\\ C15 \ C14 \ C13 \ H13B \ 107.7 \dots ?\\ C15 \ C14 \ C13 \ H13B \ 107.7 \dots ?\\ C15 \ C14 \ C13 \ H13B \ 107.7 \dots ?\\ C15 \ C14 \ C13 \ H13B \ 107.7 \dots ?\\ C15 \ C14 \ C15 \ C16 \ 122(2) \dots ?\\ C14 \ C15 \ C16 \ 122(2) \dots ?\\ C18 \ C15 \ C16 \ 110.2(18) \dots ?\\ C18 \ C15 \ C16 \ 110.2(18) \dots ?\\ C18 \ C15 \ C16 \ 110.2(18) \dots ?\\ C18 \ C15 \ C16 $
C8 C9 C10 121(2) ? C12 C9 C10 113.9(19) ? N2 C10 C9 117.7(19) ? N2 C10 C9 117.7(19) ? N2 C10 H10A 107.9 ? C9 C10 H10B 107.9 ? C9 C10 H10B 107.9 ? H10A C10 H10B 107.9 ? C8 C11 H11A 109.5 ? C8 C11 H11B 109.5 ? C8 C11 H11B 109.5 ? H11A C11 H11B 109.5 ? C9 C12 H12A 109.5 ? H11A C11 H11C 109.5 ? C9 C12 H12A 109.5 ? C9 C12 H12A 109.5 ? H12A C12 H12B 109.5 ? H12A C12 H12C 109.5 ? H12A C12 H12C 109.5 ? H12B C12 H12C 109.5 ? C14 C13 H13A 107.7 ? P3 C13 H13A 107.7 ? P3 C13 H13B 107.7 ? H13A C13 H13B 107.7 ? C15 C14 C17 121(2) ? C14 C15 C18 128(2) ? C14 C15 C16 122(2) ? C14 C15 C16 110.2(18) ? N3 C16 C15 113.3(17) ?
C8 C9 C10 121(2)? C12 C9 C10 113.9(19)? N2 C10 C9 117.7(19)? N2 C10 H10A 107.9? C9 C10 H10B 107.9? C9 C10 H10B 107.9? C9 C10 H10B 107.9? C9 C10 H10B 107.2? C8 C11 H11A 109.5? C8 C11 H11A 109.5? C8 C11 H11B 109.5? C8 C11 H11A 109.5? C9 C12 H12A 109.5? C9 C12 H12A 109.5? C9 C12 H12A 109.5? H12A C12 H12E 109.5? C9 C12 H12E 109.5? H12A C12 H12E 109.5? C9 C12 H12C 109.5? C14 C13 H13B 107.7? P3 C13 H13B 107.7? P3 C13 H13B 107.7? C15 C14 C13 128(2)? C14 C15 C16 122(2)? C14 C15 C16 110.2(18)? C13 C16 H10A 108 9?
C8 C9 C10 121(2)? C12 C9 C10 113.9(19)? N2 C10 C9 117.7(19)? N2 C10 H10A 107.9? C9 C10 H10B 107.9? C9 C10 H10B 107.9? C9 C10 H10B 107.9? H10A C10 H10B 107.2? C8 C11 H11A 109.5? C8 C11 H11A 109.5? C8 C11 H11B 109.5? H11A C11 H11B 109.5? C9 C12 H12A 109.5? H12A C12 H12B 109.5? H12A C12 H12B 109.5? H12A C12 H12B 109.5? H12A C12 H12C 109.5? H12B C12 H12C 109.5? C14 C13 H13A 107.7? P3 C13 H13A 107.7? P3 C13 H13B 107.7? P1 C14 C13 H13B 107.7? P3 C13 H13B 107.7? C15 C14 C17 111.0(19)? C14 C15 C18 128(2)? C14 C15 C18 128(2)? C14 C15 C16 110.2(18)? N3 C16 C15 113.3(17)? N3 C16 H16A 108.9?
C8 C9 C10 121(2)? C12 C9 C10 113.9(19)? N2 C10 C9 117.7(19)? N2 C10 C9 117.7(19)? N2 C10 H10A 107.9? C9 C10 H10B 107.9? C9 C10 H10B 107.9? H10A C10 H10B 107.2? C8 C11 H11A 109.5? C8 C11 H11B 109.5? C8 C11 H11B 109.5? C8 C11 H11B 109.5? H11A C11 H11B 109.5? C9 C12 H12A 109.5? C9 C12 H12A 109.5? C9 C12 H12B 109.5? H12A C12 H12B 109.5? H12A C12 H12C 109.5? H12A C12 H12C 109.5? C14 C13 H13A 107.7? P3 C13 H13A 107.7? P3 C13 H13B 107.7? P3 C13 H13B 107.7? C14 C15 C16 1128(2)? C14 C15 C16 110.2(18)? C14 C15 C16 110.2(18)? N3 C16 C15 113.3(17)? N3 C16 H16A 108.9? C14 C15 C16 H16A 108.9?
C8 C9 C10 121(2)? C12 C9 C10 113.9(19)? N2 C10 C9 117.7(19)? N2 C10 C9 117.7(19)? N2 C10 H10A 107.9? C9 C10 H10B 107.9? C9 C10 H10B 107.9? C9 C10 H10B 107.9? C8 C11 H11A 109.5? C8 C11 H11A 109.5? C8 C11 H11B 109.5? C8 C11 H11C 109.5? C9 C12 H12A 109.5? C9 C12 H12A 109.5? C9 C12 H12A 109.5? C9 C12 H12B 109.5? C9 C12 H12C 109.5? H12A C12 H12C 109.5? C14 C13 H13A 107.7? P3 C13 H13B 107.7? C14 C13 H13B 107.7? C15 C14 C17 111.0(19)? C14 C15 C18 128(2)? C14 C15 C18 128(2)? C14 C15 C16 110.2(18)? C15 C16 H16A 108.9? C15 C16 H16A 108.9? N3 C16 H16B 108.9?
C8 C9 C10 121(2)? C12 C9 C10 113.9(19)? N2 C10 C9 117.7(19)? N2 C10 C9 117.7(19)? N2 C10 H10A 107.9? C9 C10 H10B 107.9? C9 C10 H10B 107.9? C9 C10 H10B 107.9? H10A C10 H10B 107.2? C8 C11 H11A 109.5? C8 C11 H11A 109.5? C8 C11 H11A 109.5? C9 C12 H12A 109.5? H11A C11 H11C 109.5? C9 C12 H12A 109.5? C9 C12 H12A 109.5? H12A C12 H12B 109.5? H12A C12 H12C 109.5? H12A C12 H12C 109.5? H12B C12 H12C 109.5? C14 C13 H13A 107.7? P3 C13 H13A 107.7? P3 C13 H13B 107.7? P3 C13 H13B 107.7? C15 C14 C17 121(2)? C14 C15 C18 128(2)? C14 C15 C18 128(2)? C14 C15 C16 110.2(18)? N3 C16 H16A 108.9? N3 C16 H16A 108.9? C15 C16 H16B 108.9? C15 C16 H16B 108.9?

H16A C16 H16B 107.7 ...? C14 C17 H17A 109.5 ...? C14 C17 H17B 109.5 ...? H17A C17 H17B 109.5 ...? C14 C17 H17C 109.5 ...? H17A C17 H17C 109.5 ...? H17B C17 H17C 109.5 ...? C15 C18 H18A 109.5 ...? C15 C18 H18B 109.5 . . ? H18A C18 H18B 109.5 ...? C15 C18 H18C 109.5 ...? H18A C18 H18C 109.5 ...? H18B C18 H18C 109.5..? C20 C19 P4 123.0(18) . . ? C20 C19 H19A 106.6 ...? P4 C19 H19A 106.6 ...? C20 C19 H19B 106.6 ...? P4 C19 H19B 106.6 ...? H19A C19 H19B 106.5 ...? C21 C20 C19 128(2)..? C21 C20 C23 120(2)..? C19 C20 C23 112(2)..? C20 C21 C24 129(2)..? C20 C21 C22 118(2)..? C24 C21 C22 113(2)..? N4 C22 C21 117(2)..? N4 C22 H22A 108.1 ...? C21 C22 H22A 108.1 ...? N4 C22 H22B 108.1..? C21 C22 H22B 108.1 ...? H22A C22 H22B 107.3 .. ? C20 C23 H23A 109.5 ...? C20 C23 H23B 109.5 ...? H23A C23 H23B 109.5 ...? C20 C23 H23C 109.5 ...? H23A C23 H23C 109.5 . . ? H23B C23 H23C 109.5 ...? C21 C24 H24A 109.5 ...? C21 C24 H24B 109.5 ...? H24A C24 H24B 109.5 ...? C21 C24 H24C 109.5 ...? H24A C24 H24C 109.5 ...? H24B C24 H24C 109.5 ...? C26 C25 P5 121.8(17) ...? C26 C25 H25A 106.9 . . ? P5 C25 H25A 106.9 ...? C26 C25 H25B 106.9 ...? P5 C25 H25B 106.9 ...? H25A C25 H25B 106.7 ...? C27 C26 C25 121(2)..? C27 C26 C29 128(2)..? C25 C26 C29 111(2) ..? C26 C27 C28 126(2)..? C26 C27 C30 122(2)..? C28 C27 C30 112(2) ...? C27 C28 N5 119(2)..? C27 C28 H28A 107.5 ...? N5 C28 H28A 107.5 ...? C27 C28 H28B 107.5 ...? N5 C28 H28B 107.5 ...? H28A C28 H28B 107.0 . . ? C26 C29 H29A 109.5 ...? C26 C29 H29B 109.5 ...? H29A C29 H29B 109.5 ...? C26 C29 H29C 109.5 ...? H29A C29 H29C 109.5 ...? H29B C29 H29C 109.5 . . ? С27 С30 Н30А 109.5..? C27 C30 H30B 109.5 ...? H30A C30 H30B 109.5 ...? C27 C30 H30C 109.5 ...? H30A C30 H30C 109.5 . . ? H30B C30 H30C 109.5 ...?

loop_

_geom_torsion_atom_site_label_1 _geom_torsion_atom_site_label_2 _geom_torsion_atom_site_label_3 _geom_torsion_atom_site_label_4 _geom_torsion _geom_torsion_site_symmetry_1 _geom_torsion_site_symmetry_2 _geom_torsion_site_symmetry_3 _geom_torsion_site_symmetry_4 _geom_torsion_publ_flag $\vec{N2}$ P2 $\vec{N1}$ C4 63.8(18)? C7 P2 N1 C4 -38.9(19)? N2 P2 N1 P1 -111.7(11)? C7 P2 N1 P1 145.5(11)? N5 P1 N1 C4 -60.8(18)? C1 P1 N1 C4 43.1(17)? N5 P1 N1 P2 115.0(11)? C1 P1 N1 P2 -141.2(11)? N3 P3 N2 C10 64.9(18)? C13 P3 N2 C10 -38.7(19)? N3 P3 N2 P2 -112.8(11)? C13 P3 N2 P2 143.6(11)? N1 P2 N2 C10 -64.4(18)? C7 P2 N2 C10 41.5(19)? N1 P2 N2 P3 113.3(11)? C7 P2 N2 P3 -140.7(11)? N4 P4 N3 C16 62.1(18)? C19 P4 N3 C16 -39.4(18)? N4 P4 N3 P3 -115.2(11)? C19 P4 N3 P3 143.3(11)? N2 P3 N3 C16 -62.9(17)? C13 P3 N3 C16 41.8(19)? N2 P3 N3 P4 114.3(11)? C13 P3 N3 P4 -140.9(12)? N5 P5 N4 C22 64.4(18)? C25 P5 N4 C22 -37.5(19)? N5 P5 N4 P4 -112.0(11)? C25 P5 N4 P4 146.1(12)? N3 P4 N4 C22 -63.4(18)? C19 P4 N4 C22 41.0(18)? N3 P4 N4 P5 113.0(11)? C19 P4 N4 P5 -142.5(12)? N1 P1 N5 C28 61(2)? C1 P1 N5 C28 -41.1(19)? N1 P1 N5 P5 -113.6(11)? C1 P1 N5 P5 144.0(10)? N4 P5 N5 C28 -64.4(17)? C25 P5 N5 C28 39.6(18)? N4 P5 N5 P1 110.9(11)? C25 P5 N5 P1 -145.1(11)? N5 P1 C1 C2 96.9(18)? N1 P1 C1 C2 -15.0(19)? P1 C1 C2 C3 -4(4)? P1 C1 C2 C5 173.7(17)? C1 C2 C3 C6 -177(2)? C5 C2 C3 C6 6(4)? C1 C2 C3 C4 -1(4)? C5 C2 C3 C4 -178(2) ? P2 N1 C4 C3 131.7(17)? P1 N1 C4 C3 -53(2)? C2 C3 C4 N1 28(3)? C6 C3 C4 N1 -154.5(19)? N1 P2 C7 C8 95(2)? N2 P2 C7 C8 -16(2)? P2 C7 C8 C9 -3(4)? P2 C7 C8 C11 171.7(19)? C7 C8 C9 C12 177(2) ? C11 C8 C9 C12 2(4)? C7 C8 C9 C10 2(4)? C11 C8 C9 C10 -172(2)? P3 N2 C10 C9 132.5(18)? P2 N2 C10 C9 -50(3)? C8 C9 C10 N2 23(3)? C12 C9 C10 N2 -152(2)? N2 P3 C13 C14 96.3(19)?

N3 P3 C13 C14 -14(2)? P3 C13 C14 C15 -3(4) ? P3 C13 C14 C17 172.7(18)? C13 C14 C15 C18 176(2) ? C17 C14 C15 C18 0(4)? C13 C14 C15 C16 -2(4)? C17 C14 C15 C16 -177(2)? P4 N3 C16 C15 131.7(17)? P3 N3 C16 C15 -51(2)? C14 C15 C16 N3 27(3)? C18 C15 C16 N3 -150.4(18)? N3 P4 C19 C20 93(2)? N4 P4 C19 C20 -17(2)? P4 C19 C20 C21 -1(4)? P4 C19 C20 C23 -180.0(17)? C19 C20 C21 C24 176(2) ? C23 C20 C21 C24 -5(4)? C19 C20 C21 C22 0(4)? C23 C20 C21 C22 178(2)? P5 N4 C22 C21 133.6(18)? P4 N4 C22 C21 -50(2)? C20 C21 C22 N4 25(3)? C24 C21 C22 N4 -151.7(19)? N4 P5 C25 C26 92(2)? N5 P5 C25 C26 -19(2)? P5 C25 C26 C27 3(3)? P5 C25 C26 C29 -175.7(17)? C25 C26 C27 C28 -2(4)? C29 C26 C27 C28 176(2)? C25 C26 C27 C30 -180(2)? C29 C26 C27 C30 -1(4)? C26 C27 C28 N5 24(4)? C30 C27 C28 N5 -157.9(19)? P1 N5 C28 C27 138.2(19)? P5 N5 C28 C27 -47(3)?

_diffrn_measured_fraction_theta_max 0.996 _diffrn_refIns_theta_full 22.48 _diffrn_measured_fraction_theta_full 0.996 _refine_diff_density_max 0.904 _refine_diff_density_min -1.514 _refine_diff_density_rms 0.166

5. References

- (1) Hering, C.; Schulz, A.; Villinger, A. Angew. Chem., Int. Ed. Engl. 2012, 51, 6241.
- (2) Whitesides, G. M.; Gutowski, F. D. J. Org. Chem. 1976, 41, 2882.
- (3) Kubas, G. J.; Vaan der Sluys, L. S.; Doyle, R. A.; Angelici, R. J. *Inorg. Synth.* **2006**, *12*, 29.
- (4) Sheldrick, G. M.: SHELXS-97: Program for the Solution of Crystal Structures, University of Göttingen, Germany 1997
- (5) Sheldrick, G. M.: SHELXL-97: Program for the Refinement of Crystal Structures, University of Göttingen, Germany 1997.
- (6) Sheldrick, G. M.: SADABS. Version 2. University of Göttingen, Germany 2004.
- (7) Crabtree, R. H.; Lavin, M. Inorg. Chem., 1986, 25, 805-812.
- (8) Mague, J. T.; Johnson, M. P. Organometallics, 1990, 9, 1254–1269.
- (9) Adams, R. D.; Collins, D. M.; Cotton, F. A. Inorg. Chem., 1974, 13, 1086–1090.
- (10) Levisalles, J.; Rose-Munch, F. O.; Rudler, H.; Daran, J.-C.; Dromze, Y.; Jeannin,Y. J. Chem. Soc., Chem. Commun., 1981, 152.
- (11) Gaussian 09, Revision A.1, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.;
- Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci,
- B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov,
- A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.;
- Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.;
- Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J.
- J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.;
- Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.;
- Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.;
- Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.;
- Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth,
- G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.;
- Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.
- (12) (a) Glendening, E. D; Badenhoop, J. K.; Bohmann, J. A.; Morales, C. M.; Reed,
- A. E.; Carpenter, J. E.; Weinhold, F. NBO Version 5.0. (b) Carpenter, J. E.; Weinhold,
- F. J. Mol. Struc. (Theochem) 1988, 169, 41. (c) Weinhold, F.; Carpenter, J. E. The
- Structure of Small Molecules and Ions, Plenum Press, 1988, 227. (d) Weinhold, F.;

Landis, C. Valency and Bonding. A Natural Bond Orbital Donor-Acceptor Perspective, Cambridge University Press, **2005** and references therein.

(13) a) F. London, J. Phys. Radium 1937, 8, 397-409; b) R. McWeeny, Phys. Rev.

1962, 126, 1028–1034; c) R. Ditchfield, Mol. Phys. 1974, 27, 789–807, d) K.

Wolinski, J. F. Hilton, P. Pulay, J. Am. Chem. Soc. 1990, 112, 8251-8260; e) J. R.

Cheeseman, G. W. Trucks, T. A. Keith, M. J. Frisch, J. Chem. Phys. 1996, 104, 5497–5509.

(14) C. J. Jameson, A. De Dios, A. K. Jameson, *Chem. Phys. Lett.* **1990**, *167*, 575–582.

(15) P. H. M. Budzelaar, *gNMR for Windows*, NMR Simulation Program, IvorySoft **2006**.