SUPPORTING INFORMATION

The Frustrated Lewis Pair Pathway to Methylene Phosphonium Systems

Yasuharu Hasegawa¹, Gerald Kehr¹, Stephan Ehrlich², Stefan Grimme², Constantin G. Daniliuc¹, Gerhard Erker¹*

¹Organisch-Chemisches Institut, Universität Münster, Corrensstraße 40, 48149 Münster, Germany

²Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie,

Universität Bonn, Beringstraße 4, 53115 Bonn, Germany

* erker@uni-muenster.de

General Procedures.

All reactions involving air- and moisture sensitive compounds were carried out under a dry argon atmosphere (argon 4.8, *WESTFALEN*) in oven- or flame-dried glassware with standard Schlenk techniques or in an *MBraun* (MB 150B-G) glove box. *n*-Pentane, tetrahydrofuran (THF), diethylether, toluene, and dichloromethane were dried using a solvent drying system described by Grubbs et al.^[S1]. Dichloromethane-d₂ [CD₂Cl₂] was distilled from calcium hydride [CaH₂] and benzene-d₆ [C₆D₆] was purchased distilled from sodium-potassium alloy. Tipp: 2,4,6-triisopropylphenyl; mes*: 2,4,6-tri-*tert*-butylphenyl.

The following instruments were used for physical characterization of the compounds.

Mass Spectrometer: Orbitrap LTQ XL (Thermoscientific) was used for ESI measurements.

Infrared Spectroscopy: Varian 3100 FT-Infrared Spectrometer (Excalibur Series).

NMR spectra: Data sets were recorded on a *Varian* Inova 500 (¹H: 500 MHz, ¹³C: 126 MHz, ¹⁹F: 470 MHz, ¹¹B: 160 MHz, ³¹P: 202 MHz) and on a *Varian* UnityPlus 600 (¹H: 600 MHz, ¹³C: 151 MHz, ¹⁹F: 564 MHz, ¹¹B: 192 MHz, ³¹P: 243 MHz). ¹H NMR chemical shifts δ are given relative to the respective residual solvent peaks (CDHCl₂ at 5.32; CHCl₃ at 7.24, C₆D₅H at 7.15). ¹³C NMR chemical shifts δ are given relative to the solvent peaks (CD₂Cl₂ at 53.8, C₆D₆ at 128.0). ¹⁹F NMR: chemical shifts δ are given relative to CFCl₃ (δ^{19} F = 0, external reference), ¹¹B NMR: relative to BF₃·Et₂O (δ^{11} B = 0, external reference), ³¹P NMR: relative to H₃PO₄ (85% in H₂O) (δ^{31} P = 0, external reference). NMR assignments were supported by additional 2D NMR experiments. The splitting patterns in the NMR spectra are reported as follows: s = singlet, d = doublet, t = triplet, q = quartet, sept = septet, oct = octet, m = multiplet, br = broad signal. Coupling constants are given in Hertz (Hz).

X-Ray Crystal Structure Analyses: Data sets were collected with a Nonius KappaCCD diffractometer. Programs used: data collection, COLLECT (Nonius B.V., 1998); data reduction Denzo-SMN^[S2]; absorption correction, Denzo^[S3]; structure solution SHELXS-97^[S4]; structure refinement SHELXL-97^[S5] and graphics, XP (BrukerAXS, 2000). Thermal ellipsoids are shown with 30% probability, *R*-values are given for observed reflections, and wR^2 values are given for all reflections. *Exceptions and special* *features*: Compound **5a** crystallized with two independent molecules per asymmetric unit. One t-Bu group was found disordered over two positions. Several restraints (SADI, SIMU, SAME, ISOR) were used in order to improve refinement stability. The hydrogen atoms at P1 and B1 in compound **8a** were refined freely. Two t-Bu groups and the vinyl group are disordered over two positions. Several restraints (SADI, SIMU, ISOR and SAME) were used in order to improve refinement stability. One t-Bu group was found in compound **10a** disordered over two positions. One t-Bu group was found in compound **7a** disordered over two positions. Several restraints (SADI, SIMU, SAME, ISOR) were used in order to improve refinement stability. For the compound **11a** two t-Bu groups and one dichloromethane(-d₂) molecule were found disordered over two positions. Several restraints (SADI, SIMU, SAME, ISOR) were used in order to improve refinement stability. CCCDC: 952207 - 95209 and 967611 - 967613)

Preparation of the starting materials.

Bis(pentafluorophenyl)borane was prepared according to the following modified literature procedures^[S6]. Dihalo(2,4,6-triisopropylphenyl)phosphane [tippPXY] [X, Y = Cl or Br; tipp: tri(isopropyl)phenyl] was synthesized according to a modified literature procedure^[S7]. 2-Bromo-1,3,5-tri-*tert*-butylbenzene [mes*Br] was prepared according to the following literature procedure^[S8].

Preparation of dihalo(2,4,6-tri-tert-butylphenyl)phosphane [mes*P(Cl)X].

Dihalo-tri-*tert*-butylphenylphosphane [mes*P(Cl)X] was prepared according to a modified literature procedure^[S9]. Phosphorus trichloride was distilled right before use. 1-Bromo-2,4,6-tri-*tert*-butylbenzene was dissolved in dried THF (50 mL) containing 20 g of activated molecular sieves 4A and kept still in the dark for 2 days before the reaction.

A solution of 1-bromo-2,4,6-tri-*tert*-butylbenzene [mes*Br] (7.8 g, 23.9 mmol) in dry, degassed THF (200 mL) was added to a 400-mL Schlenk flask. The flask was cooled to and maintained at -78° C for 10 min. *n*-Butyl lithium (15.0 mL, 1.6 M *n*-hexane solution: 24.0 mmol) was added via a syringe over a period of a few minutes and the resulting mixture was stirred for 4 h at -78° C. Then the solution was transferred via a cannula to a second 400-mL Schlenk flask containing a stirred solution of phosphorous trichloride (12 mL, 137 mmol, 5.7 eq.) in THF (100 mL) over a period of 30 min. The temperature of the

both Schlenk flasks was maintained at -78° C throughout this process. After addition was complete, the flask was maintained at -78° C for 3 h and then gradually raised to 0°C over 10 h. All volatiles, including excess phosphorous trichloride and *n*-butyl bromide were removed in vacuo (0.1 mbar) for 12 h at 0°C. The obtained residue was dissolved in *n*-pentane (50 mL) and filtered through a pad of Celite® resulting in a crude light yellow solid (7.59 g, mixture of mes*PCl₂: mes*PClBr : mes*H = 83:6:10 [¹H NMR]).

Comment: The crude compound was employed in the next step without further purification. It should be noted that all purification attempts including crystallization and sublimation rather deteriorated the purity of the product. Washing with diethyl ether or *n*-pentane would only slightly increase the purity at a cost of losing the majority of the product. Since the product very slowly decomposes at room temperature even under an argon atmosphere, one should keep it in a fridge at -35° C for a long-time storage.

¹**H NMR** (500 MHz, 299 K, benzene-d₆): mes*PCl₂: δ = 7.48 (d, ⁴*J*_{PH} = 2.8 Hz, 2H, *m*-mes*), 1.59 (d, ⁵*J*_{PH} = 1.0 Hz, 18 H, *o*-^{*t*}Bu), 1.151 (s, 9H, *p*-^{*t*}Bu). mes*PBrCl: δ = 7.45 (d, ⁴*J*_{PH} = 2.9 Hz, 2H, *m*-mes*), 1.60 (d, ⁵*J*_{PH} = 1.2 Hz, 18 H, *o*-^{*t*}Bu), 1.145 (s, 9H, *p*-^{*t*}Bu). mes*H: δ = 7.42 (s, 1H, mes*-H), 1.34 (s, 9 H, ^{*t*}Bu).

³¹P{¹H} NMR (202 MHz, 299 K, benzene-d₆): $\delta = 152.52$ (P³⁵Cl³⁵Cl, 57%), 152.50 (P³⁵Cl³⁷Cl, 34%), 152.48 (P³⁷Cl³⁷Cl, 9%) (mes*PCl₂, 92%), 150.88 (mes*PBr³⁵Cl, 71%), 150.85 (mes*PBr³⁷Cl, 29%)(mes*PBrCl, 8%).

¹*H* NMR (500 MHz, 299 K, benzene-d₆) of dihalo-tri-tert-butylphenylphosphane.

 $^{31}P\{^{1}H\}$ NMR (500 MHz, 299 K, benzene-d₆) of dihalo-tri-tert-butylphenylphosphane.

Preparation of (2,4,6-tri-tert-butylphenyl)divinylphosphane [mes*P(CHCH₂)₂] 6a.

Dihalo(2,4,6-tri-*tert*-butylphenyl)phosphane [3.6 g, 9.7 mmol in terms of mes*PX₂, where mes*PCl₂:mes*PClBr:mes*H = 0.85:0.08:0.07 (¹H NMR)] was dissolved in THF (100 mL) and cooled down to -78° C. Vinyl magnesium chloride (13 mL, 1.6 M THF solution: 20.8 mmol) was added dropwise to the solution at -78° C and stirred vigorously at -78° C for 5 h and then stirred for another 16 h while very slowly raising the reaction temperature to 0°C. The volatiles were removed in vacuo. The obtained residue was dissolved in *n*-pentane (20 mL) and filtered through a pad of Celite®. All the volatiles were evaporated in vacuo which gave a crude brown oil [3.10 g, 91% purity (¹H NMR)]. The crude product (1.40 g) was further purified by column chromatography using silica gel (4 cm x 50 cm, eluent: *n*-pentane:triethylamine = 100:1), which gave **6a** as a colorless oil [0.70 g, 95% purity (¹H NMR), 50% yield]. The progress of column chromatography was monitored by TLC (Rf = 0.45: eluent = *n*-pentane, TLC = Silica gel 60 F₂₅₄.).

Comment: The compound could also be purified by the following conditions: silica gel, 4 cm x 42 cm, eluent: *n*-pentane, the column was kept under an argon atmosphere. The fractions (monitored by TLC) were collected under air and quickly dried in vacuo, which gave the product as a colorless oil (>99% purity (¹H NMR), yield 3%).

HRMS: $M+H^+$ ($C_{22}H_{35}PH^+$): calc. 331.2554, found 331.2549.

¹**H NMR** (600 MHz, 299 K, benzene-d₆): $\delta = 7.65$ (d, ⁴ $J_{PH} = 2.3$ Hz, 2H, *m*-mes*), 6.56 (ddd, ² $J_{PH} = 19.7$ Hz, ³ $J_{HH} = 18.5$ Hz, ³ $J_{HH} = 12.3$ Hz, 2H, =CH), 5.43 (ddd, ³ $J_{PH} = 25.3$ Hz, ³ $J_{HH} = 12.3$ Hz, ² $J_{HH} = 1.7$ Hz, 2H, =CH₂^{*E*}), 5.22 (ddd, ³ $J_{HH} = 18.5$ Hz, ³ $J_{PH} = 9.0$ Hz, ² $J_{HH} = 1.7$ Hz, 2H, =CH₂^{*E*}), 1.65 (d, ⁵ $J_{PH} = 0.4$ Hz, 18H, *o*-^{*t*}Bu), 1.28 (s, 9H, *p*-^{*t*}Bu).

¹**H** NMR (500 MHz, 299 K, dichloromethane-d₂): $\delta = 7.48$ (d, ⁴ $J_{PH} = 2.4$ Hz, 2H, *m*-mes*), 6.61 (ddd, ² $J_{PH} = 19.5$ Hz, ³ $J_{HH} = 18.5$ Hz, ³ $J_{HH} = 12.3$ Hz, 2H, =CH), 5.56 (ddd, ³ $J_{PH} = 25.6$ Hz, ³ $J_{HH} = 12.3$ Hz, ² $J_{HH} = 1.6$ Hz, 2H, =CH₂^{*E*}), 5.19 (ddd, ³ $J_{HH} = 18.5$ Hz, ³ $J_{PH} = 9.1$ Hz, ² $J_{HH} = 1.6$ Hz, 2H, =CH₂^{*E*}), 1.51 (m, 18H, *o*-^{*t*}Bu), 1.32 (s, 9H, *p*-^{*t*}Bu).

¹H{³¹P} NMR (600 MHz, 299 K, benzene-d₆) [selected resonances]: $\delta = 7.65$ (s, 2H, *m*-mes*), 6.56 (dd, ${}^{3}J_{\text{HH}} = 18.5$ Hz, ${}^{3}J_{\text{HH}} = 12.3$ Hz, 2H, =CH), 5.43 (dd, ${}^{3}J_{\text{HH}} = 12.3$ Hz, ${}^{2}J_{\text{HH}} = 1.7$ Hz, 2H, =CH₂^{*E*}), 5.22 (dd, ${}^{3}J_{\text{HH}} = 18.5$, ${}^{2}J_{\text{HH}} = 1.7$ Hz, 2H, =CH₂^{*E*}), 1.65 (s, 18H, *o*-^{*t*}Bu).

¹³C{¹H} NMR (151 MHz, 299 K, benzene-d₆): $\delta = 158.9$ (d, ${}^{2}J_{PC} = 13.6$ Hz, *o*-mes*), 151.0 (d, ${}^{4}J_{PC} = 2.4$ Hz, *p*-mes*), 139.6 (d, ${}^{1}J_{PC} = 22.9$ Hz, =CH), 129.1 (d, ${}^{1}J_{PC} = 33.9$ Hz, *i*-mes*), 123.7 (d, ${}^{3}J_{PC} = 7.5$ Hz, *m*-mes*), 120.9 (d, ${}^{2}J_{PC} = 20.3$ Hz, =CH₂), 39.8 (d, ${}^{3}J_{PC} = 4.2$ Hz, *o*-'Bu^C), 35.0 (d, ${}^{5}J_{PC} = 0.9$ Hz, *p*-'Bu^C), 34.4 (d, ${}^{4}J_{PC} = 7.0$ Hz, *o*-'Bu^{CH3}), 31.3 (*p*-'Bu^{CH3}).

¹**H**,¹**H GCOSY** (600 MHz/600 MHz, 299 K, benzene-d₆) [selected traces]: δ^{1} H/ δ^{-1} H: 6.56/5.43 (=CH/=CH₂^{*E*}), 6.56/5.22 (=CH/=CH₂^{*Z*}), 5.43/5.22 (=CH₂^{*E*}/=CH₂^{*Z*}).

¹H{¹H} **1D** NOESY (600 MHz, 299 K, benzene-d₆) [selected experiments]: $\delta^{1}H_{irr}/\delta^{1}H_{res}$: 5.43/ 6.56, 5.22 (=CH₂^{*E*} / =CH, =CH₂^{*Z*}), 5.22/5.43 (=CH₂^{*Z*}/=CH₂^{*E*}).

¹**H**,¹³**C GHSQC** (600 MHz/151 MHz, 299 K, benzene-d₆) [selected traces]: δ^{1} H/ δ^{13} C: 7.65/123.7 (*m*-mes*), 6.56/139.6 (=CH), 5.43/120.9 (=CH₂^E), 5.22/120.9 (=CH₂^Z), 1.65/34.4 (*o*-^{*t*}Bu), 1.28/31.3 (*p*-^{*t*}Bu).

¹**H**,¹³**C GHMBC** (600 MHz/151 MHz, 299 K, benzene-d₆) [selected traces]: δ¹H/δ¹³C: 7.65/129.1, 123.7 (*m*-mes*/*i*-mes*, *m*-mes*), 1.65/158.9 (*o*-'Bu/*o*-mes*).

³¹**P**{¹**H**} **NMR** (243 MHz, 299 K, benzene-d₆): $\delta = -21.4 (v_{1/2} \sim 1.0 \text{ Hz}).$

³¹P{¹H} NMR (202 MHz, 299 K, dichloromethane-d₂): $\delta = -21.6 (v_{1/2} \sim 2 \text{ Hz}).$

8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 ¹H NMR (600 MHz, 299 K, benzene-d₆) and ³¹P{¹H} NMR (243 MHz, 299 K, benzene-d₆) spectra of **6a**.

Preparation of Phosphonium Borata Zwitterionic Compound 5a.

(1) NMR scale: Inside a glove box: slowly over 3 min a dichloromethane-d₂ (0.3 mL) solution of bis(pentafluorophenyl)borane (22.3 mg, 0.064 mmol) was added to a pre-cooled (-35°C) dichloromethane-d₂ (0.3 mL) solution of (2,4,6-tri-*tert*-butylphenyl)divinylphosphane (**6a**) (21.1 mg, 0.064 mmol) in an NMR tube. The reaction mixture was shaken while the addition to avoid the second hydroboration. The reaction was left at about 10 min at room temperature and then the NMR spectra were obtained at -40°C. (The formation of compound **5a** was nearly quantitative).

¹**H NMR** (600 MHz, 233 K, dichloromethane-d₂): $\delta = 8.10$ (br t, ³*J*_{HH} = 5.8 Hz, 1H, P=CH), 7.58 (d, ⁴*J*_{PH} = 4.6 Hz, 2H, *m*-mes*), 2.75 (br dm, ²*J*_{PH} = 21.0 Hz, 2H, PCH₂), 2.27 (br d, ³*J*_{PH} = 53.9 Hz, 2H, ⁼CH₂B), 1.95 (br dm, ³*J*_{PH} = 29.8 Hz, 2H, BCH₂), 1.47 (s, 18H, *o*-^{*t*}Bu), 1.28 (s, 9H, *p*-^{*t*}Bu).

¹H{sel-³¹P: δ 148.8} NMR (500 MHz, 233 K, dichloromethane-d₂)[selected resonances]: $\delta = 8.10$ (br t, ${}^{3}J_{\text{HH}} = 5.8$ Hz, 1H, P=CH), 7.58 (s, 2H, *m*-mes*), 2.75 (br m, 2H, PCH₂), 2.27 (br, 2H, ⁼CH₂B), 1.95 (br, 2H, BCH₂).

¹³C{¹H} NMR (151 MHz, 233 K, dichloromethane-d₂): $\delta = 172.1$ (d, ${}^{1}J_{PC} = 112.2$ Hz, P=CH), 157.9 (d, ${}^{2}J_{PC} = 5.2$ Hz, *o*-mes*), 157.2 (d, ${}^{4}J_{PC} = 2.8$ Hz, *p*-mes*), 148.2 (dm, ${}^{1}J_{FC} \sim 240$ Hz, C₆F₅), 137.8 (dm, ${}^{1}J_{FC} \sim 245$ Hz, *p*-C₆F₅), 136.4 (dm, ${}^{1}J_{FC} \sim 245$ Hz, *m*-C₆F₅), 126.1 (br, *i*-C₆F₅), 123.8 (d, ${}^{3}J_{PC} = 12.6$ Hz, *m*-mes*), 113.2 (d, ${}^{1}J_{PC} = 65.7$ Hz, *i*-mes*), 38.1 (d, ${}^{3}J_{PC} = 2.4$ Hz, *o*-^{*t*}Bu^C), 35.5 (*p*-^{*t*}Bu^C), 32.6 (*o*-^{*t*}Bu^{CH3}), 32.4 (d, ${}^{1}J_{PC} = 39.4$ Hz, PCH₂), 30.6 (br, ${}^{=}$ CH₂B), 30.4 (*p*-^{*t*}Bu^{CH3}), 18.6 (br, BCH₂).

¹**H**,¹**H** GCOSY (600 MHz/600 MHz, 233 K, dichloromethane-d₂) [selected traces]: δ¹H/δ¹H: 8.10/2.27 (P=CH/⁼CH₂B), 7.58/1.47, 1.28 (*m*-mes*/*o*-^{*t*}Bu, *p*-^{*t*}Bu), 2.75/2.27 (PCH₂/⁼CH₂B), 2.75/1.95 (PCH₂/BCH₂).

¹**H**, ¹³**C GHSQC** (600 MHz/151 MHz, 233 K, dichloromethane-d₂) [selected traces]: δ¹H/δ¹³C: 8.10/172.1 (P=CH), 7.58/123.8 (*m*-mes*), 2.75/32.4 (PCH₂), 2.27/30.4 (⁼CH₂B), 1.95/18.6 (BCH₂), 1.47/32.6 (*o*-'Bu), 1.28/30.4 (*p*-'Bu).

¹**H**, ¹³**C GHMBC** (600 MHz/151 MHz, 233 K, dichloromethane-d₂) [selected traces]: δ¹H/δ¹³C: 8.10/32.4 (P=CH/PCH₂), 7.58/157.9, 157.2, 123.8, 113.2, 38.1, 35.5 (*m*-mes*/*o*-mes*, *p*-mes*, *m*-mes*, *i*-mes*, *o*-'Bu^C, *p*-'Bu^C), 1.47/157.9, 38.1, 32.6 (*o*-'Bu/*o*-mes*, *o*-'Bu^C, *o*-'Bu^{CH3}), 1.28/157.2, 35.5, 30.4 (*p*-'Bu/*p*-mes*, *p*-'Bu^C, *p*-'Bu^C).

¹¹B{¹H} NMR (192 MHz, 233 K, dichloromethane-d₂): $\delta = -15.8 (v_{1/2} \sim 120 \text{ Hz}).$

¹⁹**F NMR** (564 MHz, 233 K, dichloromethane-d₂): $\delta = -133.9$ (m, 2F, *o*-C₆F₅), -162.4 (t, ³*J*_{FF} ~ 20 Hz, 1F, *p*-C₆F₅), -165.6 (m, 2F, *m*-C₆F₅) [Δδ¹⁹F_{*pm*} = 3.2].

³¹P{¹H} NMR (243 MHz, 233 K, dichloromethane-d₂): $\delta = 148.8 (v_{1/2} \sim 40 \text{ Hz}).$

¹¹B{¹H} NMR (192 MHz, 233 K, dichloromethane-d₂), ¹⁹F NMR (564 MHz, 233 K, dichloromethane-d₂) and ³¹P{¹H} NMR (243 MHz, 233 K, dichloromethane-d₂) spectra of **5a**.

(2) Preparative scale: Inside a glove box: bis(pentafluorophenyl)borane (150 mg, 0.43 mmol) was added to a solution of **6a** (141 mg. 0.43 mmol) in dichloromethane (1 mL) and then the reaction mixture was kept in a fridge at -35°C. After 8 days crystals of **5a** (100 mg, 35%) suitable for the X-ray crystal structure analysis were obtained. **HRMS:** M+H⁺ (C₃₄H₃₆BF₁₀PH⁺): calc. 677.25667, found 677.25638.

X-ray crystal structure analysis of compound **5a**: formula $C_{34}H_{36}BF_{10}P$, M = 676.41 colourless crystal, 0.30 x 0.05 x 0.03 mm, a = 13.2615(8), b = 14.2777(9), c = 17.5650(15) Å, $\alpha = 101.998(4)$, $\beta = 96.776(6)$, $\gamma = 91.480(6)^{\circ}$, V = 3226.1(4) Å³, $\rho_{calc} = 1.393$ gcm⁻³, $\mu = 1.486$ mm⁻¹, empirical absorption correction (0.664 $\leq T \leq 0.956$), Z = 4, triclinic, space group $P\overline{1}$ (No. 2), $\lambda = 1.54178$ Å, T = 223(2) K, ω and φ scans, 40714 reflections collected ($\pm h$, $\pm k$, $\pm l$), [($\sin\theta$)/ λ] = 0.60 Å⁻¹, 11064 independent ($R_{int} = 0.059$) and 8445 observed reflections [$I > 2\sigma(I)$], 1033 refined parameters, R = 0.049, $wR^2 = 0.127$, max. (min.) residual electron density 0.26 (-0.28) e.Å⁻³, hydrogen atoms calculated and refined as riding atoms.

-S9 of 74-

(3) Preparative scale: Inside a glove box: a dichloromethane (50 mL) solution of bis(pentafluorophenyl)borane (346 mg, 1.00 mmol) was added slowly (over ca. 5 min) to a dichloromethane (50 mL) solution of (2,4,6-tri-*tert*-butylphenyl)divinylphosphane (6a) (330 mg, 1.00 mmol) which gave a yellowish reaction solution. The solvent was removed in vacuo for 1 h at 0°C, then the obtained residue was dissolved in a minimum amount of dichloromethane (ca. 3 mL) and put into a fridge (-35°C) for a few days. The solution was concentrated to ca. 1.5 mL. Then *n*-pentane (1.5 mL) was added to give a suspension. After filtration compound 5a (277 mg, 41%) was isolated as a white powder.

Elemental analysis: Calcd. for C₃₄H₃₆BF₁₀P: C, 60.37; H, 5.36. Found: C 59.72, H 5.44. **Melting point (DSC):** 113°C

Preparation of Pyridine Adduct 7a.

 1^{st} experiment: Inside a glove box: a precooled (-35°C) solution of bis(pentafluorophenyl)borane (9.5 mg, 0.026 mmol, 1.0 eq.) in dichloromethane-d₂ (0.25 mL) was slowly added to a precooled (-35°C) dichloromethane-d₂ solution (0.25 mL) of **6a** (9.1 mg, 0.027 mmol, 1.0 eq.). Then the reaction mixture was transferred to an NMR tube. After 1 min at room temperature, pyridine (2.2 µL, 0.27 mmol, 1.0 eq.) was added which gave the pyridine adduct **7a** almost quantitatively.

HRMS: M+H⁺ (C₃₉H₄₁BF₁₀NPH⁺): calc. 756.29895, found 756.29672.

¹**H NMR** (500 MHz, 299 K, dichloromethane-d₂): $\delta = 8.63$ (m, 2H, *o*-Py), 8.12 (m, 1H, *p*-Py), 7.65 (m, 2H, *m*-Py), 7.37 (d, ⁴*J*_{PH} = 1.9 Hz, 2H, *m*-mes*), 6.60 (ddd, ²*J*_{PH} = 21.7 Hz, ³*J*_{HH} = 18.5 Hz, ³*J*_{HH} = 12.5 Hz, 1H, =CH₂, 5.37 (ddd, ³*J*_{PH} = 19.3 Hz, ³*J*_{HH} = 12.5 Hz, ²*J*_{HH} = 1.9 Hz, 1H, =CH₂^{*E*}), 4.89 (ddd, ³*J*_{HH} = 18.5 Hz, ³*J*_{PH} = 6.1 Hz, ²*J*_{HH} = 1.9 Hz, 1H, =CH₂^{*Z*}), 1.81, 1.51 (each m, each 1H, PCH₂)^a, 1.49, 1.19 (each m, each 1H, BCH₂)^a, 1.43 (s, 18H, *o*-'Bu^{CH3}), 1.26 (s, 9H, *p*-'Bu^{CH3}), [^a from ghsqc experiment].

¹³C{¹H} NMR (126 MHz, 299 K, dichloromethane-d₂): $\delta = 158.7$ (d, ²*J*_{PC} = 12.4 Hz, *o*-mes*), 150.2 (d, ⁴*J*_{PC} = 2.3 Hz, *p*-mes*), 146.2 (*o*-Py), 142.2 (*p*-Py), 142.0 (d, ¹*J*_{PC} = 28.9 Hz, =CH), 132.5 (d, ¹*J*_{PC} = 41.2 Hz, *i*-mes*), 126.5 (*m*-Py), 124.4 (*i*-C₆F₅), 122.9 (d, ³*J*_{PC} = 7.0 Hz, *m*-mes*), 118.3 (d, ²*J*_{PC} = 15.9 Hz, =CH₂), 39.4 (d, ³*J*_{PC} = 4.0 Hz, *o*-'Bu^C), 35.0 (d, ⁵*J*_{PC} = 0.8 Hz, *p*-'Bu^C), 34.2 (d, ⁴*J*_{PC} = 7.4 Hz, *o*-'Bu^{CH3}), 31.2 (*p*-'Bu^{CH3}), 26.1 (d, ¹*J*_{PC} = 21.1 Hz, PCH₂), 21.5 (br, BCH₂), [C₆F₅ not listed].

¹**H**, ¹**H GCOSY** (500 MHz/500 MHz, 299 K, dichloromethane-d₂) [selected traces]: δ¹H/ δ¹H: 8.63/8.12, 7.65 (*o*-Py/*p*-Py, *m*-Py), 6.60/5.37, 4.89 (=CH/=CH₂^E, =CH₂^Z), 1.81/1.51, 1.49, 1.19 (PCH₂/PCH₂', BCH₂, BCH₂).

¹**H**, ¹³**C GHSQC** (500 MHz/126 MHz, 299 K, dichloromethane-d₂) [selected traces]: δ^{1} H/ δ^{13} C: 8.63/146.42(*o*-Py), 8.12/142.2 (*p*-Py), 7.65/126.5 (*m*-Py), 7.37/122.9 (*m*-mes*), 6.60/142.0 (=CH), 5.37/118.3 (=CH₂^E), 4.89/118.3 (=CH₂^Z), 1.81/26.1 (PCH₂), 1.51/26.1 (PCH₂'), 1.49/21.5 (BCH₂), 1.43/34.2 (*o*-^{*t*}Bu), 1.26/31.2 (*p*-^{*t*}Bu), 1.19/21.5 (BCH₂').

¹**H**, ¹³**C GHMBC** (500 MHz/126 MHz, 299 K, dichloromethane-d₂) [selected traces]: δ^{1} H/ δ^{13} C: 7.37/132.5, 122.9, 39.4, 35.0 (*m*-mes*/*i*-mes*, *m*-mes*, *o*-'Bu^C, *p*-'Bu^C), 1.43/158.7, 39.4, 34.2 (*o*-'Bu^{CH3}/*o*-mes*, *o*-'Bu^C, *o*-'Bu^{CH3}), 1.26/150.2, 35.0, 31.2 (*p*-'Bu^{CH3}/*p*-mes*, *p*-'Bu^C, *p*-'Bu^{CH3}).

¹¹B{¹H} NMR (160 MHz, 299 K, dichloromethane-d₂): $\delta = -0.7 (v_{1/2} \sim 250 \text{ Hz}).$

¹⁹**F** NMR (470 MHz, 299 K, dichloromethane-d₂): $\delta = -132.0$ (m, 4F, *o*-C₆F₅), -159.1 (t, ³J_{FF} = 20.3 Hz, 1F, *p*-C₆F₅), -159.2 (t, ³J_{FF} = 20.3 Hz, 1F, *p*-C₆F₅), -164.5 (m, 4F, *m*-C₆F₅). [Δδ¹⁹F_{*pm*} = 5.4, 5.3] ³¹P{¹H} NMR (202 MHz, 299 K, dichloromethane-d₂): $\delta = -17.3$ (v_{1/2} ~ 8 Hz).

 $^{1}\mathbf{H}$ 8.2 8.1 8.7 8.6 8.5 8.4 8.3 8.0 7.9 7.8 7.7 7.6 7.5 101 6.8 6.7 6.6 6.5 6.4 6.3 6.2 6.1 6.0 5.9 5.8 5.7 5.6 5.5 5.4 5.3 5.2 5.1 5.0 4.9 4.8 1.5 2.0 1.0 0.5 6.0 5.5 5.0 4.5 4.0 9.0 8.5 8.0 7.5 7.0 6.5 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 ¹*H* NMR (500 MHz, 299 K, dichloromethane- d_2) spectrum of **7a**.

 2^{nd} experiment (starting from compound 5*a*): Inside a glove box: Pyridine (7.9 µL, 0.098 mmol) was added to a precooled (-35°C) solution of 5*a* (66.6 mg, 0.098 mmol, 1.0 eq.) in dichloromethane-d₂ (0.5 mL) Then the reaction mixture was transferred to an NMR tube. After the NMR measurements, the solution was evaporated and then the obtained residue was dissolved in a minimum amount of *n*-pentane (ca. 2 mL). Slow diffusion of the solvent at -35°C gave crystals of 7*a* (659 mg, 89%) which were suitable for the X-ray crystal structure analysis.

Calcd. for C₃₉H₄₁BF₁₀NP: C, 62.00; H, 5.47; N, 1.85. Found: C, 62.10; H, 5.62; N, 1.63.

¹**H NMR** (600 MHz, 299 K, dichloromethane-d₂): $\delta = 8.64$ (d, ³*J*_{HH} = 5.7 Hz, 2H, *o*-Py), 8.12 (tt, ³*J*_{HH} = 7.7 Hz, ⁴*J*_{HH} = 1.5 Hz, 1H, *p*-Py), 7.66 (m, 2H, *m*-Py), 7.38 (d, ⁴*J*_{PH} = 1.9 Hz, 2H, *m*-mes*), 6.61 (ddd, ²*J*_{PH} = 21.7 Hz, ³*J*_{HH} = 18.5 Hz, ³*J*_{HH} = 12.5 Hz, 1H, =CH), 5.38 (ddd, ³*J*_{PH} = 19.3 Hz, ³*J*_{HH} = 12.5 Hz, ²*J*_{HH} = 1.9 Hz, 1H, =CH₂^{*E*}), 4.90 (ddd, ³*J*_{HH} = 18.5 Hz, ³*J*_{PH} = 6.0 Hz, ²*J*_{HH} = 1.9 Hz, 1H, =CH₂^{*Z*}), 1.81, 1.51 (each m, each 1H, PCH₂)^a, 1.49, 1.19 (each m, each 1H, BCH₂)^a, 1.44 (s, 18H, *o*-^{*t*}Bu^{CH3}), 1.27 (s, 9H, *p*-^{*t*}Bu^{CH3}), [^a from ghsqc experiment].

¹³C{¹H} NMR (151 MHz, 299 K, dichloromethane-d₂): $\delta = 158.7$ (d, ²*J*_{PC} = 12.3 Hz, *o*-mes*), 150.2 (d, ⁴*J*_{PC} = 2.3 Hz, *p*-mes*), 146.2 (*o*-Py), 142.2 (*p*-Py), 142.1 (d, ¹*J*_{PC} = 29.0 Hz, =CH), 132.5 (d, ¹*J*_{PC} = 41.2 Hz, *i*-mes*), 126.5 (*m*-Py), 123.0 (d, ³*J*_{PC} = 6.9 Hz, *m*-mes*), 118.3 (d, ²*J*_{PC} = 15.8 Hz, =CH₂), 39.4 (d, ³*J*_{PC} = 4.1 Hz, *o*-^{*t*}Bu^C), 35.0 (d, ⁵*J*_{PC} = 0.8 Hz, *p*-^{*t*}Bu^C), 34.2 (d, ⁴*J*_{PC} = 7.3 Hz, *o*-^{*t*}Bu^{CH3}), 31.3 (*p*-^{*t*}Bu^{CH3}), 26.2 (d, ¹*J*_{PC} = 21.1 Hz, PCH₂), 21.5 (br, BCH₂), [C₆F₅ not listed].

¹¹B{¹H} NMR (192 MHz, 299 K, dichloromethane-d₂): $\delta = -0.6 (v_{1/2} \sim 270 \text{ Hz}).$

¹⁹**F NMR** (564 MHz, 299 K, dichloromethane-d₂): $\delta = -132.0$ (m, 4F, *o*-C₆F₅), -159.1 (t, ³J_{FF} = 20.3 Hz, 1F, *p*-C₆F₅), -159.2 (t, ³J_{FF} = 20.3 Hz, 1F, *p*-C₆F₅), -164.5 (m, 4F, *m*-C₆F₅). [Δδ¹⁹F_{*pm*} = 5.4, 5.3] ³¹P{¹H} **NMR** (243 MHz, 299 K, dichloromethane-d₂): $\delta = -17.3$ (v_{1/2} ~ 8 Hz).

X-ray crystal structure analysis of compound **7a**: formula $C_{39}H_{41}BF_{10}NP$, M = 755.51 colourless crystal, 0.10 x 0.05 x 0.02 mm, a = 38.3733(7), b = 9.7770(2), c = 22.7086(6) Å, $\beta = 117.195(1)^{\circ}$, V = 7577.9(3) Å³, $\rho_{calc} = 1.324$ gcm⁻³, $\mu = 1.331$ mm⁻¹, empirical absorption correction (0.878 $\leq T \leq 0.973$), Z = 8, monoclinic, space group C2/c (No. 15), $\lambda = 1.54178$ Å, T = 223(2) K, ω and φ scans, 36118 reflections collected ($\pm h, \pm k, \pm l$), [(sin θ)/ λ] = 0.60 Å⁻¹, 6534 independent ($R_{int} = 0.079$) and 4516 observed reflections [$I > 2\sigma(I)$], 509 refined parameters, R = 0.051, $wR^2 = 0.141$, max. (min.) residual electron density 0.39 (-0.26) e.Å⁻³, hydrogen atoms calculated and refined as riding atoms.

Preparation of Phosphonium Hydridoborate 8a.

A dichloromethane solution (20 mL) of bis(pentafluorophenyl)borane (71.0 mg, 0.21 mmol) was slowly added to a dichloromethane solution (20 mL) of **6a** (70.0 mg, 0.21 mmol) at room temperature and the reaction mixture was stirred for 10 min. Then the reaction solution was cooled to -40° C, concentrated to ca. 1 mL in vacuo and subsequently reacted with dry H₂ (1.5 bar after evacuation of argon) for 1 h. After slowly warming to room temperature under dihydrogen pressure, the solution was stirred for another 30 min and then the solvent was removed in vacuo. Crystallization attempt from dichloromethane/*n*-pentane gave crystals suitable for the X-ray crystal structure analysis (**8a**: 70 mg, 49%).

Calcd. for C₃₄H₃₈BF₁₀P: C, 60.19; H, 5.65. Found: C, 59.81; H, 5.36. **HRMS:** M+H⁺ (C₃₉H₄₁BF₁₀PH⁺): calc. 756.29895, found 756.29875. ¹**H NMR** (500 MHz, 273 K, dichloromethane-d₂): δ = 7.59 (d, ⁴*J*_{PH} = 4.6 Hz, 2H, *m*-mes*), 7.18 (dm, ¹*J*_{PH} ~ 484 Hz, 1H, PH), 6.51 (m, 1H, =CH)^a, 6.47^a, 5.98 (each m, each 1H, =CH₂), 2.72 (br, 1H, BH), 2.70, 2.49 (each m, each 1H, PCH₂), 1.45 (br, 18H, *o*-^{*t*}Bu^{CH3}), 1.31 (s, 9H, *p*-^{*t*}Bu^{CH3}), 1.10, 0.99 (each m, each 1H, BCH₂), [^a from ghsqc experiment].

¹³C{¹H} NMR (126 MHz, 273 K, dichloromethane-d₂): δ = 159.4 (br, *o*-mes^{*}), 157.0 (d, ⁴J_{PC} = 3.5 Hz, *p*-mes^{*}), 139.6 (=CH₂), 126.0 (br, *m*-mes^{*}), 121.9 (d, ¹J_{PC} = 70.9 Hz, =CH), 108.3 (d, ¹J_{PC} = 73.7 Hz, *i*-mes^{*}), 39.0 (d, ³J_{PC} = 3.4 Hz, *o*-^{*t*}Bu^C), 35.4 (*p*-^{*t*}Bu^C), 33.7 (*o*-^{*t*}Bu^{CH3}), 30.6 (*p*-^{*t*}Bu^{CH3}), 28.1 (d, ¹J_{PC} = 37.5 Hz, PCH₂), 18.0 (br, BCH₂), [C₆F₅ not listed].

¹**H**,¹**H** GCOSY (500 MHz/500 MHz, 273 K, dichloromethane-d₂) [selected traces]: δ¹H/ δ¹H: 7.18/2.70, 2.49 (PH/PCH₂, PCH₂'), 2.72/2.49, 1.10, 0.99 (PCH₂/ PCH₂', BCH₂, BCH₂').

¹**H**,¹³**C GHSQC** (500 MHz/126 MHz, 273 K, dichloromethane-d₂) [selected traces]: δ¹H/δ¹³C: 7.59/126.0 (*m*-mes*), 6.51/121.9 (=CH), 6.51/139.6 (=CH₂), 5.98/139.6 (=CH₂'), 2.70/28.1 (PCH₂), 2.49/28.1 (PCH₂'), 1.45/33.7 (*o*-^{*t*}Bu^{CH3}), 1.31/30.6 (*p*-^{*t*}Bu^{CH3}), 1.10/28.1 (BCH₂), 0.99/28.1 (BCH₂').

¹**H**,¹³**C GHMBC** (500 MHz/126 MHz, 273 K, dichloromethane-d₂) [selected traces]: δ^{1} H/ δ^{13} C: 7.59/126.0, 108.3, 39.0, 35.4 (*m*-mes*/*m*-mes*, *i*-mes*, *o*-*'*Bu^C, *p*-*'*Bu^C), 1.45/159.4, 39.0, 33.7 (*o*-*'*Bu^{CH3}/*o*-mes*, *o*-*'*Bu^C, *o*-*'*Bu^{CH3}), 1.31/157.0, 35.4, 30.6 (*p*-*'*Bu^{CH3}/*p*-mes*, *p*-*t*Bu^C, *p*-*t*Bu^{CH3}).

¹¹B{¹H} NMR (160 MHz, 273 K, dichloromethane-d₂): $\delta = -20.6 (v_{1/2} \sim 65 \text{ Hz}).$

¹¹**B** NMR (160 MHz, 273 K, dichloromethane-d₂): $\delta = -20.6$ (d, ¹ $J_{BH} \sim 88$ Hz).

¹⁹**F NMR** (470 MHz, 273 K, dichloromethane-d₂): $\delta = -134.0$ (m, 4F, *o*-C₆F₅), -163.90, 163.94 (each t, each ³J_{FF} = 21 Hz, each 1F, *p*-C₆F₅), -166.7 (m, 4F, *p*-C₆F₅), [Δδ¹⁹F_{*pm*} = 2.8].

³¹**P NMR** (202 MHz, 273 K, dichloromethane-d₂): $\delta = 4.2$ (d, ${}^{1}J_{PH} \sim 484$ Hz).

³¹P{¹H} NMR (202 MHz, 273 K, dichloromethane-d₂): δ = 4.2 (v_{1/2} ~ 60 Hz).

¹¹BNMR, ¹¹B{¹H} NMR (160 MHz, 273 K, dichloromethane-d₂), ³¹P NMR and ³¹P{¹H} NMR (202 MHz, 273 K, dichloromethane-d₂) spectra of **8a**.

X-ray crystal structure analysis of comound **8a**: formula $C_{34}H_{38}BF_{10}P$, M = 678.42 colourless crystal, 0.25 x 0.17 x 0.12 mm, a = 10.7438(4), b = 17.8343(5), c = 18.5450(5) Å, $\beta = 106.201(2)^{\circ}$, V = 3412.26(18) Å³, $\rho_{calc} = 1.321$ gcm⁻³, $\mu = 1.405$ mm⁻¹, empirical absorption correction (0.720 $\leq T \leq 0.849$), Z = 4, monoclinic, space group $P2_1/n$ (No. 14), $\lambda = 1.54178$ Å, T = 223(2) K, ω and φ scans, 23360 reflections collected ($\pm h, \pm k, \pm l$), [($\sin \theta$)/ λ] = 0.60 Å⁻¹, 5881 independent ($R_{int} = 0.040$) and 4915 observed reflections [$I > 2\sigma(I)$], 492 refined parameters, R = 0.061, $wR^2 = 0.164$, max. (min.) residual electron density 0.25 (-0.43) e.Å⁻³, the hydrogen atoms at P1 and B1 were refined freely, others hydrogen atoms were calculated and refined as riding atoms.

Preparation of Phosphirane 9a.

(a) Preparation and NMR Data.

(1) NMR scale: Inside a glove box: a dichloromethane-d₂ solution (0.3 mL) of bis(pentafluorophenyl)borane (4.5 mg, 0.013 mmol) was slowly added to a dichloromethane-d₂ solution (0.3 mL) of **6a** (4.0 mg, 0.012 mmol) while permanently shaking. The reaction mixture was

transferred to a NMR tube which was sealed and left at room temperature for 3 days to eventually give compound 9a (> 99% conversion).

¹**H** NMR (500 MHz, 299 K, dichloromethane-d₂): $\delta = 7.43$ (dd, ⁴*J*_{HH} = 3.8 Hz, ⁴*J*_{PH} = 2.2 Hz, 1H, *m*-mes*), 7.38 (dd, ⁴*J*_{HH} = 3.8 Hz, ⁴*J*_{PH} = 2.2 Hz, 1H, *m*'-mes*), 2.52, 2.05 (each m, each 1H, CH₂), 2.39 (m, 1H, PCH), 1.74, 1.35 (each m, each 1H, PCH₂), 1.63, 1.55 (each m, each 1H, BCH₂)^a, 1.47 (s, 9H, *o*-^{*t*}Bu), 1.34 (s, 9H, *o*'-^{*t*}Bu), 1.28 (s, 9H, *p*-^{*t*}Bu).

¹³C{¹H} NMR (126 MHz, 299 K, dichloromethane-d₂): $\delta = 158.5$ (d, ${}^{2}J_{PC} = 6.2$ Hz, *o*-mes*), 157.0 (*o*'-mes*), 152.6 (*p*-mes*), 148.5 (dm, ${}^{1}J_{FC} \sim 240$ Hz, C₆F₅), 140.1 (dm, ${}^{1}J_{FC} \sim 246$ Hz, C₆F₅), 137.5 (dm, ${}^{1}J_{FC} \sim 256$ Hz, C₆F₅), 125.7 (d, ${}^{3}J_{PC} = 7.8$ Hz, *m*'-mes*), 125.3 (d, ${}^{3}J_{PC} = 8.1$ Hz, *m*-mes*), 121.9 (*i*-mes*), 120.0 (br, *i*-C₆F₅), 39.1 (d, ${}^{3}J_{PC} = 1.0$ Hz, *o*'-^{*i*}Bu^C), 38.5 (d, ${}^{3}J_{PC} = 1.1$ Hz, *o*-^{*i*}Bu^C), 35.2 (d, ${}^{1}J_{PC} = 3.7$ Hz, PCH), 35.1 (*p*-^{*i*}Bu^C), 34.2 (*o*-^{*i*}Bu^{CH3}), 33.6 (*o*'-^{*i*}Bu^{CH3}), 33.3 (br, *o*-^{*i*}Bu^{CH3}), 31.0 (*p*-^{*i*}Bu^{CH3}), 27.3 (d, ${}^{3}J_{PC} = 11.6$ Hz, CH₂), 26.4 (d, ${}^{1}J_{PC} = 13.8$ Hz, PCH₂), 23.8 (br, BCH₂).

¹**H**,¹**H** GCOSY (600 MHz/600 MHz, 299 K, dichloromethane-d₂) [selected traces]: δ¹H/δ¹H: 7.43/7.38 (*m*-mes*/*m*'-mes*), 2.52/2.39, 2.05, 1.63, 1.55 (CH₂/PCH, CH₂', BCH₂, BCH₂'), 2.39/1.74, 1.35 (PCH/PCH₂, PCH₂').

¹**H**,¹³**C GHSQC** (500 MHz/126 MHz, 299 K, dichloromethane-d₂) [selected traces] δ¹H/δ¹³C: 7.43/125.3 (*m*-mes*), 7.38/125.7 (*m*'-mes*), 2.52/27.3 (CH₂), 2.39/35.2 (PCH), 2.05/27.3 (CH₂), 1.74/26.4 (PCH₂), 1.63/23.8 (BCH₂), 1.55/23.8 (BCH₂'), 1.47/33.3 (*o*-'Bu^{CH3}), 1.35/26.4 (PCH₂'), 1.34/33.6 (*o*'-'Bu^{CH3}), 1.28/31.0 (*p*-'Bu^{CH3}).

¹**H**,¹³**C GHMBC** (500 MHz/126 MHz, 299 K, dichloromethane-d₂) [selected traces]: δ¹H/δ¹³C: 7.43/125.7, 121.9, 38.5, 35.1 (*m*-mes*/*m*²-mes*, *i*-mes*, *o*- ^{*t*}Bu^C, *p*- ^{*t*}Bu^C), 7.38/125.3, 121.9, 39.1, 35.1 (*m*²-mes*/*m*-mes*, *i*-mes*, *o*²- ^{*t*}Bu^C, *p*- ^{*t*}Bu^C), 2.52/35.2, 26.4, 23.8 (CH₂/PCH, PCH₂, BCH₂), 1.47/158.5, 38.5, 33.3 (*o*-^{*t*}Bu/*o*-mes*, *o*-^{*t*}Bu^C, *o*- ^{*t*}Bu^{CH3}), 1.34/157.0, 39.1, 33.6 (*o*²-^{*t*}Bu/*o*²-mes*, *o*²-^{*t*}Bu^{CH3}), 1.28/152.6, 35.1, 31.0 (*p*-^{*t*}Bu/*p*-mes*, *p*- ^{*t*}Bu^C, *p*-^{*t*}Bu^{CH3}).

¹¹B{¹H} NMR (160 MHz, 299 K, dichloromethane-d₂): $\delta = 1.5 (v_{1/2} \sim 300 \text{ Hz}).$

¹⁹**F** NMR (470 MHz, dichloromethane-d₂): $\delta = -128.5$ (br, 2F, *o*-C₆F₅), -158.3 (br, 1F, *p*-C₆F₅), -164.8 (m, 2F, *m*-C₆F₅), [Δδ¹⁹F_{*pm*} = 6.5].

³¹P{¹H} NMR (202 MHz, 299 K, dichloromethane-d₂): $\delta = -137.5 (v_{1/2} \sim 40 \text{ Hz}).$

¹¹B{¹H} NMR (160 MHz, 299 K, dichloromethane-d₂), ¹⁹F NMR (470 MHz, 299 K, dichloromethane-d₂) and ³¹P{¹H} NMR (202 MHz, 299 K, dichloromethane-d₂) spectra of **9a**.

(2) Preparative scale: Inside a glove box: a dichloromethane solution (15 mL) of bis(pentafluorophenyl)borane (520 mg, 1.50 mmol) was slowly added to a precooled (-35°C) dichloromethane solution (15 mL) of **6a** (500 mg, 1.51 mmol) while permanent shaking. After the reaction mixture was stored at room temperature for 3 days, all volatiles were removed in vacuo to give compound **9a** (830 mg, 82% isolated yield). **HRMS:** M+H⁺ (C₃₄H₃₆BF₁₀PH⁺): calc. 677.25634, found 677.25667. [*Comment:* since isomerization from **5a** to **9a** is extremely air sensitive, one should be very careful not to allow any contact with the air.]

(3) Preparative scale (starting from 5a): Inside a glove box: 5a (100 mg, 0.148 mmol) was dissolved in dichloromethane (15 mL) and kept for 3 days at room temperature to give compound 9a (98 mg, 98%).

Elemental analysis: Calcd. for C₃₄H₃₆BF₁₀P: C, 60.37; H, 5.36. Found: C, 59.78; H, 5.41.

(b) Dynamic NMR Experiments.

¹⁹F NMR (470 MHz, 299K to 183 K, dichloromethane-d₂) spectra of **9a**.

 $\Delta G^{\ddagger} = RT_{c}(22.96 + \ln(T_{c}/\delta v))$ $T_{c} = \text{coalescence temperature [K]: 263 K (^{19}F, p-C_{6}F_{5})}$ $\delta v = \text{chemical shift difference [Hz] (^{19}F, p-C_{6}F_{5}, 183 K): 980 Hz}$ R = 8.314 J/(mol K); 1 J = 0.239 cal $\Delta G^{\ddagger}[263K, \Delta v(183K) = 980 \text{Hz}] = 47328 \text{ J/mol} = 11.3 \pm 0.3 \text{ kcal mol}^{-1}$

Preparation of Pyridine Adduct 10a.

Inside a glove box: pyridine (24.2 μ L, 0.30 mmol) was added to a dichloromethane solution (2 mL) of **9a** (200 mg, 0.30 mmol) and the obtained reaction mixture was shaken for ca. 10 seconds. After crystallization of the reaction mixture from dichloromethane at -35° C by slow evaporation of the solvent, product **10a** was obtained as a crystalline solid (67.5 mg, 30% yield). The obtained crystals were suitable for the X-ray crystal structure analysis.

Elemental analysis: Calcd. for C₃₉H₄₁BF₁₀NP: C, 62.00; H, 5.47; N, 1.85. Found: C, 62.07; H, 5.53 N, 1.57.

HRMS: M+H⁺ (C₃₉H₄₁BF₁₀NPH⁺): calc. 756.29895, found 756.29672.

¹**H NMR** (500 MHz, 299 K, dichloromethane-d₂): $\delta = 8.65$ (m, 2H, *o*-Py), 8.12 (m, 1H, *p*-Py), 7.66 (m, 2H, *m*-Py), 7.18 (br, *m*-mes*), 7.17 (br, *m*'-mes*), 1.67, 0.62 (each m, each 1H, CH₂), 1.58 (br, 9H, *o*-'Bu), 1.54 (br, 9H, *o*'-'Bu), 1.38, 1.32 (each m, each 1H, BCH₂)^a, 1.26 (m, 1H, PCH)^{a,b}, 1.26 (s, 9H, *p*-'Bu), 0.98 (dd, ²J_{PH} = 9.7 Hz, ²J_{HH} = 6.8 Hz), 0.86 (dt, ²J_{PH} = 19.7 Hz, ²J_{HH} ~ ³J_{HH} = 6.8 Hz)(each 1H, PCH₂), [^a from the ghsqc experiment; ^b from the tocsy experiment]

¹³C{¹H} NMR (126 MHz, 299 K, dichloromethane-d₂): $\delta = 156.0$ (br d, ${}^{2}J_{PC} = 4.0$ Hz, o'-mes*), 155.8 (br d, ${}^{2}J_{PC} = 4.0$ Hz, o-mes*), 148.0 (p-mes*), 146.2 (o-Py), 142.1 (p-Py), 138.9 (d, ${}^{1}J_{PC} = 58.1$ Hz, i-mes*), 126.4 (m-Py), 122.8 (br, m-mes*), 122.4 (br, m'-mes*), 39.31 (o'-'Bu^C), 39.25 (o-'Bu^C), 34.7 (p-'Bu^C), 34.0 (d, ${}^{4}J_{PC} = 8.4$ Hz, o-'Bu^{CH3}, o'-'Bu^{CH3}), 32.5 (d, ${}^{1}J_{PC} = 39.0$ Hz, PCH), 31.4 (p-'Bu^{CH3}), 29.3 (d, ${}^{2}J_{PC} = 16.7$ Hz, CH₂), 24.1 (br, BCH₂), 22.4 (d, ${}^{1}J_{PC} = 38.3$ Hz, PCH₂), [C₆F₅ not listed].

¹**H**, ¹**H** GCOSY (500 MHz/500 MHz, 299 K, dichloromethane-d₂) [selected traces]: δ¹H/ δ¹H: 8.65/8.12, 7.66 (*o*-Py/*p*-Py, *m*-Py), 1.67/1.38, 1.26, 0.98, 0.62 (CH₂/BCH₂, PCH, PCH₂, CH₂'), 1.26/0.98, 0.86, 0.62 (PCH/PCH₂, PCH₂', CH₂').

¹**H**, ¹³**C GHSQC** (500 MHz/126 MHz, 299 K, dichloromethane-d₂) [selected traces]: δ¹H/δ¹³C: 8.65/146.2 (*o*-Py), 8.12/142.1 (*p*-Py), 7.66/126.4 (*m*-Py), 7.18/122.8 (*m*-mes*), 7.17/122.4 (*m*'-mes*), 1.67/29.3 (CH₂), 1.58/34.0 (*o*-'Bu), 1.54/34.0 (*o*'-'Bu), 1.38, 1.32/24.1 (BCH₂), 1.26/32.5 (PCH), 1.26/31.4 (*p*-'Bu), 0.98/22.4 (PCH₂), 0.86/22.4 (PCH₂'), 0.62/29.5 (CH₂').

¹**H**, ¹³**C GHMBC** (500 MHz/126 MHz, 299 K, dichloromethane-d₂) [selected traces]: δ¹H/δ¹³C: 7.18/138.9, 122.4, 39.25, 34.7 (*m*-mes*/*i*-mes*, *m*'-mes*, *o*-'Bu^C, *p*-'Bu^C), 7.17/138.9, 122.8, 39.31, 34.7 (*m*'-mes*/*i*-mes*, *m*-mes*, *o*'-'Bu^C, *p*-'Bu^C), 1.58/155.8, 39.31, 34.0 (*o*-'Bu/*o*-mes*, *o*-'Bu^C *o*-'Bu^{CH3}), 1.54/156.0, 39.31, 34.0 (*o*'-'Bu/*o*'-mes*, *o*'-'Bu^C, *o*'-'Bu^{CH3}), 1.26/148.0, 34.7, 31.4 (*p*-'Bu/*p*-mes*, *p*-'Bu^C, *p*-'Bu^{CH3}), 0.98/138.9, 29.3 (PCH₂/*i*-mes*, CH₂), 0.86/138.9, 32.5, 29.3 (PCH₂'/*i*-mes*, PCH, CH₂).

¹¹B{¹H} NMR (160 MHz, 299 K, dichloromethane-d₂): $\delta = -0.6 (v_{1/2} \sim 350 \text{ Hz}).$

¹⁹**F NMR** (470 MHz, 299 K, dichloromethane-d₂): $\delta = -132.2, -132.3$ (each m, each 2F, *o*-C₆F₅), -159.1, -159.2 (each t, ³*J*_{FF} = 20.3 Hz, each 1F, *p*-C₆F₅), -164.5, -164.6 (each m, each 2F, *m*-C₆F₅).

³¹P{¹H} NMR (202 MHz, 299 K, dichloromethane-d₂): $\delta = -196.2 (v_{1/2} \sim 5 \text{ Hz}).$

¹*H* NMR (500 MHz, 299 K, dichloromethane- d_2) spectrum of **10a**.

¹¹B{¹H} NMR (160 MHz, 299 K, dichloromethane-d₂) and ³¹P{¹H} NMR (202 MHz, 299 K,

dichloromethane- d_2) spectra of **10a**.

X-ray crystal structure analysis of compound **10a**: formula $C_{39}H_{41}BF_{10}NP$, M = 755.51 colourless crystal, 0.23 x 0.10 x 0.03 mm, a = 10.8542(5), b = 13.8552(5), c = 14.0717(10) Å, $\alpha = 102.350(2)$, $\beta = 96.684(6)$, $\gamma = 111.631(3)^{\circ}$, V = 1876.71(17) Å³, $\rho_{calc} = 1.337$ gcm⁻³, $\mu = 1.344$ mm⁻¹, empirical absorption correction (0.747 $\leq T \leq 0.960$), Z = 2, triclinic, space group $P\bar{1}$ (No. 2), $\lambda = 1.54178$ Å, T = 223(2) K, ω and φ scans, 26113 reflections collected ($\pm h$, $\pm k$, $\pm l$), [($\sin\theta$)/ λ] = 0.60 Å⁻¹, 6459 independent ($R_{int} = 0.047$) and 5426 observed reflections [$I > 2\sigma(I)$], 512 refined parameters, R = 0.045, $wR^2 = 0.117$, max. (min.) residual electron density 0.30 (-0.22) e.Å⁻³, hydrogen atoms calculated and refined as riding atoms.

Preparation of (2,4,6-triisopropylphenyl)divinylphosphane [tippP(CHCH₂)₂] 6b.

Under an argon atmosphere, tippPX₂ [tippPCl₂ 44%, tippPClBr 45%, tippPBr₂ 13% (³¹P{¹H} NMR spectrum), 2.30 g, 6.8 mmol] was dissolved in diethylether (80 mL) and added dropwise to vinyl magnesium chloride (14.9 mL, 1.6 M THF solution: 23.8 mmol) and stirred vigorously at 0°C for 1 h and then at room temperature for 1.5 h. The volatiles were removed in vacuo. The obtained residue was transferred to an alumina gel column (MP Alumina, N, Act. III: 3 cm x 42 cm) for chromatography (eluent: ethyl acetate:*n*-pentane = 580 mL:14 mL). The solutions of the product (TLC [Silica gel 60 F_{254}]: Rf = 0.21: eluent: *n*-pentane) were collected in test tubes, combined and then dried in vacuo (1.60 g or 81% yield).

Comment: THF as solvent and vinyl magnesium bromide (0.7 M THF solution) could also be used in the reaction sequence.

HRMS: M+H⁺ (C₁₉H₂₉PH⁺): calc. 289.2080, found 289.2071.

¹**H NMR** (600 MHz, 299 K, benzene-d₆): $\delta = 7.16$ (d, ⁴*J*_{PH} = 2.5 Hz, 2H, *m*-tipp), 6.54 (td, ²*J*_{PH} ~ ³*J*_{HH} = 18.6 Hz, ³*J*_{HH} = 12.2 Hz, 2H, =CH), 5.46 (ddd, ³*J*_{PH} = 25.8 Hz, ³*J*_{HH} = 12.2 Hz, ²*J*_{HH} = 1.7 Hz, 2H, =CH₂^{*E*}), 5.36 (ddd, ³*J*_{HH} = 18.6 Hz, ³*J*_{PH} = 11.0 Hz, ²*J*_{HH} = 1.7 Hz, 2H, =CH₂^{*Z*}), 3.99 (oct, ³*J*_{HH} ~ ⁴*J*_{PH} = 6.8 Hz, 2H, *o*-^{*i*}Pr^{CH}), 2.75 (sept, ³*J*_{HH} = 6.8 Hz, 1H, *p*-^{*i*}Pr^{CH}), 1.27 (d, ³*J*_{HH} = 6.8 Hz, 12H, *o*-^{*i*}Pr^{CH3}), 1.19 (d, ³*J*_{HH} = 6.8 Hz, 6H, *p*-^{*i*}Pr^{CH3}).

¹**H NMR** (500 MHz, 299 K, dichloromethane-d₂): $\delta = 7.04$ (d, ⁴ $J_{PH} = 2.5$ Hz, 2H, *m*-tipp), 6.60 (ddd, ³ $J_{HH} = 18.5$ Hz, ² $J_{PH} = 18.0$ Hz, ³ $J_{HH} = 12.1$ Hz, 2H, =CH), 5.65 (ddd, ³ $J_{PH} = 26.8$ Hz, ³ $J_{HH} = 12.1$ Hz, ² $J_{HH} = 1.7$ Hz, 2H, =CH₂^{*E*}), 5.38 (ddd, ³ $J_{HH} = 18.5$ Hz, ³ $J_{PH} = 11.4$ Hz, ² $J_{HH} = 1.7$ Hz, 2H, =CH₂^{*E*}), 3.75 (oct, ³ $J_{HH} = 7.0$ Hz, 1H, *p*-^{*i*}Pr^{CH}), 1.25 (d, ³ $J_{HH} = 6.9$ Hz, 6H, *p*-^{*i*}Pr^{CH3}), 1.17 (d, ³ $J_{HH} = 6.8$ Hz, 12H, *o*-^{*i*}Pr^{CH3}).

¹³C{¹H} NMR (151 MHz, 299 K, benzene-d₆): $\delta = 156.1$ (d, ²*J*_{PC} = 14.0 Hz, *o*-tipp), 151.5 (d, ⁴*J*_{PC} = 1.4 Hz, *p*-tipp), 138.2 (d, ¹*J*_{PC} = 16.9 Hz, =CH), 128.7 (d, ¹*J*_{PC} = 12.8 Hz, *i*-tipp), 122.60 (d, ²*J*_{PC} = 17.6 Hz, =CH₂)^t, 122.57 (d, ³*J*_{PC} = 4.7 Hz, *m*-tipp)^t, 34.7 (*p*-^{*i*}Pr^{CH}), 32.5 (d, ³*J*_{PC} = 18.7 Hz, *o*-^{*i*}Pr^{CH}), 25.0 (d, ⁴*J*_{PC} = 0.8 Hz, *o*-^{*i*}Pr^{CH3}), 24.0 (*p*-^{*i*}Pr^{CH3}), [^t tentatively assigned]

¹³C{¹H} NMR (126 MHz, 299 K, dichloromethane-d₂): $\delta = 155.9$ (d, ${}^{2}J_{PC} = 13.9$ Hz, *o*-tipp), 151.5 (*p*-tipp), 138.3 (d, ${}^{1}J_{PC} = 15.8$ Hz, =CH), 128.4 (d, ${}^{1}J_{PC} = 11.9$ Hz, *i*-tipp), 123.1 (d, ${}^{2}J_{PC} = 18.4$ Hz, =CH₂),

122.6 (d, ${}^{3}J_{PC} = 4.6$ Hz, *m*-tipp), 34.7 ($p^{-i}Pr^{CH}$), 32.4 (d, ${}^{3}J_{PC} = 18.6$ Hz, $o^{-i}Pr^{CH}$), 24.8 (d, ${}^{5}J_{PH} = 0.5$ Hz, $o^{-i}Pr^{CH3}$), 23.9 ($p^{-i}Pr^{CH3}$).

¹**H**,¹**H** GCOSY (600 MHz/600 MHz, 299 K, benzene-d₆) [selected traces]: δ^{1} H/ δ^{1} H: 6.54/5.46, 5.36 (=CH/=CH₂^{*E*}, =CH₂^{*Z*}), 3.99/1.27 (*o*-^{*i*}Pr^{CH}/*o*-^{*i*}Pr^{CH3}), 2.75/1.19 (*p*-^{*i*}Pr^{CH3}).

¹**H**,¹³**C GHSQC** (600 MHz/151 MHz, 299 K, benzene-d₆) [selected traces]: δ^{1} H/ δ^{13} C: 7.16/122.57 (*m*-tipp), 6.54/138.2 (=CH), 5.46/122.60 (=CH₂^{*E*}), 5.36/122.60 (=CH₂^{*Z*}), 3.99/32.5 (*o*-^{*i*}Pr^{CH}), 2.75/34.7 (*p*-^{*i*}Pr^{CH}), 1.27/25.0 (*o*-^{*i*}Pr^{CH3}), 1.19/24.0 (*p*-^{*i*}Pr^{CH3}).

¹**H**, ¹³**C GHMBC** (600 MHz/151 MHz, 299 K, benzene-d₆) [selected traces]: δ¹H/δ¹³C: 6.54/138.2, 128.7, 122.60 (=CH/=CH, *i*-tipp, =CH₂), 3.99/156.1, 128.7, 122.57, 25.0 (*o*-^{*i*}Pr^{CH}/*o*-tipp, *i*-tipp, *m*-tipp, *o*-^{*i*}Pr^{CH3}), 2.75/151.5, 122.57, 24.0 (*p*-^{*i*}Pr^{CH}/*p*-tipp, *m*-tipp, *p*-^{*i*}Pr^{CH3}).

³¹P{¹H} NMR (243 MHz, 299 K, benzene-d₆): $\delta = -31.7 (v_{1/2} \sim 1 \text{ Hz}).$

³¹P{¹H} NMR (202 MHz, 299 K, dichloromethane-d₂): $\delta = -32.4 (v_{1/2} \sim 2 \text{ Hz})$.

¹*H* NMR (600 MHz, 299 K, benzene- d_6) and ³¹*P*{¹*H*} NMR (243 MHz, 299 K, benzene- d_6) spectra of **6b**.

Preparation of P/B Frustrated Leiws Pair 4b.

(a) Preparation and NMR Data at Room Temperature.

(1) NMR scale: Inside a glove box: a solution of bis(pentafluorophenyl)borane (28.8 mg, 0.083 mmol, 1.0 eq.) in dichloromethane-d₂ (0.5 mL) was added to a dichloromethane-d₂ solution (0.5 mL) of (2,4,6-triisopropylphenyl)divinylphosphane (**6b**) (23.0 mg, 0.080 mmol, 1.0 eq.). The reaction mixture was kept at -35°C for 24 h, kept at room temperature for 18 h and then transferred to an NMR tube. The reaction gave exclusively compound **4b** which appeared as a pale orange solution in dichloromethane-d₂.

¹**H** NMR (600 MHz, 299 K, dichloromethane-d₂): $\delta = 7.10$ (d, ${}^{4}J_{PH} = 3.2$ Hz, 2H, *m*-tipp), 6.57 (ddd, ${}^{2}J_{PH} = 25.5$ Hz, ${}^{3}J_{HH} = 18.1$ Hz, ${}^{3}J_{HH} = 12.1$ Hz, 1H, =CH), 6.03 (dd, ${}^{3}J_{PH} = 36.6$ Hz, ${}^{3}J_{HH} = 12.1$ Hz, 1H, =CH₂^{*E*}), 5.51 (ddd, ${}^{3}J_{PH} = 19.7$ Hz, ${}^{3}J_{HH} = 18.1$ Hz, ${}^{2}J_{HH} = 0.5$ Hz, 1H, =CH₂^{*Z*}), 3.09, 2.70 (each m, each

1H, PCH₂), 3.04 (br m, 2H, $o^{-i}Pr^{CH}$), 2.90 (sept, ${}^{3}J_{HH} = 6.9$ Hz, 1H, $p^{-i}Pr^{CH}$), 2.08 (dm, ${}^{3}J_{PH} = 62.1$ Hz, 1H, BCH₂), 2.01 (m, 1H, BCH₂'), 1.25 (d, ${}^{3}J_{HH} = 6.9$ Hz, 6H, $p^{-i}Pr^{CH3}$), 1.12 (br d, ${}^{3}J_{HH} = 6.7$ Hz, 6H, $o^{-i}Pr^{CH3}$), 0.96 (br d, ${}^{3}J_{HH} = 6.6$ Hz, 6H, $o^{-i}Pr^{CH3}$).

¹³C{¹H} NMR (151 MHz, 299 K, dichloromethane-d₂): δ = 154.6 (br d, ${}^{2}J_{PC}$ = 8.7 Hz, *o*-tipp), 153.9 (d, ${}^{4}J_{PC}$ = 2.1 Hz, *p*-tipp), 148.0 (dm, ${}^{1}J_{FC} \sim 242$ Hz, *o*-C₆F₅), 139.0 (dm, ${}^{1}J_{FC} \sim 252$ Hz, *p*-C₆F₅), 137.6 (dm, ${}^{1}J_{FC} \sim 247$ Hz, *m*-C₆F₅), 131.9 (d, ${}^{2}J_{PC}$ = 3.4 Hz, =CH₂), 129.2 (d, ${}^{1}J_{PC}$ = 35.2 Hz, =CH), 123.5 (br d, ${}^{3}J_{PC}$ = 7.5 Hz, *m*-tipp), 120.6 (d, ${}^{1}J_{PC}$ = 22.8 Hz, *i*-tipp), 119.7 (br, *i*-C₆F₅), 34.6 (*p*-^{*i*}Pr^{CH}), 32.4 (br d, ${}^{3}J_{PC}$ = 8.7 Hz, *o*-^{*i*}Pr^{CH}), 28.6 (d, ${}^{1}J_{PC}$ = 40.1 Hz, PCH₂), 25.9 (br, *o*-^{*i*}Pr^{CH3}), 23.74 (br, *o*-^{*i*}Pr^{CH3}), 23.70 (*p*-^{*i*}Pr^{CH3}), 18.6 (br, BCH₂).

¹H,¹H GCOSY (600 MHz/600 MHz, 299 K, dichloromethane-d₂) [selected traces]: δ^1 H/ δ^1 H: 6.57/6.03, 5.51 (=CH/=CH₂^E, =CH₂^Z), 6.03/5.51 (=CH₂^E/=CH₂^Z), 3.09/2.70, 2.08 (PCH₂/PCH₂', BCH₂), 3.04/1.12, 0.96 (o^{-i} Pr^{CH}/ o^{-i} Pr^{CH3}), 2.90/1.25 (p^{-i} Pr^{CH7}/ p^{-i} Pr^{CH3}), 2.70/2.01 (PCH₂'/BCH₂').

¹H{¹H} **1D NOESY** (600 MHz, 299 K, dichloromethane-d₂) [selected experiments]: $\delta^{1}H_{irr}/\delta^{1}H_{res}$: 6.57/6.03 (=CH/=CH₂^{*E*}), 6.03/6.57, 5.51 (=CH₂^{*E*}/=CH, =CH₂^{*Z*}), 5.51/6.03 (=CH₂^{*Z*}/=CH₂^{*E*}).

¹**H**, ¹³**C GHSQC** (600 MHz/151 MHz, 299 K, dichloromethane-d₂) [selected traces]: δ^{1} H/ δ^{13} C: 7.10/123.5 (*m*-tipp), 6.57/129.2 (=CH), 6.03/131.9 (=CH₂^E), 5.51/131.9 (=CH₂^Z), 3.09/28.6 (PCH₂), 3.04/32.4 (*o*-^{*i*}Pr^{CH}), 2.90/34.6 (*p*-^{*i*}Pr^{CH}), 2.70/28.6 (PCH₂[']), 2.08, 2.01/18.6 (BCH₂), 1.25/23.70 (*p*-^{*i*}Pr^{CH3}), 1.12/25.9 (*o*-^{*i*}Pr^{CH3}), 0.96/23.74 (*o*-^{*i*}Pr^{CH3}).

¹**H**,¹³**C GHMBC** (600 MHz/151 MHz, 299 K, dichloromethane-d₂) [selected traces]: δ¹H/δ¹³C: 6.57/131.9, 120.6 (=CH/=CH₂, *i*-tipp), 3.09/129.2, 18.6 (PCH₂/=CH, BCH₂), 2.90/153.9, 123.5, 23.70 (*p*-^{*i*}Pr^{CH}/*p*-tipp, *m*-tipp, *p*-^{*i*}Pr^{CH3}), 1.25/153.9, 34.6, 1.12/154.6, 32.4, 23.74 (*o*-^{*i*}Pr^{CH3}/*o*-tipp, *o*-^{*i*}Pr^{CH}, *o*-^{*i*}Pr^{CH3}).

¹¹B{¹H} NMR (192 MHz, 299 K, dichloromethane-d₂): $\delta = 0.7 (v_{1/2} \sim 250 \text{ Hz}).$

¹⁹**F** NMR (564 MHz, 299 K, dichloromethane-d₂): δ = -130.2 (m, 2F, *o*-C₆F₅), -158.8 (br, 1F, *p*-C₆F₅), -164.8 (br, 2F, *m*-C₆F₅), [Δδ¹⁹F_{*pm*} = 5.9].

¹⁹**F**,¹⁹**F GCOSY** (564 MHz/564 MHz, 299 K, dichloromethane--d₂) [selected traces]: -130.2/-164.8 (*o*-tipp/*m*-tipp), -158.8/-164.8 (*p*-C₆F₅/*m*-C₆F₅).

³¹P{¹H} NMR (243 MHz, 299 K, dichloromethane-d₂): $\delta = 7.1 (v_{1/2} \sim 50 \text{ Hz})$.

¹¹B{¹H} NMR (192 MHz, 299 K, dichloromethane-d₂), ¹⁹F NMR (564 MHz, 299 K, dichloromethane-d₂) and ³¹P{¹H} NMR (243 MHz, 299 K, dichloromethane-d₂) spectra of **4b**.

- (2) Preparative scale: A solution of bis(pentafluorophenyl)borane (136.6 mg, 0.395 mmol, 1.0 eq.) in dichloromethane (1.5 mL) was added using a cannula to a dichloromethane solution (1.5 mL) of **6b** (111.1 mg, 0.385 mmol) under an argon atmosphere. The reaction mixture was stirred at -35°C for 1 h and then gradually raised to room temperature over a time period of 3 h. After keeping at room temperature for 1 day, the solvent was removed in vacuo (0.1 mbar) at room temperature to give a compound **4b** (237 mg, 97% yield). **HRMS:** M+H⁺ (C₃₁H₃₀BF₁₀PH⁺): calc. 635.20967, found 635.20978.
- (b) Dynamic NMR Experiments:

¹⁹F NMR (470 MHz, 288K to 183 K, dichloromethane-d₂) spectra of **4b**.

 $\Delta G^{\ddagger} = RT_{c}(22.96 + \ln(T_{c}/\delta v))$ $T_{c} = \text{coalescence temperature [K]: 268 K (^{19}F, p-C_{6}F_{5})}$ $\delta v = \text{chemical shift difference [Hz] (^{19}F, p-C_{6}F_{5}, 183 K): 1160 Hz$ R = 8.314 J/(mol K); 1 J = 0.239 cal $\Delta G^{\ddagger}[268K, \Delta v(183k) = 1160 \text{Hz}] = 47894 \text{ J/mol} = 11.4 \pm 0.3 \text{ kcal/mol}$

(c) NMR Data at -90° C.

¹**H NMR** (500 MHz, 183 K, dichloromethane-d₂): $\delta = 7.06$ (s, 1H, *m*-tipp), 6.97 (d, ⁴*J*_{PH} = 3.6 Hz, 1H, *m*'-tipp), 6.50 (ddd, ²*J*_{PH} = 27.2 Hz, ³*J*_{HH} = 18.2 Hz, ³*J*_{HH} = 12.2 Hz, 1H, =CH), 6.01 (dd, ³*J*_{PH} = 37.2 Hz, ³*J*_{HH} = 12.2 Hz, 1H, =CH₂^{*E*}), 5.49 (dd, ³*J*_{PH} = 20.1 Hz, ³*J*_{HH} = 18.2 Hz, 1H, =CH₂^{*Z*}), 3.09 (m, 1H, *o*-^{*i*}Pr^{CH}), 3.01, 2.62 (each m, each 1H, PCH₂), 2.79 (sept, ³*J*_{HH} = 7.0 Hz, 1H, *p*-^{*i*}Pr^{CH}), 2.76 (m, 1H, *o*'-^{*i*}Pr^{CH}), 2.10 (dm, ³*J*_{PH} = 69.9 Hz), 1.71 (m)(each 1H, BCH₂), 1.13 (d, ³*J*_{HH} = 7.0 Hz, 6H, *p*-^{*i*}Pr^{CH3}), 1.11 (d, ³*J*_{HH} = 8.7 Hz, 3H, *o*'-^{*i*}Pr^{CH3}), 1.00 (d, ³*J*_{HH} = 6.0 Hz, 3H, *o*'-^{*i*}Pr^{CH3})^t, 0.94 (d, ³*J*_{HH} = 5.1 Hz, 3H, *o*-^{*i*}Pr^{CH3}), 0.60 (d, ³*J*_{HH} = 5.9 Hz, 3H, *o*-^{*i*}Pr^{CH3}), [^t tentatively assigned].

¹⁹**F** NMR (470 MHz, 183 K, dichloromethane-d₂): $\delta = -127.4, -129.7, -130.9, -133.1$ (each br, each 1F, *o*-C₆F₅), -156.7, -159.2 (each t, ³*J*_{FF} = 21.2 Hz, ³*J*_{FF} = 21.3 Hz, each 1F, *p*-C₆F₅), -163.7 (2F), -164.3 (1F), -164.7 (1F) (each br, *m*-C₆F₅).

³¹P{¹H} NMR (202 MHz, 183 K, dichloromethane-d₂): $\delta = 6.7 (v_{1/2} \sim 140 \text{ Hz}).$

Preparation of Pyridine Adduct 7b.

(1) NMR Scale: NMR-scale: Inside a glove box: a dichloromethane-d₂ solution (0.3 mL) of bis(pentafluorophenyl)borane (25 mg, 0.071 mmol) was added to a dichloromethane-d₂ solution (0.3 mL) of **6b** (20 mL, 0.069 mmol). The reaction mixture was left at room temperature for 15 h. After the formation of **4b**, pyridine (5.6 μL, 0.069 mmol) was added. The reaction solution turned immediately from pale orange to pale yellow and gave the pyridine adduct **7b**. After removal of all volatiles compound **7b** was obtained as a white solid (45.8 mg, 93%).

HRMS: M+H⁺ (C₃₆H₃₅BF₁₀NPH⁺): calc. 714.25195, found 714.24972.

¹**H NMR** (500 MHz, 299 K, dichloromethane-d₂): $\delta = 8.67$ (m, 2H, *o*-Py), 8.12 (m, 1H, *p*-Py), 7.65 (m, 2H, *m*-Py), 6.99 (d, ⁴*J*_{PH} = 2.1 Hz, 2H, *m*-tipp), 6.62 (td, ²*J*_{PH} ~ ³*J*_{HH} = 18.7 Hz, ³*J*_{HH} = 12.4 Hz, 1H, =CH), 5.51 (ddd, ²*J*_{PH} = 22.0 Hz, ³*J*_{HH} = 12.4 Hz, ²*J*_{HH} = 1.9 Hz, 1H, =CH₂^{*E*}), 5.19 (ddd, ³*J*_{HH} = 18.7 Hz, ³*J*_{PH} = 9.0 Hz, ²*J*_{HH} = 1.9 Hz, 1H, =CH₂^{*Z*}), 3.78 (m, 2H, *o*-^{*i*}Pr^{CH}), 2.85 (sept, ³*J*_{HH} = 6.9 Hz, 1H, *p*-^{*i*}Pr^{CH}), 1.77, 1.41 (each m, each 1H, PCH₂), 1.68, 1.52 (each m, each 1H, BCH₂), 1.23 (d, ³*J*_{HH} = 6.9 Hz, 6H, *p*-^{*i*}Pr^{CH3}), 1.16 (d, ³*J*_{HH} = 6.8 Hz, 6H, *o*-^{*i*}Pr^{CH3}).

¹³C{¹H} NMR (126 MHz, 299 K, dichloromethane-d₂): $\delta = 155.9$ (d, ²*J*_{PC} = 12.9 Hz, *o*-tipp), 150.8 (d, ⁴*J*_{PH} = 1.4 Hz, *p*-tipp), 146.2 (*o*-Py), 142.2 (*p*-Py), 140.5 (d, ¹*J*_{PC} = 21.0 Hz, =CH), 130.0 (d, ¹*J*_{PC} = 18.2 Hz, *i*-tipp), 126.6 (*m*-Py), 122.4 (d, ³*J*_{PC} = 4.0 Hz, *m*-tipp), 120.6 (d, ²*J*_{PC} = 14.6 Hz, =CH₂), 34.6 (*p*-^{*i*}Pr^{CH}), 32.0 (d, ³*J*_{PC} = 19.3 Hz, *o*-^{*i*}Pr^{CH}), 25.0 (*o*-^{*i*}Pr^{CH3}), 24.4 (*o*-^{*i*}Pr^{CH3}), 24.4 (d, ¹*J*_{PC} = 12.9 Hz, PCH₂), 24.0 (*p*-^{*i*}Pr^{CH3}), 23.9 (*p*-^{*i*}Pr^{CH3}), 21.6 (br, BCH₂), [C₆F₅ not listed].

¹**H**, ¹**H GCOSY** (500 MHz/500 MHz, 299 K, dichloromethane-d₂) [selected traces]: δ^{1} H/ δ^{1} H: 8.67/8.12, 7.65 (*o*-Py/*p*-Py, *m*-Py), 6.62/5.51, 5.19 (=CH/=CH₂^{*E*}, =CH₂^{*Z*}), 3.78/1.16, 1.06 (*o*-^{*i*}Pr^{CH}/*o*-^{*i*}Pr^{CH3}), 0.47/1.68 (PCH₂/BCH₂), 1.52/1.41 (BCH₂²/PCH₂²).

¹**H**,¹³**C GHSQC** (500 MHz/126 MHz, 299 K, dichloromethane-d₂) [selected traces]: δ^{1} H/ δ^{13} C: 8.67/146.2 (*o*-Py), 8.12/142.2 (*p*-Py), 7.65/126.6 (*m*-Py), 6.99/122.4 (*m*-tipp), 6.62/140.5 (=CH), 5.51/120.6 (=CH₂^{*E*}), 5.19/120.6 (=CH₂^{*Z*}), 3.78/32.0 (*o*-^{*i*}Pr^{CH}), 2.85/34.6 (*p*-^{*i*}Pr^{CH}), 1.77/24.4 (PCH₂), 1.68/21.6 (BCH₂), 1.52/21.6 (BCH₂[']), 1.41/24.4 (PCH₂[']), 1.23/24.0, 23.9 (*p*-^{*i*}Pr^{CH3}), 1.16/24.4 (*o*-^{*i*}Pr^{CH3}), 1.06/25.0 (*o*-^{*i*}Pr^{CH3}).

¹**H**,¹³**C GHMBC** (500 MHz/126 MHz, 299 K, dichloromethane-d₂) [selected traces]: δ^{1} H/ δ^{13} C: 6.99/130.0, 122.4, 34.6, 32.0 (*m*-tipp/*i*-tipp , *m*-tipp, p^{-i} Pr^{CH}, o^{-i} Pr^{CH}), 6.62/130.0, 120.6, 24.4 (=CH/*i*-tipp, =CH₂, PCH₂), 2.85/150.8, 122.4, 24.0, 23.9 (p^{-i} Pr^{CH}/p-tipp, *m*-tipp, p^{-i} Pr^{CH3}, p^{-i} Pr^{CH3}), 1.16/155.9, 32.0, 25.0 (o^{-i} Pr^{CH3}/o-tipp, o^{-i} Pr^{CH3}).

¹¹B{¹H} NMR (160 MHz, 299 K, dichloromethane-d₂): $\delta = -0.6 (v_{1/2} \sim 250 \text{ Hz}).$

¹⁹**F NMR** (470 MHz, 299 K, dichloromethane-d₂): $\delta = -132.0$ (m, each 2F, *o*-C₆F₅^a), -132.2 (m, each 2F, *o*-C₆F₅^b), -159.0 (t, ³*J*_{FF} = 20.3 Hz, 1F, *p*-C₆F₅^a), -159.1 (t, ³*J*_{FF} = 20.3 Hz, 1F, *p*-C₆F₅^b), -164.3 (m, 2F, *m*-C₆F₅^a), -164.4 (m, 2F, *m*-C₆F₅^b), [Δδ¹⁹F_{*pm*} = 5.3, 5.3].

³¹P{¹H} NMR (202 MHz, 299 K, dichloromethane-d₂): $\delta = -28.4 (v_{1/2} \sim 10 \text{ Hz}).$

¹³ $C{^{1}H}$ NMR (126 MHz, 299 K, dichloromethane- d_2) spectrum of **7b**.

(2) Preparative Scale: Compound 4b (150 mg, 0.236 mmol) was dissolved in dichloromethane (1 mL) and then pyridine was added. The reaction solution was left at room temperature for ca. 10 min and then the solvent was removed in vacuo to give compound 7b (135 mg, 80%).

Preparation of compound 11a.

(1) *NMR scale:* A solution of tris(pentafluorophenyl)borane [B(C₆F₅)₃] (29.1 mg, 0.057 mmol) in dichloromethane-d₂ (0.6 mL) was added to **6a** [17.1 mg, 0.51 mmol; *comment:* **6a** was admixed with ¹Bu₃C₆H₃ (3%)] at rt. Then the reaction mixture was characterized by NMR experiments at 213K: product **11a** was admixed with B(C₆F₅)₃ [13 mol%¹, ¹⁹F (213K)], a PH-species [2%¹, ³¹P (213K), not identified yet], and ¹Bu₃C₆H₃ [5%¹, ¹H (213K)] [¹ relative to **11a**].

¹**H NMR** (600 MHz, 213 K, dichloromethane-d₂): δ = 7.68 (t, ³*J*_{HH} = 10.3 Hz, 1H, P=CH), 7.61 (d, ⁴*J*_{PH} = 5.4 Hz, 2H, *m*-mes*), 7.26 (m, 1H, =CH), 6.48 (dd, ³*J*_{PH} = 64.2 Hz, ³*J*_{HH} = 12.3 Hz, 1H, =CH₂^{*E*}), 5.64 (dd, ³*J*_{PH} = 34.0 Hz, ³*J*_{HH} = 18.2 Hz, 1H, =CH₂^{*Z*}), 3.24 (br d, ³*J*_{PH} = 46.4 Hz, 2H, BCH₂), 1.30 (s, 18H, *o*-^tBu), 1.26 (s, 9H, *p*-^{*t*}Bu).

¹H{sel-³¹P: δ 126.6} NMR (600 MHz, 213 K, dichloromethane-d₂): δ = 7.68 (t, ${}^{3}J_{HH}$ = 10.3 Hz, 1H, P=CH), 7.61 (s, 2H, *m*-mes*), 7.26 (dd, ${}^{3}J_{HH}$ = 18.1 Hz, ${}^{3}J_{HH}$ = 12.3 Hz, 1H, =CH), 6.48 (d, ${}^{3}J_{HH}$ = 12.3 Hz, 1H, =CH), 5.64 (d, ${}^{3}J_{HH}$ = 18.2 Hz, 1H, =CH₂^{*E*}), 3.24 (br m, 2H, BCH₂). 1.30 (s, 18H, *o*-^tBu), 1.26 (s, 9H, *p*-^tBu).

¹³C{¹H} NMR (151 MHz, 213 K, dichloromethane-d₂): $\delta = 165.3$ (d, ${}^{1}J_{PC} = 113.8$ Hz, P=CH), 158.4 (*p*-mes*)^t, 158.3 (d, ${}^{2}J_{PC} = 7.9$ Hz, *o*-mes*)^t, 138.5 (br d, ${}^{2}J_{PC} = 3.6$ Hz, =CH₂), 124.4 (d, ${}^{3}J_{PC} = 14.0$ Hz, *m*-mes*), 122.1 (d, ${}^{1}J_{PC} = 88.2$ Hz, =CH), 105.3 (d, ${}^{1}J_{PC} = 82.5$ Hz, *i*-mes*), 38.3 (d, ${}^{3}J_{PC} = 2.4$ Hz, *o*- ${}^{t}Bu^{C}$), 35.5 (*p*- ${}^{t}Bu^{C}$), 33.1 (br, BCH₂), 32.4 (*o*- ${}^{t}Bu^{CH3}$), 30.1 (*p*- ${}^{t}Bu^{CH3}$), [C₆F₅ not listed; ^t tentatively assigned].

¹**H**,¹**H GCOSY** (600 MHz/600 MHz, 213 K, dichloromethane-d₂) [selected traces]: δ^{1} H/ δ^{1} H: 7.68/7.26, 6.48, 5.64, 3.24 (P=CH/=CH, =CH₂^{*E*}, =CH₂^{*Z*}, BCH₂), 7.28/6.48, 5.64 (=CH/=CH₂^{*E*}, =CH₂^{*Z*}).

¹**H**,¹³**C GHSQC** (600 MHz/151 MHz, 213 K, dichloromethane-d₂): δ¹H/δ¹³C: 7.68/165.3 (P=CH), 7.61/124.4 (*m*-mes*), 7.26/122.1 (=CH), 6.48,5.64/138.5 (=CH₂), 3.24/33.1 (BCH₂), 1.30/32.4 (*o*-'Bu), 1.26/30.1 (*p*-'Bu).

¹**H**,¹³**C GHMBC** (600 MHz/151 MHz, 213 K, dichloromethane-d₂) [selected traces]: δ¹H/δ¹³C: 7.61/158.4, 158.3, 124.4, 105.3, 38.3, 35.5 (*m*-mes*/*p*-mes*, *o*-mes*, *m*-mes*, *i*-mes*, *o*-'Bu^C, *p*-'Bu^C), 7.28/105.3 (=CH/*i*-mes*), 1.30/158.3, 38.3, 32.4 (*o*-'Bu/*o*-mes*, *o*-'Bu^C, *o*-'Bu^{CH3}), 1.26/158.4, 35.5, 30.1 (*p*-'Bu/*p*-mes*, *p*-'Bu^C, *p*-'Bu^{CH3}).

¹¹B{¹H} NMR (192 MHz, 213 K, dichloromethane-d₂) : $\delta = -13.6$ (br d, ${}^{3}J_{PB} \sim 17$ Hz).

¹⁹**F NMR** (564 MHz, 213 K, dichloromethane-d₂) : $\delta = -133.3$ (br m, 2F, *o*-C₆F₅), -161.3 (br t, ³J_{FF} =

20.7 Hz, 1F, p-C₆F₅), -165.4 (br m, 2F, m-C₆F₅) [$\Delta \delta^{19}$ F = 4.1].

³¹P{¹H} NMR (243 MHz, 213 K, dichloromethane-d₂) : $\delta = 126.6$ (m).

299 K

273 K	~			
253 K				
	I			
243 K		•		
233 K				
213 K				
	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	

- 280 240 200 120 80 -40 -80 -120-160 -280 160 40 0 -200 -240³¹P{¹H} NMR (243 MHz, 299K to 213 K, dichloromethane-d₂) spectra of **11a**.
- (2) Preparative scale: A solution of tris(pentafluorophenyl)borane [B(C₆F₅)₃] (512 mg, 1.00 mmol) in dichloromethane-d₂ (1.2 mL) was added to **6a** [331 mg, 0.65 mmol; *comment:* **6a** was admixed with ¹Bu₃C₆H₃ (43%)] and then stored in the fridge at -35°C. First very thin needles were formed after one day and then parallelepiped block crystals appeared after 10 days which were collected and dried (198 mg, 46%). X-ray crystal structure analysis was carried out using a suitable block crystal. [Comment: the block crystals of compound **11a** used for NMR experiments (dichloromethane-d₂, 213K) were admixed with B(C₆F₅)₃ [42 mol%¹, ¹⁹F (213K)], a PH-species [11%¹, ³¹P (213K), not identified yet], and ¹Bu₃C₆H₃ [25%¹, ¹H (213K)] [¹ relative to **11a**].

X-ray crystal structure analysis of compound **11a**: formula $C_{40}H_{35}BF_{15}P \ge CH_2Cl_2$, M = 927.39 colourless crystal, 0.18 $\ge 0.09 \ge 0.04$ mm, a = 15.4992(3), b = 17.1040(3), c = 15.7066(3) Å, $\beta = 93.555(1)^\circ$, V = 4155.8(1) Å³, $\rho_{calc} = 1.482$ gcm⁻³, $\mu = 0.293$ mm⁻¹, empirical absorption correction (0.949 $\le T \le 0.988$), $Z \le 0.988$

= 4, monoclinic, space group $P2_1/n$ (No. 14), $\lambda = 0.71073$ Å, T = 223(2) K, ω and φ scans, 24986 reflections collected $(\pm h, \pm k, \pm l)$, $[(\sin \theta)/\lambda] = 0.59$ Å⁻¹, 7211 independent ($R_{int} = 0.066$) and 4760 observed reflections [$I > 2\sigma(I)$], 631 refined parameters, R = 0.079, $wR^2 = 0.168$, max. (min.) residual electron density 0.39 (-0.42) e.Å⁻³, hydrogen atoms calculated and refined as riding atoms.

Comments: pathway of the $5a \rightarrow 9a$ rearrangement.

So far within this study we were not able to secure the reaction pathway actually taken in the $4a \rightleftharpoons 5a$ to 9a isomerization. We first speculated that the C₄-sequence found in 9a might be formed from the pair of C₂-units of the starting material by means of a 1,1-carboboration sequence.^[S11] This might have given the dihydrophosphole **12a** plus HB(C₆F₅)₂ as an intermediate. However we could show that independently synthesized **12a**^[S12] did only give a P/B addition with HB(C₆F₅)₂ that did not provide a pathway to **9a** even at elevated temperature.

The outcome of these experiments makes it likely that **9a** is formed in a true intramolecular rearrangement sequence. We note that phosphiranes can be obtained by ring closure form bis(methylene)phosphoranes **13**,^[S13] sometimes under mild conditions. It needs to be investigated in a future study whether this chemistry provides a viable pathway for the here observed isomerization reaction or not.

Experiments:

Preparation of compound 12a:

See: K. Fujita, Y. Ohnuma, H, Yasuda and H. Tani, J. Organomet. Chem. 1976, 113, 201-213.

(See: W. J. Richter Angew. Chem. Int. Ed. Engl. 1982, 21, 292-293)

Step I: 1-Mes*-2,5-dihydro-1*H*-phosphole (**12a**) was prepared based on the following modified literature procedure: Mes*PCl(X) [3.29 g, 8.8 mmol from mes*PCl₂: mes*PClBr : mes*H = 83 : 6 : 10 (¹H NMR)] in toluene (50 mL) was added dropwise to a suspension of magnesium-butadiene(thf)₂ (5.06 g, 23 mmol) in toluene (80 mL) at -60° C over a period of 1 h. Then the reaction mixture was stirred for 20 h while gradually raising the temperature to r.t. The precipitate of the obtained gray suspension was removed by passing through a pad of Celite® on a fritted glass, and the filtrate was collected in a Schlenk flask (100 mL). The volatiles were removed at r.t. in vacuo (0.1 mbar) for 10 h, which gave a slightly yellow oil (1.76 g, 54% crude yield: supposedly the phosphirane isomer).

Step II: The yellow oil (370 mg, 1.10 mmol) from Step I was dissolved in toluene (50 mL) and heated at 100°C for 5 days. The progress of the reaction was monitored by ³¹P{¹H} NMR experiments [until the signal from the starting material at δ^{31} P: –182 was not detected anymore [δ^{31} P(product): 5.3]. After the reaction was complete, the volatiles were removed in vacuo. Crystallization of the obtained residue in dichloromethane-d₂/*n*-pentane gave compound **12a** (60 mg, 16%). The obtained crystals were suitable for the X-ray crystal structure analysis.

¹**H NMR** (500 MHz, 299 K, dichloromethane-d₂): δ = 7.18 (d, ⁴*J*_{PH} = 2.4 Hz, 2H, *m*-mes*), 5.68 (dm, ³*J*_{PH} = 10.8 Hz, 2H, =CH), 2.75 (dm, ²*J*_{PH} = 25.1 Hz, 2H, CH₂), 2.39 (dm, ²*J*_{PH} = 15.2 Hz, 2H, CH₂), 1.41 (d, ⁵*J*_{PH} = 1.0 Hz, 18H, *o*-^{*t*}Bu), 1.29 (s, 9H, *p*-^{*t*}Bu).

¹H{sel-³¹P: δ 5.3} NMR (500 MHz, 299 K, dichloromethane-d₂): δ = 7.18 (s, 2H, *m*-mes*), 5.68 (m, 2H, =CH), 2.75 (m, 2H, CH₂), 2.39 (m, 2H, CH₂), 1.41 (s, 18H, *o*-'Bu), 1.29 (s, 9H, *p*-'Bu).

¹³C{¹H} NMR (126 MHz, 299 K, dichloromethane-d₂): $\delta = 155.0$ (d, ² $J_{PC} = 4.0$ Hz, *o*-mes*), 146.8 (*p*-mes*), 142.0 (br d, ¹ $J_{PC} \sim 41$ Hz, *i*-mes*), 129.3 (d, ¹ $J_{PC} = 2.6$ Hz, =CH), 122.4 (*m*-mes*), 40.6 (d, ² $J_{PC} = 16.9$ Hz, CH₂), 39.6 (d, ³ $J_{PC} = 1.7$ Hz, *o*-^{*t*}Bu^C), 34.4 (*p*-^{*t*}Bu^C), 33.8 (d, ⁴ $J_{PC} = 7.6$ Hz, *o*-^{*t*}Bu^{CH3}), 31.4 (*p*-^{*t*}Bu^{CH3}).

¹**H**, ¹**H** GCOSY (500 MHz/500 MHz, 299 K, dichloromethane-d₂) [selected trace]: δ¹H/ δ¹H: 5.68/2.75, 2.39 (CH/CH₂, CH₂').

¹**H**,¹³**C GHSQC** (500 MHz/126 MHz, 299 K, dichloromethane-d₂) [selected traces]: δ¹H/δ¹³C: 7.18/122.4 (*m*-mes*), 5.68/129.3 (=CH), 2.75, 2.39/40.6 (CH₂), 1.41/33.8 (*o*-^{*t*}Bu), 1.29/31.4 (*p*-^{*t*}Bu).

¹**H**, ¹³**C GHMBC** (500 MHz/126 MHz, 299 K, dichloromethane-d₂) [selected traces]: δ¹H/δ¹³C: 7.18/142.0, 122.4, 39.6, 34.4 (*m*-mes*/*i*-mes*, *m*-mes*, *o*-*^t*Bu^C, *p*-*^t*Bu^C), 2.39/141.9, 129.3 (CH₂/*i*-mes*, =CH), 1.41/155.0, 39.6, 33.8 (*o*-*^t*Bu/*o*-mes*, *o*-*^t*Bu^C, *o*-*^t*Bu^{CH3}), 1.29/146.8, 34.4, 31.4 (*p*-*^t*Bu/*p*-mes*, *p*-*^t*Bu^C, *p*-*^t*Bu^{CH3}).

³¹P{¹H} NMR (202 MHz, 299 K, dichloromethane-d₂): $\delta = 5.3 (v_{1/2} \sim 1 \text{ Hz}).$

X-ray crystal structure analysis of compound **12a**: formula C₂₂H₃₅P, M = 330.47 colourless crystal, 0.20 x 0.15 x 0.10 mm, a = 9.7184(1), b = 11.6807(2), c = 35.4816(5) Å, V = 4027.8(1) Å³, $\rho_{calc} = 1.090$ gcm⁻³, $\mu = 1.168$ mm⁻¹, empirical absorption correction (0.800 $\leq T \leq 0.982$), Z = 8, orthorhombic, space group *P*bca (No. 61), $\lambda = 1.54178$ Å, T = 223(2) K, ω and φ scans, 23395 reflections collected ($\pm h$, $\pm k$, $\pm l$), [($\sin\theta$)/ λ] = 0.60 Å⁻¹, 3477 independent ($R_{int} = 0.037$) and 3291 observed reflections [$I > 2\sigma(I)$], 217 refined parameters, R = 0.035, $wR^2 = 0.096$, max. (min.) residual electron density 0.24 (-0.20) e.Å⁻³, hydrogen atoms calculated and refined as riding atoms.

Reaction of compound 12a with HB(C₆F₅)₂

Inside a glove box: a solution of bis(pentafluorophenyl)borane (8.0 mg, 0.023 mmol) in dichloromethane- d_2 (0.5 mL) was added to 1-mes*-2,5-dihydro-1*H*-phosphole (**12a**) (8.4 mg, 0.025 mmol) and kept at r.t. for 30 h.

¹H NMR (500 MHz, 299 K, dichloromethane-d₂): δ = 7.23 (br, 2H, *m*-mes*), 5.63 (d, ³*J*_{PH} = 26.7 Hz, 2H, =CH), 3.87 (br m, 1H, BH), 3.22 (d, ²*J*_{PH} = 6.3 Hz, 4H, CH₂), 1.36 (s, 18H, *o*-^{*i*}Bu), 1.26 (s, 9H, *p*-^{*i*}Bu). ¹³C{¹H} NMR (126 MHz, 299 K, dichloromethane-d₂): δ = 161.2 (br, *o*-mes*), 153.2 (br d, ⁴*J*_{PC} ~ 4.5 Hz, *p*-mes*), n.o. (*i*-mes*), 128.7 (br, =CH), 124.8 (br d, ³*J*_{PC} = 11.7 Hz, *m*-mes*), 34.5 (br, CH₂), 41.3 (d, ³*J*_{PC} = 3.2 Hz, *o*-^{*i*}Bu^C), 34.6 (d, ⁵*J*_{PC} = 1.5 Hz, *p*-^{*i*}Bu^C), 33.0 (*o*-^{*i*}Bu^{CH3}), 30.9 (*p*-^{*i*}Bu^{CH3}), [C₆F₅ not listed]. ¹⁰B{¹H} NMR (54 MHz, 299 K, dichloromethane-d₂) : δ = -20.4 (v_{1/2} ~ 80 Hz). ¹¹B{¹H} NMR (160 MHz, 299 K, dichloromethane-d₂) : δ = -20.4 (br d, ¹*J*_{PB} ~ 50 Hz). ¹³F NMR (160 MHz, 299 K, dichloromethane-d₂) : δ = -20.4 (br t, ¹*J*_{BH} ~ 80 Hz, ¹*J*_{PB} ~ 50 Hz). ¹⁹F NMR (470 MHz, 299 K, dichloromethane-d₂) : δ = -129.9 (br, 2F, *o*-C₆F₅), -159.4 (br, 1F, *p*-C₆F₅), -164.5 (br, 2F, *m*-C₆F₅), [$\Delta\delta^{19}$ F_{mp} = 5.1]. ³¹P{¹H} NMR (202 MHz, 299 K, dichloromethane-d₂) : δ = 19.6 (v_{1/2} ~ 500 Hz).

-122 -126 -130 -134 -138 -142 -146 -150 -154 -158 -162 -166 -170 $^{31}P{^{1}H} NMR (470 MHz, 299 K, dichloromethane-d_2) spectrum of <math>12a \times HB(C_{6}F_{5})_{2}$.

Theoretical Methods and Technical Details of the Computations.

The quantum chemical calculations have been performed with the TURBOMOLE suite of programs^[S14]. As Gaussian AO basis, large triply-polarized triple-zeta (def2-TZVP) sets of Ahlrichs et al. [S15] have been employed which avoid most BSSE effects. All geometries have been fully optimized at the DFT level using the TPSS density functional^[S16]. We included our standard atom pair-wise DFT-D3 (with BJ-damping) correction for intra- and inter-molecular dispersion (also called van der Waals) interactions^[S17]. The final level used for geometry optimization is dubbed TPSS-D3/def2-TZVP in the following. For a detailed description of the dispersion correction, that is of great importance in studies of large molecules, including many illustrative examples^[S18], for the most recent chemical applications of this method see Ref.(S19) In all DFT treatments, the RI-approximation has been used^[S20] for the Coulomb integrals which speeds the computations up significantly without any significant loss of accuracy. The numerical quadrature grid m4 (m5 for PW6B95, see below) has been employed for the integration of the exchange-correlation contribution. We report pure electronic energies without zero-point vibrational and thermal corrections as well as free energies G(273.15) that are obtained by a standard rigid-rotor, harmonic vibrational statistical treatment. Vibrational frequencies are computed at the TPSS-D3/def2-TZVP level and are not scaled. Low-lying vibrational modes are treated by a special rigid-rotor approximation in order to avoid numerical artefacts in the entropy calculations^[S21]. These calculations are also used to characterize the stationary points as minima.

Single-point energy calculations for the final thermochemical properties were performed at the higher dispersion-corrected PW6B95^[S22] hybrid functional level employing the def2-QZVP basis set for all atoms. This final theoretical level should provide relative energies with an estimated accuracy of about 1-2 kcal mol^{-1[S23]}.

Wiberg bond indices were calculated according to Ref.(S24).

Solvent effects on the thermochemical properties have been estimated by the COSMO-RS method^[S25] (COSMOtherm software package^[S26]) based on default BP86/TZVP calculations. Solvation contributions to free energies at 273.15 K in dichloromethane are computed and added to the PW6B95-D3 gas phase values.

Relative energies

Table S1. Contributions to the relative free energies in solution (CH₂Cl₂) at 273.15 K (Δ G(273.15)) for the tri-*tert*-butylphenyl-substituted methylene phosphonium compounds **a**. The last line is relative to the reactants plus H₂. All energies are in kcal mol⁻¹.

	ΔE PW6B95-D3	$\delta\Delta G_{solv.}(CH_2Cl_2)$	δΔG(273.15)	Total ∆G(273.15)
Reactants	0.0	0.0	0.0	0.0
<i>Lewis</i> adduct 15a	-25.66	-1.06	15.81	-10.91
Intermediate 4a	-39.75	-0.63	19.38	-21.00
Product 5a	-35.63	-6.11	19.05	-22.69
H ₂ addition				
product 8a	-46.38	-13.65	27.58	-32.45

Table S2. Contributions to the relative free energies in solution (CH₂Cl₂) at 273.15 K (Δ G(273.15)) for the 1,3,5-triisopropylphenyl-substituted methylene phosphonium compounds **b**. All energies are in kcal mol⁻¹.

	ΔE PW6B95-D3	$\delta\Delta G_{solv.}(CH_2Cl_2)$	δΔG(273.15)	Total ΔG(273.15)
Reactants	0.0	0.0	0.0	0.0
Intermediate 4b	-57.7	-1.6	18.4	-40.9
Product 5b	-41.8	-5.5	18.6	-28.7
Rotamer of				
Intermediate 4b'	-36.0	-1.3	19.6	-17.7

Table S3. Contributions to the relative free energies in solution (CH₂Cl₂) at 273.15 K (Δ G(273.15)) for the methyl-substituted methylene phosphonium compounds **c**. All energies are in kcal mol⁻¹.

	ΔE PW6B95-D3	$\delta\Delta G_{solv.}(CH_2Cl_2)$	δΔG(273.15)	Total ∆G(273.15)
Reactants	0.0	0.0	0.0	0.0
FLP 4 c	-43.14	-2.96	17.24	-28.86
Product 5c	-17.98	-7.61	17.18	-8.41

Table S4. Contributions to the relative free energies in solution (CH₂Cl₂) at 298.15 K (Δ G(298.15)) the formation of the phosphirane compound **9a** from intermediate **4a**. All energies are in kcal mol⁻¹.

	ΔE PW6B95-D3	$\delta\Delta G_{solv.}(CH_2Cl_2)$	δΔG(298.15)	Total ΔG(298.15)
Intermediate 4a	0.0	0.0	0.0	0.0
Phosphirane 9a	-8.68	-0.82	1.72	-7.78

Figure S1. Free energy pathway for the formation (kcal mol⁻¹) of the tri-*tert*-butylphenyl-substituted methylene phosphonium compound **5a**, including the *Lewis* adduct **15a** of the reactants and the product of the activation reaction with H₂**8a**. The energy of **8a** is relative to the reactants plus H₂. All energies are calculated at 273.15 K in CH₂Cl₂.

Figure S2. DFT calculated thermodynamics of the $\mathbf{6} + \text{HB}(\text{C}_6\text{F}_5)_2 \rightleftharpoons \mathbf{4} \rightleftharpoons \mathbf{5}$ reaction systems depending on the substituents at phosphorus (energies in kcal mol⁻¹).

Figure S3. Calculated structures for all available Cartesian coordinates (excluding HB(C₆F₅)₂).

HB(C₆F₅)₂:

-1.34616037110444	-1.48084473070646	-1.14884985188701	b
-2.65681777914801	-2.92220229066680	-2.26799319392013	h
5.16804921005882	-3.79313834103129	-3.48647893979748	c
6.64320233243162	-1.61375492098911	-3.33250242382957	c
5.59204120226394	0.63840477640391	-2.45034405809476	c
3.07667599622062	0.67002128032382	-1.69976526198958	c
1.50995432131070	-1.47146448265584	-1.80843266783759	c
2.64806581746014	-3.67854524803627	-2.75673084893785	c
6.19553611963323	-5.94986731327499	-4.33306586750853	f
9.06498829124580	-1.67953997246145	-4.03950916550410	f
7.01641451015837	2.73265376373085	-2.35029599506650	f
2.13577535163797	2.90590298680100	-0.93275706029148	f
1.29280925631781	-5.82277631702625	-2.92564710282488	f
-2.73327735350467	2.50045217310545	4.89683414684512	c
-5.26480868944208	3.12977429452951	4.50885005117200	c
-6.51233639906908	2.32054086377729	2.33216368311716	c
-5.19865599478143	0.87849578773735	0.57407777358539	c
-2.63450322508405	0.23480522253737	0.84925165053514	c
-1.47039684753314	1.09176140376131	3.07693724304754	c
-1.56485069837047	3.25263730738850	7.01673396250975	f
-6.49767524953039	4.50227191606774	6.23103542654057	f
-8.94390735373021	2.93876541790471	1.97278262740868	f
-6.46718833376666	0.14079474825352	-1.50205205463339	f
0.94706588632547	0.47485167452616	3.57575792736140	f

-1.53770202944331	1.50652806126186	3.00155435604972	c
0.70248341631229	1.98430010826851	1.68238612745454	c
1.26951050813857	0.50797965708509	-0.51508844156904	c
-0.64703729693893	-1.12249762064064	-1.50001879451137	c
-2.77810305852596	-1.57933984917330	-0.00104949268032	c
-3.23883648266072	-0.36835082706728	2.28501009965377	c
-1.93754786937128	2.59533538615538	4.68154866255409	h
4.68843753753014	0.20922765421319	-1.20639534313345	р
-4.15776323845862	-2.93804353713998	-0.67524911164889	h

-5.58337612756509	-1.04615458199026	3.83881300235220	c
-5.49543832439431	-3.88879685136879	4.49702801278383	c
-5.74036075695368	0.46645737489332	6.31366317283231	c
-7.98198677630199	-0.49840307126992	2.26684537534989	c
-5.44129042853587	-5.05505827301045	2.78960094820266	h
-3.81690016864045	-4.32638423331908	5.62544227641463	h
-7.17494665046449	-4.42064670432722	5.58694554787351	h
-4.08342369438107	0.13760657152685	7.51038936899990	h
-5.89567617843947	2.49987394425282	5.95727243938536	h
-7.41886767892891	-0.11892288786555	7.37389344571539	h
-8.08568178108641	1.50702858982832	1.76696874526828	h
-8.00143113614703	-1.59715685349146	0.51471288795035	h
-9.67496064624572	-0.99123944678272	3.35436178450965	h
-0.78762398961096	-2.38980848982264	-4.14424505999492	c
1.11243050041988	-1.42244753738764	-6.10886588740397	c
-0.55452732415822	-5.28895516109090	-3.91486427375530	c
-3.42127279796639	-1.77324767303182	-5.29312118175879	c
0.94799319337828	0.62571927023153	-6.33917587638824	h
3.05956813563322	-1.89988898250394	-5.65847266646007	h
0.66420100303100	-2.29370306454453	-7.93405948992223	h
1.32264456811079	-5.83423749467782	-3.25456852756973	h
-1.96170960450292	-6.04503042550603	-2.59927265123350	h
-0.86755510719602	-6.16459468609783	-5.76665146467285	h
-4.98095558869056	-2.63413963215899	-4.24934584894346	h
-3.73308788709673	0.27173789469839	-5.34928292072085	h
-3.49130694220330	-2.49762528208146	-7.23163338880545	h
2.39629841717545	4.14146592997838	2.73081135749567	c
3.55592318151975	5.75046152342604	0.58901140060142	c
0.82193909356412	6.01167776217478	4.33887068057823	c
4.49523142072576	3.09864091836089	4.47784247596467	c
5.00132545650013	4.73929530316808	-0.47955527723520	h
2.08844130277186	6.38817033241317	-0.72439556294078	h
4.46663091417354	7.42161957935804	1.40658772288890	h
-0.84050191987797	6.69549017564694	3.31271270626941	h
0.20079284983769	5.19051280486872	6.13236865767471	h
2.01445092552031	7.63935365195817	4.79701202383540	h

3.65593204089922	2.01926689364815	6.03236275801451	h
5.79561170271444	1.87434036807154	3.44518383936705	h
5.56918320384146	4.67537909458014	5.28892579753254	h
7.82115441552375	1.68612445005437	-5.20763676699134	c
5.51775480427948	1.74280362054056	-4.16118304057032	c
9.36701663630705	0.59648463160561	-4.40819842196881	h
8.23798570555098	2.75583896535593	-6.91093742709375	h
4.06807033755319	2.93673351594744	-4.99657849735381	h
6.61393611819565	-4.35636697496183	-3.28272711822966	c
5.14021089026672	-3.14795561743437	-1.61920613373173	c
7.53276296511580	-3.38175188305854	-4.83932516986842	h
6.92849573662346	-6.38091208707944	-3.14486468424193	h
4.27345450357251	-4.21379430468795	-0.08215715217423	h

-3.76839353160066	0.05326002177759	2.90957429674220	c
-2.26397607246996	1.60852346419654	1.38908323301958	c
-1.61067285035545	0.72460992020266	-1.08517839959621	c
-2.99730706336119	-1.38829695479860	-2.09434798634155	c
-4.32497053754725	-2.90245920562292	-0.39629538992976	c
-4.61866010081339	-2.31204309152058	2.15468263181306	с
-4.21717864128502	0.70654613048682	4.79454381313644	h
1.57192081429209	1.37818290226242	-2.29711679923712	р
-5.23256454537508	-4.59278842805510	-1.12070184416158	h
-5.94204861682548	-4.15934397307271	3.93586223427658	c
-4.51154111374639	-6.70433860009238	3.86321551733119	c
-5.97424911913614	-3.19932873029043	6.67672238482249	c
-8.69396275174421	-4.56919586378371	3.05145873163500	c
-4.48412961568434	-7.49753832651575	1.95270784511118	h
-2.55617916794771	-6.46586320932380	4.49003375020920	h
-5.44065117368095	-8.07108561126683	5.11117512035426	h
-4.05703726276300	-2.85873870483922	7.37676546380805	h
-7.06530118451624	-1.44945887813164	6.86334419759214	h
-6.85740207023960	-4.62129002354875	7.89325742774774	h
-9.74545184755559	-2.78667706382717	3.07209854425306	h
-8.76412236650216	-5.33556625551754	1.13141901932950	h

-9.64995991284528	-5.90720068732280	4.31029605038898	h
-3.52651730805769	-2.02433928989266	-4.91811745667494	c
-2.67370708243729	-0.01569844992808	-6.82800667362670	c
-2.51789382999896	-4.64890543381302	-5.69120950191918	c
-6.45664220324763	-2.08973104944697	-5.19544262458101	c
-3.56381688163584	1.80111817556962	-6.40900994510072	h
-0.64000395221605	0.24776041925508	-6.91008504411663	h
-3.29905615124784	-0.60024495314246	-8.71348229289850	h
-0.45920660394509	-4.68510764998997	-5.78630654712030	h
-3.13705948716905	-6.10563955915229	-4.35975576692173	h
-3.25042227429789	-5.14288658747021	-7.56426062613935	h
-7.31900170793529	-3.65259950766967	-4.15876763289948	h
-7.29402547575666	-0.32360024473088	-4.51792267444467	h
-6.93172731628226	-2.31552418298236	-7.19829763279262	h
-1.80200311342647	4.26913753226385	2.54027661343759	c
-0.12851560382534	6.08731737962529	1.02771622987930	c
-4.45974364615942	5.52213780481470	2.61097699236173	c
-0.78842966319575	4.14061871445548	5.27604535428658	c
1.81547280042041	5.43670807990371	0.80518140311675	h
-0.92484497566143	6.46943126758982	-0.83291733722816	h
-0.04943613331410	7.88695942770095	2.04778994622581	h
-5.26050438276359	5.64854453021039	0.70633617843285	h
-5.77495566674592	4.45536506246041	3.79497279651658	h
-4.29217445583330	7.43782096799955	3.38110056058130	h
-2.08576931786763	3.15202886754286	6.54411509663953	h
1.04504605489511	3.20132573093233	5.35608244908107	h
-0.56218963985136	6.06830534011260	5.99622680226995	h
-0.06898173887965	5.44132966349932	-5.25680187637701	c
1.83262709885563	3.96853542342226	-4.51304938365447	c
-1.98794821303650	5.16466924021904	-4.58381818693775	h
0.24117460011137	6.98858196917637	-6.57115637675269	h
3.73214421119563	4.30698953726826	-5.20492372277436	h
3.88440666962404	-1.41646218781313	-6.16427213720771	c
2.56070436855919	-1.39674512101748	-4.02223416632258	c
4.27991741005021	0.28705993619352	-7.23561078609853	h
4.63750354205197	-3.17135285615668	-6.91853072750404	h

2.24086819178835	-3.13614879477036	-2.97697221139023	h
4.02636423468811	1.30267949584428	0.68631599939503	b
4.11421064948589	-5.67299769248843	3.27726620892410	c
6.22038865353383	-6.74638802744962	2.12664787751108	c
7.67649210660930	-5.27884356313829	0.50089201747406	c
6.98708065391894	-2.77979596605807	0.04392844118214	c
4.87810558117386	-1.61237168066184	1.12888135040336	c
3.49923553803694	-3.16460746644279	2.77088002252479	c
2.70132096717112	-7.06715495636608	4.87451550617374	f
6.84631867642150	-9.16165048908700	2.58769235118652	f
9.72528109402220	-6.29209624380849	-0.61765738857954	f
8.49150955114837	-1.48719129140363	-1.56505237141028	f
1.43634416873988	-2.26258615572986	3.98094077563656	f
8.84845722852595	6.50068131031986	2.79998866441970	c
10.18733574929688	7.09413533665539	0.61547803896006	c
9.61135763372436	5.83425657161789	-1.61873197440705	c
7.71114465238312	4.01592770962563	-1.61815342149924	c
6.28420553336122	3.36399269592274	0.49988304018129	c
6.95701462868237	4.67297567490757	2.70089057302287	c
9.39710010674086	7.69473002752956	4.97760365509724	f
12.01220460135145	8.85593378214405	0.66361985625411	f
10.89229480290469	6.38046917075532	-3.74932136194956	f
7.28489153532261	2.85446394710535	-3.87158703578585	f
5.76206746042031	4.17809071806954	4.90745830061998	f
2.63782480127539	1.87067905850164	2.35915194101489	h

-4.01065455784633	0.76410388618925	2.97939329379455	c
-2.27871460597611	1.71995614632331	1.22270869530973	c
-1.92181376960153	0.40239522046120	-1.09577803010195	c
-3.79711348147790	-1.41565421679788	-1.81526124459903	c
-5.44800985107265	-2.29221592765621	0.04224686294916	c
-5.48439963335729	-1.36008855563605	2.51038081527185	c
-4.17255164193701	1.71215266749311	4.78470800517609	h
1.34448565307002	0.14855291309009	-2.36465476361714	р
-6.80515154062187	-3.73955661471361	-0.48157992386754	h

-7.19290001041869	-2.57186413355003	4.49937856123722	с
-6.44173534025211	-5.38000841263595	4.77891071714160	c
-6.94212512747442	-1.28394900019439	7.09034654245750	c
-9.97758960044540	-2.39943720113826	3.63950581476309	c
-6.64227231115945	-6.39231712104261	2.98599940627517	h
-4.47487157996121	-5.55369983744149	5.39742831175359	h
-7.65446924840885	-6.30386245667161	6.18047824185877	h
-4.99311254459842	-1.35090381451739	7.78393945510067	h
-7.54723688912078	0.69471274367202	7.02151222515224	h
-8.14142686777057	-2.26145227737904	8.46440695972191	h
-10.55213914802074	-0.42516651670505	3.40595454412971	h
-10.27632677282628	-3.37414710717261	1.83991169677100	h
-11.21030234533112	-3.27669361723675	5.05351367368671	h
-4.48649318720828	-2.23014209846906	-4.54075417991091	c
-2.86522855051317	-1.04525077732835	-6.62709345725547	c
-4.48853380838833	-5.12579750792444	-4.86771246197611	c
-7.21514416129492	-1.23741572175093	-4.98788368480738	c
-2.64505122602397	0.99284100849430	-6.34861864612888	h
-1.00921630437055	-1.92324396578348	-6.74120176464718	h
-3.80232910581715	-1.33890327716539	-8.44944784286821	h
-2.59324860541105	-5.89992307797474	-4.60563028353171	h
-5.76257917888261	-6.04493034346287	-3.52324739872253	h
-5.13063029655129	-5.60758171672465	-6.77680824926183	h
-8.57065409607930	-2.07376739463895	-3.67312921897778	h
-7.28577580924931	0.81861599162055	-4.76337663430440	h
-7.80458056451062	-1.70780804649058	-6.91682947269883	h
-0.98162553931760	4.22810588495839	1.92500771688619	c
0.01453587394936	5.61247393482201	-0.42193989430059	c
-2.95150784625391	6.03313650557598	3.12347724912251	c
1.12953803613708	3.75566576810705	3.86964170838889	c
1.52836807061430	4.58139702246783	-1.36058761408105	h
-1.50882754421168	5.92285178455518	-1.78794205154706	h
0.79067624898480	7.45054157651646	0.12512168721891	h
-4.60226040466430	6.25924398448318	1.89660759227578	h
-3.59597029498119	5.39175864813282	4.97811491787767	h
-2.07317907924872	7.88982928791065	3.38323176278827	h

0.33005269690353	2.98373055152840	5.61529816439229	h
2.50181168063480	2.39993874792366	3.15436104755753	h
2.10410492554533	5.52481745730803	4.32536634990557	h
5.36198355456822	0.93907320969738	-4.60308976100733	c
2.56941962137002	1.42421950970150	-5.35604381811522	c
5.95776521457064	-0.91022429923362	-5.29529481852421	h
6.63014203053250	2.33917439398730	-5.43337188638252	h
1.91153621429343	0.52877628808206	-7.09196813554484	h
2.47008130236423	-4.57432080865288	-4.61705060395027	c
1.50879734145300	-3.26020529344931	-2.69312789454471	c
3.18269117214752	-3.68527003359468	-6.32409339200920	h
2.57175132585894	-6.62431207199916	-4.54720487712765	h
0.81182730670530	-4.24658472727392	-1.02958750804776	h
2.15159481222078	3.44207877293752	-5.44203542448225	h
5.33814221101612	0.95741982012610	-1.49029170780304	b
6.25650241503293	-5.25207453476952	2.60863978959790	c
8.54408554867073	-6.16134761885558	1.67737260843310	c
9.81810221827064	-4.78747720263797	-0.16859154344123	c
8.76543524205093	-2.54401109178892	-1.05701982222859	c
6.46716590417909	-1.57138598177556	-0.20889662605823	c
5.29430261662266	-2.99550590572001	1.67072334439663	c
5.00970914073800	-6.56009858982139	4.40201059202144	f
9.51580035905403	-8.33283564272694	2.56294849673398	f
12.04570842531641	-5.63092009122455	-1.06027439540124	f
10.10838382036795	-1.26307381994313	-2.82724828636708	f
3.07057507725768	-2.19655809288593	2.68120064521241	f
8.11019705392915	5.83638071920939	3.46419014198766	c
8.06709377663284	8.11028113267805	2.14896475917562	c
7.08112078800083	8.14446802695363	-0.28640937540732	c
6.17984759915569	5.91578065529679	-1.35031708446762	c
6.16689431636824	3.56096438211631	-0.12851400381624	c
7.17512330600834	3.65591597317211	2.32723188323149	c
9.03012337626858	5.76793559982281	5.83229548411130	f
8.94366579663995	10.23478676437644	3.21417533809179	f
6.99878747156643	10.32851958655492	-1.58654879860896	f
5.23028393925230	6.16952648208623	-3.71900403289147	f

7.24953898633274	1.56986349612301	3.79875551147528	f
_			
5a:			
0.42283509155321	-0.08098534543423	-0.91063376477616	р
0.03220869147479	3.51198851238756	-5.58014410272095	b
-2.32612378382901	0.82444939099473	-2.08397690356936	c
-3.95893692448778	0.43010960690688	-0.89260407244596	h
-2.59992899638629	2.19988849180472	-4.52772146583790	c
-4.21533061044166	3.48275701065978	-4.38557196063935	h
-3.14851828979733	0.76486914529946	-5.94366735494903	h
3.16027927599318	0.59352636469249	-2.87622737403766	с
4.17726823140474	2.17029487526531	-2.00089775723576	h
4.39002686736594	-1.07331044851856	-2.82133891582889	h
2.23677586285448	1.29422985390792	-5.55221139095999	с
1.51795774792141	-0.42814408144238	-6.46027928869124	h
3.92792520205910	1.84225617308813	-6.60171730327632	h
0.29985654220469	-2.06261835684248	1.84875413037638	с
0.93772956506473	-1.06704989636958	4.27155371606829	с
0.11000180121390	-2.39354874851472	6.39699665111059	с
0.53704296710975	-1.64017458615951	8.24496185656574	h
-1.26647577923894	-4.63401602313842	6.23447234340759	с
-1.64125117391985	-5.66705681706449	3.84014313016394	с
-2.57908350225475	-7.48011463553717	3.70636833046343	h
-0.84692454002800	-4.49505924456203	1.61325760582269	с
2.63016106585584	1.27609670295564	4.66671610801638	с
3.03073893057363	1.87584082529004	7.48953150493846	с
4 29064890689672	3 50924600079064	7 63440753910523	h
3 92019279843992	0 30655790661759	8 50215151529654	h
1 25628635471176	2 36337090927352	8 43620564951981	h
1.54501474969403	3 693//70/699792	3 45620001021465	n C
0.41857072063433	4 01270808705523	4 01520727324146	C h
1 61219744001195	4.01270808705525	1 20022027760272	n h
2 67256962470909	5 20191210920040	1.39032937709272	11 h
2.07230003470000	0.20020700004522	4.03370107400330	11
5.202/00824402/9	0.08830/00894306	3.3403/419301983	C 1.
0.49922038270046	2.33721727402943	3./35106965593/3	n
5.15520377216158	0.20268060793576	1.53693201827839	h

6.13280	051648225	-0.90711234807167	4.52934070770313	h
-2.2802	1104997598	-6.01354422577746	8.56483021866628	c
-1.7077	1803286192	-4.58659816996431	11.02896501449827	c
0.32886	376776995	-4.40454203069797	11.35306842975808	h
-2.5071	1845517822	-5.63045045028742	12.62619388644318	h
-2.5446	9906288136	-2.69345281004491	11.02628908887850	h
-5.1754	4525081531	-6.29733755625057	8.30788943699740	c
-6.0880	6347015306	-4.44375072246388	8.19614982826935	h
-5.9339	7689318938	-7.30147001040207	9.95180282765110	h
-5.6832	5405415814	-7.36799269204914	6.61273458781295	h
-1.0617	4318326449	-8.66324581721424	8.72144754730767	c
-1.4886	9248809725	-9.79450052610164	7.04373262444995	h
-1.7850	3562090896	-9.67419479845702	10.37718349411558	h
0.99510	072152888	-8.51633548985510	8.89345968697220	h
-1.1945	1936588011	-6.00020555510315	-0.87796834052096	c
-3.7957	9177295260	-5.46454159959130	-2.09129294308129	c
-3.9256	1475660045	-3.52355200908187	-2.77968281277961	h
-5.3181	3791597479	-5.78293614255342	-0.72684429747198	h
-4.0861	5559276856	-6.73731866695506	-3.69851944526549	h
0.91612	821875349	-5.48007634887105	-2.82278731190987	c
2.79004	875381584	-5.59209589681866	-1.95264356242721	h
0.71745	871881867	-3.65092343171702	-3.76419447365057	h
0.81757	174207309	-6.90384962822798	-4.32060884488323	h
-1.0710	9914007245	-8.87414778913700	-0.32385998326711	c
-1.0241	9001881677	-9.88832576602683	-2.12537172239693	h
-2.7268	2519032430	-9.55436171472217	0.70875707367441	h
0.62674	881558142	-9.37086230794609	0.74881247565972	h
1.00175	704856019	5.90290480048488	-3.79233068554181	c
-2.5668	4900982429	6.10549139176361	-0.99409995338454	f
-0.2705	1839698325	6.98569167442620	-1.74927992520820	c
-0.6685	4723145682	9.90922062854481	1.65693472591899	f
0.65393	085399217	9.00047975752548	-0.32575523919803	c
3.91510	134691236	11.98835324118354	0.43453946312967	f
2.97884	953281229	10.05903385111849	-0.93015301928071	c
6.57302	876193840	10.10166096414833	-3.59871853756347	f
4.32496	327916900	9.08400358697728	-2.96857038031753	c

4.721793456104	6.260693	11047777 -	-6.31903025975399	f
3.315937299258	7.069859	96585674 -	-4.32800795705622	c
-0.56181903930	4.640018	24864637 -	-8.42314578407760	c
-3.28937141785	7.745960	93030808 -	-6.61949908551848	f
-2.19405970434	6.702147	89366165 -	-8.69773749493100	c
-4.40518276254	9.802825	88537530 -	-11.11185768440660	f
-2.82213766024	7.809394	-64340070 -	-10.99901389926920	c
-2.37895327643	7.853269	64616330 -	-15.46724528321890	f
-1.80257196813	6.826010	06928123 -	-13.21450080888747	c
0.793236976455	3.768583	08802499 -	-15.19731378686339	f
-0.19277876514	4.755670	18734397 -	-13.06402623238993	c
1.945667351222	1.681000	92788781 -	-10.76754616896544	f
0.378339991532	3.718690	90946905 -	-10.70945515523269	c

1.18272418323533	-4.21141373831613	2.60396856378700	р
0.28495797722189	-3.52762389497682	4.98036324450483	h
2.24954819847543	-7.42485257831501	3.05253410640644	c
0.81340882788292	-8.89251837310801	2.97651442632213	h
4.66163823205815	-7.97540880473276	3.53883792709166	c
6.12817128880526	-6.53937779673450	3.59481322679101	h
5.25597064166841	-9.90988824539656	3.88622750734883	h
4.65053818444322	2.92927502662111	2.16376991085764	b
6.33141181921746	2.45568741604098	3.65135729534714	h
3.64677686080708	-1.88691079545845	2.12775493701217	c
5.11634079688884	-2.21687164510149	3.55060206149146	h
4.50415696908999	-2.12647461298738	0.26436039767041	h
2.45161515314051	0.74560730932090	2.44378195809923	c
1.56800930174044	0.86299569192232	4.31844175382684	h
0.93954084486531	0.97616306248786	1.05178348886744	h
-1.45591580491718	-3.48978352152846	0.58302956883957	c
-3.64010083949654	-2.54779523290050	1.86252531787054	c
-5.01381794635046	-0.62545900761031	0.68940162313851	c
-6.59967896944589	0.18525106891335	1.69126597993488	h
-4.40966406786100	0.32311148948858	-1.69103232751334	c
-2.52715243052131	-0.93817509093936	-3.04138499558674	с

-2.17128048074122	-0.38403145063075	-4.98268855475163	h
-1.03128747668585	-2.83816380804990	-2.00182491258000	с
-4.69203783964485	-3.55593957983013	4.40482279657802	с
-7.61770236239477	-3.68026379801229	4.20890127579688	с
-8.20827465589560	-4.77531893974398	2.55641697351167	h
-8.48452849864846	-1.81078573139844	4.09895984800550	h
-8.35799618879659	-4.60256555787121	5.90645909932932	h
-4.04665068944873	-1.76409623440393	6.61898505910234	c
-4.97966766687325	-2.41986753294521	8.34704331781641	h
-4.69863882671277	0.15375330048736	6.20711895665576	h
-2.01604025508508	-1.65463773161379	6.99607727353529	h
-3.86641150896993	-6.29422500835833	5.00205909025194	с
-5.06714120215343	-7.03965034332498	6.51246494437642	h
-1.92604240657373	-6.46766742026024	5.68403805013920	h
-4.09768795249524	-7.51119315519314	3.34398973782412	h
-7.16960068458548	1.70171932609087	-5.28026206131024	c
-8.57962880354270	0.25267324803536	-4.83583869594561	h
-5.85513992326943	0.92053536545403	-6.67345847656637	h
-8.13746514774984	3.31115764977431	-6.15049831735034	h
-3.79405839080308	4.60671354524355	-3.56897562848205	c
-2.39505306091615	3.88310968317740	-4.90697239380531	h
-2.78736368438707	5.26125630077081	-1.88890093621419	h
-4.74257919837688	6.22487071891589	-4.44455234389834	h
-7.70008275501162	3.76493697519009	-1.04725779037629	c
-8.57388934539787	5.40485184194073	-1.95552274548531	h
-6.78790356344968	4.41785407001023	0.69182537062275	h
-9.21508807233336	2.44135660784030	-0.55326216653532	h
0.80528025387267	-4.14316112512061	-3.85181209606731	c
0.38355625206883	-6.26107788671031	-7.34773896705414	h
2.66536698296789	-2.23078143655316	-5.02412005579371	с
3.85685914093702	-1.35185625946823	-3.58311307063770	h
1.67837674136905	-0.71842378294794	-6.02576182052315	h
3.89507114679638	-3.19555508100747	-6.38066533567874	h
2.32144111580747	-6.32935663845679	-2.71407947269827	c
-0.84211101263691	-5.30115820533402	-5.98306026696582	c
-1.92010956108494	-3.85681618699026	-6.99099627595758	h

-2.17670762830626	-6.68227155199938	-5.21171039623467	h
5.81970339484004	2.76829267310989	-0.71168806009001	c
9.28326115372701	0.17982825374688	0.59518509659046	f
8.00765171747730	1.40346143115157	-1.27139689222735	c
11.12277651178822	-0.21066496238598	-4.11747175451200	f
9.00816853168786	1.15487996758016	-3.69609637916249	c
8.69572587979727	2.06732320147368	-8.08322451796397	f
7.78765294037992	2.31155024036611	-5.71764248167418	c
4.34898086935149	4.75338813453672	-7.22890696807574	f
5.58977757086877	3.68373232492583	-5.26966821348361	c
2.46211977246570	5.15890967353468	-2.53836274415388	f
4.66469640231002	3.86519009916142	-2.81390023732346	c
3.63904033749624	5.78901379311648	2.77537193266091	c
7.89790213067327	7.22221377063313	2.66193091083286	f
5.40988203746963	7.73762033248871	2.99616844577471	c
4.79738928473594	10.24016339684413	3.52900074146793	c
6.60373296956528	12.03044687298071	3.71674505722109	f
1.62698243335557	13.30851220761869	4.39214870112729	f
2.27395423929585	10.90116645881355	3.87286241461247	c
0.43174448408652	9.03947345023913	3.66906837506940	c
-2.03126061633257	9.65297366681559	3.97633729171606	f
-0.80428597578389	4.88045974250337	2.92382861339627	f
1.14773926931524	6.56390943691664	3.13121650318339	c
3.30327205846521	-7.33174303672715	-4.23493890315640	h
3.78469465002463	-5.69174476573646	-1.40486015130974	h
1.09723974409524	-7.69699152445619	-1.75812797635427	h
-5.77480380295244	2.57717324735289	-2.86858378890705	c
9a:			
-1.82279395222036	3.66090510514781	5.78891725750441	c
0.28583682700860	4.36749757505428	4.38663751504454	c
0.98339904173985	3.16756430988437	2.13311086785730	c
-0.46228338945798	1.04473279680536	1.33992127869316	c
-2.86509566235956	0.58437527874055	2.47568091952152	c
-3.42830892033224	1.86789592940764	4.70827828450956	c
3.16653487317650	4.37826601034018	0.61171928586389	c
5.78840618935726	3.40322247204263	1.44100102254042	c

1.11407681238515	-1.49829907033183	-0.47477133051252	р
1.33425856011771	-4.23366275241717	1.67693311909749	c
1.37267070038723	-6.68077389473058	0.13300894168381	c
-4.98723756258714	-1.06652110203143	1.32535523601923	c
-7.59645166109908	0.10175865279979	1.95489169590998	c
-2.50336960894496	4.86921525812379	8.32538169254216	c
-5.05909865593306	6.26086748430285	8.08456891780857	c
-2.73942100838257	2.76645276557571	10.33714517629080	c
-0.49552403519780	6.77220452952438	9.21007316693578	c
-4.79885422177777	-1.09855415399285	-1.56830090994429	c
-4.99717863736707	-3.79238653746686	2.36315174360033	c
2.78482364112884	3.96010492358129	-2.23419237031965	c
3.15798163885195	7.27785154770507	1.01477985228450	c
1.43791252471649	5.92132336195351	5.04777899773142	h
-5.21085125260277	1.46746991289229	5.63415093105362	h
-4.19163910159331	1.38811473840575	9.81820307614658	h
-0.94568704558774	1.75805543540187	10.55757855812430	h
-3.25645143170942	3.58816195817395	12.16637121795110	h
1.36274489885728	5.88054852519390	9.40347675701790	h
-0.32438439556463	8.36676887686203	7.90111168427603	h
-1.03302218711142	7.53075608664883	11.05878935341700	h
-4.94647847164879	7.75589928365830	6.65836465992581	h
-6.57684915726222	4.96610641461764	7.53993216200642	h
-5.57026218512149	7.12292407494227	9.89695276943753	h
-4.84698016587153	0.82116065506692	-2.33708263478561	h
-3.06691298198688	-2.00258114636551	-2.22459505625176	h
-6.37412815478768	-2.17447380971953	-2.36844057792360	h
-3.37155056919089	-4.87285417624032	1.70623063798774	h
-4.99898979423393	-3.78636342120482	4.43299855877049	h
-6.70530091762545	-4.76887671751432	1.71737145647862	h
-8.11775561790053	-0.13852175487529	3.94109700415841	h
-7.65135017077185	2.11841188279924	1.49798441006399	h
-9.03539758311086	-0.86410749832899	0.82382516205584	h
2.89833303172698	1.97269276437012	-2.76394519780393	h
0.94962660601931	4.69381925142414	-2.84678635947833	h
4.27130193573296	4.93246577235126	-3.29505281306351	h

1.2/030/2/1/92/0	8.07967632755727	0.70399842180835	h
3.80426493925488	7.82296158545226	2.90146085622539	h
4.46219430972933	8.12854838266884	-0.34810591908158	h
6.02496359389705	3.60598768191716	3.48784450620482	h
6.07756499031602	1.43109008598720	0.92701839170729	h
7.26258769171119	4.51790897177243	0.50726821159943	h
0.23378135683741	-4.18975924143390	3.40580712238773	h
3.64694657063416	-2.57867515729611	1.64176148952392	c
5.33908706608690	-3.30137692149609	0.73457589353515	h
3.98856863432022	-1.40224685556896	3.28616266113906	h
0.01795565169168	-6.24968997199134	-2.40466709837723	c
1.15028498497974	-3.81760173110285	-3.91825451399798	b
3.33748486748580	-7.26391544975528	-0.18217061888361	h
0.45603096614537	-8.19145372004427	1.21183749405708	h
0.13324015444306	-7.94845387520650	-3.57998511701194	h
-1.98880646581264	-5.96556704966718	-1.99653386609133	h
-0.53205658073091	-2.56144698958772	-6.14870505858377	c
4.03491955707865	-4.32577514872515	-4.92558390071919	c
6.27459252370279	-3.00802163552264	-4.47837089790549	c
8.61935955067445	-3.69402229342070	-5.46503021368974	c
8.80577609822174	-5.78150538251718	-7.04623920486753	c
6.62239254764008	-7.12650614272268	-7.62757050963131	c
4.32787585770312	-6.37468824768520	-6.58512911181856	c
6.29275396340398	-0.87755136379449	-3.05072097025404	f
10.69748270334430	-2.33191981144503	-4.91582001726838	f
11.04425234850380	-6.47037843327506	-8.01935868041325	f
6.74654992420646	-9.12025750306060	-9.19958440930940	f
2.27848398419463	-7.72346859699416	-7.32899968117076	f
0.34285183814193	-0.47056157759056	-7.51474674311976	c
-0.96554008993493	0.66525430084107	-9.49126333569102	c
-3.28589406151225	-0.32703373161571	-10.23135115284920	c
-4.22755469984673	-2.43734781182453	-8.97950096970390	c
-2.85245966281384	-3.50530920637792	-7.00375975504857	c
2.60580018797557	0.57257858936833	-6.93079254786098	f
-0.01259085758868	2.69375062237878	-10.69312091959610	f
-4.58938451316437	0.73064434634350	-12.13136100678020	f

-6.46154739139742	-3.42800388437484	-9.68513615193693	f
-3.91688056612038	-5.56548075876849	-5.92547879675358	f

-		
ь	h	٠
v	IJ	

-2.06813136615366	1.73112085401689	3.36602612142679	c
0.35235823182511	1.82212097008082	2.29885704970546	c
0.89473595675609	0.33440858612518	0.11858690748370	c
-1.05198271236702	-1.23063272209294	-0.89886373676542	c
-3.42502283788542	-1.22408454040858	0.27556430811151	c
-3.99011308479230	0.22882165080393	2.39487503853996	c
-2.45280677670655	2.88604879790827	5.02480109656642	h
4.13225597473315	0.78652804975403	-1.11972942923179	р
-4.88952727139529	-2.42519601889574	-0.52594183145430	h
-6.59171254046323	0.18285447146164	3.59737415254200	c
-7.25836086000978	-2.47078290652989	4.58449905394866	c
-6.53616722862129	1.47435022338043	5.22048770944118	h
-8.62703138117856	1.14433175877342	1.75471479523092	c
-7.35168564406019	-3.83243459436969	3.02728514388480	h
-5.83948748601214	-3.13987268368509	5.93260632918149	h
-9.10216076316613	-2.45233671642872	5.52670358120522	h
-8.18568603677982	3.05289808054245	1.09076754748002	h
-8.76210667928152	-0.09229788330691	0.09933102408199	h
-10.48085167178202	1.18185466915523	2.67640473868296	h
-0.91484660979227	-3.09331551914831	-3.11710990552895	c
0.22432109573088	-2.15590653828316	-5.61149127395630	c
0.21095220537583	-5.65371422115062	-2.29737082147429	c
-2.90651057504093	-3.48169108891431	-3.54445291302645	h
-0.65202123439116	-0.37923539544668	-6.20541166074356	h
2.26204027553600	-1.88569823862396	-5.50862882933913	h
-0.14745260229615	-3.56779531817826	-7.08184579526771	h
2.22321943914181	-5.50132776689112	-1.88181925794274	h
-0.75765387478374	-6.36632561310076	-0.61359724481571	h
-0.02083573230663	-7.03895133889628	-3.82033607354745	h
2.18898351236530	3.58577316597011	3.69203711726879	c
3.07624418326890	5.89229835040039	2.15127591233347	c
1.04205157457061	4.36299921594687	5.23479129202864	h

4.40756844214921	2.21235018927008	4.98566937852493	c
4.44523968507506	5.36869951409054	0.69670065023689	h
1.47229399344072	6.82714790957538	1.23662292278333	h
3.98192695083694	7.25719803351602	3.42046874699867	h
3.72212413955966	0.61944120971201	6.11535931073526	h
5.76937021699460	1.50616667955129	3.60320002045217	h
5.39056275325432	3.52708174949733	6.25014067635530	h
5.56465533285103	3.10809491280443	-5.66219038393467	c
3.69377727977643	2.41033273497141	-4.10690714168030	c
7.53055734419510	2.64047176994319	-5.29575949907242	h
5.18133199947902	4.19000084974161	-7.36570835440918	h
1.76761748951313	2.99938882855655	-4.52399096094449	h
6.80278242516915	-2.98313511541617	-3.84020464065010	c
5.49269292114807	-2.26826389983341	-1.79768630583198	c
6.91940958855598	-1.81273339417643	-5.52401187555599	h
7.79206584344776	-4.78169220251801	-3.89092398879006	h
5.47101611451604	-3.49535950925433	-0.14116870126733	h

4b:

-4.21959065459353	0.95878052627711	3.23969344562522	c
-1.84742008173420	0.29549277618835	2.28531463082781	c
-1.71979599078720	-0.89757980388304	-0.10428694885468	c
-3.97414863385953	-1.55049821560347	-1.39671414702704	c
-6.28632969029275	-0.84010142813126	-0.35165536667953	c
-6.45406786496269	0.45416576997251	1.94155004473904	c
-4.33030402463191	1.88998814143603	5.06734881909407	h
1.32744267667380	-1.44224862791152	-1.62815452661679	р
-8.01005357964381	-1.32939041193769	-1.35766806705849	h
-8.98918805970096	1.25374069243258	3.01257593694439	c
-10.70678618529635	-1.03911068615708	3.51534865151169	c
-8.61891408353647	2.18689303131919	4.82763999081912	h
-10.30234668427673	3.17435732950573	1.26572087492627	c
-11.15509470126031	-2.02663352555248	1.75142503972204	h
-9.79362230639494	-2.38879236439798	4.78927677478912	h
-12.48978053588223	-0.43087080863092	4.37309155786734	h
-9.10284368782326	4.82786940698262	0.94360997497190	h

-10.72541562005575	2.32346997774147	-0.57429332434888	h
-12.08680224714550	3.80939494723072	2.10088290106027	h
-4.00991746233270	-3.10731811307507	-3.81408440733155	c
-5.25458967741729	-5.69441177313657	-3.32900081520729	c
-5.32276105628581	-1.71361399602770	-6.00067153213617	c
-2.06237618808178	-3.49179420864962	-4.38150245521371	h
-4.27417401710753	-6.71224170437345	-1.81915761033140	h
-7.23561954869848	-5.47269921122889	-2.77240520900003	h
-5.19302510924924	-6.85050780672906	-5.04520263594728	h
-7.32347298238235	-1.39220980631530	-5.57926652859159	h
-4.44790808516353	0.12621411749835	-6.35360468983689	h
-5.21247698397755	-2.83519602293240	-7.73677857184963	h
0.46055760138772	0.67134276049319	3.94723446745614	c
0.59268580698268	-1.48242372530713	5.90728705188173	c
2.14095246470882	0.53306348871648	2.75386369264015	h
0.52876028670590	3.24911038221372	5.27614024400310	c
-1.04420040166877	-1.40325087635314	7.17318713007205	h
0.60362484132479	-3.33464907225971	4.98891481572710	h
2.31312381286347	-1.31357253590610	7.04313804611516	h
0.29874336735789	4.79618105687364	3.92692634557256	h
-0.96186754874732	3.41003337128253	6.70322952727482	h
2.34074093385079	3.48928886348723	6.24371991410175	h
4.03964828872886	0.69833647048042	-4.85373026193396	c
1.40350415237569	-0.58814480667599	-4.99543957569125	c
5.45609261569663	-0.50434995377704	-5.75758221500420	h
4.06754896393392	2.51805029458111	-5.83202738090943	h
1.24586899924848	-2.19829198568276	-6.28172511123375	h
3.16616780512937	-6.14999316531992	-3.11579441859238	c
1.96315665551721	-4.78541154311319	-1.36674605547153	c
3.79791206596946	-5.34418396396137	-4.89564888300418	h
3.57284610176116	-8.13992485496686	-2.81497570682782	h
1.39664391456729	-5.64006823519261	0.41436530812863	h
-0.12201863430282	0.73214879516977	-5.40737299863779	h
4.54040919846024	0.86801046857179	-1.76085845166738	b
9.37779740141174	-3.76966522249012	1.64990006755895	c
11.56233197675845	-3.36222719134019	0.24486430418933	c

11.52247202491320	-1.59514527217067	-1.70488055780979	с
9.29295391368697	-0.29924549010154	-2.22048474730551	c
7.03838672727298	-0.66184478124462	-0.89114588208387	c
7.20375908314168	-2.40821442727836	1.07054262801341	c
9.39170663141561	-5.45546502968159	3.55718552107663	f
13.68839442900510	-4.64348260109593	0.77414468849781	f
13.63530127038750	-1.15124965147181	-3.04901668638538	f
9.39168336609513	1.45148138865331	-4.09017936346594	f
5.16915368291867	-2.84145016598408	2.58067591268690	f
5.43250871896299	7.10531397704620	2.31578715595948	c
3.45164037931262	8.61271872876982	1.47588881146804	c
1.77847890968143	7.64242272140136	-0.30715756365159	c
2.14875322102325	5.20562055128995	-1.21470696685719	c
4.12370941965581	3.60990423409187	-0.47229182666383	c
5.72069425297757	4.66852731197168	1.35557703130555	c
7.03854875777883	8.00287563859789	4.06992624298941	f
3.13385566158666	10.95382212669584	2.39546530015814	f
-0.17679051771112	9.05530653829480	-1.11257671676570	f
0.41634109983195	4.37291592261827	-2.91716825857059	f
7.67880136394219	3.34063125816334	2.32451361478924	f

4b (ROTAMER):

-5.29818405662586	1.02328154956859	3.29351157579230	с
-3.06942922760257	1.39963426546334	1.92689659580886	c
-2.61001568678704	-0.03991530809423	-0.30658034340497	c
-4.59824621224991	-1.62725521447206	-1.22203368611982	c
-6.77555987066320	-1.90591187078398	0.25973713919382	c
-7.15311407280941	-0.68042431278277	2.55118951261954	c
-5.58526837148634	2.12913271055197	5.00387553426076	h
0.65554651889322	-0.08585429923708	-1.62304869486785	р
-8.26070308233832	-3.12702313132421	-0.47142985765495	h
-9.52165763978055	-1.08618010877547	4.11016195773923	c
-9.76862436488808	-3.86110577605794	4.94599417738067	c
-9.33897019364757	0.08463992353187	5.81294737864461	h
-11.89888886698730	-0.21726009222980	2.67531581269892	c
-9.97289840951314	-5.10767881188187	3.30512989358009	h

-8.10146148341531	-4.46998471289287	6.00760415229888	h
-11.43716345229857	-4.10871014759779	6.14587442133274	h
-11.74756808662282	1.76881061328152	2.11799372014992	h
-12.17644203181282	-1.34421435053526	0.96062425732909	h
-13.58015537497964	-0.43921006831069	3.86247040119054	h
-4.88319037686415	-3.05188014252872	-3.74470167311134	c
-3.56351122442153	-1.99013918446811	-6.08819774467549	c
-4.47271027394566	-5.92563490951863	-3.47543575581682	c
-6.90869177681910	-2.82914563459822	-4.13315181599326	h
-3.72292009408447	0.06984328213567	-6.17410928676048	h
-1.57681541466792	-2.52059867861942	-6.16846613230206	h
-4.47852714006657	-2.76848513320520	-7.77454590774005	h
-2.49256107732287	-6.38450677414534	-3.13864890029795	h
-5.59444703866416	-6.68095213208961	-1.91040344777369	h
-5.06539612689939	-6.87838878194403	-5.21613886153124	h
-1.37748375244884	3.47214285701794	3.00199021385753	c
-0.67960010229680	5.46355924827425	1.01690047754181	c
-2.57725454861637	4.44920714654478	4.38158180364976	h
0.88511395259575	2.44440643478048	4.50031844515635	c
0.49879686600752	4.67803265095580	-0.48126162214417	h
-2.38556340321999	6.24171994385593	0.14258040904495	h
0.37501018402172	7.01274084360945	1.89260036451155	h
0.22918131194537	1.19655031834749	6.01418547445378	h
2.16683859787407	1.36670515597115	3.30546388594892	h
1.93802296674072	4.00593394921858	5.35828574002291	h
4.26233234518267	1.39157898777847	-4.40914865139888	c
1.34952775951759	1.51120955392011	-4.63713623700504	c
4.95549475587293	-0.32440779231139	-5.32221265315244	h
5.15744674880350	2.98199987743051	-5.37356266221919	h
0.54738555836482	0.68206575957812	-6.34310196039205	h
2.28714867264596	-4.58223151781482	-4.02120912308065	c
1.16172931269514	-3.42679008157630	-2.08142660091617	c
2.88880051784774	-3.58655818962026	-5.71048086118641	h
2.63624584901336	-6.60567948481903	-3.98418207032616	h
0.61188732899791	-4.52566686116806	-0.43171879264077	h
0.67745273105556	3.45739065842654	-4.46760172384507	h

4.88586029121588	1.27510252602869	-1.39040150636691	b
7.48892971580652	-5.05511281190987	1.73044466194113	c
9.68905136232985	-5.41886239593990	0.33405648124091	c
10.35552800778841	-3.65121289463698	-1.49582191246534	c
8.79031331389506	-1.57557973712260	-1.90023484977480	c
6.55166615026932	-1.13841964833574	-0.57072090838841	c
5.99937796159641	-2.93882573917235	1.27086844380165	c
6.82856323762964	-6.74995459400835	3.51024759615501	f
11.15781384255497	-7.44410618458790	0.75890324870251	f
12.49470731443908	-3.95812556175163	-2.83604049393763	f
9.54748145580967	0.10927888533403	-3.68125217164160	f
3.90193946058630	-2.69700317690555	2.72332633655684	f
7.36031485688973	6.09454852704652	3.73043526938174	c
6.93629713092495	8.42701502085550	2.59494854516975	c
5.78798735404801	8.50283103734635	0.23153670517290	c
5.09083880965244	6.25663546810253	-0.94115947724184	c
5.47205362258553	3.84411676072519	0.09824154826044	c
6.63705693861798	3.89365440726751	2.48560207729344	c
8.44974721359108	5.98961063214281	6.02321065599591	f
7.60609182190891	10.56860964065039	3.76692432834036	f
5.33535979213263	10.74269161178536	-0.88133701857689	f
3.92348319268890	6.54201497248310	-3.20245983026332	f
7.09859800980958	1.73230102776346	3.75738399279386	f

5b:

-0.37377430613973	-0.54628483223364	-0.88254451733385	р
0.21448828311373	3.03535381190100	-5.34421297883178	b
-2.87088954136191	0.34692044716322	-2.53781177891034	c
-4.69849299907823	0.11676139201515	-1.61662853603354	h
-2.61433262192405	1.71765280564883	-4.98751557008111	c
-4.22112844196497	3.00372518667289	-5.18405904328978	h
-2.79681679972711	0.32201691214916	-6.52463658951225	h
2.66749953209343	-0.29404580774086	-2.44052638373706	c
3.81556199346143	1.00224538640774	-1.30356364096139	h
3.56678728721690	-2.16012380060039	-2.34602883054190	h
2.28399749328986	0.69549585331219	-5.15667087250319	c

1.63519418163937	-0.88899175422256	-6.32629449566677	h
4.15696947706816	1.20977830184287	-5.84968177512330	h
-0.62685629193974	-2.23897876606004	2.03453532056718	c
0.40219171196856	-1.05868954337959	4.19502462537625	c
0.38992842613111	-2.39566043688499	6.47183892264147	c
1.17092687548242	-1.51398664069624	8.15600103466312	h
-0.62037659398896	-4.82056835129969	6.65199324674801	c
-1.65090994099438	-5.93007921557482	4.47884992944144	c
-2.45385591143870	-7.81273920392808	4.61306522945067	h
-1.67582553065884	-4.70576044845058	2.15068753330124	c
1.48621803044227	1.59671410573871	4.09913217364858	c
1.15554886814098	2.34781189424450	2.18203383765438	h
4.35558818958550	1.59985290115116	4.56397705095078	c
5.33626843189567	0.35655500634798	3.23299679851242	h
4.78749982193385	0.94727447880141	6.48062871840116	h
5.10859355919983	3.51429967264047	4.34997091761193	h
0.11349617493550	3.37848334330817	5.93946257539123	c
0.89838511489520	5.28547168955478	5.80494625735593	h
0.33756380883681	2.73211519155037	7.89284603925685	h
-1.90658024390135	3.47475452126869	5.51402826292291	h
-0.61685876409599	-6.22472956827004	9.14988500653588	c
0.28275736169715	-4.98468006899894	10.54774113246649	h
-3.32685827351177	-6.78017178375656	10.05155610763350	c
-4.42934550961982	-5.03835565444134	10.21740589596417	h
-3.29156407959190	-7.71209753284303	11.89888211378909	h
-4.30381108451847	-8.03368263214627	8.72436484760936	h
0.94662511351727	-8.67267220780562	8.98100304982194	c
0.10907670886627	-9.99126003892969	7.62204894567352	h
1.00937798613463	-9.61289772376545	10.82341204920944	h
2.88617456704854	-8.27915623441610	8.38039300254983	h
-2.70052750207229	-6.02222068984390	-0.19323765384609	c
-0.50509676230804	-7.15130307648078	-1.74175406991876	c
0.50890237217264	-8.57102239252233	-0.62836168368753	h
0.85277794499278	-5.69414303506159	-2.30414967209938	h
-1.22248776037899	-8.04948346035662	-3.46178652063528	h
-4.68882066617927	-8.05165656326515	0.38285658763032	c

-6.21188858274874	-7.30598986390787	1.56735060615209	h
-3.85899765058655	-9.68810409800909	1.34176186214694	h
-5.51601334248107	-8.73012770404204	-1.38698368696499	h
-3.60917219748474	-4.58160603049561	-1.37052183597370	h
0.85475846506844	5.09339187270198	-3.04934370619265	c
-3.32000345631329	5.39951144857087	-1.29666616639122	f
-0.83462777292982	6.04574905593251	-1.25355507741279	c
-1.90406366424134	8.51767084138075	2.36068046285378	f
-0.16540669666084	7.70016864712363	0.68462422878565	c
3.01935488143136	10.06591838415038	2.78443838631967	f
2.32555308421191	8.50079823469498	0.90453556449688	c
6.50928346354716	8.43057102646669	-0.68246957092965	f
4.08949537738832	7.65452677117247	-0.85211094085117	c
5.14828583578067	5.32139557489663	-4.42364515195915	f
3.31902554287117	6.01425738448986	-2.76089913776724	c
0.24022379237824	4.52926651075036	-8.06698779956102	c
-2.64374980062034	7.58584503583252	-6.43606946714726	f
-1.21017441384704	6.71739804451273	-8.38357302199377	c
-2.76439534514711	10.21638678889966	-10.76351242654672	f
-1.32582295732384	8.11973935526616	-10.60520548412286	c
-0.01900474786663	8.63879037428322	-14.86945938049863	f
0.05969702748377	7.32601457372911	-12.69466165915160	c
2.84764853491724	4.34140332631717	-14.52030026164515	f
1.51236397550405	5.14555529843711	-12.50428328087867	c
3.00984075801999	1.68445035041858	-10.25189289393028	f
1.56460019928360	3.80917735868263	-10.23335276090225	c

6c:

0.72108962200152	0.41563833419042	1.71461143253215	р
3.19417768183236	2.49678992265180	-2.41650374813535	c
1.05142678083721	1.48667380726991	-1.54586631632557	c
4.84150231478980	2.71185085424635	-1.20602752643990	h
3.38021397289412	3.14296973947985	-4.35969286813993	h
-0.57358050291218	1.27827319644012	-2.80239490869135	h
-0.00169826712481	-4.23097221026821	-0.82950748902151	c
-0.43413187474538	-2.78501224359398	1.19831100662691	c

4c:

1.02476710935329	-3.52438668782323	-2.46380129044084	h
-0.64405623941465	-6.18074111474973	-0.91524946072859	h
-1.44291118456968	-3.59077744364564	2.80758787579630	h
-2.32980433482120	1.95587778293758	2.55364369036984	c
-2.00755681384110	3.98192703065110	2.80645691627932	h
-3.78035580522063	1.66322158247000	1.10799452609618	h
-2.99908245905860	1.17866744974357	4.35043816022239	h

-3.48081654811220	-0.66661536172347	-0.27779233113772	p
-0.88096430323215	0.21527390783997	-3.88392733560853	c
-3.66680744088546	0.99023817987651	-3.29570575558297	c
-0.86012595896649	-1.69312284898324	-4.68980864426792	h
0.06939219755224	1.47303355134336	-5.20939549310282	h
-5.15902978797321	0.45030759593494	-4.61917018307227	h
-5.21210202983209	-4.86401201074243	-2.95157453397257	c
-4.53027720872394	-3.86948002592956	-0.73564113311097	c
-5.25344254368193	-3.76540468107128	-4.68475100010134	h
-5.74636756554376	-6.84081658308071	-3.10478402132353	h
-4.47319177014439	-5.04200972612702	0.95236482582430	h
-3.79821156132717	3.02065371081849	-2.92280967436093	h
0.18443995632372	0.12753464138404	-0.94659281408234	b
3.99746317637324	-5.64780926117135	1.95174251374766	c
6.29497574838546	-5.41528414197407	0.69226412760590	c
6.63276752477171	-3.45481358692739	-1.03310024269688	c
4.65541285369564	-1.77492041727553	-1.45969736235019	c
2.31359636646462	-1.93171933622869	-0.25262426165341	c
2.07780847577197	-3.91426657345991	1.46263201565779	c
3.65797038831347	-7.53575722885405	3.62375517092057	f
8.16980784168121	-7.06668060428949	1.13670966842278	f
8.84968919017998	-3.21420191256287	-2.25368155810320	f
5.06461638716080	0.11407024152429	-3.14153391641489	f
-0.10946817742704	-4.24855462404447	2.77571720923025	f
1.23243629296477	5.19683128025681	4.40184867594679	c
1.67074683369211	7.43171768334478	3.08179555654740	c
1.61299023705084	7.40195462328101	0.45357344516158	c

1.12185822591995	5.14514043314698	-0.81754156151230	с
0.67680627227821	2.84814260317934	0.41087494354153	c
0.75550034711205	2.99386421823474	3.05168237376447	c
1.26490372329800	5.19804386609088	6.94408531880836	f
2.13752665654783	9.58774886260247	4.33080431884125	f
2.03446417162349	9.55097780081221	-0.83682091622732	f
1.10477442999816	5.29773945579637	-3.37136463406354	f
0.31682016936908	0.87742722122849	4.43331206204609	f
-5.40615021791624	0.56794714111900	2.30173403918007	c
-7.41140911087651	0.49984280347022	1.80764026981998	h
-5.06720412280230	-0.56208031812262	3.99808528606770	h
-4.84119911908372	2.51905942128324	2.67769555161108	h

5c:

-4.85641502863101	2.24110778691602	1.30639106747055	р
-1.42779158772698	1.95294713908820	-2.63568757723291	c
-3.74199587350598	3.51707084290554	-1.66585550479939	c
-2.00211965432533	1.12557413888670	-4.44745259652006	h
0.08425898010443	3.29244032920850	-3.05991159384725	h
-5.32953823030885	3.47304386529102	-2.99766143130563	h
-2.86856823919484	-2.27390303481522	-0.16539289425741	c
-4.62720068299566	-0.91689745455687	1.46999070545264	c
-3.73794509494625	-2.52682518650839	-2.03517712882435	h
-2.40647755341524	-4.12762828378669	0.59771595661913	h
-5.43385519721307	-1.80625917433120	3.14550247603433	h
-3.26372868837148	5.49920968522815	-1.33096435785259	h
-0.33414614614030	-0.40110296542092	-0.91490480510904	b
3.32913440818938	-5.37468196888882	-5.31888608122039	c
5.60323835036704	-4.12514756376311	-5.73146180367978	c
5.97228073227783	-1.75819391390982	-4.64603314288252	c
4.06196847493205	-0.71075813722908	-3.17300200520582	c
1.74710709312789	-1.88808739741912	-2.67279201996543	c
1.47564261391258	-4.24352475674570	-3.82695540353681	c
2.93788228291770	-7.66180826408488	-6.36834382963372	f
7.41203263074317	-5.18034738927894	-7.16855808991593	f
8.15585215736621	-0.51160910525963	-5.04235905779527	f

4.54497855226211	1.61601672116453	-2.19656782953152	f
-0.68938807556973	-5.60614750620758	-3.55075536013935	f
3.18529174274486	-1.09608154703201	5.64381161596372	c
3.48530108787623	1.37826874166671	6.49050189414889	c
2.58208816713877	3.34948106921520	5.00856699490226	c
1.39498874617558	2.80808724126979	2.72035561050854	c
1.02818354957135	0.37446477313946	1.77936511656608	c
1.98341469655301	-1.53043929748128	3.34607556613280	c
4.05698327998722	-3.02483779951069	7.05579760501283	f
4.62752741095496	1.85053218243100	8.70795588974454	f
2.85095487366389	5.75526571856270	5.80257298528587	f
0.59770295018963	4.87119909295176	1.39252037805195	f
1.76902543946994	-3.98810517431045	2.63753475810062	f
-7.62937352616341	3.69414712328878	2.73441488854610	c
-9.19281318499780	3.76691079933057	1.38419870542736	h
-8.18458114452018	2.57641437389146	4.38035775539695	h
-7.15990031249966	5.61020429610427	3.34509254388990	h
Supporting Information References

- [S1] A. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen, F. J. Timmers, *Organometallics*, 1996, 15, 1518-1520.
- [S2] Z. Otwinowski, W. Minor, Methods Enzymol. 1997, 276, 307-326.
- [S3] Z. Otwinowski, D. Borek, W. Majewski, W. Minor, Acta Cryst. 2003, A59, 228-234.
- [S4] G. M. Sheldrick, Acta Crystallogr. 1990, A46, 467-473.
- [S5] G. M. Sheldrick, Acta Cryst. 2008, A64, 112-122.
- [S6] a) A. G. Massey, A. J. Park in *Organometallic Syntheses*, Vol. 3 (Eds: A. G. Massey, A. J. Park), King, R. B. & Eisch, J. J. Elsevier, New York, 1986, pp. 461-462; b) A. G. Massey A. J. Park, *J. Organomet. Chem.* 1964, 2, 245-250; c) D. J. Parks, W. E. Piers, G. P. A. Yap, *Organometallics* 1998, 17, 5492-5503; d) D. J. Parks, R. E. von H. Spence, W. E. Piers, *Angew. Chem. Int. Ed.* 1995, 34, 809-811.
- [S7] a) D. G. Yakhvarov, E. Hey-Hawkins, R. M. Kagirov, Yu. H. Budnikova, Yu. S. Ganushevich, O. G. *Russ. Chem. Bull.* 2007, 56, 935-942; b) J. Möbus, Q. Bonnin, K. Ueda, R. Fröhlich, K. Itami, G. Kehr, G. Erker, *Angew. Chem. Int. Ed.* 2012, 51, 1954-1957.
- [S8] R. Knorr, C. Pires, C. Behringer, T. Menke, J. Freudenreich, E. C. Rossmann, P. Böhrer, J. Am. Chem. Soc. 2006, 128, 14845-14853.
- [S9] H. Alan, A. H. Cowley, N. C. Norman, M. Pakulski, G. Becker, M. Layh, E. Kirchner, M. Schmidt, *Inorg. Synth*, 1990, 27, 235-240.
- [S10] Günther, H. NMR Spektroskopie, 3. Auflage, Georg Thieme Verlag, Stuttgart, 1992.
- [S11] a) R. Liedtke, M. Harhausen, R. Fröhlich, G. Kehr, G. Erker, Org. Lett. 2012, 14, 1448-1451; b) C.
 Chen, R. Fröhlich, G. Kehr, G. Erker, Org. Lett. 2011, 13, 62-65; c) B. Wrackmeyer, Coord. Chem.
 Rev. 1995, 145, 125-156; d) B. Wrackmeyer, Heteroat. Chem. 2006, 17, 188-208; e) G. Kehr, G.
 Erker, Chem. Commun.2012, 48, 1839-1850.
- [S12] Carried out in analogy to: W. J. Richter, Angew. Chem. Int. Ed. Engl. 1982, 21, 292-293.
- [S13] a) E. Niecke, W. Flick, Angew. Chem. Int. Ed. 1975, 14, 363-364; b) E. Niecke, W. W. Schoeller, D.-A. Wildbredt, Angew. Chem. Int. Ed. 1981, 20, 131-132; c)E. Niecke, M. Leuer, D.-A. Wildbredt, W. W. Schoeller, J. Chem. Soc., Chem. Commun. 1983, 1171-1172; d) R. Appel, C. Casser, Chem. Ber. 1985, 118, 3419-3423; e) R. Appel, T. Gaitzsch, F. Knoch, G. Lenz, Chem. Ber. 1986, 119, 1977-1985; f) P. Becker, H. Brombach, G. David, M. Leuer, H.-J. Metternich, E. Niecke, Chem. Ber. 1992, 125, 771-782; g) E. Niecke, P. Becker, M. Nieger, D. Stalke, W. W. Schoeller, Angew. Chem. Int. Ed. 1995, 34, 1849-1852; see also: h) F. Mathey Three-membered Rings. 1. Phosphiranes and Phosphirenes in Phosphorus-Carbon Heterocyclic Chemistry: The Rise of a New Domain, 1st Edition (Ed: F. Mathey), Pergamon, Elsevier Science, Oxford, 2001, pp. 44 et seqq.

- [S14] a) R. Ahlrichs, M. Bär, M. Häser, H. Horn, C. Kölmel, *Chem. Phys. Lett.* 1989, 162, 165-169; b) Ahlrichs, R. *et al.*, Universität Karlsruhe 2006. See http://www.turbomole.com.
- [S15] a) F. Weigend, R. Ahlrichs, *Phys. Chem. Chem. Phys.* 2005, 7, 3297-3305; b) A. Schäfer, H. Horn,
 R. Ahlrichs, *J. Chem. Phys.* 1992, 97, 2571-2577; c) The basis sets are available from the TURBOMOLE homepage via the FTP Server Button (in the subdirectories basen, jbasen, and cbasen). See http://www.turbomole.com.
- [S16] V. N. Staroverov, G. E. Scuseria, J. Tao, J. P. Perdew, J. Chem. Phys. 2003, 119, 12129-12137.
- [S17] a) S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104-154119; b) S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456-1465.
- [S18] a) S. Grimme, J. Antony, T. Schwabe, C. Mück-Lichtenfeld, *Org. Biomol. Chem.* 2007, 5, 741-758;
 b) S. Grimme, *WIREs Comput. Mol. Sci.* 2011, 1, 211-228.
- [S19] a) S. Grimme, H. Kruse, L. Goerigk, G. Erker, Angew. Chem. Int. Ed. 2010, 49, 1402-1405; b) T. Schwabe, S. Grimme, J.-P. Djukic, J. Am. Chem. Soc. 2009, 131, 14156-14157; c) H. Kruse, S. Grimme, J. Phys. Chem. C 2009, 11, 17006-17010; d) M. Mömming, S. Frömel, G. Kehr, R. Fröhlich, S. Grimme, G. Erker, J. Am. Chem. Soc. 2009, 131, 12280-12289.
- [S20] a) K. Eichkorn, O. Treutler, H. Öhm, M. Häser, R. Ahlrichs, *Chem. Phys. Lett.* 1995, 240, 283-290;
 b) K. Eichkorn, F. Weigend, O. Treutler, R. Ahlrichs, *Theor. Chem. Acc.* 1997, 97, 119-124.
- [S21] S. Grimme, Chem. Eur. J. 2012, 18, 9955-9964.
- [S22] Y. Zhao, D. G. Truhlar, J. Phys. Chem. A 2005, 109, 5656-5667.
- [S23] L. Goerigk, S. Grimme, Phys. Chem. Chem. Phys. 2011, 13, 6670-6688.
- [S24] K. B. Wiberg, Tetrahedron 1968, 24, 1083-1096.
- [S25] a) F. Eckert, A. Klamt, AlChE Journal 2002, 48, 369-385; b) A. Klamt, WIREs Comput. Mol. Sci. 2011, 1, 699-709.
- [S26] F. Eckert, A. Klamt, COSMOtherm, Version C2.1, Release 01.11, (COSMOlogic GmbH&Co. KG, Leverkusen, Germany, 2010).