Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*-chimonanthine and related heterodimeric alkaloids.

Stephen P. Lathrop and Mohammad Movassaghi*

Page S1 / S153

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*-chimonanthine and related heterodimeric alkaloids.

Stephen P. Lathrop and Mohammad Movassaghi*

Massachusetts Institute of Technology, Department of Chemistry, Massachusetts 02139

Supporting Information

General Procedures	<u>S2</u>
Materials	S2
Instrumentation	S2
Positional Numbering System	S3
N1-Carboxymethyl Hexahydropyrroloindole (–)- S2	S4
C2-Carboxymethyl Hexahydropyrroloindole (+)-13	<u>\$6</u>
N8-Carboxy- <i>tert</i> -Butyl Hexahydropyrroloindole (–)- 14	S7
Hexahydropyrroloindole Sulfamate Ester (–)-15	S9
C3a-Aminohexahydropyrroloindole (–)- 16	<u>S1</u> 1
C2-Carboxymethyl Hexahydropyrroloindole (–)-17	S12
N8-tert-Butylbenzenesulfonyl Hexahydropyrroloindole (–)-18	S14
Hexahydropyrroloindole Sulfamate Ester (–)-19	S16
C3a-Aminohexahydropyrroloindole (–)- 20	S18
N1-Carboxytrichloroethyl Hexahydropyrroloindole (+)- S4	S20
C2-Carboxymethyl Hexahydropyrroloindole (+)-21	S22
N8-Benzenesulfonyl Hexahydropyrroloindole (+)-22	S24
C3a-Aminohexahydropyrroloindole (+)- 24	S26
Mixed Sulfamide (–)-25	S28
Unsymmetrical Diazene (–)-26	S30
Heterodimer (–)-27	S32
Mixed Sulfamide (+)-28	S34
Unsymmetrical Diazene (+)-29	S36
Heterodimer (+)-30	S38
N8'-H Heterodimer (–)-31	S40
N8'-Methyl Heterodimer (–)-32	S42
(–)-N1,N1'-Carboxymethyl Calycanthidine (33)	S44
(-)-Calycanthidine (1)	S46
NMR Comparison Tables for (–)-Calycanthidine (1)	S48
N1'-Carboxyethyl Heterodimer (+)-34	S52
(–)-N1-Carboxymethyl-N1'-Carboxyethyl <i>meso</i> -Chimonanthine (35)	S54
meso-Chimonanthine (2)	S56
NMR Comparison Tables for <i>meso</i> -Chimonanthine (2)	S58
meso-Calycanthine (36)	S62
NMR Comparison Tables for <i>meso</i> -Calycanthine (36)	S63
(-)-N1-Carboxymethyl-N1'-Desmethyl- <i>meso</i> -Chimonanthine (37)	S65
(–)-Desmethyl- <i>meso</i> -Chimonanthine (3)	S67
NMR Comparison Tables for Desmethyl-meso-Chimonanthine (3)	S70

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*-chimonanthine and related heterodimeric alkaloids.

Stephen P. Lathrop and Mohammad Movassaghi*

Page S2 / S153

N1'-H Heterodimer (–)-38	S73
N1'-Methyl Heterodimer (–)-39	S75
(-)-N1-Carboxymethyl- <i>meso</i> -Chimonanthine (40)	S77
(+)-Desmethyl- <i>meso</i> -Chimonathine (3)	S79
Copy of ¹ H and ¹³ C NMR spectra	S80

General Procedures. All reactions were performed in oven-dried or flame-dried round-bottom flasks. The flasks were fitted with rubber septa, and reactions were conducted under a positive pressure of argon. Cannulae or gas-tight syringes with stainless steel needles were used to transfer air- or moisture-sensitive liquids. Where necessary (so noted), solutions were deoxygenated by sparging with argon for a minimum of 10 min. Flash column chromatography was performed as described by Still et al. using granular silica gel (60-Å pore size, 40–63 μm, 4–6% H₂O content, Zeochem). Analytical thin layer chromatography (TLC) was performed using glass plates pre-coated with 0.25 mm 230–400 mesh silica gel impregnated with a fluorescent indicator (254 nm). TLC plates were visualized by exposure to short wave ultraviolet light (254 nm) and irreversibly stained by treatment with an aqueous solution of ceric ammonium molybdate (CAM) followed by heating (~ 1 min) on a hot plate (~ 250 °C). Organic solutions were concentrated at 29–30 °C on rotary evaporators capable of achieving a minimum pressure of ~2 torr. The diazene photolysis was accomplished by irradiation in a Rayonet RMR-200 photochemical reactor (Southern New England Ultraviolet Company, Branford, CT, USA) equipped with 16 lamps.

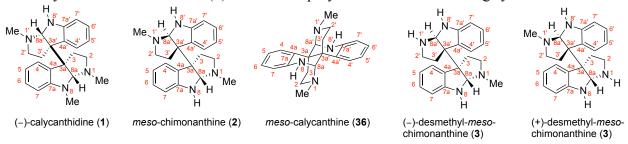
Materials. Commercial reagents and solvents were used as received with the following exceptions: dichloromethane, acetonitrile, tetrahydrofuran, methanol, pyridine, toluene, and triethylamine were purchased from J. T. Baker (CycletainerTM) and were purified by the method of Grubbs *et al.* under positive argon pressure. N,N'-diisopropylethylamine and benzene were dried by distillation over calcium hydride under an inert nitrogen atmosphere and used directly. L-tryptophan methyl ester hydrochloride was purchased from Chem-Impex International, Inc.; di-*tert*-butyl dicarbonate (Boc₂O) was purchased from Oakwood Chemicals, Inc.; trimethyltin hydroxide and sodium bis(2-methoxyethoxy)aluminum hydride (Red-Al) were purchased from Strem Chemicals, Inc.; thiopyridine N-oxide and 2-methyl-2-phenylpropionic acid were purchased from TCI America; N,N,N',N'-tetramethylchloroformamidinium hexafluorophosphate (TCFH) was purchased from AK Scientific, Inc. All other solvents and chemicals were purchased from Sigma–Aldrich.

Instrumentation. Proton nuclear magnetic resonance (1 H NMR) spectra were recorded with a Varian inverse probe 500 INOVA spectrometer. Chemical shifts are recorded in parts per million on the δ scale and are referenced from the residual protium in the NMR solvent (CHCl₃: δ 7.24, CDHCl₂: 5.32, CD₂HCN: 1.94, CD₃SOCD₂H: 2.50, C₆D₅H: 7.16). Data are reported as follows: chemical shift [multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constant(s) in Hertz, integration, assignment]. Carbon-13 nuclear magnetic resonance spectra were recorded with a Varian 500 INOVA spectrometer and are recorded in parts per million on the δ scale and are referenced from the carbon resonances of the solvent (CDCl₃: δ 77.23: CD₂Cl₂: 54.00 CD₃CN: 118.69, DMSO- d_6 : 39.51, C₆D₆: 128.39). Data are reported as

_

¹ W. C. Still, M. Kahn, and A. Mitra . J. Org. Chem. 1978. 43, 2923.

² A. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen, and F. Timmers, J. Organometallics 1996, 15, 1518.


Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*-chimonanthine and related heterodimeric alkaloids.

Stephen P. Lathrop and Mohammad Movassaghi*

Page S3 / S153

follows: chemical shift [multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constant(s) in Hertz, assignment]. Fluorine-19 nuclear magnetic resonance spectra were recorded with a Varian 300 INOVA spectrometer and are recorded in parts per million on the δ scale and are referenced from the fluorine resonances of trifluoroacetic acid (CF₃CO₂H δ –76.55). Data are reported as follows: chemical shift [multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constant(s) in Hertz, integration, assignment]. Infrared data were obtained with a Perkin-Elmer 2000 FTIR and are reported as follows: [frequency of absorption (cm⁻¹), intensity of absorption (s = strong, m = medium, w = weak, br = broad), assignment]. We thank Dr. Li Li at the Massachusetts Institute of Technology Department of Chemistry instrumentation facility for obtaining mass spectroscopic data. High resolution mass spectra (HRMS) were recorded on a Bruker Daltonics APEXIV 4.7 Tesla FT-ICR-MS using electrospray (ESI) (m/z) ionization source.

Positional Numbering System. In assigning the 1 H and 13 C NMR data of all intermediates en route to (–)-calycanthidine (1), *meso*-chimonanthine (2), *meso*-calycanthine (36), (–)- and (+)- N_{I} -desmethyl-*meso*-chimonanthine (3) we have employed a uniform numbering system.

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*-chimonanthine and related heterodimeric alkaloids.

Stephen P. Lathrop and Mohammad Movassaghi*

Page S4 / S153

N1-Carboxymethyl Hexahydropyrroloindole (-)-S2:

Aqueous phosphoric acid (85% w/v, 110 mL) was added to a flask containing indole S1 (9.60 g, 36.3 mmol, 1 equiv) at 23 °C. The resulting heterogeneous mixture was stirred vigorously. After 8 h, the homogenous solution was poured slowly into a vigorously stirred biphasic mixture of dichloromethane (200 mL) and a solution of potassium carbonate (480 g) and potassium hydroxide (160 g) in water (1 L) at 0 °C. The pH of the mixture was maintained above 7 by the periodic addition of solid potassium carbonate (5×50 g). Once the addition was complete, the mixture was extracted with diethyl ether (3×300 mL). The combined organic layers were washed with brine (100 mL), were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (eluent: $15\rightarrow 25\%$ acetone in hexanes) to give N1-carboxymethyl hexahydropyrroloindole (–)-S2³ (7.40 g, 73.7%) as a white solid. Structural assignments were made using additional information from gCOSY, HSQC, and HMBC experiments.

 1 H NMR (500 MHz, C₆D₆, 20 °C):

Major Rotamer: δ 6.91 (app-t, J = 7.7 Hz, 1H, C₆H), 6.78 (d, J = 7.5 Hz, 1H, C₄H), 6.60 (app-t, J = 7.4 Hz, 1H, C₅H), 6.33 (d, J = 7.7 Hz, 1H, C₇H), 5.44 (d, J = 6.7 Hz, 1H C_{8a}H), 5.39 (br-s, 1H, N₈H), 4.27 (d, J = 9.0 Hz, 1H, C₂H), 3.46 (s, 3H, N₁CO₂CH₃), 3.30–3.27 (m, 1H, C₃H), 2.92 (s, 3H, CO₂CH₃), 2.30 (d, J = 13.1 Hz, 1H, C₃H_a), 1.92–1.84 (m, 1H, C₃H_b).

Minor Rotamer: δ 6.95 (app-t, J = 7.7 Hz, 1H, C₆H), 6.81 (d, J = 7.5 Hz, 1H, C₄H), 6.63 (app-t, J = 7.4 Hz, 1H, C₅H), 6.45 (d, J = 7.7 Hz, 1H, C₇H), 5.17 (d, J = 6.7 Hz, 1H C_{8a}H), 4.77 (br-s, 1H, N₈H), 4.61 (d, J = 9.0 Hz, 1H, C₂H), 3.49 (s, 3H, N₁CO₂CH₃), 3.30–3.27 (m, 1H, C_{3a}H), 2.93 (s, 3H, CO₂CH₃), 2.29 (d, J = 13.1 Hz, 1H, C₃H_a), 1.92–1.84 (m, 1H, C₃H_b).

¹³C NMR (125.8 MHz, C₆D₆, 20 °C):

Major Rotamer: δ 171.9 (CO₂CH₃), 155.6 (N₁CO₂CH₃), 151.3 (C_{7a}), 129.1 (C_{4a}), 128.9 (C₆), 124.5 (C₄), 118.8 (C₅), 109.7 (C₇), 78.1 (C_{8a}), 59.6

³ Due to facile opening of cyclotryptophan (–)-**S2** to the corresponding tryptophan derivative this material was used in the next step immediately following purification..

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*-chimonanthine and related heterodimeric alkaloids.

Stephen P. Lathrop and Mohammad Movassaghi*

Page S5 / S153

(C₂), 52.7 (N₁CO₂CH₃), 52.0 (CO₂CH₃), 45.4 (C_{3a}), 34.9 (C₃).

Minor Rotamer: δ 172.1 (CO₂CH₃), 154.8 (N₁CO₂CH₃), 150.8 (C_{7a}), 129.0 (C_{4a}), 128.7 (C₆), 124.6 (C₄), 119.2 (C₅) 109.6 (C₇), 77.3 (C_{8a}), 60.1 (C₂), 52.7 (N₁CO₂CH₃), 51.9 (CO₂CH₃), 46.7 (C_{3a}), 34.4 (C₃).

FTIR (thin film) cm⁻¹: 3383 (br-w), 2953 (m), 1755 (s), 1702 (s), 1611 (m),

1451 (s), 1382(s).

HRMS (ESI) (m/z): calc'd for $C_{14}H_{17}N_2O_4$ $[M+H]^+$: 277.1183,

found: 277.1179.

 $[\alpha]_D^{24}$: $-232 (c = 1.52, CH_2Cl_2)$.

TLC (25% acetone in hexanes), Rf: 0.38 (UV, CAM).

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*-chimonanthine and related heterodimeric alkaloids.

Stephen P. Lathrop and Mohammad Movassaghi*

Page S6 / S153

C2-Carboxymethyl Hexahydropyrroloindole (+)-13:

Di-*tert*-butyl dicarbonate (7.70 g, 35.2 mmol, 3.00 equiv) was added to a solution of N1-carboxymethyl hexahydropyrroloindole (–)-**S2** (3.10 g, 11.7 mmol, 1 equiv) in acetonitrile (50 mL) at 23 °C. The reaction flask was fitted with a reflux condenser and heated to 70 °C. After 8 h, another portion of di-*tert*-butyl dicarbonate (7.70 g, 35.2 mmol, 3.00 equiv) was added and the solution was continued to stir at 70 °C. After 15 h, the homogenous solution was allowed to cool to 23 °C and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (eluent: $10\rightarrow20\%$ acetone in hexanes) to give C2-carboxymethyl hexahydropyrroloindole (+)-**13** (3.80 g, 86.3%) as a white foam. Structural assignments were made using additional information from gCOSY, HSQC, and HMBC experiments.

¹H NMR (500 MHz, CD₃CN, 20 °C):

δ 7.52 (d, J = 8.0 Hz, 1H, C₇**H**), 7.19–7.14 (m, 2H, C₄**H**, C₆**H**), 6.98 (app-t, J = 7.5 Hz, 1H, C₅**H**), 6.32 (d, J = 6.5 Hz, 1H, C₈**H**), 4.54 (d, J = 8.7 Hz, 1H, C₂**H**), 4.01 (app-t, J = 6.6 Hz, 1H, C₃**H**), 3.66 (s, 3H, N₁CO₂C**H**₃), 3.14 (s, 3H, CO₂C**H**₃), 2.58 (ddd, J = 7.0, 8.7, 13.2 Hz, 1H, C₃**H**_a), 2.53 (ddd, J = 1.7, 1.8, 13.2 Hz, 1H, C₃**H**_b), 1.55 (s, 9H, N₈CO₂C(C**H**₃)₃).

¹³C NMR (125.8 MHz, CD₃CN, 20 °C):

FTIR (thin film) cm⁻¹:

2979 (m), 1705 (s), 1605 (w), 1482 (s), 1447 (s).

HRMS (ESI) (m/z):

cale'd for $C_{19}H_{25}N_2O_6$ [M+H]⁺: 377.1707, found: 377.1713.

 $[\alpha]_D^{24}$:

+2.4 (c = 1.7, CH₂Cl₂).

TLC (33% acetone in hexanes), Rf:

0.47 (UV, CAM).

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*-chimonanthine and related heterodimeric alkaloids.

Stephen P. Lathrop and Mohammad Movassaghi*

Page S7 / S153

N8-Carboxy-tert-Butyl Hexahydropyrroloindole (-)-14:

An aqueous solution of potassium hydroxide (5 N, 55 mL) was added to a solution of C2-carboxymethyl hexahydropyrroloindole (+)-13 (3.20 g, 8.50 mmol, 1 equiv) in methanol (110 mL) at 0 °C in an ice bath. After 10 min, the ice bath was removed and the mixture was allowed to warm to 23 °C. After 2 h, the resulting solution was cooled to 0 °C in an ice bath and adjusted to pH \sim 2 by the dropwise addition of an aqueous solution of hydrochloric acid (12 N, 25 mL). The mixture was allowed to warm to 23 °C and extracted with dichloromethane (3 × 150 mL). The combined organic layers were washed with brine (50 mL), were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure to afford the crude carboxylic acid as a white foam.

Thiopyridine N-oxide (1.73 g, 13.6 mmol, 1.60 equiv), 4-(dimethylamino)pyridine (104 mg, 850 µmol, 0.10 equiv), and N,N,N',N'-tetramethylchloroformamidinium hexafluorophosphate (TCFH, 3.19 g, 12.8 mmol, 1.50 equiv) were sequentially added to a solution of the crude carboxylic acid in tetrahydrofuran (85 mL) cooled to 0 °C in an ice bath. The reaction flask was removed from the ice bath, covered in aluminum foil and triethylamine (4.75 mL, 34.0 mmol, 4.00 equiv) was added while the reaction mixture was still cold. After 1.5 h, tertbutylthiol (4.80 mL, 42.5 mmol, 5.00 equiv) was added via syringe and the aluminum foil was removed from the flask. The resulting suspension was irradiated with a flood lamp (500 W). After 2 h, the lamp was shut off and the tetrahydrofuran was removed under reduced pressure. The resulting residue was diluted with dichloromethane (200 mL) and was washed with aqueous saturated sodium bicarbonate solution (50 mL). The aqueous layer was extracted with dichloromethane ($2 \times 100 \text{ mL}$). The combined organic extracts were washed with brine (50 mL), were dried over anhydrous sodium sulfate, were filtered and were concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (eluent: 5→10% acetone in hexanes) to afford N8-carboxy-tert-butyl hexahydropyrroloindole (-)-14 (2.33 g, 86.1%, overall from (+)-13) as a clear viscous oil. Structural assignments were made using additional information from gCOSY, HSQC, and HMBC experiments.

¹H NMR (500 MHz, CD₃CN, 20 °C):

δ 7.61 (d, J = 8.1 Hz, 1H, C₇H), 7.23 (d, J = 7.4 Hz, 1H, C₄H), 7.19 (app-t, J = 7.5 Hz, 1H, C₆H), 7.03 (app-t, J = 7.5 Hz, 1H, C₅H), 6.31 (d, J = 6.9 Hz, 1H, C₈aH), 4.01 (app-t, J = 7.2 Hz, 1H, C₃aH), 3.75 (dd, J = 7.7, 11.1 Hz, 1H, C₂H_a) 3.64 (s, 3H, N₁CO₂CH₃), 2.76 (app-dt, J = 5.6, 11.6 Hz, 1H, C₂H_b), 2.15 (app-tt, J = 7.7, 12.0 Hz, 1H, C₃H_a), 2.05 (dd, J = 5.6, 6.9 Hz, 1H, C₃H_b), 1.53 (s, 9H, N₈CO₂C(C(CH₃)₃).

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*-chimonanthine and related heterodimeric alkaloids.

Stephen P. Lathrop and Mohammad Movassaghi*

Page S8 / S153

 $^{13}C\ NMR\ (125.8\ MHz,\ CD_3CN,\ 20\ ^{\circ}C): \qquad \delta \quad 156.5\quad (N_1CO_2CH_3), \quad 153.8\quad (N_8CO_2C(CH_3)_3),$

144.2 (C_{7a}), 133.9 (C_{4a}), 129.2 (C_{6}), 125.5 (C_{4}), 124.6 (C_{5}), 117.1 (C_{7}), 82.3 ($N_{8}CO_{2}C(CH_{3})_{3}$), 78.1 (C_{8a}), 53.3 ($N_{1}CO_{2}CH_{3}$), 46.6 (C_{3a}), 46.3 (C_{2}), 32.0

 (C_3) , 28.9 $(N_8CO_2C(CH_3)_3)$.

FTIR (thin film) cm⁻¹: 2977 (m), 1704 (s), 1604 (w), 1483 (s), 1446 (s).

HRMS (ESI) (m/z): calc'd for $C_{17}H_{23}N_2O_4$ $[M+H]^+$: 319.1652, found:

319.1672.

 $[\alpha]_D^{24}$: $-127 (c = 1.37, CH_2Cl_2)$.

TLC (33% acetone in hexanes), Rf: 0.42 (UV, CAM).

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*-chimonanthine and related heterodimeric alkaloids.

Stephen P. Lathrop and Mohammad Movassaghi*

Page S9 / S153

Hexahydropyrroloindole Sulfamate Ester (-)-15:

A round bottom flask was charged with 5Å molecular sieves (296 mg, 200 mg/mmol of 14), magnesium oxide (239 mg, 5.92 mmol, 4.00 equiv) and flame-dried under vacuum for 5 min. The reaction vessel was allowed to cool to 23 °C and back filled with argon. Solid 2,6difluorophenyl sulfamate⁴ (402 mg, 1.92 mmol, 1.30 equiv), 2-methyl-2-phenylpropionic acid (122 mg, 0.740 mmol, 0.500 equiv), and Rh₂(esp)₂ (23.0 mg, 300 umol, 0.0200 equiv) were added sequentially. A solution of N8-carboxy-tert-butyl hexahydropyrroloindole (–)-14 (470 mg, 1.48 mmol, 1 equiv) in isopropyl acetate (3.0 mL) was added via syringe at 23 °C and the mixture was allowed to stir. After 5 min, (diacetoxyiodo)benzene (953 mg, 1.92 mmol, 2.00 equiv) was added and the green heterogeneous mixture was agitated by vigorous stirring at 23 °C. After 14 h, the reaction mixture was filtered through a pad of Celite and the filter cake was rinsed with ethyl acetate (40 mL). The filtrate was concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (eluent: gradient, 15→33% ethyl acetate in hexanes) to afford the hexahydropyrroloindole sulfamate ester (–)-15 (413 mg. 53.1%) as a white solid. Structural assignments were made using additional information from gCOSY, HSQC, and HMBC experiments.

¹H NMR (500 MHz, CD₃CN, 20 °C):

δ 7.68 (d, J = 8.1 Hz, 1H, C_7 **H**), 7.47 (d, J = 7.7 Hz, 1H, C_4 **H**), 7.39–7.32 (m, 2H, C_6 **H**, C_4 **H**), 7.16–7.11 (m, 3H, C_5 **H**, C_3 **H**), 7.06 (br-s, 1H, C_{3a} N**H**), 6.50 (s, 1H, C_{8a} **H**), 3.85 (dd, J = 6.9, 10.3 Hz, 1H, C_2 **H**_a) 3.66 (s, 3H, N_1 CO₂CH₃), 2.77–2.65 (m, 2H, C_2 **H**_b, C_3 **H**_a), 2.47 (dd, J = 4.3, 11.4 Hz, 1H, C_3 **H**_b), 1.50 (s, 9H, N_8 CO₂C(C**H**₃)₃).

¹³C NMR (125.8 MHz, CD₃CN, 20 °C):

δ 157.2 (dd, J = 3.5, 251.8 Hz, $C_{2'}$), 156.2 (N₁CO₂CH₃), 153.5 (N₈CO₂C(CH₃)₃), 144.9 (C_{7a}), 131.8 (C_{6}), 130.8 (C_{4a}), 129.2 (app-t, J = 9.4 Hz, $C_{4'}$), 127.8 (t, J = 15.8 Hz, $C_{1'}$), 125.9 (C_{4}), 125.1 (C_{5}), 118.1 (C_{7}), 114.1 (dd, J = 4.0, 18.4 Hz, $C_{3'}$), 82.7 (N₈CO₂C(CH₃)₃), 81.1, (C_{8a}), 72.8 (C_{3a}), 53.6 (N₁CO₂CH₃), 46.2 (C_{2}), 36.6 (C_{3}), 28.8 (N₈CO₂C(CH₃)₃).

⁴ J. L. Roizen, D. N. Zalatan and J. Du Bois, *Angew. Chem. Int. Ed.*, 2013, *Early View*, DOI: 10.1002/anie.201304238.

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*-chimonanthine and related heterodimeric alkaloids.

Stephen P. Lathrop and Mohammad Movassaghi*

Page S10 / S153

¹⁹F NMR (282 MHz, CDCl₃, 20 °C): $\delta -124.8$ (t, J = 6.6 Hz, 2F, C₆H₃**F**₂).

FTIR (thin film) cm⁻¹: 3168 (br-m), 2981 (w), 1712 (s), 1680 (s), 1606 (w),

1481 (s).

HRMS (ESI) (m/z): calc'd for $C_{23}H_{26}F_2N_3O_7S$ $[M+H]^+$: 526.1454,

found: 526.1465.

 $[\alpha]_D^{24}$: -82 (c = 1.04, CH₂Cl₂).

TLC (33% ethyl acetate in hexanes), Rf: 0.26 (UV, CAM).

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*-chimonanthine and related heterodimeric alkaloids.

Stephen P. Lathrop and Mohammad Movassaghi*

Page S11 / S153

C3a-Aminohexahydropyrroloindole (-)-16:

Pyridine (613 µL, 7.61 mmol, 20.0 equiv) was added to a solution of hexahydropyrroloindole sulfamate ester (-)-15 (200 mg, 381 µmol, 1 equiv) in a mixture of acetonitrile-water (2:1, 4.50 mL), via syringe at 23 °C. The reaction flask was fitted with a reflux condenser and heated to 70 °C. After 24 h, the resulting yellow solution was allowed to cool to 23 °C. The mixture was diluted with dichloromethane (50 mL) and was washed with a saturated aqueous sodium bicarbonate solution (20 mL). The aqueous layer was extracted with dichloromethane (2 × 30 mL). The combined organic extracts were washed with brine (20 mL), were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (eluent: gradient, 1→5% methanol in dichloromethane) to afford aminohexahydropyrroloindole (-)-16 (115 mg, 90.5%) as a yellow oil. Structural assignments were made using additional information from gCOSY, HSQC, and HMBC experiments.

¹H NMR (500 MHz, CD₃CN, 20 °C):

δ 7.63 (d, J = 8.1 Hz, 1H, C₇H), 7.34 (d, J = 7.5 Hz, 1H, C₄H), 7.26 (app-t, J = 7.5 Hz, 1H, C₆H), 7.07 (app-t, J = 7.5 Hz, 1H, C₅H), 5.77 (s, 1H, C₈H), 3.73 (dd, J = 7.9, 11.1 Hz, 1H, C₂H_a) 3.64 (s, 3H, N₁CO₂CH₃), 2.75 (app-dt, J = 5.6, 11.7 Hz, 1H, C₂H_b), 2.22 (dd J = 7.9, 11.1 Hz, 1H, C₃H_a), 2.09 (app-dt, J = 8.1, 12.2 Hz, 1H, C₃H_b), 1.92 (br-s, 2H, NH₂) 1.54 (s, 9H, N₈CO₂C(CH₃)₃).

¹³C NMR (125.8 MHz, CD₃CN 20 °C):

FTIR (thin film) cm⁻¹:

3369 (br-w), 3302 (br-w), 2977 (w), 1702 (s), 1603 (w), 1480 (m), 1447 (m), 1393 (m), 1200 (m).

HRMS (ESI) (m/z):

calc'd for $C_{17}H_{24}N_3O_4[M+H]^+$: 334.1761, found: 334.1783.

 $[\alpha]_{\rm D}^{24}$:

-119 (c = 1.55, CH_2Cl_2).

TLC (50% acetone in hexanes), Rf:

0.15 (UV, CAM).

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*-chimonanthine and related heterodimeric alkaloids.

Stephen P. Lathrop and Mohammad Movassaghi*

Page S12 / S153

C2-Carboxymethyl Hexahydropyrroloindole (-)-17:

A solution of 4-*tert*-butylbenzenesulfonyl chloride (3.50 g, 15.1 mmol, 2.00 equiv) in pyridine (3 mL) was added dropwise via syringe to a solution of hexahydropyrroloindole (−)-**S2** (2.00 g, 7.57 mmol, 1 equiv) in pyridine (20 mL) at 0 °C in an ice bath. After 15 min, the ice bath was removed and allowed to warm to 23 °C. After 4 h, the solution was concentrated under reduced pressure. The resulting residue was diluted with ethyl acetate (250 mL) and washed sequentially with an aqueous solution of hydrochloric acid (1 N, 2 × 25 mL), saturated aqueous solution of sodium bicarbonate (25 mL), and brine (50 mL). The organic layer was separated, was dried over anhydrous sodium sulfate, was filtered, and was concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (eluent: 15→25% acetone in hexanes) to give C2-carboxymethyl hexahydropyrroloindole (−)-17 (3.20 g, 89.5%) as a white solid.

As a result of the slow conformational equilibration at ambient temperature, NMR spectra were collected at elevated temperature. Structural assignments were made using additional information from gCOSY, HSQC, and HMBC experiments also collected at elevated temperature.

¹H NMR (500 MHz, CD₃CN, 70 °C):

δ 7.66 (d, J = 8.6 Hz, 2H, N₈SO₂Ar-o-H), 7.50 (d, J = 8.6 Hz, 2H, N₈SO₂Ar-m-H), 7.38 (d, J = 8.1 Hz, 1H, C₇H), 7.23 (app-t, J = 7.2 Hz, 1H, C₆H), 7.10 (d, J = 7.4 Hz, 1H, C₄H), 7.07 (app-t, J = 7.2 Hz, 1H, C₅H), 6.29 (d, J = 6.5 Hz, 1H C_{8a}H), 4.54 (d, J = 9.0 Hz, 1H, C₂H), 3.71 (app-t, J = 6.9 Hz, 1H, C_{3a}H), 3.60 (s, 3H, N₁CO₂CH₃), 3.16 (s, 3H, CO₂CH₃), 2.61–2.49 (m, 2H, C₃H), 1.30 (s, 9H, C(CH₃)₃).

¹³C NMR (125.8 MHz, CD₃CN, 70 °C):

FTIR (thin film) cm⁻¹:

2956 (w), 1711 (s), 1595 (w), 1447 (m), 1384 (m), 1360 (m), 1169 (m).

HRMS (ESI) (m/z):

calc'd for $C_{24}H_{29}N_2O_6S$ [M+H]⁺: 473.1741, found: 473.1740.

Electronic Supplementary Material (ESI) for Chemical Science This journal is @ The Royal Society of Chemistry 2013

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*-chimonanthine and related heterodimeric alkaloids.

Stephen P. Lathrop and Mohammad Movassaghi*

Page S13 / S153

$$[\alpha]_D^{24}$$
: -71 ($c = 0.44$, CH₂Cl₂).

TLC (33% acetone in hexanes), Rf: 0.33 (UV, CAM).

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*-chimonanthine and related heterodimeric alkaloids.

Stephen P. Lathrop and Mohammad Movassaghi*

Page S14 / S153

N8-tert-Butylbenzenesulfonyl Hexahydropyrroloindole (-)-18:

An aqueous solution of potassium hydroxide (5 N, 30 mL) was added to a solution of C2-carboxymethyl hexahydropyrroloindole (–)-17 (3.10 g, 6.56 mmol, 1.00 equiv) in methanol (60 mL) at 23 °C. After 40 min, the resulting solution was cooled to 0 °C in an ice bath and adjusted to pH \sim 2 by the dropwise addition of an aqueous solution of hydrochloric acid (12 N, 15 mL). The mixture was allowed to warm to 23 °C and was extracted with dichloromethane (3 × 150 mL). The combined organic layers were washed with brine (50 mL), were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure to afford the crude carboxylic acid as a white foam. The crude carboxylic acid was concentrated from benzene (15 mL) under reduced pressure to remove residual methanol.

Oxalyl chloride (1.60 mL, 18.9 mmol, 3.00 equiv) and dimethylformamide (48.0 μL, 630 μmol, 0.100 equiv) were added sequentially via syringe to a solution of the crude carboxylic acid in dichloromethane (65 mL) at 23 °C. After 1 h, the solution was concentrated under reduce pressure. The resulting residue was concentrated from benzene (2 × 20 mL) to remove the remaining oxalyl chloride. The crude acid chloride was dissolved in toluene (120 mL) and argon was bubbled through the solution for 10 min. Tristrimethylsilylsilane (2.90 mL, 9.45 mmol, 1.50 equiv) and azobisisobutyronitrile (AIBN, 103 mg, 630 μmol, 0.10 equiv) were added to the solution at 23 °C. The flask was fitted with a reflux condenser and heated to 80 °C. After 45 min, an additional portion of tristrimethylsilylsilane (2.90 mL, 9.45 mmol, 1.50 equiv) and AIBN (103 mg, 630 μmol, 0.10 equiv) were added. After a further 1.5 h, another portion of AIBN (103 mg, 630 μmol, 0.10 equiv) was added. After an additional 1.5 h the reaction mixture was allowed to cool to 23 °C and was concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (eluent: 15→20% acetone in hexanes) to give N8-tert-butylbenzenesulfonyl hexahydropyrroloindole (–)-18 (2.40 g, 88.3%, overall from (–)-17) as a white foam.

As a result of the slow conformational equilibration at ambient temperature, NMR spectra were collected at elevated temperature. Structural assignments were made using additional information from gCOSY, HSQC, and HMBC experiments also collected at elevated temperature.

¹H NMR (500 MHz, CD₃CN, 70 °C):

δ 7.65 (d, J = 8.6 Hz, 2H, N₈SO₂Ar-o-H), 7.50–7.49 (m, 3H, N₈SO₂Ar-m-H, C₇H), 7.25 (app-t, J = 8.0 Hz, 1H, C₆H), 7.16 (d, J = 7.4 Hz, 1H, C₄H), 7.10 (app-t, J = 7.4 Hz, 1H, C₅H), 6.25 (d, J = 6.7 Hz, 1H, C₈aH), 3.74–3.70 (m, 2H, C₃aH, C₂H_a), 3.67 (s, 3H, N₁CO₂CH₃), 2.77 (app-dt, J = 5.7, 11.5 Hz, 1H, C₂H_b), 2.15 (app-ddt, J = 7.9, 11.6, 12.6 Hz, 1H, C₃H_a), 2.00 (dd, J = 5.5, 12.2 Hz, 1H, C₃H_b), 1.30 (s, 9H, C(CH₃)₃).

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*-chimonanthine and related heterodimeric alkaloids.

Stephen P. Lathrop and Mohammad Movassaghi*

Page S15 / S153

¹³C NMR (125.8 MHz, CD₃CN, 70 °C): δ 159.1 (N₈SO₂Ar-*p*-C), 156.6 (N₁CO₂CH₃), 143.9

(C_{7a}), 137.9 (N₈SO₂Ar-*ipso*-C), 136.0 (C_{4a}), 130.0 (C₆), 128.8 (N₈SO₂Ar-*o*-C), 127.8 (N₈SO₂Ar-*m*-C), 127.1 (C₄), 126.3 (C₅), 118.9 (C₇), 82.0 (C_{8a}), 53.7 (N₁CO₂CH₃), 47.8 (C_{3a}), 46.5 (C₂), 36.6 (C(CH₃)₃),

 $32.2 (C_3), 32.1 (C(CH_3)_3).$

FTIR (thin film) cm⁻¹: 2961 (m), 1709 (s), 1447 (m), 1385 (m), 1360 (m).

HRMS (ESI) (m/z): calc'd for $C_{22}H_{27}N_2O_4S$ $[M+H]^+$: 415.1686,

found: 415.1676.

 $[\alpha]_D^{24}$: -198 (c = 0.19, CH₂Cl₂).

TLC (33% acetone in hexanes), Rf: 0.34 (UV, CAM).

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*-chimonanthine and related heterodimeric alkaloids.

Stephen P. Lathrop and Mohammad Movassaghi*

Page S16 / S153

Hexahydropyrroloindole Sulfamate Ester (-)-19:

A round bottom flask was charged with 5Å molecular sieves (482 mg, 200 mg/mmol of 18), magnesium oxide (388 mg, 9.64 mmol, 4.00 equiv), and flame-dried under vacuum for 5 min. The reaction vessel was allowed to cool to 23 °C and back filled with argon. Solid 2,6difluorophenyl sulfamate⁴ (656 mg, 3.14 mmol, 1.30 equiv), 2-methyl-2-phenylpropionic acid (198 mg, 1.21 mmol, 0.500 equiv), and Rh₂(esp)₂ (3.7 mg, 48 µmol, 0.020 equiv) were added sequentially and the mixture was sealed under argon. A solution of N8-tertbutylbenzenesulfonyl hexahydropyrroloindole (-)-18 (1.00 g, 2.41 mmol, 1 equiv) in isopropyl acetate (5.0 mL) was added via syringe at 23 °C and the mixture was allowed to stir. After 5 min, (diacetoxyiodo)benzene (1.55 g, 4.82 mmol, 2.00 equiv) was added and the resulting green heterogeneous mixture was agitated by vigorous stirring at 23 °C. After 14 h, the mixture was filtered through a pad of Celite and the filter cake was rinsed with ethyl acetate (50 mL). The filtrate was concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (eluent: gradient, 15→20% acetone in hexanes) to afford a mixture of the desired sulfamate ester (-)-19 along with minor amounts of regioisomeric amination products. The mixture was triturated with dichloromethane in hexanes (33% v/v, 20 mL) and the resulting suspension was filtered over a sintered glass funnel and rinsed with cold dichloromethane in hexanes (33% v/v, 10 mL) to afford pure hexahydropyrroloindole sulfamate ester (-)-19 (0.578 g, 38.5%) as a white solid. The filtrate was concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (eluent: gradient, 20-33% ethyl acetate in hexanes) to afford a second portion of pure hexahydropyrroloindole sulfamate ester (-)-19 (140 mg, 9.3%) as a white solid. Structural assignments were made using additional information from gCOSY, HSQC, and HMBC experiments.

¹H NMR (500 MHz, CDCl₃, 20 °C):

δ 7.71 (d, J = 8.1Hz, 1H, C₇H), 7.57 (br-s, 2H, N₈SO₂Ar-o-H), 7.43 (app-t, J = 7.6 Hz, 1H, C₆H), 7.37–7.34 (m, C₄H, N₈SO₂Ar-m-H), 7.26-7.20 (m, C₅H, C₄'H), 7.01 (app-t, J = 7.8 Hz, 2H, C₃'H), 6.20 (s, 1H, C₈H), 3.94 (s, 1H, C₃aNH), 3.86 (dd, J = 8.0, 11.1, 1H, C₂H_a), 3.72 (s, 3H, N₁CO₂CH₃), 2.99 (app-dt, J = 8.1, 12.1Hz, 1H, C₂H_a), 2.76 (br-s, 1H, C₂H_b), 2.43 (dd, J = 4.9, 12.4 Hz, 1H C₃H_b), 1.18 (s, 9H, C(CH₃)₃).

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*-chimonanthine and related heterodimeric alkaloids.

Stephen P. Lathrop and Mohammad Movassaghi*

Page S17 / S153

¹³C NMR (125.8 MHz, CDCl₃, 20 °C):

 δ 157.9 (N₈SO₂Ar-*p*-C), 156.1 (dd, J=3.4, 253.7 Hz, $\mathbf{C}_{2'}$), 155.0 (N₁CO₂CH₃), 142.7 (\mathbf{C}_{7a}), 135.1 (N₈SO₂Ar-*ipso*-C), 131.9 (\mathbf{C}_{4a}), 131.6 (\mathbf{C}_{6}), 128.1 (app-t, J=9.3 Hz, $\mathbf{C}_{1'}$), 127.7 ($\mathbf{C}_{4'}$), 127.1 (N₈SO₂Ar-*o*-C), 126.8 (N₈SO₂Ar-*m*-C), 126.7 (\mathbf{C}_{5}), 124.3 (\mathbf{C}_{4}), 119.7 (\mathbf{C}_{7}), 112.9 (dd, J=3.9, 18.4 Hz, $\mathbf{C}_{3'}$), 82.6 (\mathbf{C}_{8a}), 72.6 (\mathbf{C}_{3a}), 53.1 (N₁CO₂CH₃), 45.2 (\mathbf{C}_{2}), 35.4 (C(CH₃)₃), 32.7 (\mathbf{C}_{3}), 31.0 (C(CH₃)₃).

¹⁹F NMR (282 MHz, CDCl₃, 20 °C):

 $\delta - 124.9$ (t, J = 6.6 Hz, 2F, $C_6H_3\mathbf{F}_2$).

FTIR (thin film) cm⁻¹:

2964 (m), 1689 (m), 1498 (m), 1390 (m), 1176 (w).

HRMS (ESI) (m/z):

cale'd for $C_{28}H_{30}F_2N_3O_7S_2$ [M+H]⁺: 622.1488,

found: 622.1499.

 $[\alpha]_D^{24}$:

-46 (c = 0.35, CH₂Cl₂).

TLC (33% acetone in hexanes), Rf:

0.26 (UV, CAM).

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*-chimonanthine and related heterodimeric alkaloids.

Stephen P. Lathrop and Mohammad Movassaghi*

Page S18 / S153

C3a-Aminohexahydropyrroloindole (-)-20:

Pyridine (130 µL, 1.61 mmol, 20.0 equiv) was added to a solution of hexahydropyrroloindole sulfamate ester (-)-19 (50.0 mg, 80.0 umol, 1 equiv) in a mixture of acetonitrile-water (2:1, 900 µL) via syringe at 23 °C. The reaction flask was fitted with a reflux condenser and heated to 70 °C. After 24 h, the resulting yellow solution was allowed to cool to 23 °C. The mixture was diluted with dichloromethane (25 mL) and was washed with a saturated aqueous sodium bicarbonate solution (10 mL). The aqueous layer was extracted with dichloromethane (2 × 15 mL). The combined organic extracts were washed with brine (10 mL), were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel gradient, 2→5% methanol in dichloromethane) to afford (eluent: aminohexahydropyrroloindole (-)-20 (31.0 mg, 90.2%) as a yellow oil.

As a result of the slow conformational equilibration at ambient temperature, NMR spectra were collected at elevated temperature. Structural assignments were made using additional information from gCOSY, HSQC, and HMBC experiments also collected at elevated temperature.

¹H NMR (500 MHz, CD₃CN, 70 °C):

δ 7.75 (d, J = 8.5 Hz, 2H, N₈SO₂Ar-o-**H**), 7.55–7.53 (m, 3H, N₈SO₂Ar-m-**H**, C₇**H**), 7.34–7.29 (m, 2H, C₆**H**, C₄**H**), 7.17 (app-t, J = 7.5 Hz, 1H, C₅**H**), 5.71 (s, 1H, C₈a**H**), 3.76 (app-t, J = 9.5 Hz, 1H, C₂**H**_a), 3.67 (s, 3H, N₁CO₂C**H**₃), 2.80 (app-dt, J = 6.0, 11.1 Hz, 1H, C₂**H**_b) 2.14 (dd, J = 6.0, 12.5 Hz, 1H, C₃**H**_a), 2.07 (app-dt, J = 8.0, 11.0 Hz, 1H, C₃**H**_b), 1.43 (br-s, 2H, N**H**₂) 1.30 (s, 9H, C(C**H**₃)₃).

¹³C NMR (125.8 MHz, CD₃CN, 70 °C):

δ 159.3 (N₈SO₂Ar-p-C), 156.8 (N₁CO₂CH₃), 143.4 (C_{7a}), 138.3 (C_{4a}), 137.9 (N₈SO₂Ar-ipso-C), 131.1 (C₆), 129.0 (N₈SO₂Ar-o-C), 127.9 (N₈SO₂Ar-m-C), 127.0 (C₅), 125.6 (C₄), 118.6 (C₇), 88.5 (C_{8a}), 71.9 (C_{3a}), 53.7 (N₁CO₂CH₃), 47.4 (C₂), 40.5 (C₃), 36.7 (C(CH₃)₃), 32.0 (C(CH₃)₃).

FTIR (thin film) cm⁻¹:

3380 (br-w), 3316 (br-w), 2962 (m), 1710 (s), 1595 (w), 1448 (m), 1385 (m), 1197 (m).

HRMS (ESI) (m/z):

cale'd for $C_{22}H_{27}N_3NaO_4S$ [M+Na]⁺: 452.1614, found: 452.1633.

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*-chimonanthine and related heterodimeric alkaloids.

Stephen P. Lathrop and Mohammad Movassaghi*

Page S19 / S153

$$[\alpha]_D^{24}$$
: -175 ($c = 1.66$, CH₂Cl₂).

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*-chimonanthine and related heterodimeric alkaloids.

Stephen P. Lathrop and Mohammad Movassaghi*

Page S20 / S153

N1-Carboxytrichloroethyl Hexahydropyrroloindole (+)-S4:

Sodium carbonate (8.30 g, 78.5 mmol, 2.00 equiv) was added in one portion as a solid to a solution of L-tryptophan methyl ester hydrochloride (S3) (10.0 g, 39.3 mmol, 1 equiv) in tetrahydrofuran-water (1:1, 400 mL) at 23 °C. After 10 min, 2,2,2-trichloroethyl chloroformate (7.00 mL, 51.0 mmol, 1.30 equiv) was added via syringe. After 1 h, tetrahydrofuran was removed under reduced pressure, and the resulting aqueous suspension was extracted with dichloromethane (3 × 300 mL). The combined organic extracts were washed with brine (100 mL), were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure to afford 2,2,2-trichloroethoxycarbonylated L-tryptophan methyl ester. The resulting tryptophan derivative was dissolved in trifluoroacetic acid (200 mL) and stirred at 23 °C. After 40 h, the homogenous solution was poured slowly into a vigorously stirred biphasic mixture of dichloromethane (200 mL) and aqueous sodium carbonate solution (10% w/v, 600 mL). The pH of the mixture was maintained above 7 by the periodic addition of solid sodium carbonate (5 \times 50 g). Once the addition was complete, the mixture was extracted with dichloromethane (3 × 400 mL) and the combined organic layers were washed sequentially with water (100 mL) and brine (100 mL). The organic layer was separated, was dried over anhydrous sodium sulfate, was filtered, and was concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (eluent: 15→25% acetone in hexanes) to give N1-carboxytrichloroethyl hexahydropyrroloindole (+)-S4⁵ (10.2 g, 65.9%) as a clear Structural assignments were made using additional information from gCOSY, HSQC, and HMBC experiments.

¹H NMR (500 MHz, C₆D₆, 20 °C):

Major Rotamer: δ 6.89 (app-t, J = 7.5 Hz, 1H, C₆H), 6.79–6.75 (m, 1H, C₄H), 6.61 (app-t, J = 7.4 Hz, 1H, C₅H), 6.25 (d, J = 7.7 Hz, 1H, C₇H), 5.33 (d, J = 6.6 Hz, 1H, C_{8a}H), 5.17 (br-s, 1H, N₈H), 4.65 (d, J = 11.9 Hz, 1H, N₁CO₂CH_aH_bCCl₃) 4.56–4.52 (m, 1H, N₁CO₂CH_aH_bCCl₃), 4.38 (d, J = 8.7 Hz, 1H, C₂H), 3.21 (app-t, J = 7.1 Hz, 1H, C_{3a}H), 2.92 (s, 3H, CO₂CH₃), 2.27 (d, J = 13.2 Hz, 1H, C₃H_a), 1.83–1.74 (m, 1H, C₃H_b).

Minor Rotamer: δ 6.94 (app-t, J = 7.5 Hz, 1H, C₆**H**), 6.79–6.75 (m, 1H, C₄**H**), 6.64 (app-t, J = 7.4 Hz, 1H, C₅**H**), 6.49 (d, J = 7.7 Hz, 1H, C₇**H**), 5.31 (d, J =

5

⁵ Due to facile opening of cyclotryptophan **S4** to the corresponding tryptophan derivative this material was used in the next step immediately following purification.

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-meso-chimonanthine and related heterodimeric alkaloids.

Stephen P. Lathrop and Mohammad Movassaghi*

Page S21 / S153

6.6 Hz, 1H, C_{8a} **H**), 4.99 (br-s, 1H, N_8 **H**), 4.65 (d, J = 11.9 Hz, 1H, $N_1CO_2CH_aH_bCCl_3$) 4.56–4.52 (m, 1H $N_1CO_2CH_aH_bCCl_3$), 4.50 (d, J = 8.7 Hz, 1H, C_2 **H**), 3.29 (app-t, J = 7.1 Hz, 1H, C_3 **H**), 2.89 (s, 3H, CO_2CH_3), 2.28 (d, J = 13.2 Hz, 1H, C_3 **H**_a), 1.83–1.74 (m, 1H, C_3 **H**_b).

¹³C NMR (125.8 MHz, C₆D₆, 20 °C):

Major Rotamer: δ 171.5 (CO_2CH_3), 153.2 ($N_1CO_2CH_2CCl_3$), 150.9 (C_{7a}), 129.1 (C_6), 128.7 (C_{4a}), 124.5 (C_4), 119.2 (C_5), 109.7 (C_7), 96.3 ($N_1CO_2CH_2CCl_3$), 78.3 (C_{8a}), 75.2 ($N_1CO_2CH_2CCl_3$), 59.7 (C_2), 52.1 (CO_2CH_3), 45.6 (C_{3a}), 34.8 (C_3).

Minor Rotamer: δ 171.2 (CO_2CH_3), 152.4 ($N_1CO_2CH_2CCl_3$), 150.6 (C_{7a}), 129.3 (C_6), 128.9 (C_{4a}), 124.7 (C_4), 119.8 (C_5), 109.5 (C_7), 96.5 ($N_1CO_2CH_2CCl_3$), 77.7 (C_{8a}), 75.2 ($N_1CO_2CH_2CCl_3$), 60.2 (C_2), 52.1 (CO_2CH_3), 46.6 (C_{3a}), 34.1 (C_3).

FTIR (thin film) cm⁻¹:

3384 (br-w), 2951 (w), 1718 (s), 1610 (w), 1414 (m).

HRMS (ESI) (m/z):

calc'd for $C_{15}H_{16}Cl_3N_2O_4$ [M+H]⁺: 393.0170, found: 393.0180.

 $[\alpha]_D^{24}$:

+168 (c = 0.58, CH₂Cl₂).

TLC (33% acetone in hexanes), Rf:

0.34 (UV, CAM).

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*-chimonanthine and related heterodimeric alkaloids.

Stephen P. Lathrop and Mohammad Movassaghi*

Page S22 / S153

C2-Carboxymethyl Hexahydropyrroloindole (+)-21:

Benzenesulfonyl chloride (6.10 mL, 47.8 mmol, 2.00 equiv) was added dropwise via syringe to a solution of N1-carboxytrichloroethyl hexahydropyrroloindole (+)-**S4** (9.40 g, 23.9 mmol, 1 equiv) in pyridine (40 mL) at 0 °C in an ice bath. After 15 min, the ice bath was removed and allowed to warm to 23 °C. After 15 h, the solution was concentrated under reduced pressure. The resulting residue was diluted with ethyl acetate (750 mL) and washed sequentially with an aqueous solution of hydrochloric acid (1 N, 2 × 50 mL), saturated aqueous solution of sodium bicarbonate (50 mL), and brine (100 mL). The organic layer was separated, was dried over anhydrous sodium sulfate, was filtered, and was concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (eluent: $25 \rightarrow 50\%$ ethyl acetate in hexanes) to give C2-carboxymethyl hexahydropyrroloindole (+)-**21** (12.5 g, 97.9%) as a white foam.

As a result of the slow conformational equilibration at ambient temperature, NMR spectra were collected at elevated temperature. Structural assignments were made using additional information from gCOSY, HSQC, and HMBC experiments also collected at elevated temperature.

¹H NMR (500 MHz, CD₃CN, 70 °C):

δ 7.72 (d, J = 8.3 Hz, 2H, N₈SO₂Ph-o-**H**), 7.57 (t, J = 7.8 Hz, 1H, N₈SO₂Ph-p-**H**), 7.45–7.40 (m, 3H, C₇**H**, N₈SO₂Ph-m-**H**), 7.25 (app-t, J = 8.3 Hz, 1H, C₆**H**), 7.09 (m, 2H, C₄**H**, C₅**H**), 6.38 (d, J = 6.4 Hz, 1H, C₈**H**), 4.86 (d, J = 12.1 Hz, 1H, N₁CO₂CH_aH_bCCl₃) 4.71 (d, J = 10.5 Hz, 1H, N₁CO₂CH_aH_bCCl₃), 4.64 (d, J = 9.1 Hz, 1H, C₂**H**), 3.70 (app-t, J = 7.0 Hz, 1H, C₃a**H**), 3.15 (s, 3H, CO₂CH₃), 2.61 (ddd, J = 7.5, 9.1, 13.4 Hz, 1H, C₃H_a), 2.52 (d, J = 13.4 Hz, 1H, C₃H_b).

¹³C NMR (125.8 MHz, CD₃CN, 70 °C):

 $\begin{array}{l} \delta\ 172.7\ (\text{CO}_2\text{CH}_3),\ 154.0^6\ (N_1\text{CO}_2\text{CH}_2\text{CCl}_3),\ 144.1\\ (\text{C}_{7a}),\ 140.8\ (N_8\text{SO}_2\text{Ph-}\textit{ipso-C}),\ 135.9\ (\text{C}_{4a}),\ 135.0\\ (N_8\text{SO}_2\text{Ph-}\textit{p-C}),\ 130.8\ (N_8\text{SO}_2\text{Ph-}\textit{m-C}),\ 130.4\ (\text{C}_6),\\ 128.9\ (N_8\text{SO}_2\text{Ph-}\textit{o-C}),\ 127.3\ (\text{C}_5),\ 126.4\ (\text{C}_4),\ 120.0\\ (\text{C}_7),\ 97.3\ (N_1\text{CO}_2\text{CH}_2\text{CCl}_3),\ 82.9\ (\text{C}_{8a}),\ 76.7\\ (N_1\text{CO}_2\text{CH}_2\text{CCl}_3),\ 61.1\ (\text{C}_2),\ 53.2\ (\text{CO}_2\text{CH}_3),\ 47.1\\ (\text{C}_{3a}),\ 35.2\ (\text{C}_3). \end{array}$

FTIR (thin film) cm⁻¹:

2952 (w), 1731 (s), 1404 (m), 1357 (m), 1170 (m).

 $^{^6}$ Not observed directly in simple 13 C NMR. Assigned based on HMBC correlation to NCO₂CH_aH_bCCl₃.

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-mesochimonanthine and related heterodimeric alkaloids. Stephen P. Lathrop and Mohammad Movassaghi* Page S23 / S153

cale'd for $C_{21}H_{20}Cl_3N_2O_6S\ [M+H]^+$: 533.0102, found: 533.0107. HRMS (ESI) (m/z):

 $[\alpha]_D^{24}$: +93 (c = 0.41, CH₂Cl₂).

TLC (50% ethyl acetate in hexanes), Rf: 0.47 (UV, CAM). Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*-chimonanthine and related heterodimeric alkaloids.

Stephen P. Lathrop and Mohammad Movassaghi*

Page S24 / S153

$$\begin{array}{c} \text{H} \\ \text{NTroc} \\ \text{NTroc} \\ \text{N} \\ \text{SO}_2\text{Ph} \\ \text{(+)-21} \end{array} \\ \begin{array}{c} \text{1. Me}_3\text{SnOH, DCE, 80 °C} \\ \hline \text{2. TCFH, thiopyridine N-oxide} \\ \text{DMAP, Et}_3\text{N, THF 0} \\ \text{DMAP, Et}_3\text{N, THF 0} \\ \text{O}_2\text{Ph} \\ \text{t-BuSH, hv, 23 °C} \\ \end{array} \\ \begin{array}{c} \text{N} \\ \text{H} \\ \text{SO}_2\text{Ph} \\ \text{(+)-22} \\ \end{array}$$

N8-Benzenesulfonyl Hexahydropyrroloindole (+)-22:

Trimethyltin hydroxide⁷ (9.50 g, 52.5 mmol, 8.00 equiv) was added to a solution of C2-carboxymethyl hexahydropyrroloindole (+)-21 (3.50 g, 6.55 mmol, 1 equiv) in dichloroethane (65 mL) at 23 °C. The reaction flask was fitted with a reflux condenser and heated to 80 °C. After 48 h, the heterogeneous mixture was allowed to cool to 23 °C and was concentrated under reduced pressure. The resulting residue was diluted with ethyl acetate (600 mL) and was washed with aqueous hydrochloric acid solution (1 N, 3 × 100 mL), brine (50 mL), the organic layer was separated, was dried over anhydrous sodium sulfate, was filtered and was concentrated under reduced pressure. The resulting residue was filtered through a pad of silica gel (eluent: 5% methanol in dichloromethane→5% acetic acid in dichloromethane) to remove excess trimethyltin hydroxide. The filtrate was concentrated under reduced pressure to provide the crude carboxylic acid.

Thiopyridine N-oxide (1.33 g, 10.5 mmol, 1.60 equiv), 4-(dimethylamino)pyridine (80.0 umol, 0.100 equiv), and *N,N,N',N'*-tetramethylchloroformamidinium mg, hexafluorophosphate (TCFH, 2.75 g, 9.81 mmol, 1.50 equiv) were sequentially added to a solution of the crude carboxylic acid in tetrahydrofuran (65 mL) at 0 °C in an ice bath. The reaction flask was removed from the ice bath, covered in aluminum foil, and triethylamine (3.65) mL, 26.2 mmol, 4.00 equiv) was added while the reaction mixture was still cold. After 1.5 h, tert-butylthiol (3.70 mL, 32.7 mmol, 5.00 equiv) was added via syringe and the aluminum foil was removed from the flask. The resulting suspension was irradiated with a flood lamp (500 W). After 2 h, the lamp was turned off and the tetrahydrofuran was removed under reduced pressure. The resulting residue was diluted with dichloromethane (200 mL) and was washed with aqueous saturated sodium bicarbonate solution (50 mL). The aqueous layer was extracted with dichloromethane (2 × 100 mL). The combined organic extracts were washed with brine (50 mL), were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (eluent: gradient, 10→33% ethyl acetate in hexanes) to give N8-benzenesulfonyl hexahydropyrroloindole (+)-22 (2.47 g, 79.3%, overall from (+)-21) as a white foam.

As a result of the slow conformational equilibration at ambient temperature, NMR spectra were collected at elevated temperature. Structural assignments were made using additional information from gCOSY, HSQC, and HMBC experiments also collected at elevated temperature.

¹H NMR (500 MHz, CD₃CN, 70 °C): δ 7.74 (d, J = 7.8 Hz, 2H, N₈SO₂Ph-o-**H**), 7.59 (t, J = 7.5 Hz, 1H, N₈SO₂Ph-p-**H**) 7.52 (d, J = 8.1 Hz, 1H, C₇**H**) 7.45 (t, J = 7.3 Hz, 2H, N₈SO₂Ph-m-**H**),

⁷ All operations involving trimethyltin hydroxide were carried out in a well-ventilated fume hood. This includes but is not limited to: measuring out the reagent, execution of the transformation, work-up of the reaction mixture, and concentration of the crude reaction mixture.

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-mesochimonanthine and related heterodimeric alkaloids. Stephen P. Lathrop and Mohammad Movassaghi*

Page S25 / S153

7.27 (app-t, J = 7.3 Hz, 1H, C₆H), 7.18–7.12 (m, 2H, C_4 **H**, C_5 **H**), 6.34 (d, J = 6.7 Hz, 1H, C_{8a} **H**), 4.90– 4.82 (m, 2H, $N_1CO_2CH_2CCl_3$), 3.85 (dd, J = 8.3, 10.6 Hz, 1H, C_2H_a), 3.73 (app-t, J = 7.1 Hz, 1H, C_{3a} **H**), 2.85 (app-dt, J = 5.7, 11.4 Hz, 1H, C_2 **H**_b), 2.23-2.14 (m, 1H, C_3H_a), 2.04 (dd, J = 5.6, 12.7 Hz, 1H, C_3 **H**_b).

¹³C NMR (125.8 MHz, CD₃CN, 70 °C):

 δ 154.3 (N₁CO₂CH₂CCl₃), 143.7 (C_{7a}), 140.4 $(N_8SO_2Ph-ipso-C)$, 135.8 (C_{4a}) , 135.1 $(NSO_2Ph-p-$ C), 130.9 (N₈SO₂Ph-*m*-C), 130.2 (C₆), 129.0 $(N_8SO_2Ph-o-C)$, 127.3 (C_5) , 126.4 (C_4) , 119.0 (C_7) , 97.7 $(N_1CO_2CH_2CCl_3)$, 82.1 $(\mathbf{C}_{8a}),$ $(N_1CO_2CH_2CCl_3)$, 47.6 (C_{3a}) , 46.9 (C_2) , 37.3 (C_3) .

FTIR (thin film) cm⁻¹:

2952 (w), 1728 (s), 1407 (m), 1358 (m), 1173 (m).

HRMS (ESI) (m/z):

calc'd for $C_{19}H_{18}Cl_3N_2O_4S$ $[M+H]^+$: 475.0047,

found: 475.0051.

 $[\alpha]_D^{24}$:

+183 (c = 0.43, CH_2Cl_2).

TLC (50% ethyl acetate in hexanes), Rf:

0.58 (UV, CAM).

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*-chimonanthine and related heterodimeric alkaloids.

Stephen P. Lathrop and Mohammad Movassaghi*

Page S26 / S153

C3a-Aminohexahydropyrroloindole (+)-24:

A round bottom flask was charged with 5Å molecular sieves (210 mg, 200 mg/mmol of 22), magnesium oxide (169 mg, 4.20 mmol, 4.00 equiv) and flame-dried under vacuum. The reaction vessel was allowed to cool to 23 °C and back filled with argon. Solid 2,6-difluorophenyl sulfamate⁴ (287 mg, 1.37 mmol, 1.30 equiv), 2-methyl-2-phenylpropionic acid (86.0 mg, 526 μmol, 0.500 equiv), and Rh₂(esp)₂ (16.0 mg, 21.0 μmol, 0.0200 equiv) were added sequentially. A solution of N8-benzenesulfonyl hexahydropyrroloindole (+)-22 (500 mg, 1.05 mmol, 1 equiv) in isopropyl acetate (2.0 mL) was added at 23 °C and the mixture was allowed to stir. After 5 min, (diacetoxyiodo)benzene (676 mg, 2.10 mmol, 2.00 equiv) was added and the green heterogeneous mixture was vigorously agitated with stirring at 23 °C. After 24 h, the reaction mixture was filtered through a pad of Celite and the filter cake was rinsed with ethyl acetate (40 mL). The filtrate was concentrated under reduced pressure. The residue was diluted with dichloromethane (50 mL) and washed with a saturated solution of sodium thiosulfate (10 mL). The aqueous layer was then extracted with dichloromethane (2 × 30 mL). The combined organic extracts were washed with brine (25 mL), were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure.

The resulting crude aryl sulfamate ester 23 was dissolved in a mixture of acetonitrile—water (2:1, 21 mL). Pyridine (1.70 mL, 21.0 mmol, 20.0 equiv) was added via syringe at 23 °C. The reaction flask was fitted with a reflux condenser and heated to 70 °C. After 24 h, the resulting dark brown solution was allowed to cool to 23 °C. The mixture was diluted with dichloromethane (50 mL) and was washed with a saturated aqueous solution of sodium bicarbonate (20 mL). The aqueous layer was extracted with dichloromethane (2 × 30 mL). The combined organic extracts were washed with brine (25 mL), were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (eluent: gradient, 15 \rightarrow 33% acetone in hexane) to afford the C3a-aminohexahydropyrroloindole (+)-24 (235 mg, 45.7%, overall from (+)-22) as an orange foam.

As a result of the slow conformational equilibration at ambient temperature, NMR spectra were collected at elevated temperature. Structural assignments were made using additional information from gCOSY, HSQC, and HMBC experiments also collected at elevated temperature.

¹H NMR (500 MHz, CD₃CN, 70 °C):

δ 7.86 (d, J = 7.9 Hz, 2H, N₈SO₂Ph-o-**H**), 7.61 (t, J = 7.8 Hz, 1H, N₈SO₂Ph-p-**H**) 7.55 (d, J = 8.1 Hz, 1H, C₇**H**), 7.49 (t, J = 7.4 Hz, 2H, N₈SO₂Ph-m-**H**), 7.35–7.31 (m, 2H, C₆**H**, C₄**H**), 7.18 (app-t, J = 7.5 Hz, 1H, C₅**H**), 5.82 (s, 1H, C₈**H**), 4.88 (br-s, 1H, N₁CO₂C**H**₈H_bCCl₃), 4.81 (d, J = 10.9 Hz, 1H,

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*-chimonanthine and related heterodimeric alkaloids.

Stephen P. Lathrop and Mohammad Movassaghi*

Page S27 / S153

N₁CO₂CH_a**H**_bCCl₃), 3.90 (app-t, J = 9.5 Hz, 1H, C₂**H**_a), 2.91 (app-dt, J = 6.0, 11.1 Hz, 1H, C₂**H**_b), 2.19 (dd, J = 6.0, 12.5 Hz, 1H, C₃**H**_a), 2.11 (app-dt, J = 8.0, 11.4 Hz, 1H, C₃**H**_b) 1.47 (br-s, 2H, N**H**₂).

¹³C NMR (125.8 MHz, CD₃CN, 70 °C):

FTIR (thin film) cm⁻¹:

2953 (w), 1733 (s), 1407 (m), 1361 (m), 1171 (w).

HRMS (ESI) (m/z):

 $calc'd \ for \ {C_{19}}{H_{19}}{Cl_3}{N_3}{O_4}S \ \left[{M\!+\!H} \right]^+\!\!: 490.0156,$

found: 490.0139.

 $[\alpha]_{D}^{24}$:

+164 (c = 0.48, CH₂Cl₂).

TLC (33% acetone in hexanes), Rf:

0.16 (UV, CAM).

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*-chimonanthine and related heterodimeric alkaloids.

Stephen P. Lathrop and Mohammad Movassaghi*

Page S28 / S153

Mixed Sulfamide (-)-25:

Triethylamine (82.0 μ L, 587 μ mol, 2.20 equiv) was added via syringe to a solution of C3a-aminohexahydropyrroloindole (–)-16 (89.0 mg, 267 μ mol, 1 equiv) and hexahydropyrroloindole sulfamate ester (–)-19 (200 mg, 320 μ mol, 1.20 equiv) in tetrahydrofuran (2.00 mL) at 23 °C. After 24 h, the clear solution was concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (eluent: 33% ethyl acetate in hexanes then 25% acetone in hexanes) to afford the mixed sulfamide (–)-25 (187 mg, 84.9%) as a white solid.

As a result of the slow conformational equilibration at ambient temperature, NMR spectra were collected at elevated temperature. Structural assignments were made using additional information from gCOSY, HSQC, and HMBC experiments also collected at elevated temperature.

¹H NMR (500 MHz, C₆D₆, 70 °C):

δ 8.05 (d, J = 8.2Hz, 1H, C_7 H), 7.94 (br-s, 2H, N_8 SO₂Ar-o-H), 7.74 (d, J = 8.1Hz, 1H, C_7 H), 7.14 (d, J = 8.5 Hz, 2H, N_8 SO₂Ar-m-H), 7.08–7.00 (m, 2H, C_6 H, C_6 H), 6.95 (d, J = 5.6 Hz, 1H, C_4 H), 6.91 (s, 1H, C_8 H), 6.73 (app-t, J = 7.5 Hz, 1H, C_5 H), 6.66 (d, J = 6.6 Hz, 1H, C_4 H), 6.61 (s, 1H, C_8 A'H), 6.53 (br-s, 1H, C_5 H), 5.15 (br-s, 1H, SO₂NH), 3.84 (br-s, 1H, SO₂NH), 3.80–3.67 (m, 2H, C_2 Ha, C_2 Ha), 3.51 (s, 3H, N_1 CO₂CH₃), 3.44 (s, 3H, N_1 CO₂CH₃), 2.66–2.54 (m, 3H, C_2 Hb, C_2 Hb, C_3 Ha), 2.14–2.07 (m, 2H, C_3 Ha C_3 Hb), 1.79 (d, J = 7.1Hz, 1H, C_3 Hb), 1.58 (s, 9H, N_1 CO₂C(CH₃)₃), 1.04 (s, 9H, C(CH₃)₃).

¹³C NMR (125.8 MHz, C₆D₆, 70 °C):

δ 157.5 (N₈SO₂Ar-p-C), 155.7 (N₁·CO₂CH₃), 155.5 (N₁CO₂CH₃), 153.3 (N₈·CO₂C(CH₃)₃), 145.5 (C_{7a}), 143.3 (C_{7a}), 138.2 (N₈SO₂Ar-ipso-C), 132.8 (C_{4a}), 130.9 (C₆), 130.8 (C₆), 129.5 (C_{4a}·), 128.0 (N₈SO₂Ar-o-C), 126.7 (N₈SO₂Ar-m-C), 125.3 (C₅), 124.8 (C₄), 124.5 (C₄·), 123.5 (C₅·), 118.4 (C₇), 117.5 (C₇·), 82.5 (C_{8a}), 82.0 (N₈·CO₂C(CH₃)₃), 81.6 (C_{8a}·), 72.9 (C_{3a}), 72.0 (C_{3a}), 52.9 (N₁·CO₂CH₃), 52.6 (N₁CO₂CH₃), 45.4 (C₂), 45.2 (C₂·), 37.8 (C₃·), 37.3 (C₃), 35.4 (C(CH₃)₃), 31.3 (C(CH₃)₃), 28.8 (N₈·CO₂C(CH₃)₃).

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*-chimonanthine and related heterodimeric alkaloids.

Stephen P. Lathrop and Mohammad Movassaghi*

Page S29 / S153

FTIR (thin film) cm⁻¹: 3242 (br-m), 2960 (m), 1713 (s), 1480 (m), 1448

(m), 1392 (m), 1167 (w).

HRMS (ESI) (m/z): calc'd for $C_{39}H_{48}N_6NaO_{10}S_2$ $[M+Na]^+$: 847.2766,

found: 847.2767.

 $[\alpha]_D^{24}$: -111 (c = 0.66, CH₂Cl₂).

TLC (33% acetone in hexanes), Rf: 0.25 (UV, CAM).

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*-chimonanthine and related heterodimeric alkaloids.

Stephen P. Lathrop and Mohammad Movassaghi*

Page S30 / S153

<u>Unsymmetrical Diazene (-)-26:</u>

1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU, 152 μ L, 1.02 mmol, 5.00 equiv), was added via syringe to a solution of mixed sulfamide (–)-25 (169 mg, 205 μ mol, 1 equiv) in methanol (15.0 mL) at 23 °C. After 5 min, a solution of 1,3-dichloro-5,5-dimethylhydantoin (101 mg, 513 μ mol, 2.50 equiv) in methanol (5.00 mL) was added via syringe over 1 min at 23 °C. After 30 min, the clear solution was concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (eluent: $10\rightarrow20\%$ acetone in hexanes) to afford unsymmetrical diazene (–)-26 (143 mg, 91.9%) as a white foam.

As a result of the slow conformational equilibration at ambient temperature, NMR spectra were collected at elevated temperature. Structural assignments were made using additional information from gCOSY, HSQC, and HMBC experiments also collected at elevated temperature.

¹H NMR (500 MHz, CD₃CN, 50 °C):

δ 7.72 (d, J = 8.5 Hz, 2H, N₈SO₂Ar-o-H), 7.68 (d, J = 8.2 Hz, 1H, C₇·H), 7.50 (d, J = 8.2 Hz, 1H, C₇·H), 7.46 (d, J = 8.5 Hz, 2H, N₈SO₂Ar-m-H), 7.35–7.29 (m, 2H, C₆H, C₆·H), 7.13–6.97 (m, 4H, C₄H, C₄·H, C₅H, C₅·H), 6.64 (s, 1H, C_{8a}H), 6.51 (s, 1H, C_{8a}·H), 3.92–3.85 (m, 2H, C₂H_a, C₂·H_a), 3.69 (s, 3H, N₁·CO₂CH₃), 3.66 (s, 3H, N₁CO₂CH₃), 3.00–2.90 (m, 2H, C₂H_b, C₂·H_b), 2.28 (app-t, J = 5.1 Hz, 1H, C₃·H_a), 2.26 (app-t, J = 5.1 Hz, 1H, C₃·H_a), 2.18 (app-dt, J = 8.0, 11.9 Hz, 1H, C₃·H_b), 2.10 (app-dt, J = 8.2, 12.3 Hz, 1H, C₃·H_b), 1.54 (s, 9H, N₁·CO₂C(CH₃)₃), 1.26 (s, 9H, C(CH₃)₃).

¹³C NMR (125.8 MHz, CD₃CN, 50 °C):

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*-chimonanthine and related heterodimeric alkaloids.

Stephen P. Lathrop and Mohammad Movassaghi*

Page S31 / S153

FTIR (thin film) cm⁻¹: 2960 (m), 1712 (s), 1597 (w), 1447 (m), 1391 (s),

1171 (m).

HRMS (ESI) (m/z): calc'd for $C_{39}H_{46}N_6N_8S [M+N_8]^+$: 781.2990,

found: 781.2997.

 $[\alpha]_D^{24}$: $-226 (c = 1.03, CH_2Cl_2)$.

TLC (33% acetone in hexanes), Rf: 0.50 (UV, CAM).

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*-chimonanthine and related heterodimeric alkaloids.

Stephen P. Lathrop and Mohammad Movassaghi*

Page S32 / S153

Heterodimer (-)-27:

A solution of unsymmetrical diazene (-)-26 (132 mg, 174 µmol, 1 equiv) in dichloromethane (30 mL) was concentrated under reduced pressure in a 100 mL round bottom flask to provide a thin film of diazene (-)-26 coating the flask. The flask was back filled with argon and irradiated in a Rayonet photoreactor equipped with 16 radially distributed (r=12.7 cm) 25 W lamps (λ =380 nm) at 25 °C. After 12 h, the lamps were turned off and the resulting residue was purified by flash column chromatography on silica gel (eluent: $10\rightarrow20\%$ acetone in hexanes) to afford the heterodimer (-)-27 (85.0 mg, 66.8%) as a white foam.

As a result of the slow conformational equilibration at ambient temperature, NMR spectra were collected at elevated temperature. Structural assignments were made using additional information from gCOSY, HSQC, and HMBC experiments also collected at elevated temperature.

¹H NMR (500 MHz, CD₃CN, 75 °C):

δ 7.85 (d, J = 8.5 Hz, 2H, N₈SO₂Ar-o-H), 7.62 (d, J = 8.5 Hz, 2H, N₈SO₂Ar-m-H), 7.58 (d, J = 8.2Hz, 1H, C₇·H), 7.44 (d, J = 8.2Hz, 1H, C₇·H), 7.25–7.13 (m, 4H, C₆·H, C₆·H, C₄·H, C₄·H), 6.97 (app-t, J = 7.7 Hz, 1H, C₅·H), 6.88 (app-t, J = 7.6 Hz, 1H, C₅·H), 6.35 (s, 1H, C_{8a}·H), 6.24 (s, 1H, C_{8a}·H), 3.87 (dd, J = 7.6, 11.5 Hz, 1H, C₂·H_a), 3.76 (dd, J = 7.6, 10.9 Hz, 1H, C₂·H_a), 3.66 (s, 3H, N₁·CO₂CH₃), 3.53 (s, 3H, N₁CO₂CH₃), 2.70–2.62 (m, 2H, C₂·H_b), C₂·H_b), 2.25 (app-dt, J = 7.7, 12.2 Hz, 1H, C₃·H_a), 2.13 (dd, J = 7.7, 12.0 Hz, 1H, C₃·H_a), 2.08–2.01 (m, 2H, C₃·H_b), C₃·H_b), 1.60 (s, 9H, N₁·CO₂C(CH₃)₃), 1.36 (s, 9H, C(CH₃)₃).

¹³C NMR (125.8 MHz, CD₃CN, 70 °C):

δ 159.1 (N₈·SO₂Ar-*p*-C), 156.6 (N₁·CO₂CH₃), 156.1 (N₁CO₂CH₃), 153.7 (N₈·CO₂C(CH₃)₃), 145.3 (C_{7a}'), 144.8 (C_{7a}), 140.1 (N₈SO₂Ar-*ipso*-C), 133.4 (C_{4a}'), 133.1 (C_{4a}), 131.0 (C₆), 130.7 (C₆'), 128.1 (N₈SO₂Ar-*m*-C), 128.0 (N₈SO₂Ar-*o*-C), 126.2 (C₄), 125.9 (C₄'), 125.1 (C₅), 124.9 (C₅'), 117.8 (C₇'), 115.6 (C₇), 83.5 (N₈·CO₂C(CH₃)₃), 83.3 (C_{8a}), 81.1 (C_{8a}'), 64.2 (C_{3a}), 63.2 (C_{3a}'), 54.0 (N₁CO₂CH₃), 53.9 (N₁·CO₂CH₃), 46.9 (C₂), 46.6 (C₂'), 37.5 (C₃),

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*-chimonanthine and related heterodimeric alkaloids.

Stephen P. Lathrop and Mohammad Movassaghi*

Page S33 / S153

36.7 (C(CH₃)₃), 35.6 (C₃), 32.1 (C(CH₃)₃), 29.5

 $(N_{8'}CO_2C(CH_3)_3).$

FTIR (thin film) cm⁻¹: 2957 (w), 1711 (s), 1596 (w), 1479 (m), 1391 (w),

1366 (w), 1166 (w).

HRMS (ESI) (m/z): calc'd for $C_{39}H_{46}N_4NaO_8S$ $[M+Na]^+$: 753.2929,

found: 753.2927.

 $[\alpha]_D^{24}$: $-162 (c = 0.13, CH_2Cl_2)$.

TLC (33% acetone in hexanes), Rf: 0.37 (UV, CAM).

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*-chimonanthine and related heterodimeric alkaloids.

Stephen P. Lathrop and Mohammad Movassaghi*

Page S34 / S153

Mixed Sulfamide (+)-28:

Triethylamine (206 μ L, 1.47 mmol, 2.20 equiv) was added via syringe to a solution of C3a-aminohexahydropyrroloindole (+)-24 (328 mg, 670 μ mol, 1 equiv) and hexahydropyrroloindole sulfamate ester (-)-19 (500 mg, 804 μ mol, 1.20 equiv) in tetrahydrofuran (3.50 mL) at 23 °C. After 24 h, the clear solution was concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (eluent: 20 \rightarrow 33% acetone in hexanes) to afford the mixed sulfamide (+)-28 (581 mg, 88.3%) as a white solid.

As a result of the slow conformational equilibration at ambient temperature, NMR spectra were collected at elevated temperature. Structural assignments were made using additional information from gCOSY, HSQC, and HMBC experiments also collected at elevated temperature.

¹H NMR (500 MHz, C₆D₆, 70 °C):

δ 8.04 (br-s, 2H, N₈·SO₂Ph-o-H), 7.96 (d, J = 7.7 Hz, 2H, N₈SO₂Ar-o-H), 7.66–7.63 (m, 2H, C₇H C₇·H) 7.31 (d, J = 7.5 Hz, 1H, C₄H) 7.24 (d, J = 7.1 Hz, 1H, C₄·H), 7.20 (d, J = 7.6 Hz, 2H, N₈SO₂Ar-m-H), 7.09–7.05 (m, 2H, C₆H, C₆·H), 7.04–7.00 (m, 3H, N₈·SO₂Ph-p-H, N₈·SO₂Ph-m-H), 6.95–6.90 (m, 2H, C₅H, C₅·H), 6.84 (s, 1H, C_{8a}H), 6.74 (br-s, 1H, C_{8a}·H), 4.96 (br-s, 2H, SO₂NH₂), 4.74 (br-s, 1H, N₁·CO₂CH_aH_bCCl₃), 4.53 (d, J = 11.6 Hz, 1H, N₁·CO₂CH_aH_bCCl₃), 3.83 (app-t, J = 10.6 Hz, 1H, C₂H_a), 3.74 (app-t, J = 8.8 Hz, 1H, C₂·H_a), 3.41 (s, 3H, N₁CO₂CH₃), 2.66–2.56 (m, 2H, C₂·H_b), 2.54–2.45 (m, 2H, C₃·H_a), 2.06 (m, 2H, C₃·H_b), C₃·H_b), 1.07 (s, 9H, C(CH₃)₃).

¹³C NMR (125.8 MHz, C₆D₆, 70 °C):

δ 157.5 (N₈·SO₂Ar-*p*-C), 155.4 (N₁CO₂CH₃), 153.3 (N₁·CO₂CH₂CCl₃), 143.5 (C_{7a′}), 143.3 (C_{7a}), 140.8 (N₈·SO₂Ph-*ipso*-C), 138.7 (N₈SO₂Ar-*ipso*-C), 133.6 (N₈·SO₂Ph-*p*-C), 132.5 (C_{4a′}) 132.1 (C_{4a}), 131.0 (2C, C₆, C_{6′}), 129.5 (N₈·SO₂Ph-*m*-C), 128.3 (N₈SO₂Ar-*o*-C) 128.0 (N₈·SO₂Ph-*o*-C), 126.7 (N₈SO₂Ar-*m*-C), 125.7 (C₄), 125.6 (C_{4′}), 125.5 (2C, C₅, C_{5′}), 117.8 (C_{7′}), 117.3 (C_{7′}), 95.6 (N₁·CO₂CH₂CCl₃), 83.6 (C_{8a′}), 83.5 (C_{8a′}), 75.9 (N₁·CO₂CH₂CCl₃), 73.2 (2C,

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-mesochimonanthine and related heterodimeric alkaloids. Page S35 / S153

Stephen P. Lathrop and Mohammad Movassaghi*

 $\mathbf{C}_{3a},\,\mathbf{C}_{3a'}),\,\,52.9\,\,(N_{1}CO_{2}CH_{3}),\,\,45.8\,\,(\mathbf{C}_{2}),\,\,45.7\,\,(\mathbf{C}_{2'}),$ 37.4 (\mathbb{C}_3), 36.6 ($\mathbb{C}_{3'}$), 35.4 ($\mathbb{C}(CH_3)_3$), 31.3 $(C(CH_3)_3).$

FTIR (thin film) cm⁻¹: 2959 (w), 1717 (m), 1600 (w), 1448 (m), 1400 (w).

calc'd for C₄₁H₄₇Cl₃N₇O₁₀S₃ [M+NH₄]⁺: 998.1607, HRMS (ESI) (m/z):

found: 998.1611.

 $[\alpha]_D^{24}$: $+19 (c = 0.32, CH_2Cl_2).$

TLC (33% acetone in hexanes), Rf: 0.18 (UV, CAM). Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*-chimonanthine and related heterodimeric alkaloids.

Stephen P. Lathrop and Mohammad Movassaghi*

Page S36 / S153

Unsymmetrical Diazene (+)-29:

1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU, 152 μ L, 1.02 mmol, 5.00 equiv) was added via syringe to a solution of mixed sulfamide (+)-28 (200 mg, 203 μ mol, 1 equiv) in methanol (15.0 mL) at 23 °C. After 5 min, a solution of 1,3-dichloro-5,5-dimethylhydantoin (100 mg, 507 μ mol, 2.50 equiv) in methanol (5 mL) was added via syringe over 1 min. After 30 min, the clear solution was concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (eluent: 17 \rightarrow 25% acetone in hexanes) to afford the unsymmetrical diazene (+)-29 (159 mg, 85.5%) as a white foam.

As a result of the slow conformational equilibration at ambient temperature, NMR spectra were collected at elevated temperature. Structural assignments were made using additional information from gCOSY, HSQC, and HMBC experiments also collected at elevated temperature.

¹H NMR (500 MHz, CD₃CN, 70 °C):

δ 7.82–7.79 (m, 4H, N₈·SO₂Ph-o-H, N₈SO₂Ar-o-H), 7.62 (d, J = 8.3 Hz, 1H, C₇·H) 7.55–7.49 (m, 4H, N₈·SO₂Ph-p-H, N₈SO₂Ar-m-H, C₇H), 7.41–7.36 (m, 4H, N₈·SO₂Ph-m-H, C₆H, C₆·H), 7.20–7.16 (m, 2H, C₅H, C₄·H), 7.11–7.05 (m, 2H, C₅·H, C₄·H), 6.71 (s, 1H, C_{8a}·H), 6.55 (s, 1H, C_{8a}·H), 4.92 (d, J = 10.8, 1H, N₁·CO₂CH_aH_bCCl₃), 4.80 (d, J = 12.1 Hz, 1H, N₁·CO₂CH_aH_bCCl₃), 4.01 (dd, J = 7.9, 11.7 Hz, 1H, C₂·H_a), 3.83 (dd, J = 8.0, 11.4 Hz, 1H, C₂·H_a), 3.65 (s, 3H, N₁CO₂CH₃), 3.05 (app-dt, J = 5.5, 11.8 Hz, 1H, C₂·H_b) 2.94 (app-dt, J = 5.7, 12.7 Hz, 1H, C₂·H_b), 2.21 (dd, J = 5.3, 12.7 Hz, 1H, C₃·H_a), 2.12 (dd, J = 5.6, 12.7 Hz, 1H, C₃·H_a), 2.01–1.89 (m, 2H, C₃·H_b), C₃·H_b), 1.28 (s, 9H, C(CH₃)₃).

¹³C NMR (125.8 MHz, CD₃CN, 70 °C):

δ 159.3 (N₈·SO₂Ar-p-C), 156.4 (N₁CO₂CH₃), 154.3 (N₁·CO₂CH₂CCl₃), 144.3 (C_{7a}), 144.1 (C_{7a}), 140.1 (N₈·SO₂Ph-ipso-C), 138.3 (N₈SO₂Ar-ipso-C), 135.4 (N₈·SO₂Ph-p-C), 132.4 (C₆), 132.1 (C₆), 131.2 (C_{4a}), 131.1 (C_{4a}), 131.0 (N₈·SO₂Ph-m-C), 129.1 (N₈SO₂Ar-o-C), 129.0 (N₈·SO₂Ph-o-C), 128.1 (N₈SO₂Ar-m-C), 127.3 (C₄), 127.0 (C₄), 126.9 (C₅), 126.5 (C₅), 117.5 (C₇), 117.2 (C₇), 97.5 (N₁·CO₂CH₂CCl₃), 90.9 (2C, C_{3a}, C_{3a}), 83.2 (C_{8a}), 82.7 (C_{8a}), 76.8 (N₁·CO₂CH₂CCl₃), 54.0

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-mesochimonanthine and related heterodimeric alkaloids. Stephen P. Lathrop and Mohammad Movassaghi* Page S37 / S153

 $(N_1CO_2CH_3)$, 47.4 $(C_{2'})$, 47.1 (C_2) , 38.7 $(C_{3'})$, 37.8

 (C_3) , 36.7 $(C(CH_3)_3)$, 32.1 $(C(CH_3)_3)$.

FTIR (thin film) cm⁻¹: 2958 (w), 1718 (s), 1597 (w), 1447 (m), 1366 (w).

cale'd for $C_{41}H_{45}Cl_3N_7O_8S_2$ [M+NH₄]⁺: 932.1831, HRMS (ESI) (m/z):

found: 932.1853.

 $[\alpha]_D^{24}$: +13 (c = 0.38, CH₂Cl₂).

TLC (33% acetone in hexanes), Rf: 0.29 (UV, CAM).

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-mesochimonanthine and related heterodimeric alkaloids. Stephen P. Lathrop and Mohammad Movassaghi* Page S38 / S153

Heterodimer (+)-30:

A solution of unsymmetrical diazene (+)-29 (159 mg, 174 µmol, 1 equiv) in dichloromethane (30 mL) was concentrated under reduced pressure in a 250 mL round bottom flask to provide a thin film of diazene (+)-29 coating the flask. The flask was back filled with argon and irradiated in a Rayonet photoreactor equipped with 16 radially distributed (r=12.7 cm) 25 W lamps (λ_{max} =380 nm) at 25 °C. After 7 h, the thin film was purified by flash column chromatography on silica gel (eluent: 17→50% ethyl acetate in hexanes) to afford the heterodimer (+)-30 (98 mg, 63.4%) as a white foam.

As a result of the slow conformational equilibration at ambient temperature, NMR spectra were collected at elevated temperature. Structural assignments were made using additional information from gCOSY, HSQC, and HMBC experiments also collected at elevated temperature.

¹H NMR (500 MHz, DMSO-*d*₆, 100 °C):

 δ 7.92 (d, J = 7.6 Hz, 2H, N_8 'SO₂Ph-o-H), 7.73 (d, J= 8.4 Hz, 2H, $N_8SO_2Ar-o-H$), 7.67 (t, J = 7.3Hz, 1H, N_8 'SO₂Ph-p-H), 7.60–7.57 (m, 4H, N_8 SO₂Ar-m-H, $N_{8'}SO_2Ph-m-H$), 7.40–7.37 (m, 2H, C_7H , $C_{7'}H$), 7.34-7.28 (m, 2H, C_6H , C_6H), 7.20 (br-s, 1H, C_4H), 7.07 (app-t, J = 7.5 Hz, 1H, C₅H), 6.98 (app-t, J =7.4 Hz, 1H, C_{5} H), 6.80 (br-s, 1H, C_{4} H), 6.47 (s, 1H, $C_{8a'}$ **H**), 6.28 (s, 1H, C_{8a} **H**), 4.82 (d, J = 11.9, 1H, $N_1'CO_2CH_aH_bCCl_3$, 4.71 (d, J = 11.9 Hz, 1H, N_{1} CO₂CH_a**H**_bCCl₃), 3.82 (dd, J = 7.3, 11.7 Hz, 1H, $C_2 H_a$, 3.72 (dd, J = 7.6, 11.5 Hz, 1H, $C_2 H_a$), 3.50 (s, 3H, $N_1CO_2CH_3$), 2.67–2.60 (m, 2H, C_2H_b) C_2/H_b), 2.05–1.99 (m, 2H, C_3H , C_3/H_a), 1.89 (dd, J = 12.5, 19.9 Hz, 1H, $C_{3'}H_b$), 1.77 (app-dt, J = 7.9, 11.7 Hz, 1H, C_3H_b), 1.31 (s, 9H, $C(CH_3)_3$).

¹³C NMR (125.8 MHz, DMSO-*d*₆, 100 °C): δ 156.0 (N₈·SO₂Ar-*p*-C), 153.0 (N₁CO₂CH₃), 151.2 $(N_1'CO_2CH_2CCl_3)$, 142.3 (C_{7a}) , 141.9 $(C_{7a'})$, 139.8 $(N_8 SO_2 Ph-ipso-C)$, 137.1 $(N_8 SO_2 Ar-ipso-C)$, 132.8 $(N_8 SO_2 Ph-p-C)$, 130.0 (C_{4a}) , 129.6 $(C_{4a'})$, 129.1 $(C_{6/6})$, 128.8 $(N_8/SO_2Ph-m-C)$, 125.7 N_8/SO_2Ph-o- C), 125.5 (N₈SO₂Ar-o/m-C), 123.7 (2C, C₄, C₄), 123.4 (2C, C_5 , $C_{5'}$), 113.7 (C_7), 113.4 ($C_{7'}$), 95.1 $(N_1'CO_2CH_2CCl_3)$, 79.8 (2C, C_{8a} , $C_{8a'}$), 73.9 Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*-chimonanthine and related heterodimeric alkaloids.

Stephen P. Lathrop and Mohammad Movassaghi*

Page S39 / S153

 $(N_1'CO_2CH_2CCl_3), 61.3 (2C, C_{3a}, C_{3a'}), 51.8$ $(N_1CO_2CH_3), 44.8 (C_{2'}), 44.4 (C_2), 35.0 (C_{3'}), 34.5$

(C₃), 34.3 (C(CH₃)₃), 31.2 (C(CH₃)₃).

FTIR (thin film) cm⁻¹: 2957(w), 1716 (s), 1595 (w), 1447 (m), 1167 (w).

HRMS (ESI) (m/z): calc'd for $C_{41}H_{41}Cl_3N_4NaO_8S_2$ $[M+Na]^+$: 909.1324,

found: 909.1313.

 $[\alpha]_D^{24}$: +23 (c = 0.49, CH₂Cl₂).

TLC (33% ethyl acetate in hexanes), Rf: 0.29 (UV, CAM).

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*-chimonanthine and related heterodimeric alkaloids.

Stephen P. Lathrop and Mohammad Movassaghi*

Page S40 / S153

N8'-H Heterodimer (-)-31:

Trifluoroacetic acid (400 μ L) was added via syringe to a solution of heterodimer (-)-27 (67.0 mg, 91.8 μ mol, 1 equiv) in dichloromethane (1.60 mL) at 23 °C. After 45 min, the orange solution was diluted with dichloromethane (25 mL) and washed with aqueous saturated sodium bicarbonate solution (2 × 15 mL). The combined aqueous washes were extracted with dichloromethane (2 × 20 mL). The combined organic extracts were washed with brine (15 mL), were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (eluent: 20 \rightarrow 25% acetone in hexanes) to afford the N8'-H heterodimer (-)-31 (52.0 mg, 89.6%) as a white foam.

As a result of the slow conformational equilibration at ambient temperature, NMR spectra were collected at elevated temperature. Structural assignments were made using additional information from gCOSY, HSQC, and HMBC experiments also collected at elevated temperature.

¹H NMR (500 MHz, CD₃CN, 70 °C):

δ 7.84 (d, J = 8.3Hz, 2H, N₈SO₂Ar-o-**H**), 7.64 (d, J = 8.3Hz, 2H, N₈SO₂Ar-m-**H**), 7.53 (d, J = 8.3Hz, 1H, C₇**H**), 7.46 (d, J = 7.7 Hz, 1H, C₄**H**), 7.27 (appt, J = 7.9 Hz, 1H, C₆**H**), 7.06–7.02 (m, 3H, C₆·**H**, C₅**H**, C₄·**H**), 6.61 (app-t, J = 7.5 Hz, 1H, C₅·**H**), 6.55 (d, J = 7.7 Hz, 1H, C₇·**H**), 5.96 (s, 1H, C_{8a}·**H**), 4.85 (br-s, 1H, N₈·**H**), 4.79 (s, 1H, C_{8a}·**H**), 3.88 (dd, J = 7.9, 11.1 Hz, 1H, C₂**H**_a), 3.61 (s, 3H, N₁·CO₂C**H**₃), 3.54 (app-t, J = 8.4 Hz, 1H, C₂·**H**_a), 3.47 (s, 3H, N₁CO₂C**H**₃), 2.80–2.67 (m, 2H, C₂**H**_b, C₂·**H**_b), 2.46 (app-dt, J = 7.9, 12.1 Hz, 1H, C₃**H**_a), 2.35 (dd, J = 11.2, 20.3 Hz, 1H, C₃·**H**_a), 2.12 (dd, J = 6.0, 12.5 Hz, 1H, C₃·**H**_b), 2.07 (dd, J = 5.4, 12.5 Hz, 1H, C₃**H**_b), 1.37 (s, 9H, C(C**H**₃)₃).

¹³C NMR (125.8 MHz, CD₃CN, 70 °C):

δ 159.2 (N_8 'SO₂Ar-p-C), 156.1 (2C, N_1 'CO₂CH₃, N_1 CO₂CH₃), 152.3 ($C_{7a'}$), 144.7 (C_{7a}), 139.3 (N_8 SO₂Ar-ipso-C), 133.7 (C_{4a}), 131.0 (C_5 , C_6), 130.3 ($C_{4a'}$), 128.5 (N_8 SO₂Ar-o-C), 128.1 (N_8 SO₂Ar-m-C), 127.0 (C_4), 126.1 (C_6), 125.3 (C_4), 120.3 (C_5), 115.5 (C_7), 111.2 (C_7), 83.2 (C_{8a}), 80.3 ($C_{8a'}$), 64.3 (2C, C_{3a} , $C_{3a'}$), 53.8 (N_1 CO₂CH₃), 53.6 (N_1 'CO₂CH₃), 46.5 (2C, C_2 , C_2), 37.6 (C_3), 36.8 (C_4 C(CH₃)₃), 34.5 (C_3), 32.2 (C_4 C(CH₃)₃).

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*-chimonanthine and related heterodimeric alkaloids.

Stephen P. Lathrop and Mohammad Movassaghi*

Page S41 / S153

FTIR (thin film) cm⁻¹: 3550 (br-m), 2956 (w), 1706 (s), 1595 (w), 1448 (s),

1384 (m), 1175 (m).

HRMS (ESI) (m/z): calc'd for $C_{34}H_{39}N_4O_6S$ $[M+H]^+$: 631.2585,

found: 631.2588.

 $[\alpha]_D^{24}$: $-283 (c = 0.53, CH_2Cl_2)$.

TLC (33% ethyl acetate in hexanes), Rf: 0.30 (UV, CAM).

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*-chimonanthine and related heterodimeric alkaloids.

Stephen P. Lathrop and Mohammad Movassaghi*

Page S42 / S153

N8'-Methyl Heterodimer (-)-32:

Formalin (37% wt, 1.26 mL, 16.76 mmol, 235 equiv) and sodium cyanoborohydride in tetrahydrofuran (1.0 M, 214 μ L, 214 μ mol, 3.00 equiv) were added sequentially via syringe to a solution of N8'-H heterodimer (–)-31 (45.0 mg, 71.3 μ mol, 1 equiv) in acetonitrile–acetic acid (10:1, 3.85 mL) at 23 °C. After 30 min, another portion of sodium cyanoborohydride (1.0 M in tetrahydrofuran, 71.0 μ L, 71.0 μ mol, 1.00 equiv) was added via syringe. After an additional 30 min, a saturated aqueous sodium bicarbonate solution (10 mL) was added and the resulting mixture was extracted with dichloromethane (3 × 20 mL). The combined organic extracts were washed with brine (15 mL), were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (eluent: 15 \rightarrow 20% acetone in hexanes) to afford the N8'-methyl heterodimer (–)-32 (41.0 mg, 89.6%) as a white foam.

As a result of the slow conformational equilibration at ambient temperature, NMR spectra were collected at elevated temperature. Structural assignments were made using additional information from gCOSY, HSQC, and HMBC experiments also collected at elevated temperature.

¹H NMR (500 MHz, CD₃CN, 70 °C):

δ 7.83 (d, J = 8.3 Hz, 2H, N₈SO₂Ar-o-H), 7.61 (d, J = 8.3Hz, 2H, N₈SO₂Ar-m-H), 7.43 (d, J = 8.3 Hz, 1H, C₇H), 7.36 (d, J = 7.7 Hz, 1H, C₄H), 7.25 (appt, J = 7.9 Hz, 1H, C₆H), 7.08 (app-t, J = 7.7 Hz, 1H, C₆'H), 7.04–6.97 (m, 2H, C₅H, C₄'H), 6.50 (app-t, J = 7.5 Hz, 1H, C₅'H), 6.35 (d, J = 8.0 Hz, 1H, C₇'H), 6.05 (s, 1H, C_{8a}H), 5.16 (s, 1H, C_{8a}'H), 3.87 (dd, J = 8.0, 11.2 Hz, 1H, C₂H_a), 3.77 (dd, J = 8.5, 10.4 Hz, 1H, C₂'H_a), 3.60 (s, 3H, N₁'CO₂CH₃), 3.45 (s, 3H, N₁CO₂CH₃), 2.83 (s, 3H, N₁'CO₂CH₃), 2.77–2.65 (m, 2H, C₂H_b, C₂'H_b), 2.43 (app dt, J = 8.0, 12.0 Hz, 1H, C₃H_a), 2.24 (app-dt, J = 8.0, 11.7 Hz, 1H, C₃'H_a), 2.11 (dd, J = 5.4, 12.5 Hz, 1H, C₃H_b), 2.05 (dd, J = 5.6, 12.3Hz, 1H, C₃'H_b), 1.35 (s, 9H, C(CH₃)₃).

¹³C NMR (125.8 MHz, CD₃CN, 70 °C):

δ 159.0 (N₈·SO₂Ar-p-C), 156.9 (N₁·CO₂CH₃), 156.1 (N₁CO₂CH₃), 153.7 (C_{7a'}), 144.7 (C_{7a}), 139.9 (N₈SO₂Ar-ipso-C), 133.8 (C_{4a}), 131.1 (C_{6'}), 130.8 (2C, C₆, C_{4a'}), 128.2 (N₈SO₂Ar-o-C), 128.1 (N₈SO₂Ar-m-C), 126.6 (C₄), 125.6 (C_{4'}), 125.2 (C₅), 118.9 (C_{5'}), 115.7 (C₇), 107.5 (C_{7'}), 85.6

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-mesochimonanthine and related heterodimeric alkaloids. Page S43 / S153

Stephen P. Lathrop and Mohammad Movassaghi*

 $(C_{8a'})$, 83.3 (C_{8a}) , 64.4 (C_{3a}) , 63.6 $(C_{3a'})$, 53.8 $(N_1CO_2CH_3)$, 53.6 $(N_1'CO_2CH_3)$, 46.6 $(2C, C_2, C_2')$, $37.2 (C_3)$, $36.7 (C(CH_3)_3)$, $36.0 (C_{3'})$, $33.0 (N_{1'}CH_3)$, 32.1 (C(CH₃)₃).

FTIR (thin film) cm⁻¹: 2956 (w), 1708 (s), 1605 (w), 1446 (m), 1385 (m).

calc'd for $C_{35}H_{41}N_4O_6S$ $[M+H]^+$: 645.2741, HRMS (ESI) (m/z):

found: 645.2728.

 $[\alpha]_D^{24}$: -321 (c = 0.17, CH₂Cl₂).

0.18 (UV, CAM). TLC (25% acetone in hexanes), Rf:

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*-chimonanthine and related heterodimeric alkaloids.

Stephen P. Lathrop and Mohammad Movassaghi*

Page S44 / S153

(-)-N1,N1'-Carboxymethyl Calycanthidine (33):

Sodium amalgam (5%-Na, 469 mg, 1.02 mmol, 20.0 equiv)⁸ was added to a suspension of sodium phosphate monobasic monohydrate (154 mg, 1.12 mmol, 22.0 equiv) and N8'-methyl heterodimer (–)-32 (33.0 mg, 51.2 µmol, 1 equiv) in methanol at 23 °C. After 1 h, another portion of sodium phosphate monobasic monohydrate (154 mg, 1.12 mmol, 22.0 equiv) and sodium amalgam (5%-Na, 469 mg, 1.02 mmol, 20.0 equiv) were added sequentially. After an additional 1 h, the reaction mixture was diluted with ethyl acetate (20 mL) and was washed with a 5% aqueous sodium bicarbonate solution (10 mL). The aqueous phase was separated and extracted with ethyl acetate (2 × 20 mL). The combined organic layers were washed with brine (10 mL), were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (eluent: gradient, 15→20% acetone in hexanes) to afford (–)-N1,N1'-carboxymethyl calycanthidine (33, 21.0 mg, 91.8%) as a white foam.

As a result of the slow conformational equilibration at ambient temperature, NMR spectra were collected at elevated temperature. Structural assignments were made using additional information from gCOSY, HSQC, and HMBC experiments also collected at elevated temperature.

¹H NMR (500 MHz, CD₃CN, 70 °C):

δ 7.27–7.23 (m, 2H, C₄H, C₄·H), 7.13 (app-t, J = 7.5 Hz, 1H, C₆·H), 7.08 (app-t, J = 7.7 Hz, 1H, C₆·H), 6.71 (app-t, J = 7.4 Hz, 1H, C₅·H), 6.65 (app-t, J = 7.5 Hz, 1H, C₅·H), 6.61 (d, J = 7.7 Hz, 1H, C₇·H), 6.40 (d, J = 8.0 Hz, 1H, C₇·H), 5.30 (br-s, 1H, N₈H), 5.10 (s, 1H, C_{8a}·H), 4.85 (s, 1H, C_{8a}H), 3.82–3.73 (m, 1H, C₂·H_a), 3.63–3.57 (m, 1H, C₂·H_a), 3.61 (s, 3H, N₁CO₂CH₃), 3.57 (s, 3H, N₁·CO₂CH₃), 2.90 (s, 3H, N₈·CH₃), 2.81 (app-dt, J = 6.1, 10.7 Hz, 1H, C₂·H_b), 2.71 (app-dt, J = 5.8, 11.2 Hz, 1H, C₂·H_b), 2.62–2.46 (m, 2H, C₃·H_a), 2.21 (dd, J = 6.1, 12.5 Hz, 1H, C₃·H_b), 2.12 (dd, J = 5.6, 12.3 Hz, 1H, C₃·H_b).

¹³C NMR (125.8 MHz, CD₃CN, 70 °C):

 δ 157.0 (N₁·CO₂CH₃), 153.9 (C_{7a}·), 152.7 (C_{7a}), 131.3, (C_{4a}·) 131.0 (C₆·), 130.9 (C_{4a}), 130.8 (C₆), 126.5 (C₄), 126.2 (C₄·), 120.1 (C₅), 118.8 (C₅·), 111.0 (C₇), 107.5 (C₇·), 85.8 (C_{8a}·), 80.4 (C_{8a}), 63.0

⁸ The reagent was prepared according to R. N. McDonald and C. E. Reineke *Org. Synth.* 1988, **6**, 461.

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*-chimonanthine and related heterodimeric alkaloids.

Stephen P. Lathrop and Mohammad Movassaghi*

Page S45 / S153

ephen P. Laurrop and Monaminad Movassagni P

 $(C_{3a'})$, 53.5 (2C, $N_1CO_2CH_3$, $N_1'CO_2CH_3$), 46.8 (2C, C_2 , C_2), 35.4 (C_3), 34.0 (C_3), 33.5 ($N_8'CH_3$).

FTIR (thin film) cm⁻¹: 3363 (br-w), 2953 (w), 2881 (w), 1698 (s), 1605

(m), 1449 (s), 1383 (s), 1202 (w).

HRMS (ESI) (m/z): calc'd for $C_{25}H_{29}N_4O_4 [M+H]^+$: 499.2183,

found: 449.2172.

 $[\alpha]_D^{24}$: -509 (c = 0.78, CH₂Cl₂).

TLC (25% acetone in hexanes), Rf: 0.30 (UV, CAM).

_

⁹ The C_{3a} , and $N_1CO_2CH_3$ were not observed, due to signal broadening, even at 70 °C. All expected ¹³C signals were observed in the following compound.

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*-chimonanthine and related heterodimeric alkaloids.

Stephen P. Lathrop and Mohammad Movassaghi*

Page S46 / S153

(-)-Calycanthidine (1):

(–)-N1,N1'-Carboxymethyl calycanthidine (33, 15.4 mg, 34.3 μmol, 1 equiv) was azeotropically dried from anhydrous benzene (2 × 5 mL) and the residue was dissolved in toluene (3.5 mL). A solution of sodium bis(2-methoxyethoxy)aluminum hydride in toluene (Red-Al, 70% wt, 149 μL, 515 μmol, 15.0 equiv) was added via syringe at 23 °C. The reaction flask was fitted with a reflux condenser and heated to 80 °C. After 1 h, the reaction mixture was allowed to cool to 23 °C and excess reducing reagent was quenched by the addition of saturated aqueous sodium sulfate solution (100 μL). The resulting heterogeneous mixture was stirred for 10 min and then solid anhydrous sodium sulfate was added. The mixture was filtered through a plug of Celite and the filter cake was rinsed with dichloromethane (15 mL). The filtrate was concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (eluent: 10% methanol→10% methanol saturated with ammonium hydroxide in chloroform) to afford (–)-calycanthidine (1, 8.7 mg, 70.9%) as a white solid.

As a result of the slow conformational equilibration at ambient temperature, NMR spectra were collected at elevated temperature. Structural assignments were made using additional information from gCOSY, HSQC, and HMBC experiments also collected at elevated temperature.

¹H NMR (500 MHz, CDCl₃, 50 °C):

δ 7.06 (d, J = 7.4 Hz, 1H, C_{4} ·H), 7.00 (d, J = 5.8 Hz, 1H, C_{4} H), 6.98 (app-t, J = 7.7 Hz, 1H, C_{6} ·H), 6.92 (app-t, J = 7.5 Hz, 1H, C_{6} H), 6.58 (app-t, J = 7.5 Hz, 1H, C_{5} H), 6.51 (app-t, J = 7.2 Hz, 1H, C_{5} ·H), 6.48 (d, J = 8.0 Hz, 1H, C_{7} H), 6.27 (d, J = 7.7 Hz, 1H, C_{7} ·H), 4.47 (s, 1H, C_{8a} H), 4.37 (s, 1H, C_{8a} ·H), 2.98 (s, 3H, N_{8} ·CH₃), 2.65–3.41 (m, 6H, C_{2} H_a, C_{2} ·H_a, C_{2} ·H_b, C_{3} ·H_a, C_{3} ·H_a), 2.38 (s, 3H, N_{1} ·CH₃), 2.33 (s, 3H, N_{1} CH₃), 2.01–1.93 (m, 2H, C_{3} H_b, C_{3} ·H_b).

¹³C NMR (125.8 MHz, CDCl₃, 50 °C):

 δ 153.2 ($\mathbb{C}_{7a'}$), 151.2 (\mathbb{C}_{7a}), 133.6, (\mathbb{C}_{4a}), 133.1 (\mathbb{C}_{4a}), 128.4 ($\mathbb{C}_{6'}$), 128.2 (\mathbb{C}_{6}), 124.7 (\mathbb{C}_{4}), 124.0 ($\mathbb{C}_{4'}$), 118.6 (\mathbb{C}_{5}), 117.1 ($\mathbb{C}_{5'}$), 109.3 (\mathbb{C}_{7}), 106.2 ($\mathbb{C}_{7'}$), 92.4 ($\mathbb{C}_{8a'}$), 85.5 (\mathbb{C}_{8a}), 63.8 (\mathbb{C}_{3a}), 63.2 ($\mathbb{C}_{3a'}$), 52.9 (2 \mathbb{C}_{5} , \mathbb{C}_{2} , $\mathbb{C}_{2'}$), 38.2 ($\mathbb{N}_{1'}\mathbb{C}\mathbb{H}_{3}$), 37.3 ($\mathbb{N}_{1}\mathbb{C}\mathbb{H}_{3}$), 35.7 ($\mathbb{C}_{3'}$), 35.6 (\mathbb{C}_{3}), 35.6 ($\mathbb{N}_{8'}\mathbb{C}\mathbb{H}_{3}$).

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*-chimonanthine and related heterodimeric alkaloids.

Stephen P. Lathrop and Mohammad Movassaghi*

Page S47 / S153

¹H NMR (500 MHz, DMSO-*d*₆, 100 °C):

δ 7.04 (d, J = 7.6 Hz, 1H, C_4 H), 6.94 (d, J = 7.2 Hz, 1H, C_4 H), 6.89 (app-t, J = 7.4 Hz, 1H, C_6 H), 6.80 (app-t, J = 7.2 Hz, 1H, C_6 H), 6.45–6.40 (m, 2H, C_5 H, C_5 H), 6.38 (d, J = 7.6 Hz, 1H, C_7 H), 6.26 (d, J = 7.8 Hz, 1H, C_7 H), 5.90 (br-s, 1H, N_8 H), 4.54 (s, 1H, C_8 H), 4.44 (s, 1H, C_8 H), 2.93 (s, 3H, N_8 CH₃), 2.65–2.57 (m, 2H, C_2 H_a, C_2 H_a), 2.43–2.33 (m, 4H, C_2 H_b, C_2 H_b, C_3 H_a, C_3 H_a), 2.36 (s, 3H, N_1 CH₃), 2.30 (s, 3H, N_1 CH₃), 1.91–1.82 (m, 2H, C_3 H_b, C_3 H_b).

¹³C NMR (125.8 MHz, DMSO- d_6 , 100 °C): δ 152.3 ($\mathbf{C}_{7a'}$), 151.2 (\mathbf{C}_{7a}), 132.4, (2C, \mathbf{C}_{4a} , $\mathbf{C}_{4a'}$) 127.1 ($\mathbf{C}_{6'}$), 126.7 (\mathbf{C}_{6}), 123.1 (\mathbf{C}_{4}), 122.7 ($\mathbf{C}_{4'}$), 116.0 (\mathbf{C}_{5}), 115.8 ($\mathbf{C}_{5'}$), 107.3 (\mathbf{C}_{7}), 105.0 ($\mathbf{C}_{7'}$), 91.1 ($\mathbf{C}_{8a'}$), 84.1 (\mathbf{C}_{8a}), 62.1 ($\mathbf{C}_{3a'}$), 62.0 (\mathbf{C}_{3a}), 51.3 ($\mathbf{C}_{2'}$), 51.2 (\mathbf{C}_{2}), 36.9 ($\mathbf{N}_{1'}$ CH₃), 35.7 (\mathbf{N}_{1} CH₃), 34.9 ($\mathbf{C}_{3/3'}$), 34.6 ($\mathbf{C}_{3/3'}$) 34.5 ($\mathbf{N}_{8'}$ CH₃).

FTIR (thin film) cm⁻¹: 3385 (br-w), 2929 (w), 2789 (w), 1603 (m), 1488 (w), 1249 (w).

HRMS (ESI) (m/z): calc'd for $C_{23}H_{29}N_4$ $[M+H]^+$: 361.2387, found: 361.2397.

 $[\alpha]_D^{24}$: -278 (c = 0.28, MeOH). 10

TLC (10% methanol in chloroform saturated ammonium hydroxide), Rf: 0.55 (UV, CAM).

¹⁰ Literature value: $[\alpha]_D^{24} = -285.1$ (c 1.992, MeOH), see G. Barger, A. Jacob, J. Madinaveitia *Trav. Chim.* 1938, **57**, 548. Literature value: $[\alpha]_D^{27} = -301$ (c 0.97, MeOH), see E. A. Peterson, PhD Dissertation, University of California, Irvine, 2005.

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*-chimonanthine and related heterodimeric alkaloids.

Stephen P. Lathrop and Mohammad Movassaghi*

Page S48 / S153

Table S1. Comparison of our ¹H NMR data for (–)-calycanthidine (1) with literature data (CDCl₃):

Assignment	Overman's Report ¹¹	Takayama's Report ¹²	This Work
9	(–)-calycanthidine ¹ H NMR, 500 MHz	(–)-calycanthidine	(–)-calycanthidine
	CDCl ₃ , 50 °C	¹ H NMR, 500 MHz CDCl₃ 50 °C	¹ H NMR, 500 MHz CDCl₃ 50 °C
	37		
N1'-C H ₃	2.41 (s, 3H)	2.38 (s, 3H)	2.38 (s, 3H)
N1-CH ₃	2.36 (s, 3H)	2.33 (s, 3H)	2.33 (s,3H)
C2′	2.68-2.42 (m, 2H)	2.65-2.40 (m, 2H)	2.65-2.40 (m, 2H)
C2	2.68-2.42 (m, 2H)	2.65-2.40 (m, 2H)	2.65-2.40 (m, 2H)
C3′	2.68-2.42 (m, 2H)	2.65-2.40 (m, 2H)	2.65-2.40 (m, 2H)
C3	2.68-2.42 (m, 2H)	2.65-2.40 (m, 2H)	2.65-2.40 (m, 2H)
C3a	_	_	_
C3a′	_	_	_
C4'	7.10 (d, J = 7.3Hz, 1H)	7.07 (d, J = 7.3Hz, 1H)	7.06 (d, J = 7.4 Hz, 1H)
C4	7.05 (d, J = 7.2Hz, 1H)	7.02 (d, J = 7.3, 1H)	7.00 (d, J = 5.8 Hz, 1H)
C4a′	_	_	_
C4a	_	-	-
C5′	6.55 (t, J = 7.4 Hz, 1H)	6.52 (dd, J = 7.3, 7.3 Hz, 1H)	6.51 (app-t, $J = 7.2$ Hz, 1H)
C5	6.58 (t, J = 7.4 Hz, 1H)	6.59 (dd, <i>J</i> = 7.3, 7.3Hz, 1H)	6.58 (app-t, $J = 7.5$ Hz, 1H)
C6′	7.01 (dd, J = 7.5, 7.7 Hz, 1H)	6.98 (dd, <i>J</i> = 7.3, 7.6 Hz, 1H)	6.98 (app-t, $J = 7.7$ Hz, 1H)
C6	6.94 (dd, <i>J</i> = 7.5, 7.5 Hz, 1H)	6.92 (dd, J = 7.3, 7.6 Hz, 1H)	6.92 (app-t, $J = 7.5$ Hz, 1H)
C7′	6.30 (d, J = 7.8 Hz, 1H)	6.27 (d, J = 7.6 Hz, 1H)	6.27 (d, J = 7.7 Hz, 1H)
C7	6.50 (d, <i>J</i> = 7.8 Hz, 1H)	6.48 (d, J = 7.6 Hz, 1H)	6.48 (d, J = 8.0 Hz, 1H)
C7a′	_	-	-
C7a	_	-	-
N8'-CH ₃	3.01 (s, 3H)	2.98 (s, 1H)	2.98 (s, 1H)
N8- H	_	-	-
C8a′	4.40 (s, 1H)	4.38 (s, 1H)	4.37 (s, 1H)
C8a	4.48 (s, 1H)	4.42 (s, 1H)	4.47 (s, 1H)

¹¹ E. A. Peterson, PhD. Dissertation, University of California, Irvine, 2005.

¹² H. Takayama, Y. Matsuda, K. Maubuchi, A. Ishida, M. Kitajima, and N. Aimi, *Tetrahedron*, 2004, **60**, 893.

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*-chimonanthine and related heterodimeric alkaloids.

Stephen P. Lathrop and Mohammad Movassaghi*

Page S49 / S153

Table S2. Comparison of 13 C NMR data of (–)-calycanthidine (1) with literature data (CDCl₃):

Assignment	Overman's Report ¹¹ (-)-calycanthidine	Takayama's Report ¹² (-)-calycanthidine	This Work (-)-calycanthidine	Chemical Shift Difference $\Delta \delta = \delta \text{ (this)}$	Chemical Shift Difference $\Delta \delta = \delta$ (this
	¹³ C NMR, 125.8 MHz CDCl ₃ , 50 °C	¹³ C NMR, 125.8 MHz CDCl ₃ 50 °C	¹³ C NMR, 125.8 MHz CDCl ₃ 50 °C	work) – δ (ref 11)	work) – δ (ref 12)
N1' -C H ₃	37.9	37.9	38.2	0.3	0.3
N1-CH ₃	37.0	37.0	37.3	0.3	0.3
C2'	52.6	52.6	52.9	0.3	0.3
C2	52.6	52.6	52.9	0.3	0.3
C3'	35.7	35.7	35.7	0.0	0.0
C3	35.6	35.7	35.6	0.0	-0.1
C3a′	62.9	62.8	63.2	0.3	0.4
C3a	63.5	63.2	63.8	0.3	0.6
C4'	123.6	123.6	124.0	0.4	0.4
C4	124.4	124.4	124.7	0.3	0.3
C4a′	132.9	132.7	133.1	0.2	0.4
C4a	133.4	133.3	133.6	0.2	0.3
C5'	116.7	116.7	117.1	0.4	0.4
C5	118.2	118.2	118.6	0.4	0.4
C6'	128.1	128.1	128.4	0.3	0.3
C6	127.8	127.9	128.2	0.4	0.3
C7'	105.8	105.9	106.2	0.4	0.3
C7	108.9	109.0	109.3	0.4	0.3
C7a′	152.9	152.8	153.2	0.3	0.4
C7a	151.0	150.8	151.2	0.2	0.4
N8'-CH ₃	35.4	35.4	35.6	0.2	0.2
N8-H	-	-	-	_	_
C8a'	92.1	91.8	92.4	0.3	0.6
C8a	85.1	85.0	85.5	0.4	0.5

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*-chimonanthine and related heterodimeric alkaloids.

Stephen P. Lathrop and Mohammad Movassaghi*

Page S50 / S153

Table S3. Comparison of our ¹H NMR data for (–)-calycanthidine (1) with literature data (DMSO-*d*₆):

Assignment	Overman's Report ¹³	This Work
	(–)-calycanthidine ¹ H NMR, 500 MHz DMSO- <i>d</i> ₆ , 100 °C	(–)-calycanthidine 1 H NMR, 500 MHz DMSO- d_{6} , 100 °C
N1'-C H ₃	2.40 (m, 3H)	2.36 (s, 3H)
N1-C H ₃	2.33 (s, 3H)	2.30 (s, 3H)
C2'	2.68–2.59 (m, 2H)	2.65–2.57 (m, 2H)
	2.51–2.42 (m, 2H)	2.43–2.33 (m, 2H)
C2	2.68–2.59 (m, 2H)	2.65–2.57 (m, 2H)
	2.51–2.42 (m, 2H)	2.43–2.33 (m, 2H)
C3′	2.40-2.36 (m, 1H)	2.43-2.33 (m, 2H)
	2.00–1.86 (m, 2H)	1.91–1.82 (m, 2H)
C3	2.51–2.42 (m, 2H)	2.43-2.33 (m, 2H)
	2.00–1.86 (m, 2H)	1.91–1.82 (m, 2H)
C3a	_	-
C3a'	-	
C4'	7.08 (dd, <i>J</i> = 7.4, 0.8 Hz, 1H)	7.04 (d, J = 7.6 Hz, 1H)
C4	6.99 (d, J = 7.4 Hz, 1H)	6.94 (d, J = 7.2Hz, 1H)
C4a′	_	_
C4a	_	_
C5′	6.49–6.41 (m, 2H)	6.45–6.40 (m, 2H)
C5	6.49–6.41 (m, 2H)	6.45–6.40 (m, 2H)
C6′	6.92 (app-dt, $J = 7.7$, 1.2Hz, 1H)	6.89 (app-t, $J = 7.4$ Hz, 1H)
C6	6.84 (app-dt, J = 7.6, 1.2 Hz, 1 H)	6.80 (app-t, $J = 7.2$ Hz, 1H)
C7′	6.28 (d, J = 7.8 Hz, 1H)	6.26 (d, J = 7.8 Hz, 1H)
C7	6.49 (d, J = 7.8 Hz, 1H)	$6.38 (d, J = 7.6 Hz, 1H)^{14}$
C7a′	_	_
C7a	_	_
N8'-C H ₃	2.96 (s, 3H)	2.93 (s, 3H)
N8-H	5.83 (s br, 1H)	5.90 (s br, 1H)
C8a′	4.45 (s, 1H)	4.44 (s, 1H)
C8a	4.55 (s, 1H)	4.54 (s, 1H)

¹³ L. E. Overman and E. A. Peterson, *Tetrahedron* 2003, **59**, 6905.

¹⁴ Our assignment of these resonances is supported by key gCOSY, HSCQ, and HMBC correlations.

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*-chimonanthine and related heterodimeric alkaloids.

Stephen P. Lathrop and Mohammad Movassaghi*

Page S51 / S153

Table S4. Comparison of ¹³C NMR data of (–)-calycanthidine (1) with literature data (DMSO-*d*₆):

Assignment	Overman's Report ¹³	This Work	Chemical Shift
	(–)-calycanthidine ¹³ C NMR, 125.8 MHz DMSO- <i>d</i> ₆ , 100 °C	(–)-calycanthidine ¹³ C NMR, 125.8 MHz DMSO- <i>d</i> ₆ , 100 °C	Difference $\Delta \delta = \delta \text{ (this work)} - \delta \text{ (ref}$ 13)
N1'- C H ₃	36.9	36.9	0.0
N1-CH ₃	35.6	35.7	0.1
C2'	51.3	51.3	0.0
C2	51.2	51.2	0.0
C3'/3	34.9 or 34.6	34.9 or 34.6	0.0
C3a′	62.1	62.1	0.0
C3a	62.0	62.0	0.0
C4'	122.7	122.7	0.0
C4	123.1	123.1	0.0
C4a'	132.4	132.4	0.0
C4a	132.4	132.4	0.0
C5'	115.7	115.8	0.1
C5	115.9	116.0	0.1
C6′	127.0	127.1	0.1
C6	126.7	126.7	0.0
C7′	104.9	105.0	0.1
C7	107.2	107.3	0.1
C7a′	152.3	152.3	0.0
C7a	151.2	151.2	0.0
N8'- C H ₃	34.4	34.5	0.1
N8-H	_	_	0.0
C8a'	91.1	91.1	0.0
C8a	84.0	84.1	0.1

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*-chimonanthine and related heterodimeric alkaloids.

Stephen P. Lathrop and Mohammad Movassaghi*

Page S52 / S153

N1'-Carboxyethyl Heterodimer (+)-34:

A solution of lithium triethylborohydride in tetrahydrofuran (1.0 M, 530 μ L, 530 μ mol, 10.0 equiv,) was added via syringe to a solution of heterodimer (+)-30 (47.0 mg, 52.9 μ mol, 1 equiv) in tetrahydrofuran (2.70 mL) at 23 °C. The reaction flask was fitted with a reflux condenser and heated to 65 °C. After 11 h, another portion of lithium triethylborohydride (1.0 M in tetrahydrofuran, 265 μ L, 265 μ mol, 5.00 equiv,) was added and the mixture was stirred at 65 °C. After 12 h, the yellow solution was allowed to cool to 23 °C and a saturated aqueous ammonium chloride solution (10 mL) was added. The resulting suspension was extracted with dichloromethane (3 × 15 mL). The combined organic extracts were washed with brine (10 mL), were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (eluent: 10 \rightarrow 25% acetone in hexanes) to afford the N1'-carboxyethyl heterodimer (+)-34 (35 mg, 84.1%) as a white foam.

As a result of the slow conformational equilibration at ambient temperature, NMR spectra were collected at elevated temperature. Structural assignments were made using additional information from gCOSY, HSQC, and HMBC experiments also collected at elevated temperature.

¹H NMR (500 MHz, CD₃CN, 70 °C):

 δ 7.88 (d, J = 7.5 Hz, 2H, N_8 'SO₂Ph-o-H), 7.78 (d, J= 8.6 Hz, 2H, $N_8SO_2Ar-o-H$), 7.62 (t, J = 7.5 Hz, 1H, N_{8} SO₂Ph-p-H), 7.57 (d, J = 8.8 Hz, 2H, $N_8SO_2Ar-m-H$), 7.52 (t, 2H, J = 8.0 Hz, $N_8'SO_2Ph$ m-H), 7.44–7.39 (m, 2H, $C_{7/7}$ /H), 7.32–7.27 (m, 2H, $C_{6/6}$ 'H), 7.02–6.98 (m, 3H, $C_{5/5}$ 'H, C_{4} 'H), 6.93 (br-s, 1H, C_4H), 6.44 (s, 1H, $C_{8a}H$), 6.36 (s, 1H, $C_{8a}H$), (app-dq, J =7.1, 10.6 Hz, $N1'CO_2CH_aH_bCH_3$), 3.96 (app-dq, J = 7.1, 10.6 Hz, 1H, N1'CO₂CH_a \mathbf{H}_b CH₃), 3.80–3.76 (m, 2H, $\mathbf{C}_{2/2}$ ' \mathbf{H}_a), 3.54 (s, 3H, $N_1CO_2CH_3$), 2.67-2.56 (m, 2H, $C_{2/2}$ ' H_b), 2.06 (dd, J = 5.1, 12.2 Hz, 1H, C_3 ' H_a), 2.02 $C_{3/3}$, H_b , 1.34 (s, 9H, C(CH₃)₃), 1.22 (t, J = 7.1 Hz, 3H, N₁CO2CH₂CH₃).

¹³C NMR (125.8 MHz, CD₃CN, 70 °C):

δ 158.9 (N₈·SO₂Ar-*p*-**C**), 156.1 (N₁CO₂CH₃), 155.8 (N₁·CO₂CH₂CH₃), 145.2 (**C**_{7a′}), 145.0 (**C**_{7a}), 143.1 (N₈·SO₂Ph-*ipso*-**C**), 140.6 (N₈SO₂Ar-*ipso*-**C**), 134.9 (N₈·SO₂Ph-*p*-**C**), 132.8 (2C, **C**_{4a}, **C**_{4a′}), 131.4 (2C,

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*-chimonanthine and related heterodimeric alkaloids.

Stephen P. Lathrop and Mohammad Movassaghi* Page S53 / S153

C₆, C₆′), 131.1 (N₈′SO₂Ph-*m*-C), 128.2 (N₈′SO₂Ph-*o*-C), 128.1 (N₈SO₂Ar-*o*-C/_{meta}), 126.5 (C₄), 126.4 (C₄′), 125.6 (2C, C₅, C₅′), 116.2 (C₇/C₇′), 116.0 (C₇/C₇′), 82.6 (2C, C_{8a}, C_{8a}′), 64.2 (2C, C_{3a}, C_{3a}′), 63.5 (N₁′CO₂CH₂CH₃), 54.0 (N₁CO₂CH₃), 46.9 (2C, C₂, C₂′), 37.6 (C₃′), 37.5 (C₃), 36.7 (C(CH₃)₃), 32.1 (C(CH₃)₃), 15.6 (N₁′CO₂CH₂CH₃).

FTIR (thin film) cm⁻¹: 2957 (w), 1712 (s), 1595 (w), 1477 (m), 1350 (m).

HRMS (ESI) (m/z): calc'd for $C_{41}H_{44}N_4NaO_8S_2$ $[M+Na]^+$: 807.2493,

found: 807.2492.

 $[\alpha]_D^{24}$: +6.5 (c = 0.31, CH₂Cl₂).

TLC (33% ethyl acetate in hexanes), Rf: 0.29 (UV, CAM).

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*-chimonanthine and related heterodimeric alkaloids.

Stephen P. Lathrop and Mohammad Movassaghi*

Page S54 / S153

(-)-N1-Carboxymethyl-N1'-Carboxyethyl meso-Chimonanthine (35):

Sodium amalgam (5%-Na, 58.0 mg, 128 μmol, 20.0 equiv)⁸ was added to a suspension of sodium phosphate monobasic monohydrate (19.0 mg, 141.0 μmol, 22.0 equiv) and N1'-carboxyethyl heterodimer (+)-**34** (5.0 mg, 6.40 μmol, 1 equiv) in a mixture of ethanol-*N*-methylpyrrolidinone (2:1, 900 μL) at 23 °C. After 45 min, another portion of sodium phosphate monobasic monohydrate (19.0 mg, 141 μmol, 22.0 equiv) and sodium amalgam (5%-Na, 58.0 mg, 128 μmol, 20.0 equiv) were added. After an additional 1h, a final portion of sodium phosphate monobasic monohydrate (19.0 mg, 141 μmol, 22.0 equiv) and sodium amalgam (5%-Na, 58.0 mg, 128 μmol, 20.0 equiv) were added. After 1 h, the reaction mixture was diluted with ethyl acetate (10 mL) and was washed with 5% aqueous sodium bicarbonate solution (5 mL). The aqueous phase was separated and extracted with ethyl acetate (2 × 10 mL). The combined organic layers were washed with brine (5 mL), were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (eluent: 33→50% ethyl acetate in hexanes) to afford (–)-N1-carboxymethyl-N1'-carboxyethyl *meso*-chimonanthine (**35**, 2.3 mg, 80.1%) as a white solid.

As a result of the slow conformational equilibration at ambient temperature, NMR spectra were collected at elevated temperature. Structural assignments were made using additional information from gCOSY, HSQC, and HMBC experiments also collected at elevated temperature.

¹H NMR (500 MHz CD₃CN, 75 °C):

δ 7.05 (app-t, J = 7.4 Hz, 2H, C₆**H**, C₆**H**), 6.69 (d, J = 7.4 Hz, 1H, C₄), 6.66 (d, J = 6.8 Hz, 1H, C₄), 6.61–6.57 (m, 2H, C₅**H**), 6.53–6.49 (m, 2H, C₇**H**, C₇**H**), 5.39 (s, 1H), 5.38 (s, 1H), 5.06 (br-s, 2H, N₈**H**, N₈**H**), 4.13 (q, J = 6.7, 13.7 Hz, 2H, N₁·CO₂CH₂CH₃), 3.71–3.65 (m, 5H, C₂**H**_a, C₂·**H**_a, N₁CO₂CH₃) 2.92–2.84 (m, 2H, C₂**H**_b, C₂·**H**_b), 2.40–2.32 (m, 2H, C₃**H**_a, C₃·**H**_a), 2.31–2.25 (m, 2H, C₃**H**_b, C₃·**H**_b), 1.26 (t, J = 6.6 Hz, 3H, N₁·CO₂CH₂C**H**₃).

¹³C NMR (125.8 MHz, CD₃CN, 75 °C):

¹⁵ The C_{3a} , $C_{3a'}$, and the carbonyl carbons of the carbamates were not observed, due to signal broadening even at 75 °C. All expected signals were observed in the following compound, *meso*-chimonanthine (2).

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*-chimonanthine and related heterodimeric alkaloids.

Stephen P. Lathrop and Mohammad Movassaghi*

Page S55 / S153

FTIR (thin film) cm⁻¹: 3360 (br-m), 2953 (w), 1693 (m), 1451 (w), 1381

(w).

HRMS (ESI) (m/z): calc'd for $C_{25}H_{29}N_4O_4$ $[M+H]^+$: 449.2183: found:

449.2182.

 $[\alpha]_D^{24}$: $-6.2 (c = 0.20, CH_2Cl_2).$

TLC (50% ethyl acetate in hexanes), Rf: 0.24 (UV, CAM).

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*-chimonanthine and related heterodimeric alkaloids.

Stephen P. Lathrop and Mohammad Movassaghi*

Page S56 / S153

meso-Chimonanthine (2):

(–)-N1-Carboxymethyl-N1'-carboxyethyl *meso*-chimonanthine (**35**, 30.0 mg, 66.9 μ mol, 1 equiv) was azeotropically dried from anhydrous benzene (2 × 5 mL) and the residue was dissolved in toluene (6.5 mL). Sodium bis(2-methoxyethoxy)aluminum hydride in toluene (Red-Al, 70% wt, 193 μ L, 670 μ mol, 10.0 equiv) was added via syringe at 23 °C. The reaction flask was fitted with a reflux condenser and heated to 110 °C. After 1.5 h, the reaction mixture was allowed to cool to 23 °C. Excess reducing reagent was quenched by the addition of 10% methanol in chloroform saturated with ammonium hydroxide. The resulting mixture was concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (eluent: 10% methanol in chloroform saturated with ammonium hydroxide) to afford *meso*-chimonanthine (**2**, 21.0 mg, 90.5%) as a white solid.

As a result of the slow conformational equilibration at ambient temperature, NMR spectra were collected at elevated temperature. Structural assignments were made using additional information from gCOSY, HSQC, and HMBC experiments also collected at elevated temperature.

¹H NMR (500 MHz, CD₃OD, 55 °C):

δ 6.94 (app-t, J = 7.2 Hz, 2H, C₆H, C₆·H), 6.47 (br-s, 2H, C₅H, C₅·H), 6.45 (d, J = 7.8 Hz, C₇H, C₇·H), 4.54 (s, 2H, C₈·H), 2.72 (ddd, J = 2.3, 6.1, 8.8 Hz, C₂H_a, C₂·H_a), 2.54–2.46 (m, 2H, C₃·H_a, C₃·H_a), 2.41 (app-dt, J = 5.6, 8.9 Hz, 2H, C₂·H_b, C₂·H_b), 2.34 (s, 6H, N₁CH₃, N₁·CH₃), 2.05 (ddd, J = 2.9, 5.2, 11.8 Hz, 2H, C₃H_b, C₃·H_b).

¹³C NMR (125.8 MHz, CD₃OD, 55°C):

 $\begin{array}{l} \delta\ 153.7\ (2C,\ C_{7a},\ C_{7a'}),\ 134.3\ (2C,\ C_{4a},\ C_{4a'}),\ 129.2\\ (2C,\ C_6,\ C_{6'}),\ 125.5\ (2C,\ C_4,\ C_{4'}),\ 118.8\ (2C,\ C_5,\ C_{5'}),\ 109.7\ (2C,\ C_7,\ C_{7'}),\ 84.7\ (2C\ C_{8a},\ C_{8a'}),\ 65.1\\ (2C,\ C_{3a},\ C_{3a'}),\ 53.7\ (2C,\ C_2,\ C_{2'}),\ 37.4\ (2C,\ C_3,\ C_{3'}),\ 36.5\ (N_1CH_3,\ N_1'CH_3). \end{array}$

¹H NMR (500 MHz, DMSO-*d*₆, 120 °C):

δ 6.86 (app-t, J = 7.7 Hz, 2H, C₆H, C₆·H), 6.54 (br-s, 2H, C₄H, C₄·H), 6.40–6.33 (m, 4H, C₅H, C₅·H, C₇H, C₇·H), 5.45 (s, 1H, N₈H, N₈·H), 4.58 (s, 2H, C_{8a}H, C_{8a}·H), 2.69 (ddd, J = 1.8, 6.8, 8.8 Hz, C₂H_a, C₂·H_a), 2.48–2.43 (m, 2H, C₃H_a, C₃·H_a), 2.35–2.32 (m, 2H,

¹⁶ The C_4 **H** and C_{4a} **H** were not observed, due to signal broadening even at 55 °C. All expected signals were observed in DMSO- d_6 at 120 °C.

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*-chimonanthine and related heterodimeric alkaloids.

Stephen P. Lathrop and Mohammad Movassaghi*

Page S57 / S153

 C_2 **H**_b, C_2 '**H**_b), 2.30 (s, 6H, N₁C**H**₃, N₁'C**H**₃), 1.88 (ddd, J = 1.8, 5.5, 11.6 Hz, 2H, C_3 **H**_b, C_3 '**H**_b).

¹³C NMR (125.8 MHz, DMSO- d_6 , 120°C): δ 151.9 (2C, C_{7a} , $C_{7a'}$), 132.3 (2C, C_{4a} , $C_{4a'}$), 126.7

34.8 (N₁CH₃, N₁CH₃).

FTIR (thin film) cm⁻¹: 3380 (w), 2929 (w), 1604 (m), 1485 (m), 1347 (w).

HRMS (ESI) (m/z): calc'd for $C_{22}H_{27}N_4$ $[M+H]^+$: 347.223, found:

347.2232.

TLC (18% methanol, 2% ammonium hydroxide in chloroform), Rf: 0.3 (UV, CAM).

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*-chimonanthine and related heterodimeric alkaloids.

Stephen P. Lathrop and Mohammad Movassaghi*

Page S58 / S153

Table S5. Comparison of our 1H NMR data for *meso*-chimonanthine (2) with literature data (CD₃OD):

Assignment	Overman's Report ¹⁷	This Work
	meso-chimonanthine	meso-chimonanthine
	¹H NMR, 500 MHz CD₃OD	¹ H NMR, 500 MHz
	CD3OD	CD₃OD, 55 °C
N1-CH3/N1'-CH3	2.30 (br-s, 6H)	2.34 (s, 6H)
	2.49 (br-m, 4H)	2.72 (ddd, J = 2.3, 6.1, 8.8 Hz, 2H)
C2/2'		2.41 (app-dt, $J = 5.6, 8.9 \text{ Hz}, 2\text{H}$)
	2.02 (br-m, 4H)	2.54–2.46 (m, 2H)
C3/3′	· ·	2.05 (ddd, J = 2.9, 5.2, 11.8 Hz, 2H)
C3a/3a'	-	_
C4a/4a'	П	_
C4/4'	6.89 (br-s, 4H)	_16
C5/5′	6.39 (d, J = 7.7 Hz, 4H)	6.47 (br-s, 2H)
C6/6′	6.89 (br-s, 4H)	6.94 (app-t, $J = 7.2$ Hz, 2H)
C7/7′	6.39 (d, J = 7.7 Hz, 4H)	6.45 (d, J = 7.8 Hz, 2H)
C7a/7a′	_	_
N8/8′	4.38 (br-s, 2H)	_18
C8a/8a′	2.67 (br-s, 2H)	4.54 (br-s, 2H) ¹⁹

¹⁷ J. T. Link and L. E. Overman *J. Am. Chem. Soc.* 1996, **118**, 8166.

The resonance for this proton is not observed due to rapid deuterium exchange in CD_3OD . However, all expected signals are observed in DMSO- d_6 , see Table S7.

¹⁹ Our assignment of these resonances is supported by key HSCQ and HMBC correlations.

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*-chimonanthine and related heterodimeric alkaloids.

Stephen P. Lathrop and Mohammad Movassaghi*

Page S59 / S153

Table S6. Comparison of ¹³C NMR data of *meso*-chimonanthine (2) with literature data (CD₃OD):

Assignment	Overman's Report ¹⁷ meso-chimonanthine ¹ H NMR, 500 MHz CD ₃ OD	This Work meso-chimonanthine H NMR, 500 MHz CD ₃ OD, 55 °C	Chemical Shift Difference $\Delta\delta = \delta \text{ (this work)} - \delta$ (ref 17)
N1-CH3/N1'-CH3	_	36.5 ¹⁹	_
C2/2'	53.5	53.7	0.2
C3/3'	37.1	37.4	0.3
C3a/3a'	64.8	65.1	0.3
C4a/4a'	133.8	134.3	0.5
C4/4'	125.4	125.5	0.1
C5/5′	118.6	118.8	0.2
C6/6′	129.1	129.2	0.1
C7/7′	109.4	109.7	0.3
C7a/7a′	153.5	153.7	0.2
N8/8′	_	_	
C8a/8a'	84.2	84.7	0.4

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*-chimonanthine and related heterodimeric alkaloids.

Stephen P. Lathrop and Mohammad Movassaghi*

Page S60 / S153

Table S7. Comparison of our 1 H NMR data for *meso*-chimonanthine (2) with literature data (DMSO- d_{6}):

Assignment	Willis's Report ²⁰	This Work
8	meso-chimonanthine	meso-chimonanthine
	H NMR, 500 MHz	¹ H NMR, 500 MHz
	DMSO- <i>d</i> ₆ , 120 °C	DMSO- <i>d</i> ₆ , 120 °C
N1-CH3/N1'-CH3	2.28 (s, 6H)	2.30 (s, 6H)
	2.74-2.64 (m, 2H)	2.69 (ddd, <i>J</i> = 1.8, 6.8, 8.8 Hz, 2H)
C2/2'	2.52-2.43 (m, 2H)	2.35–2.31 (m, 2H) ²¹
	2.37-2.29 (m, 2H)	2.48–2.43 (m, 2H) ²¹
C3/3'	1.92–1.86 (m, 2H)	1.88 (ddd, <i>J</i> = 1.8, 5.5, 11.6 Hz, 2H)
C3a/3a'	_	_
C4a/4a'	_	_
C4/4′	6.55 (br-s, 2H)	6.54 (br-s, 2H)
C5/5′	6.40–6.34 (m, 2H)	6.40–6.33 (m, 2H)
C6/6′	6.87 (dd, J = 7.6, 7.5 Hz, 2H)	6.86 (app-t, $J = 7.7$ Hz, 2H)
C7/7′	6.40–6.34 (m, 2H)	6.40–6.33 (m, 2H)
C7a/7a′	_	_
N8/8′	5.49 (br-s, 2H)	5.45 (br-s, 2H)
C8a/8a'	4.58 (s, 2H)	4.58 (s, 2H)

²⁰ R. H. Snell, R. L. Woodward, and M. C. Willis, *Angew. Chem., Int. Ed.* 2011, **50**, 9116.

²¹ Our assignment of these resonances is supported by key gCOSY, HSCQ, and HMBC correlations.

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-meso-chimonanthine and related heterodimeric alkaloids.

Stephen P. Lathrop and Mohammad Movassaghi*

Page S61 / S153

Table S8. Comparison of ¹³C NMR data of *meso*-chimonanthine (2) with literature data (DMSO-*d*₆):

Assignment	Willis's Report ²⁰ meso-chimonanthine H NMR, 500 MHz DMSO- d_6 , 120 °C	This Work meso-chimonanthine H NMR, 500 MHz DMSO-d ₆ , 120 °C	Chemical Shift Difference $\Delta \delta = \delta \text{ (this work)} - \delta$ (ref 20)
N1-CH3/N1'-CH3	22.6 ²²	34.8	12.2
C2/2'	52.2	51.1	-1.1
C3/3'	35.9	36.1	0.2
C3a/3a'	63.7	62.6	-1.1
C4a/4a'	133.5	132.3	-1.2
C4/4'	124.3	123.1	-1.2
C5/5′	116.7	115.4	-1.3
C6/6′	127.8	126.7	-1.1
C7/7′	107.8	106.7	-1.1
C7a/7a′	153.1	151.9	-1.2
N8/8′	_	-	_
C8a/8a'	83.6	82.5	-1.1

⁻

 $^{^{22}}$ The reported signal at 22.6 ppm is not visible in the 13 C NMR spectrum of *meso*-chimonanthine provided in ref 20; however, in the same spectrum an unreported peak is observed at \sim 35 ppm consistent with our observation.

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*-chimonanthine and related heterodimeric alkaloids.

Stephen P. Lathrop and Mohammad Movassaghi*

Page S62 / S153

meso-Calycanthine (36):

A solution of *meso*-chimonanthine (2, 20.0 mg, 57.7 μ mol, 1 equiv) in a mixture of acetic acid- d_4 (17 μ L, 0.43 M) in deuterium oxide (700 μ L) was placed in a standard NMR tube, capped with a plastic cap, sealed with Teflon tape, and heated to 95 °C. After 24 h, the mixture was allowed to cool to 23 °C and partitioned between dichloromethane (10 mL) and saturated aqueous sodium bicarbonate solution (10 mL). The layers were separated, and the aqueous layer was extracted with dichloromethane (2 × 10 mL). The combined organic layers were washed with brine (5 mL), were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (eluent: 4.5% methanol, 0.5% ammonium hydroxide \rightarrow 9% methanol, 1% ammonium hydroxide in chloroform) to afford *meso*-calycanthine (36, 7.2 mg, 36.0 %) as a white solid. Structural assignments were made using additional information from gCOSY, HSQC, and HMBC experiments.

¹H NMR (500 MHz, CD₂Cl₂, 20 °C): δ 7.03–6.96 (m, 4H, C_{6/6}·H, C_{4/4}·H), 6.66 (dt, J = 1.3, 7.4 Hz, 2H, C_{5/5}·H), 6.57 (dd, J = 0.8, 7.9 Hz,

2H, $C_{7/7}$ H), 4.94 (br-s, 2H, $N_{8/8}$ H), 4.28 (d, J = 3.8 Hz, 2H, $C_{8a/8a}$ H), 2.36 (dd, J = 2.1, 7.9 Hz, 2H, $C_{2/2}$ H_a), 2.29 (s, 6H, $N_{1/1}$ CH₃), 2.20–2.09 (m, 4H,

 $C_{2/2}'H_b$, $C_{3/3}'H_a$), 1.20–1.11 (m, 2H, $C_{3/3}'H_b$).

¹³C NMR (125.8 MHz, CD₂Cl₂, 20 °C): δ 145.3 (2C, \mathbf{C}_{7a} , $\mathbf{C}_{7a'}$), 127.0 (2C, $\mathbf{C}_{4/6}$, $\mathbf{C}_{4'/6'}$), 126.9

(2C, $C_{4/6}$, $C_{4'/6'}$), 125.0 (2C, C_{4a} , $C_{4a'}$), 117.5 (2C, C_5 , C_5), 112.4 (2C, C_7 , C_7), 71.2 (2C C_{8a} , $C_{8a'}$), 46.5 (2C, C_2 , C_2), 42.4 (N₁CH₃, N₁CH₃), 37.3 (2C, C_{3a}

 $C_{3a'}$), 34.6 (2C, C_3 , $C_{3'}$).

FTIR (thin film) cm⁻¹: 3438 (w br), 2964 (w), 1608 (m), 1487 (m), 1304

(w).

HRMS (ESI) (m/z): calc'd for $C_{22}H_{27}N_4$ $[M+H]^+$: 347.2230,

found: 347.2214.

TLC (18% methanol, 2% ammonium hydroxide in chloroform), Rf: 0.63 (UV, CAM).

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*-chimonanthine and related heterodimeric alkaloids.

Stephen P. Lathrop and Mohammad Movassaghi*

Page S63 / S153

Table S9. Comparison of ¹H NMR data of *meso*-calycanthine (36) with literature data:

Assignment	Overman's Report ¹⁷	This Work
	meso-chimonanthine ¹ H NMR, 500 MHz CD ₂ Cl ₂	meso-chimonanthine ¹ H NMR, 500 MHz CD ₂ Cl ₂ , 20 °C
N1-CH ₃ /N1'-CH ₃	2.27 (s, 3H)	2.29 (s, 1H)
C2/2'	2.33 (m, 2H) 2.11 (m, 4H)	2.36 (dd, <i>J</i> = 2.1, 7.9 Hz, 2H) 2.20–2.09 (m, 4H)
C3/3'	2.11 (m, 4H) 1.14 (m, 2H)	2.20–2.09 (m, 4H) 1.20–1.11 (m, 2H)
C3a/3a'	-	_
C4a/4a'	-	_
C4/4'	6.97 (m, 4H)	7.03–6.96 (m, 4H)
C5/5'	6.63 (t, J = 7.5 Hz, 2H)	6.66 (app-dt, $J = 1.3$, 7.4 Hz, 2H)
C6/6'	6.97 (m, 4H)	7.03–6.96 (m, 4H)
C7/7′	6.54 (d, J = 7.9 Hz, 2H)	6.57 (dd, <i>J</i> = 0.8, 7.9 Hz, 2H)
C7a/7a′	-	-
N8/8′	4.91 (s, 2H)	4.94 (br-s, 2H)
C8a/8a′	4.25 (s, 2H)	4.28 (d, J = 3.8 Hz, 2H)

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-meso-chimonanthine and related heterodimeric alkaloids.

Stephen P. Lathrop and Mohammad Movassaghi*

Page S64 / S153

Table S10. Comparison of ¹³C NMR data of *meso*-calycanthine (36) with literature data:

Assignment	Overman's Report ¹⁷ meso-chimonanthine ¹ H NMR, 500 MHz CD ₂ Cl ₂	This Work meso-chimonanthine H NMR, 500 MHz CD ₂ Cl ₂ , 20 °C	Chemical Shift Difference $\Delta \delta = \delta \text{ (this work)} - \delta$ (ref 17)
N1-CH ₃ /N1'-CH ₃	42.2	42.4	0.2
C2/2'	46.3	46.3	0.0
C3/3'	34.4	34.6	0.2
C3a/3a'	37.2	37.3	0.1
C4a/4a'	124.9	125.0	0.1
C4/4′	126.9 or 126.7	127.0 or 126.9	0.0-0.3
C5/5′	117.4	117.5	0.1
C6/6′	126.9 or126.7	127.0 or 126.9	0.0-0.3
C7/7′	112.3	112.4	0.1
C7a/7a′	145.1	145.3	0.2
N8/8′	_	_	_
C8a/8a'	71.1	71.2	0.1

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*-chimonanthine and related heterodimeric alkaloids.

Stephen P. Lathrop and Mohammad Movassaghi*

Page S65 / S153

(-)-N1-Carboxymethyl Desmethyl-meso-Chimonanthine (37):

Sodium amalgam (5%-Na, 583 mg, 1.27 mmol, 25.0 equiv) was added to a suspension of sodium phosphate monobasic monohydrate (196 mg, 1.43 mmol, 28.0 equiv) and heterodimer (+)-30 (45.0 mg, 50.7 μmol, 1 equiv) in methanol at 23 °C. After 1 h, another portion of sodium phosphate monobasic monohydrate (84.0 mg, 612 μmol, 12.0 equiv) and sodium amalgam (5%-Na, 235 mg, 510 μmol, 10.0 equiv) were added sequentially. After an additional 1 h, the reaction mixture was diluted with ethyl acetate (20 mL) and washed with a 5% aqueous sodium bicarbonate solution (10 mL). The aqueous phase was separated and extracted with ethyl acetate (2 × 20 mL). The combined organic layers were washed with brine (10 mL), were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (eluent: 9% methanol, 1.0% ammonium hydroxide→18% methanol, 2.0% ammonium hydroxide in chloroform) to afford the heterodimer (–)-N1-carboxymethyl desmethyl-*meso*-chimonanthine (37, 13.0 mg, 67.7%) as a white solid.

As a result of the slow conformational equilibration at ambient temperature, NMR spectra were collected at elevated temperature. Structural assignments were made using additional information from gCOSY, HSQC, and HMBC experiments also collected at elevated temperature.

¹H NMR (500 MHz, CD₃CN, 75 °C):

δ 7.04 (app-t, J = 7.6 Hz, 1H, C₆**H**), 6.96 (app-t, J = 8.5 Hz, 1H, C₆**H**), 6.77 (d, J = 13.1Hz, 1H, C₄**H**), 6.59 (app-t, J = 7.4 Hz, 1H, C₅**H**), 6.52–6.46 (m, 3H, C₅**H**), C₇**H**, C₄**H**), 6.44 (d, J = 7.8 Hz, 1H, C₇**H**), 5.32 (s, 1H, C_{8a}**H**), 5.01 (br-s, 1H, N**H**), 4.92 (s, 1H, C_{8a}**H**), 3.74–3.67 (m, 1H C₂**H**_a), 3.69 (s, 3H, N₁CO₂C**H**₃), 3.00 (dd, J = 6.9, 10.3Hz, 1H, C₂**H**_a), 2.94 (app-dt, J = 6.3, 11.1 Hz, 1H, C₂**H**_b), 2.58 (app-dt, J = 5.3, 10.9 Hz, 1H, C₂**H**_b), 2.47 (app-dt, J = 8.3, 12.1Hz, 1H, C₃**H**_a), 2.40–2.05 (br-s, 1H, N₁**'H**) 2.32 (dd, J = 6.2, 12.4 Hz, 1H, C₃**H**_b), 2.18 (app-dt, J = 6.7, 11.7 Hz, 1H, C₃**'H**_a), 2.07 (dd, J = 5.2, 11.8 Hz, 1H, C₃**'H**_b).

¹³C NMR (125.8 MHz, CD₃CN, 75 °C):

 δ 155.6 (N₁CO₂CH₃), 154.1 (C_{7a'}), 152.7 (C_{7a}), 133.1 (C_{4a'}), 132.6 (C_{4a}), 130.3 (C₆), 129.9 (C_{6'}), 126.4 (C_{4'}), 126.1 (C₄), 119.8 (C₅), 119.2 (C_{5'}), 110.4 (C₇), 109.7 (C_{7'}), 81.9 (C_{8a'}), 79.8 (C_{8a}), 65.7

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*-chimonanthine and related heterodimeric alkaloids.

Stephen P. Lathrop and Mohammad Movassaghi* Page S66 / S153

(2C, C_{3a} , $C_{3a'}$), 53.5 ($N_1CO_2CH_3$), 47.2 ($C_{2'}$), 46.8 (C_2), 40.3 (C_3), 36.2 (C_3).

FTIR (thin film) cm⁻¹: 3350 (br-m), 2954 (w), 1692 (s), 1606 (w), 1451

(m), 1385 (w).

HRMS (ESI) (m/z): calc'd for $C_{22}H_{25}N_4O_2$ $[M+H]^+$: 377.1972,

found: 377.1976

 $[\alpha]_D^{24}$: $-223 (c = 0.32, CH_2Cl_2)$.

TLC (10% methanol in chloroform), Rf: 0.18 (UV, CAM).

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*-chimonanthine and related heterodimeric alkaloids.

Stephen P. Lathrop and Mohammad Movassaghi*

Page S67 / S153

(-)-Desmethyl-meso-Chimonanthine (3):

(–)-N1-Carboxymethyl-N1'-desmethyl-*meso*-chimonanthine (**37**, 20.0 mg, 53.1 μmol, 1 equiv) was azeotropically dried from anhydrous benzene (2 × 5 mL) and the residue was dissolved in toluene (5.0 mL). A solution of sodium bis(2-methoxyethoxy)aluminum hydride in toluene (Red-Al, 70% wt, 153 μL, 530 μmol, 10.0 equiv) was added via syringe at 23 °C. The reaction flask was fitted with a reflux condenser and heated to 110 °C. After 1.5 h, the reaction mixture was allowed to cool to 23 °C. Excess reducing reagent was quenched by the addition of 10% methanol in chloroform saturated with ammonium hydroxide and then concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (eluent: gradient, 10% methanol in chloroform→10% methanol in chloroform saturated with ammonium hydroxide) to afford (–)-desmethyl-*meso*-chimonanthine (**3**, 16.0 mg, 90.8%) as a white solid.

As a result of the slow conformational equilibration at ambient temperature, NMR spectra were collected at elevated temperature. Structural assignments were made using additional information from gCOSY, HSQC, and HMBC experiments also collected at elevated temperature.

Characterization in CDCl₃ at 50 °C²³: ¹H NMR (500 MHz, CDCl₃, 50 °C):

δ 7.04–6.91 (m, 2H, C₆**H**, C₆**H**), 6.64–6.50 (m, 4H, C₅**H**, C₅**H**, C₄**H**, C₄**H**), 6.46 (app t, J = 7.1 Hz, 4H, C₇**H**, C₇**H**), 5.02 (br-s, 1H, C_{8a}**H**), 4.57 (br-s, 1H, C_{8a}**H**), 3.07 (dd, J = 6.7, 10.6 Hz, 1H, C₂·**H**_a), 2.78 (ddd, J = 1.9, 6.6, 8.5 Hz, 1H, C₂**H**_a), 2.72 (app-dt, J = 5.1, 11.1 Hz, 1H, C₂·**H**_b), 2.52–2.39 (m, 2H, C₂**H**_b, C₃**H**_a), 2.37 (s, 3H, N₁C**H**₃), 2.31 (app-dt, J = 6.9, 11.8 Hz, 1H, C₃·**H**_a), 2.15 (dd, J = 5.1, 11.9 Hz, 2H, C₃·**H**_b), 2.10–2.04 (m, 1H, C₃**H**_b).

¹³C NMR (125.8 MHz, CDCl₃, 50 °C):

 δ 152.0 (2C, \mathbf{C}_{7a} , $\mathbf{C}_{7a'}$), 133.4 (\mathbf{C}_{4a}), 132.2 ($\mathbf{C}_{4a'}$), 128.4 (2C, \mathbf{C}_{6} , $\mathbf{C}_{6'}$), 124.9 ($\mathbf{C}_{4/4'}$), 124.6 ($\mathbf{C}_{4/4'}$), 118.7 (2C, \mathbf{C}_{5} , $\mathbf{C}_{5'}$), 109.1 ($\mathbf{C}_{7/7'}$), 108.8 ($\mathbf{C}_{7/7'}$), 83.9 (\mathbf{C}_{8a}), 80.4 ($\mathbf{C}_{8a'}$), 64.7 ($\mathbf{C}_{3a'}$), 64.0 (\mathbf{C}_{3a}), 52.5 (\mathbf{C}_{2}), 45.8 ($\mathbf{C}_{2'}$), 38.7 ($\mathbf{C}_{3'}$), 37.1 (\mathbf{C}_{3}), 35.9 ($\mathbf{N}_{1}\mathbf{C}\mathbf{H}_{3}$).

Characterization in DMSO-d₆ at 50 °C²⁴

²³ We found data collection in CDCl₃ at 50 °C provided optimal resolution for ¹³C and ¹H NMR.

 $^{^{24}}$ H and 13 C NMR were also obtained in DMSO- d_6 for comparison with other natural products synthesized in this report.

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-mesochimonanthine and related heterodimeric alkaloids. Stephen P. Lathrop and Mohammad Movassaghi* Page S68 / S153

¹H NMR (500 MHz, DMSO-*d*₆, 100 °C):

 δ 6.90–6.84 (m, 2H, C₆H, C₆'H), 6.63 (br-s, 1H, C_4H), 6.45–6.30 (m, 5H, C_4H , C_5H , C_5H , C_7H , $C_{7}H$), 5.52 (s, 1H, N_8H), 5.40 (s, 1H, N_8H), 4.92 (s, 1H, C_{8a} 'H), 4.51 (s, 1H, C_{8a} H), 2.97 (app-t, J =9.1Hz, 1H, C_2 'H_a), 2.69 (app-t, J = 7.6 Hz, 1H, C_2H_a), 2.45–2.25 (m, 4H, C_2H_b , $C_2'H_b$, C_3H_a , $C_3'H_a$), 2.29 (s, 3H, N_1 CH₃), 1.98 (dd, J = 5.1, 12.1Hz, 1H, $C_{3'}H_b$), 1.90 (dd, J = 5.1, 11.5 Hz, 1H, C_3H_b).

¹³C NMR (125.8 MHz, DMSO- d_6 , 100 °C): δ 151.9 (2C, \mathbf{C}_{7a} , $\mathbf{C}_{7a'}$), 132.6 (\mathbf{C}_{4a}), 131.4 ($\mathbf{C}_{4a'}$) 126.8 (2C, C_6 , $C_{6'}$), 123.2 (C_4), 123.6 ($C_{4'}$), 115.7 $(2C, C_5, C_{5'}), 106.8 (C_7), 106.3 (C_{7'}), 82.6 (C_{8a}),$ 79.2 ($C_{8a'}$), 63.1 ($C_{3a'}$), 62.3 (C_{3a}), 51.2 (C_{2}), 44.2 $(C_{2'})$, 37.7 $(C_{3'})$, 36.4 (C_3) . 35.0 (N_1CH_3) .

Characterization in CDCl₃ at -40 °C²⁵ ¹H NMR (500 MHz, CDCl₃, -40 °C):

Major Rotamer: δ 7.35–7.28 (m, 1H, C_4 'H), 7.09 (app-t, J = 7.6 Hz, 1H, C_{6} H), 6.91 (app-t, J = 6.9Hz, 1H, C_6H), 6.80 (app-t, J = 7.4 Hz, 1H, C_5H), 6.51–6.43 (m, 2H, $C_{7/7}$ H), 6.30 (app-t, J = 7.2 Hz, 1H, C_5 H), 5.71–5.63 (m, 1H, C_4 H), 5.30 (br-s, 1H, C_{8a} **H**), 4.93 (br-s, 1H, N_{1} '**H**), 4.55 (br-s, 1H, N_{8} **H**), 4.29 (br-s, 1H, $C_{8a'}$ H), 3.77 (br-s, 1H, $N_{8'}$ H), 3.16– $3.02 \text{ (m, 2H, } C_2'\mathbf{H}_b, C_2'\mathbf{H}_a), 2.60-2.45 \text{ (m, 2H, } C_3'\mathbf{H}_a)$ C_{3} 'H_b), 2.27 (s, 3H, N_1 CH₃), 2.25–2.10 (m, 2H, C_2H_a , C_2H_b), 2.10–2.03 (m, 2H, C_3H_a , C_3H_b).

Minor Rotamer: δ 7.35–7.28 (m, 1H, C₄H), 7.09 (app-t, J = 7.6 Hz, 1H, C_{6} H), 6.91 (app-t, J = 6.9Hz, 1H, C_6 H), 6.80 (app-t, J = 7.4 Hz, 1H, C_5 H), 6.51–6.43 (m, 2H, $C_{7/7}$ 'H), 6.28 (app-t, J = 7.2 Hz, 1H, C_5 H), 5.71–5.63 (m, 1H, C_4 H), 5.30 (br-s, 1H, $C_{8a'}$ **H**), 4.93 (br-s, 1H, $N_{1'}$ **H**), 4.55 (br-s, 1H, $N_{8'}$ **H**), 4.29 (br-s, 1H, C_{8a}H), 3.77 (br-s, 1H, N₈H), 3.16-3.02 (m, 2H, $C_{2'}H_b$, $C_{2'}H_a$), 2.87–2.69 (m, 2H, C_2H_a) C_2H_b), 2.60–2.45 (m, 2H, C_3H_a , C_3H_b), 2.43 (s, 3H, N_1CH_3), 2.10–2.03 (m, 2H, C_3H_a , C_3H_b).

¹³C NMR (125.8 MHz, CDCl₃, -40 °C):

Major Rotamer: δ 151.97 ($\mathbb{C}_{7a'}$), 150.87 (\mathbb{C}_{7a}), 132.95 ($C_{4a'}$), 130.91 (C_{4a}), 128.44 (C_6), 128.11 $(C_{6'})$, 124.80 (C_4) , 124.18 $(C_{4'})$, 118.52 $(C_{5'})$, 117.94 (\mathbb{C}_5), 109.21 ($\mathbb{C}_{7'}$), 108.08 (\mathbb{C}_7), 83.01 (\mathbb{C}_{8a}),

²⁵ ¹H and ¹³C NMR were obtained in CDCl₃ at -40 °C for comparison to the data provided in the isolation report, see V. Jannic, F. Guéritte, O. Laprévote, L. Serani, M.-T. Martin, T. Sévenet, and P. Potier, J. Nat. Prod. 1999, 62, 838. However, we found ¹H and ¹³C NMR data collected at -40 °C difficult to analyze and less informative than data collected at 50 °C; see footnote 23.

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-mesochimonanthine and related heterodimeric alkaloids.

Stephen P. Lathrop and Mohammad Movassaghi*

Page S69 / S153

79.74 ($C_{8a'}$), 64.40 (C_{3a}), 63.05 ($C_{3a'}$), 52.09 (C_{2}), 45.62 (C_{2'}), 39.13 (C₃), 36.14 (C_{3'}), 35.56 (N₁CH₃).

Minor Rotamer: δ 151.20 ($\mathbb{C}_{7a'}$), 151.07 (\mathbb{C}_{7a}), 132.05 ($C_{4a/4a'}$), 131.87 ($C_{4a/4a'}$), 128.63 ($C_{6'}$), 127.98 (\mathbb{C}_6), 124.49 (\mathbb{C}_4), 124.36 ($\mathbb{C}_{4'}$), 118.89 (\mathbb{C}_5), 117.77 ($\mathbb{C}_{5'}$), 109.21 (\mathbb{C}_{7}), 108.08 ($\mathbb{C}_{7'}$), 82.53 (\mathbb{C}_{8a}), 79.88 ($C_{8a'}$), 63.88 ($C_{3a'}$), 63.62 (C_{3a}), 51.89 (C_{2}), 45.14 ($\mathbb{C}_{2'}$), 38.12 ($\mathbb{C}_{3'}$), 37.03 (\mathbb{C}_{3}), 35.48 (\mathbb{N}_{1} CH₃).

FTIR (thin film) cm⁻¹:

3377 (br-m), 2931 (w), 1604 (m), 1485 (m), 1247 (w).

HRMS (ESI) (m/z):

calc'd for C₂₁H₂₅N₄ [M+H]⁺: 333.2074,

found: 333.2075.

 $[\alpha]_D^{24}$:

-1.8 (c = 0.21, EtOH).²⁶ -13.7 (c = 0.20, CH₂Cl₂).

TLC (10% methanol in chloroform saturated with ammonium hydroxide), Rf: 0.26 (UV, CAM).

²⁶ Literature value: $[\alpha]^{24}_D = +0.5$ (c 1, EtOH), see V. Jannic, F. Guéritte, O. Laprévote, L. Serani, M.-T. Martin, T. Sévenet, and P. Potier, J. Nat. Prod. 1999, 62, 838.

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*-chimonanthine and related heterodimeric alkaloids.

Stephen P. Lathrop and Mohammad Movassaghi*

Page S70 / S153

Table S11. Comparison of our 1H NMR data for (–)-desmethyl-*meso*-chimonanthine (3) with literature data (CDCl₃):

Assign-	Guéritte's Report ²⁶	This Work	Dalko's Report ²⁷	This Work
ment	(+)-desmethyl- <i>meso</i> - chimonanthine ¹ H NMR, 400 MHz CDCl ₃ , -40 °C * denotes minor conformer	(-)-desmethyl- <i>meso</i> - chimonanthine ¹ H NMR, 500 MHz CDCl ₃ , -40 °C * denotes minor conformer	(±)-desmethyl- <i>meso</i> - chimonanthine ¹ H NMR, 300 MHz CDCl ₃	(–)-desmethyl- <i>meso</i> - chimonanthine ¹ H NMR, 500 MHz CDCl ₃ , 50 °C
N1'- H	5.02 (s, 1H)	4.93 (s, 1H)	_	-
	5.02 (s, 1H)*	4.93 (s, 1H)*		
N1-C H ₃	2.32 (s, 3H) 2.47 (s, 3H)*	2.27 (s, 3H) 2.43 (s, 3H)*	2.30 (s, 3H)	2.37 (s, 3H)
C2'	3.18–2.73 (m, 2H)	3.16-3.02 (m, 2H)	3.02 (dd, J = 6.6, 10.5 Hz, 1H)	3.07 (dd, <i>J</i> =6.7, 10.6 Hz, 1H)
	3.18 (m, 2H)*	3.16–3.02 (m, 2H)*	2.66–2.63 (m, 1H)	2.72 (app-dt, $J = 5.1$, 11.1 Hz, 1H)
C2	2.10 (m, 2H)	2.25-2.10 (m, 2H)	2.74–2.70 (m, 1H)	2.78 (ddd, <i>J</i> = 1.9, 6.6, 8.5 Hz, 1H)
	2.82-2.42 (m, 2H)*	2.87-2.69 (m, 2H)*	2.44–2.38 (m, 1H)	2.52-2.39 (m, 2H)
C3′	2.60-2.40 (m, 2H)	2.60-2.45 (m, 2H)	2.30-2.20 (m, 2H)	2.31 (app-dt, $J = 6.9$, 11.8 Hz, 1H)
	2.10 (m)*	2.60-2.45 (m, 2H)*	2.10 (dd, J = 5.1, 11.7 Hz, 1H)	2.15 (dd, J = 5.1, 11.9 Hz, 1H)
C3	2.10 (m)	2.10-2.03 (m, 2H)	2.30-2.20 (m, 2H)	2.52–2.39 (m, 2H)
	2.10 (m)*	2.10-2.03 (m, 2H)*	2.01 (dd, J = 1.8, 10.0 Hz, 1H)	2.10–2.04 (m, 1H)
C3a	_	-	_	-
C3a′	_	-	_	-
C4'	7.28 (d, 1H)	7.35–7.28 (m, 2H)	6.60–6.42 (m, 3H)	6.64–6.50 (m, 4H)
	5.62 (d, 1H)*	5.71–5.63 (m, 2H)*		
C4	5.67 (d, 1H) 7.32 (d, 1H)*	5.71–5.63 (m, 2H) 7.35–7.28 (m, 2H)*	6.60–6.42 (m, 3H)	6.64–6.50 (m,4H)
C4a′	-	_	_	_
C4a	_	_	_	_
C5'	6.80 (t, 1H)	6.80 (app-t, J = 7.4 Hz, 1H)	-	-
C5	6.28 (t, 1H)* 6.30 (t, 1H)	6.28 (app-t, J = 7.2 Hz, 1H)* 6.30 (app-t, J = 7.2 Hz, 1H)	-	-
	6.82 (t, 1H)*	6.80 (app-t, J = 7.4 Hz, 1H)*		
C5/5′	-	_	6.60–6.42 (m, 3H) 6.98–6.88 (m, 3H)	6.64–6.50 (m,4H)
C6′	7.10 (t, 1H) 6.91 (t, 1H)*	7.09 (app-t, J = 7.6 Hz, 1H) 6.91 (app-t, J = 6.9 Hz, 1H)*	6.98–6.88 (m, 3H)	7.04–6.91 (m, 2H)
C6	6.91 (t, 1H)	6.91 (app-t, $J = 6.9 \text{ Hz}$, 1H)	6.98–6.88 (m, 3H)	7.04–6.91 (m, 2H)
	7.10 (t, 1H)*	7.09 (app-t, $J = 7.6 \text{ Hz}$, $J = 7.6 \text{ Hz}$)	0.50 0.00 (m, 511)	7.01 0.51 (III, 211)
C7′	6.46 (d, 1H)	6.51-6.43 (m, 1H)	6.41 (d, <i>J</i> = 7.9 Hz, 1H)	6.46 (app t, $J = 7.1$ Hz, 2H)
	6.49 (d, 1H)*	6.51–6.43 (m, 1H)*		

²⁷ C. Menozzi, P. I. Dalko, and J. Cossy, *Chem. Commun.* 2006, 4638.

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*-chimonanthine and related heterodimeric alkaloids.

Stephen P. Lathrop and Mohammad Movassaghi*

Page S71 / S153

Page	S71	/S1	53
1 420	0/1	/ 101	J.

С7	6.48 (d, 1H)	6.51–6.43 (m, 1H)	6.40 (d, J = 7.7 Hz, 1H)	6.46 (app t, $J = 7.1$ Hz, 2H)
	6.48 (d, 1H)*	6.51-6.43 (m, 1H)*		
C7a′	_	_	_	_
C7a	_	_	_	_
N8'-H	3.80 (s, 1H)	3.77 (s, 1H)	_	_
	4.62 (s, 1H)*	4.55 (s, 1H)*		
N8- H	4.64 (s, 1H)	4.55 (s, 1H)	_	_
	3.80 (s, 1H)*	3.77 (s, 1H)*		
C8a′	4.32 (s, 1H)	4.29 (s, 1H)	4.97 (s, 1H)	5.02 (br-s, 1H)
	5.42 (s, 1H)	5.30 (s, 1H)*		
C8a	5.42 (s, 1H)	5.30 (s, 1H)	4.46 (s, 1H)	4.57 (br-s, 1H)
	4.32 (s, 1H)*	4.29 (s, 1H)*		

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*-chimonanthine and related heterodimeric alkaloids.

Stephen P. Lathrop and Mohammad Movassaghi*

Page S72 / S153

Table S12. Comparison of ¹³C NMR data of (–)-desmethyl-*meso*-chimonanthine (3) with literature data (CDCl₃):

literature data (CDCl ₃):									
Assign-	Guéritte's Report ²⁶	This Work	Chemical Shift	Dalko's Report ²⁷	This Work	Chemical Shift			
ment	(–)-desmethyl- <i>meso</i> - chimonanthine ¹³ C NMR, 100 MHz	(–)-desmethyl- <i>meso</i> -chimonanthine ¹³ C NMR, 125 MHz	Difference $\Delta \delta = \delta \text{ (this work)}$ $-\delta \text{ (ref 26)}$	(±)-desmethyl- meso-chimonanthine ¹³ C NMR, 300 MHz	(–)-desmethyl- <i>meso</i> - chimonanthine ¹³ C NMR, 125 MHz	Difference $\Delta \delta = \delta$ (this work) $-\delta$ (ref 27)			
	CDCl ₃ , – 40 °C *denotes minor conformer	CDCl ₃ , –40 °C *denotes minor conformer		CDCl ₃	CDCl₃, 50 °C				
N1'-H	–	–	_	_	_	_			
	35.12	35.56	0.44	35.7	35.9	0.2			
N1 -C H ₃	35.12*	35.48*	0.36*	33.7	33.9	0.2			
C2'	44.87	45.62	0.75	45.6	45.8	0.2			
	44.57*	45.14*	0.57* 0.24	52.2	52.5	0.3			
C2	51.85 51.66*	52.09 51.89*	0.24	32.2	52.5	0.3			
C3'	35.73	36.14	0.41	38.0	38.7	0.7			
<u>C3</u>	37.59*	38.12*	0.53*						
C3	38.06	39.13	1.07	36.5	37.1	0.6			
C3a'	36.37* 62.85	37.03* 63.05	0.66*	64.4	64.7	0.3			
	63.63*	63.88*	0.25*	04.4	04.7	0.5			
C3a	63.95	64.40	0.45	63.6	64.0	0.4			
	63.30*	63.62*	0.32*						
C4'	123.91 124.25*	124.18 124.36*	0.27 0.11*	_	_	_			
64	124.43	124.80	0.37	_	_	_			
C4	124.06*	124.49*	0.43*						
C4/4'	_	_	_	124.7, 124.3	124.9, 124.6	-0.1-0.6			
C4a′	132.22	132.95	0.73	131.4	132.2	0.8			
C4a	131.31*	131.87*	0.56	121.5	122.4	1.0			
C4a	130.04 131.31*	130.91 131.87*	0.87 0.56	131.5	133.4	1.9			
CEL	118.45	118.52	0.07	_	_	_			
C5′	117.73*	117.77*	0.04						
C5	117.97	117.94	-0.03	-	-	_			
	118.83*	118.89*	0.06	118.8, 118.3	118.7, 118.7	-0.1-0.4			
C5/5'					•				
C6′	128.19 128.65*	128.11 128.63*	-0.08 -0.02	128.1	128.4	0.3			
C6	128.43	128.44	0.02	128.1	128.4	0.3			
C6	127.95*	127.98*	0.03						
C7′	109.10	109.21	0.11	_	_	_			
C7	108.19* 108.19	108.08* 108.08	0.11 -0.11	_	_	_			
	109.10*	109.21*	-0.11						
C7/C7′	_	_	_	108.8, 108.4	109.1, 108.8	0-0.7			
C7a'	151.75	151.97	0.22	151.6	152.0	0.4			
Cia	151.04*	151.20*	0.16						
C7a	150.30 151.51*	150.87 152.01*	0.57 0.5	151.6	152.0	0.4			
NIO! II	131.31	132.01	0.3	_	_	_			
N8'-H	_	_	_	_	_	_			
N8–H	79.30	79.74	0.44	80.1	80.4	0.3			
C8a′	79.30 82.36*	79.74 79.88*	-2.48	oU.1	oU. 4	0.3			
C8a	82.36	83.01	0.65	83.4	83.9	0.5			
Coa	82.36*	82.53*	0.17						

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*-chimonanthine and related heterodimeric alkaloids.

Stephen P. Lathrop and Mohammad Movassaghi*

Page S73 / S153

N1'-H Heterodimer (-)-38:

Activated zinc dust (106 mg, 1.62 mmol, 20.0 equiv) and acetic acid (185 μ L, 3.24 mmol, 40 equiv) were added sequentially to a solution of heterodimer (+)-30 (72 mg, 81.1 μ mol, 1 equiv) in methanol (7.0 mL) at 23 °C. After 1.5 h, an aqueous solution of sodium hydroxide (1 N, 10 mL) was added and the resulting suspension was extracted with dichloromethane (3 × 20 mL). The combined organic extracts were washed with brine (10 mL), were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (eluent: 30 \rightarrow 50% ethyl acetate in hexanes) to afford the N1'-H heterodimer (-)-38 (48.0 mg, 83.1%) as a white foam.

As a result of the slow conformational equilibration at ambient temperature, NMR spectra were collected at elevated temperature. Structural assignments were made using additional information from gCOSY, HSQC, and HMBC experiments also collected at elevated temperature.

¹H NMR (500 MHz, DMSO-*d*₆, 80°C):

δ 7.89 (d, J = 7.1 Hz, 2H, N₈SO₂Ar-o-H), 7.68 (d, J = 8.3 Hz, 2H, N₈SO₂Ar-m-H), 7.51 (t, J = 7.2 Hz, 1H, N₈·SO₂Ph-p-H), 7.35–7.10 (m, 9H, N₈·SO₂Ph-m-H, N₈·SO₂Ph-o-H, C₇H, C₇·H, C₆·H, C₄·H), 7.02 (app-t, J = 6.9 Hz, 1H, C₆H), 6.95 (br-s, 1H, C₅·H), 6.54 (br-s, 1H, C₈aH), 6.37 (br-s, 1H, C₅H), 6.01 (br-s, 1H, C₄H), 4.85 (br-s, 1H, C₈a'H), 3.92 (dd, J = 7.5, 11.4 Hz, 1H, C₂H_a), 3.66 (s, 3H, N₁CO₂CH₃), 3.16 (s, 1H, N₁·H), 3.11–3.03 (m, 1H, C₂·H_a), 2.70 (app-dt, J = 5.0, 11.8 Hz, 1H, C₂H_b), 2.61 (br-s, 1H, C₂·H_b), 2.43–2.31 (m, 1H, C₃·H_a), 2.11–1.85 (m, 3H, C₃·H_b), C₃·H_a, C₃·H_b), 1.29 (s, 9H, C(CH₃)₃).

¹³C NMR (125.8 MHz, DMSO-*d*₆, 80 °C):

δ 156.4 (N₈·SO₂Ar-p-C), 153.2 (N₁CO₂CH₃), 141.7 (N₈·SO₂Ph-ipso-C), 141.1 (C_{7a}), 138.0 (C_{7a}′), 136.1 (N₈SO₂Ar-ipso-C), 132.4 (N₈·SO₂Ph-p-C), 131.7 (C_{4a}′), 130.6 (C_{4a}), 128.9 (C₆), 128.7 (N₈·SO₂Ph-m-C), 128.5 (C₆′), 126.2 (N₈SO₂Ar-o-C), 126.0 (N₈SO₂Ar-m-C), 125.8 (N₈·SO₂Ph-o-C), 124.5 (C₄′), 123.8 (C₄), 122.8 (C₅), 122.5 (C₅′), 112.2 (C₇′), 111.2 (C₇′), 84.2 (C_{8a}′), 80.0 (C_{8a}), 62.0 (C_{3a}′), 60.8 (C_{3a}′), 52.0 (N₁CO₂CH₃), 44.2 (C₂′), 43.2 (C₂′),

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*-chimonanthine and related heterodimeric alkaloids.

Stephen P. Lathrop and Mohammad Movassaghi*

Page S74 / S153

37.2 ($C_{3'}$), 37.0 (C_{3}), 34.5 ($C(CH_3)_3$), 30.2 ($C(CH_3)_3$).

FTIR (thin film) cm⁻¹: 2956 (m), 1713 (s), 1595 (m), 1477 (m), 1447 (m).

HRMS (ESI) (m/z): calc'd for $C_{38}H_{41}N_4O_6S_2$ $[M+H]^+$: 713.2462,

found: 713.2470.

 $[\alpha]_D^{24}$: $-13 (c = 0.65 \text{ CH}_2\text{Cl}_2).$

TLC (33% ethyl acetate in hexanes), Rf: 0.13 (UV, CAM).

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*-chimonanthine and related heterodimeric alkaloids.

Stephen P. Lathrop and Mohammad Movassaghi*

Page S75 / S153

N1'-Methyl Heterodimer (-)-39:

Formalin (37% wt, 1.28 mL, 16.8 mmol, 235 equiv) and sodium cyanoborohydride in tetrahydrofuran (1.0 M, 219 μ L, 219 μ mol, 3.00 equiv) were added sequentially via syringe to a solution of N1'-H heterodimer (-)-38 (52.0 mg, 74.4 μ mol, 1 equiv) in acetonitrile-acetic acid (10:1, 7.70 mL) at 23 °C. After 30 min, another portion of sodium cyanoborohydride (1.0 M in tetrahydrofuran, 146 μ L, 146 μ mol, 2.00 equiv) was added via syringe. After an additional 30 min, saturated aqueous sodium bicarbonate solution (10 mL) was added and the resulting mixture was extracted with dichloromethane (3 × 20 mL). The combined organic extracts were washed with brine (15 mL), were dried over anhydrous sodium sulfate, were filtered and were concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (eluent: 25 \rightarrow 50% ethyl acetate in hexanes) to afford the N1'-methyl heterodimer (-)-39 (45.0 mg, 84.9%) as a white foam.

As a result of the slow conformational equilibration at ambient temperature, NMR spectra were collected at elevated temperature. Structural assignments were made using additional information from gCOSY, HSQC, and HMBC experiments also collected at elevated temperature.

¹H NMR (500 MHz, CD₃CN, 70 °C):

δ 7.88 (d, J = 8.7 Hz, 2H, N₈SO₂Ar-o-H), 7.64 (d, J = 8.3 Hz, 2H, N₈SO₂Ar-m-H), 7.56–7.47 (m, 3H, N₈·SO₂Ph-p-H, N₈·SO₂Ph-o-H), 7.45 (d, J = 8.0 Hz, 1H, C₇H), 7.38–7.32 (m, 2H, N₈·SO₂Ph-m-H), 7.29–7.15 (m, 4H, C₆H, C₆·H, C₄·H, C₇·H), 7.02 (app-t, J = 7.4 Hz, 1H, C₅·H), 6.59 (br-s, 1H, C₅H), 6.52 (s, 1H, C_{8a}H), 6.33 (br-s, 1H, C₄H), 5.20 (s, 1H, C_{8a}·H), 3.81 (dd, J = 7.7, 11.2 Hz, 1H, C₂·H_a), 3.59 (s, 3H, N₁CO₂CH₃), 2.77–2.71 (m, 1H, C₂·H_a), 2.68 (app-dt, J = 5.3, 11.8 Hz, 1H, C₂·H_b), 2.56 (s, 3H, N₁·CH₃), 2.40 (app-dt, J = 5.0, 10.2 Hz, 1H, C₂·H_b), 2.21–2.08 (m, 1H, C₃·H_a), 1.98–1.84 (m, 3H, C₃·H_b), 2.3·H_a C₃·H_b), 1.33 (s, 9H, C(CH₃)₃).

¹³C NMR (125.8 MHz, CD₃CN, 70 °C):

δ 159.1 (N₈SO₂Ar-*p*-**C**), 156.0 (N₁CO₂CH₃), 144.6 (2C C_{7a}, C_{7a′}), 141.3 (N₈·SO₂Ph-*ipso*-**C**), 139.7 (N₈SO₂Ar-*ipso*-**C**), 135.2 (C_{4a′}), 134.6 (N₈·SO₂Ph-*p*-**C**), 133.3 (C_{4a}), 131.2 (C₆), 131.0 (N₈·SO₂Ph-*m*-**C**), 130.6 (C_{6′}), 129.1 (N₈·SO₂Ph-*o*-**C**), 128.3 (N₈SO₂Ar-*o*-**C**, N₈SO₂Ar-*m*-**C**), 126.7 (2C, C₄, C_{4′}), 125.6 (C₅), 125.3 (C_{5′}), 115.8 (C₇), 115.5 (C_{7′}), 91.2

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-meso-chimonanthine and related heterodimeric alkaloids.

Stephen P. Lathrop and Mohammad Movassaghi* Page S76 / S153

 $(C_{8a'})$, 82.7 (C_{8a}) , 64.7 $(C_{3a'})$, 64.3 (C_{3a}) , 54.0 $(N_1CO_2CH_3)$, 53.3 $(C_{2'})$, 46.7 (C_2) , 39.3 (C_3) , 39.0 $(C_{3'})$, 38.8 $(N_{1'}CH_3)$, 36.7 $(C(CH_3)_3)$, 32.1 $(C(CH_3)_3)$.

FTIR (thin film) cm⁻¹: 2956 (m), 1713 (s), 1595 (m), 1477 (m), 1447 (m).

HRMS (ESI) (m/z): calc'd for $C_{39}H_{43}N_4O_6S_2$ $[M+H]^+$: 727.2619,

found: 727.2627.

 $[\alpha]_D^{24}$: -15 (c = 0.96, CH₂Cl₂).

TLC (50% ethyl acetate in hexanes), Rf: 0.55 (UV, CAM).

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*-chimonanthine and related heterodimeric alkaloids.

Stephen P. Lathrop and Mohammad Movassaghi*

Page S77 / S153

(-)-N1-Carboxymethyl-meso-Chimonanthine (40):

Sodium amalgam (5%-Na, 443 mg, 963 μmol, 20.0 equiv) was added to a suspension of sodium phosphate monobasic monohydrate (146 mg, 1.06 mmol, 22.0 equiv) and N1′-methyl heterodimer (–)-39 (35.0 mg, 49.1 μmol, 1 equiv) in methanol at 23 °C. After 1 h, another portion of sodium phosphate monobasic monohydrate (146 mg, 1.06 mmol, 22.0 equiv) and sodium amalgam (5%-Na, 443 mg, 963 μmol, 20.0 equiv) were added sequentially. After an additional 1 h, sodium phosphate monobasic monohydrate (146 mg, 1.06 mmol, 22.0 equiv) and sodium amalgam (5%-Na, 443 mg, 0.963 mmol, 20.0 equiv) were added. After 1 h, the reaction mixture was diluted with ethyl acetate (20 mL) and was washed with 5% aqueous sodium bicarbonate solution (10 mL). The aqueous layer was separated and extracted with ethyl acetate (2 × 20 mL). The combined organic layers were washed with brine (10 mL), were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (eluent: gradient, 5% methanol→9% methanol, 1.0% ammonium hydroxide in chloroform) to afford the heterodimer (–)-N1-carboxymethyl-*meso*-chimonanthine (40, 15.5 mg, 82.6%) as a white solid.

As a result of the slow conformational equilibration at ambient temperature, NMR spectra were collected at elevated temperature. Structural assignments were made using additional information from gCOSY, HSQC, and HMBC experiments also collected at elevated temperature.

¹H NMR (500 MHz, CD₃CN, 75 °C):

δ 7.02 (app-t, J = 7.5 Hz, 1H, C₆**H**), 6.98 (app-t, J = 7.5 Hz, 1H, C₆'**H**), 6.70–6.58 (m, 2H, C₄**H**, C₄'**H**), 6.57–6.47 (m, 3H, C₅**H**, C₅'**H**, C₇**H**), 6.45 (d, J = 8.0 Hz, 1H, C₇'**H**), 5.35 (br-s, 1H, C_{8a}**H**), 5.03 (br-s, 1H, N₈**H**), 4.56 (s, 2H, C_{8a}'**H**, N₈'**H**), 3.73–3.65 (m, 4H, C₂**H**_a, N₁CO₂C**H**₃), 2.91 (app-dt, J = 6.4, 10.9 Hz, 1H, C₂**H**_b), 2.76–2.67 (m, 1H, C₂'**H**_a), 2.52 (app-dt, J = 8.5, 11.8 Hz, 1H, C₃**H**_a), 2.43–2.36 (m, 2H, C₂'**H**_b, C₃'**H**_a), 2.34 (s, 3H, N₁'C**H**₃), 2.28 (dd, J = 6.3, 12.3 Hz, 1H, C₃**H**_b), 2.03–1.96 (m, 1H, C₃'**H**_b).

¹³C NMR (125.8 MHz, CD₃CN, 75 °C):

 δ 156.7 (N₁CO₂CH₃), 154.2 (C_{7a'}), 152.8 (C_{7a}), 134.2 (C_{4a'}), 132.4 (C_{4a'}), 130.3 (C₆), 129.8 (C_{6'}), 126.2 (2C, C₄, C_{4'}), 119.8 (C₅), 119.3 (C_{5'}), 110.4 (C₇), 110.1 (C_{7'}), 85.3 (C_{8a'}), 79.7 (C_{8a}), 65.1 (2C, C_{3a}, C_{3a'}), 53.9 (C_{2'}), 53.5 (N₁CO₂CH₃), 46.8 (C₂), 38.6 (C_{3'}), 36.9 (C₃), 36.2 (N₁'CH₃).

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*-chimonanthine and related heterodimeric alkaloids.

Stephen P. Lathrop and Mohammad Movassaghi*

Page S78 / S153

FTIR (thin film) cm⁻¹: 3372 (br-m), 2955 (m), 1696 (s), 1606 (m), 1451

(s),1386(s).

HRMS (ESI) (m/z): calc'd for $C_{23}H_{27}N_4O_2$ $[M+H]^+$: 391.2129,

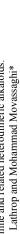
found: 391.2132.

 $[\alpha]_D^{24}$: $-202 (c = 0.95, CH_2Cl_2)$.

TLC (9% methanol, 1% ammonium hydroxide in chloroform), Rf: 0.40 (UV, CAM).

Application of diazene-directed fragment assembly to the enantioselective total synthesis and stereochemical assignment of (+)-desmethyl-*meso*-chimonanthine and related heterodimeric alkaloids.

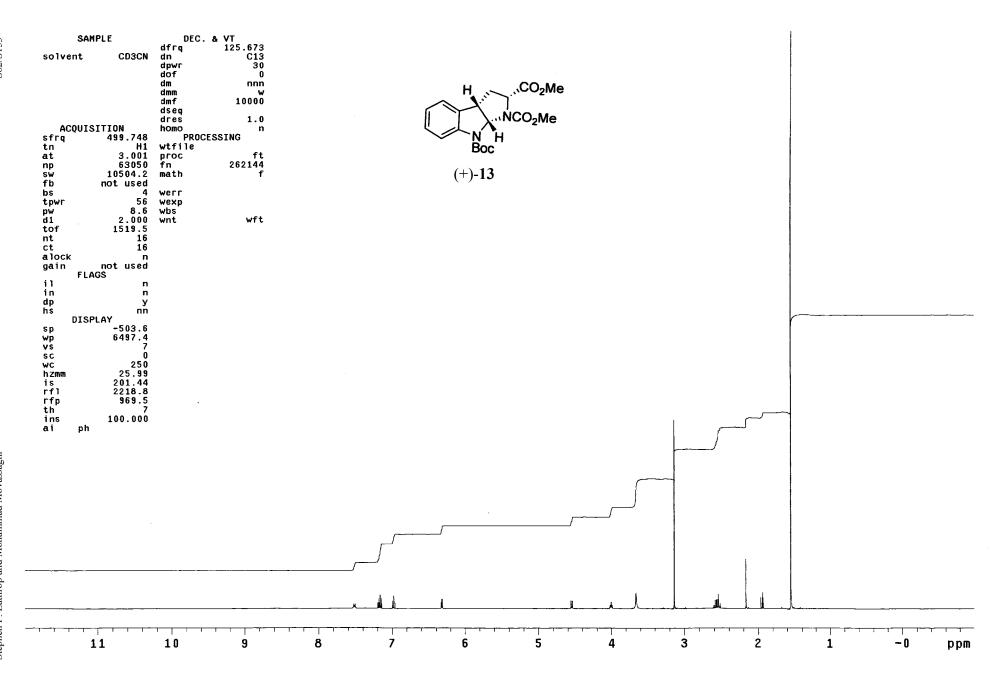
Stephen P. Lathrop and Mohammad Movassaghi*

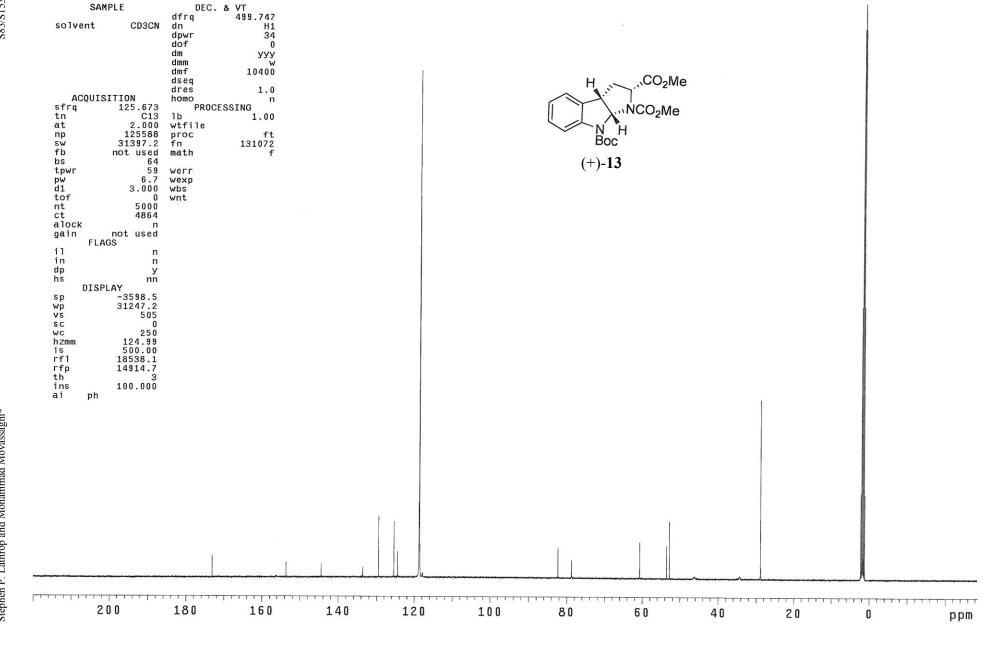

Page S79 / S153

(+)-Desmethyl-meso-Chimonanthine (3):

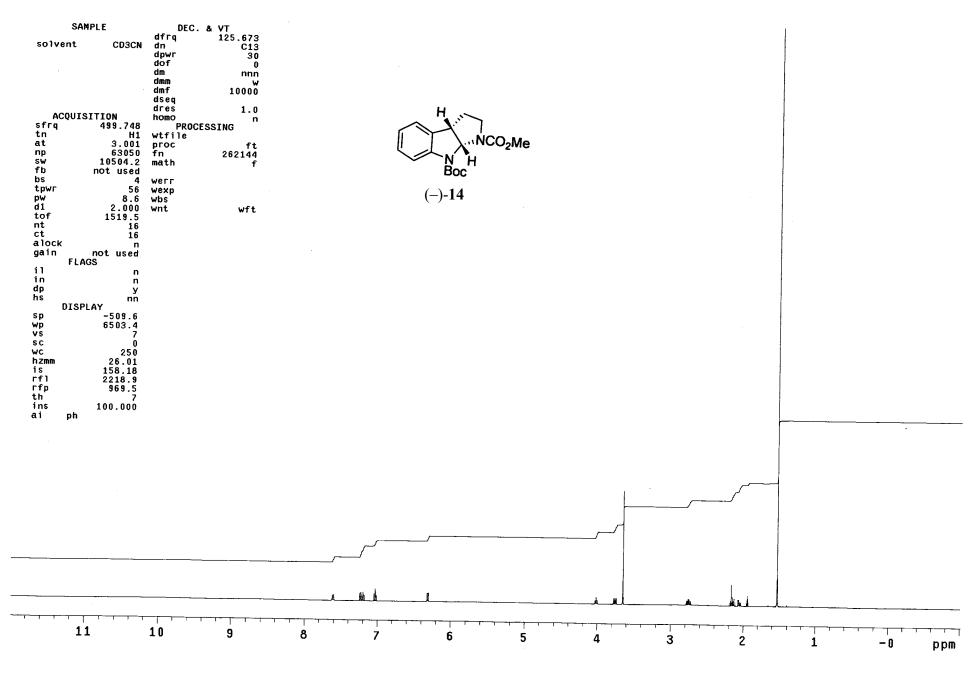
An aqueous solution of sodium hydroxide (5 N, 1.5 mL) was added to solution of (-)-N1-carboxymethyl-*meso*-chimonanthine (40, 18.0 mg, 46.1 μmol, 1 equiv) in methanol (3 mL) in a sealed tube at 23 °C. The reaction vessel was sealed and heated to 70 °C. After 26 h, the brown mixture was allowed to cool to 23 °C and was extracted with dichloromethane (2 × 20 mL). The combined organic extracts were washed with brine (10 mL), were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (eluent: 4.5% methanol, 0.5% ammonium hydroxide→18% methanol, 2.0% ammonium hydroxide in chloroform) to afford the (+)-desmethyl-*meso*-chimonanthine (3, 7.7 mg, 50.4%) as a white solid.

The corresponding enantiomer, (–)-desmethyl-*meso*-chimonanthine (3, 16 mg, 91%) was obtained by Red-Al reduction of (–)-N1-carboxymethyl desmethyl-*meso*-chimonanthine (37). For full characterization of compound 3, see pages S67–S72.


[
$$\alpha$$
]_D²⁴: +2.7 ($c = 0.13$, EtOH).²⁶ +13.7 ($c = 0.13$, CH₂Cl₂).

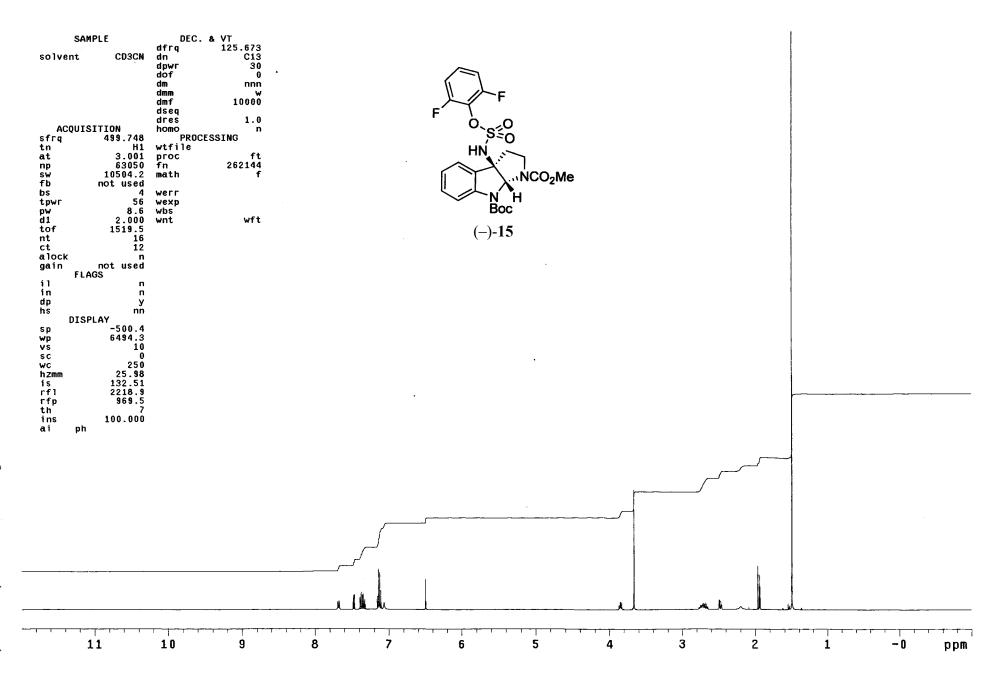


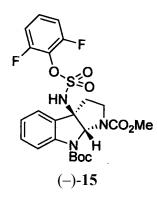
ACQUISITION did mid mid disconsisting depth of the mid disconsisting dis	th f		(-)-S	NCO₂Me H					
ai ph	10 9	8	7 6	5	4	3	2	, , , , , , ,	ppm

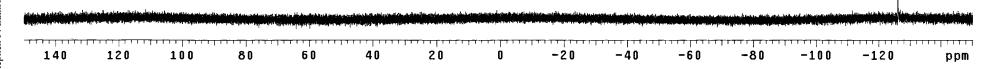

kaloids.	saghi*
anthine and related heterodimeric alkaloids.	throp and Mohammad Movassaghi*
d hetero	Mohamm
relate	and 1
ine and	P. Lathrop
anth	4

pw d1 tof nt ct alock gain il in dp hs sp wp vs sc wc hzmm is rfl rfp ins	6.7 3.000 0 8000 8000	math werr wexp	f		(-)-S2			
sfrq tn at np sw fb bs tpwr pw	QUISITION 125.672 C13 2.000 125588 31397.2 not used 64 58 6.7 3.000	dfrq dn dpwr dof dm dmm dmf dseq dres homo PROC lb wtfile proc fn math	& VT 499.744 H1 34 0 yyy 10000 1.0 n ESSING 1.00 ft 131072 f		H CO ₂ M N H H (-)-S2			

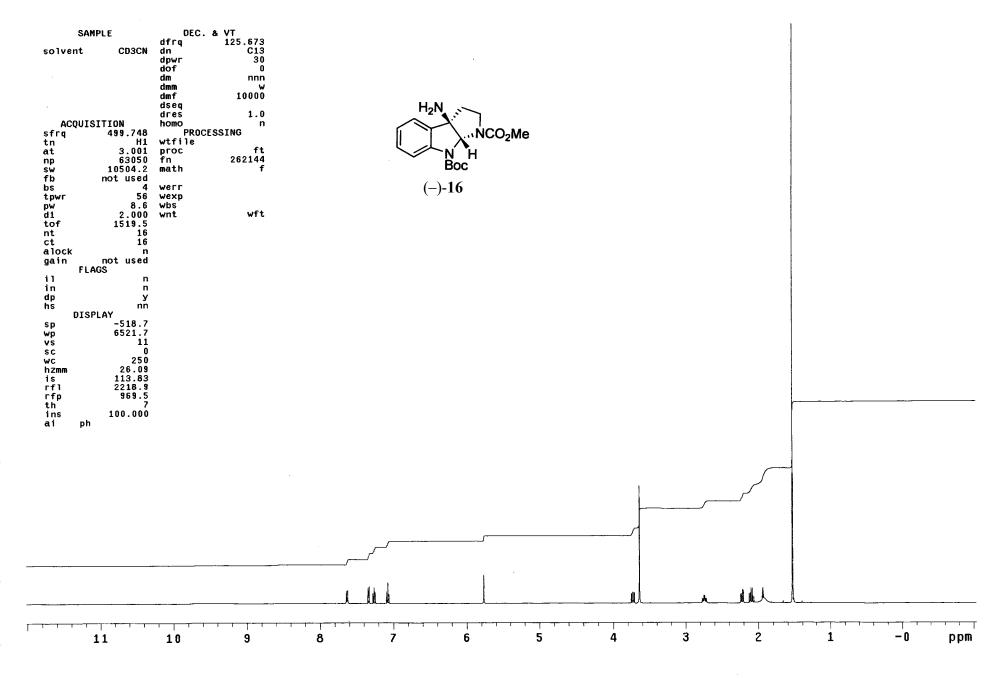


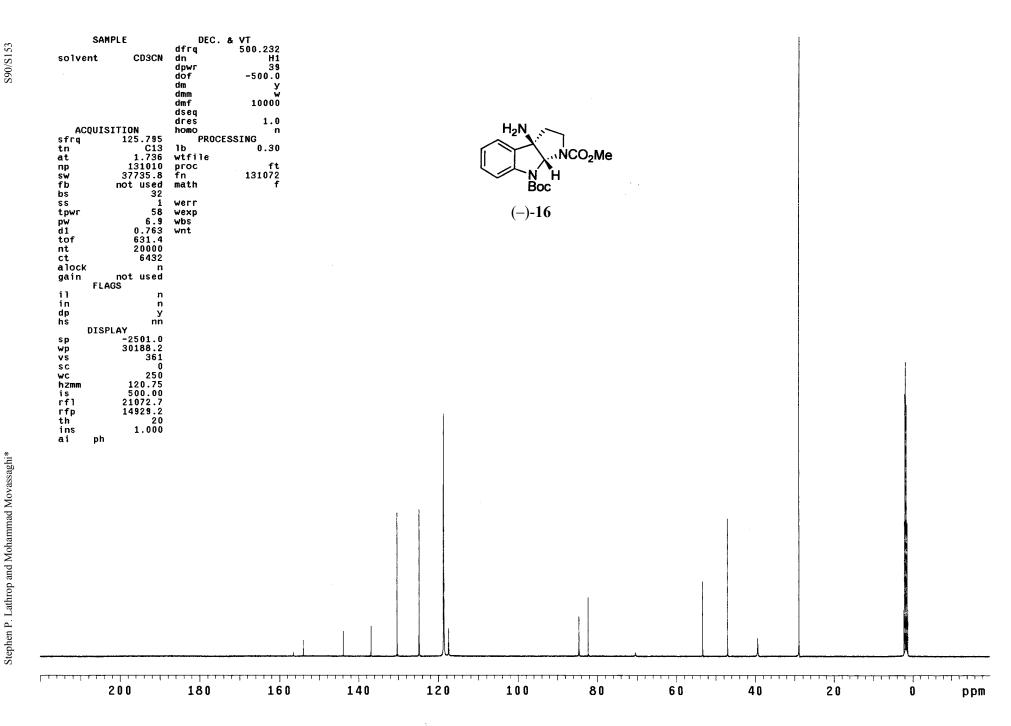


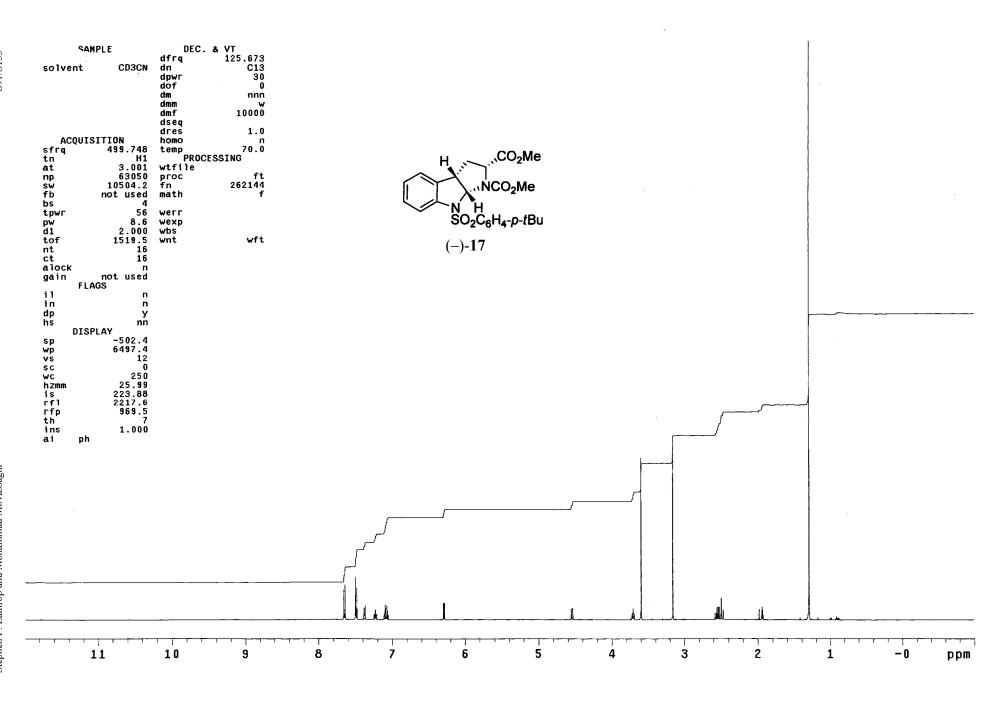


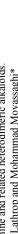


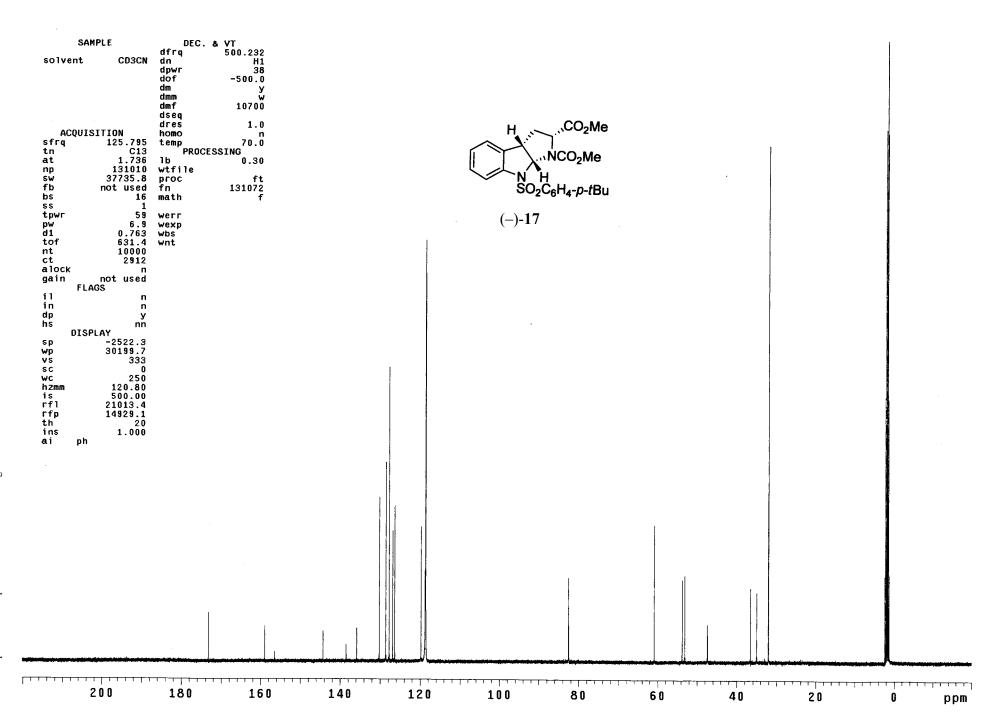
unine and related neterodiment alkaloids.	athrop and Mohammad Movassaghi*
5	$\overline{}$

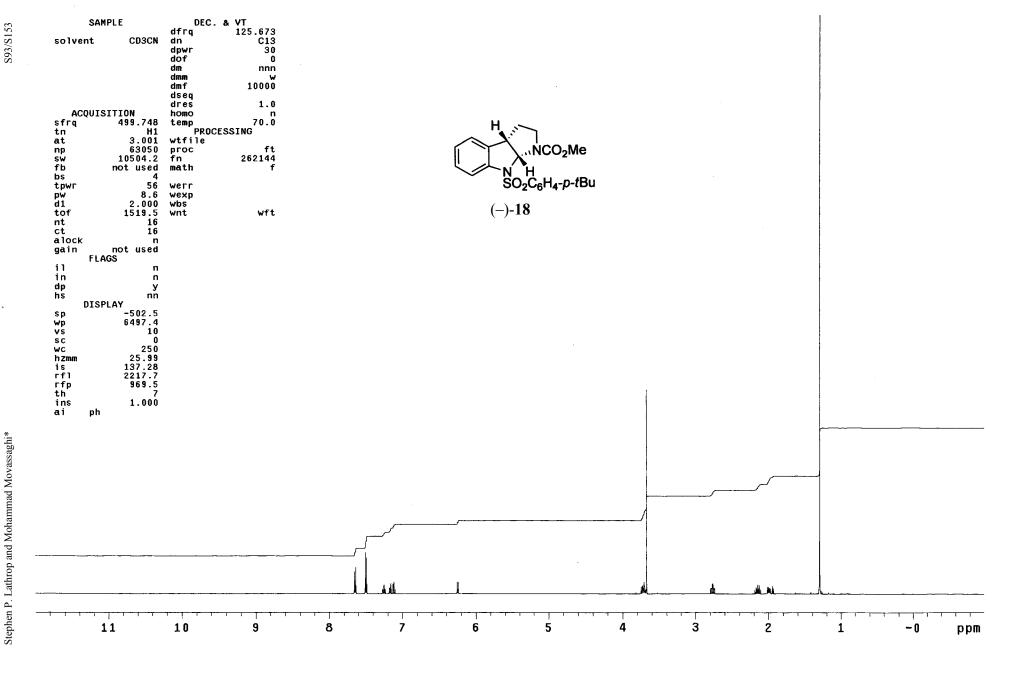

							·
DISPLAY DIS							
ACQUISITION sfrq 125.795 tn C13 at 1.736 np 131010 sw 37735.8 fb not used bs 64 ss 1 tpwr 59 ow 6.9 d1 0.763 tof 631.4 nt 30000 tt 17216 alock n gain not used FLAGS il n in n	lb wtfile proc fn math werr wexp wbs wnt	500.232 H1 38 -500.0 W 10700 1.0 n SING 0.30 ft 131072 f	F	F O S O HN NCO ₂ Me N H Boc (-)-15			

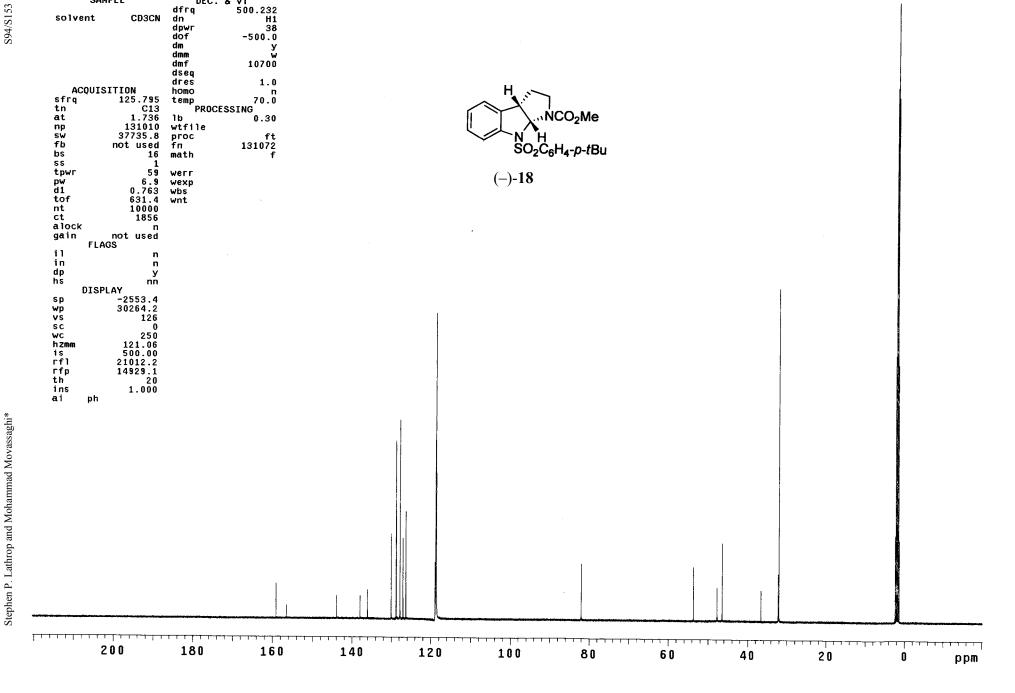

	SAMPLE	DEC. dfra	& VT 300.109
solver	nt CD3CN	dn dn	300.103 H1
301461	10 003011	dpwr	30
		dof	Õ
		dm .	กกก
		dmm	C
ACC	UISITION	dmf	200
sfrq	282.383	PROCE	SSING
tn	F19	1b	0.30
at	0.300	wtfile	
np	59906	proc	ft
sw	100000.0	fn	262144
fb	55000		
bs	_8_	werr	
tpwr	56	wexp	
pw	11.0	wbs	
d1	4.000	wnt	
tof	29637.2		
nt	64		
ct	16		
alock	n n		
gain	not used FLAGS		
i 1			
in	n n		
dp	ÿ		
	DISPLAY		
sp	-42485.9		
wp	84781.6		
VS	76		
SC	Ö		
wc	250		
hzmm	339.13		
is	500.00		
rfl	49703.3		
гfр	0		
th	20		
ins	100.000		
ram	ph		

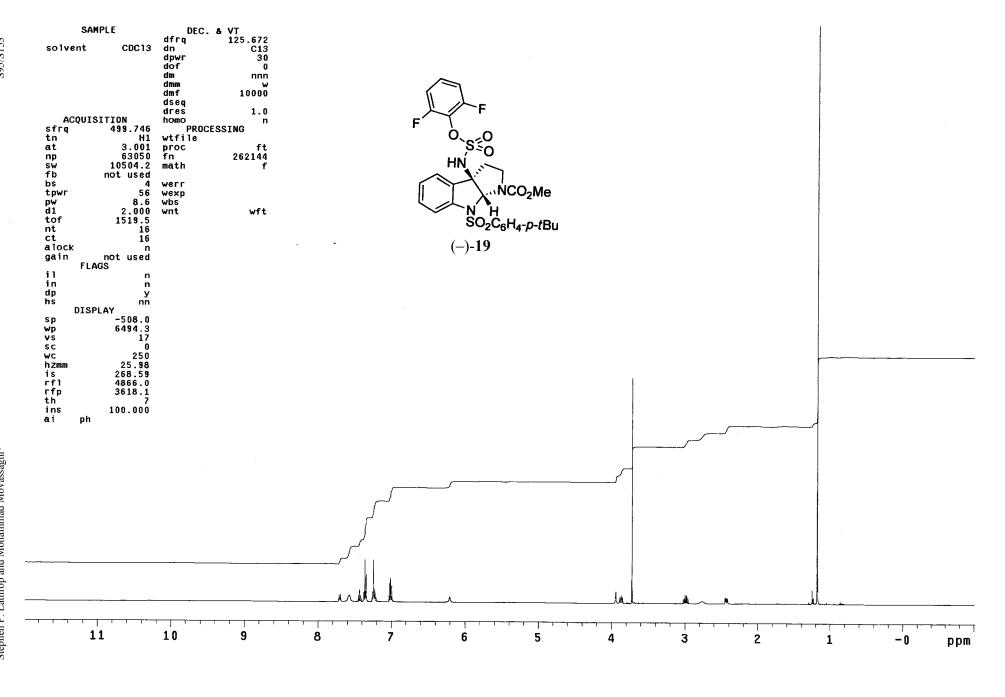


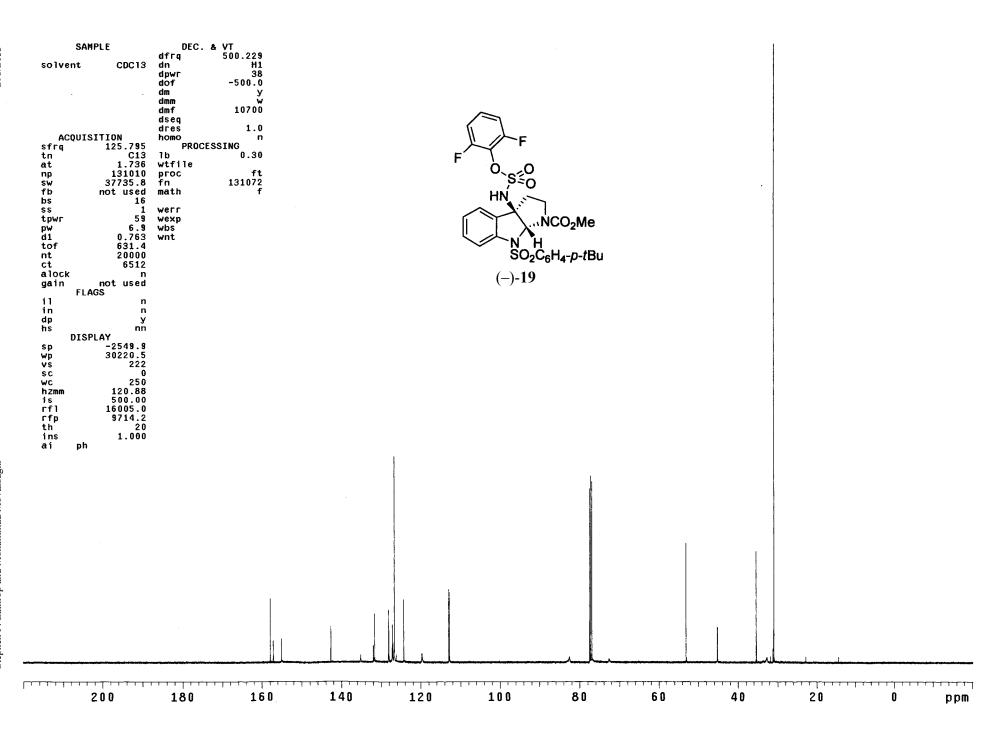




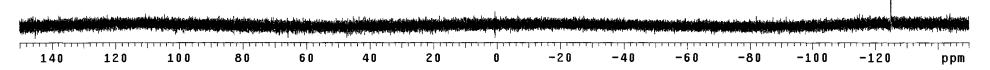


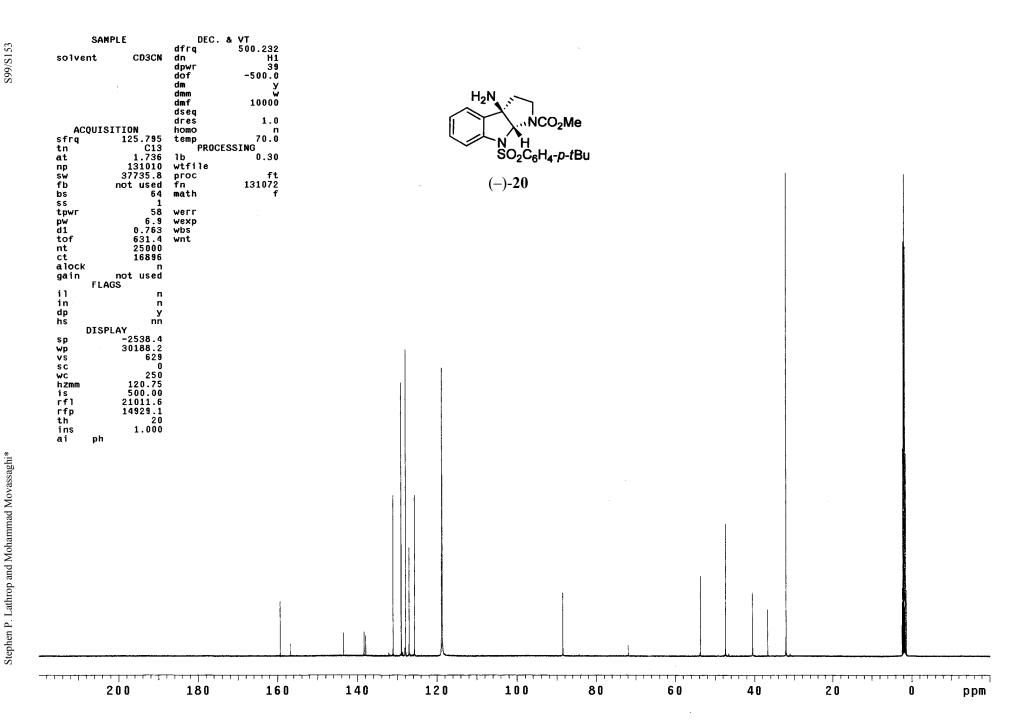




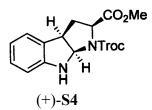


DEC. & VT

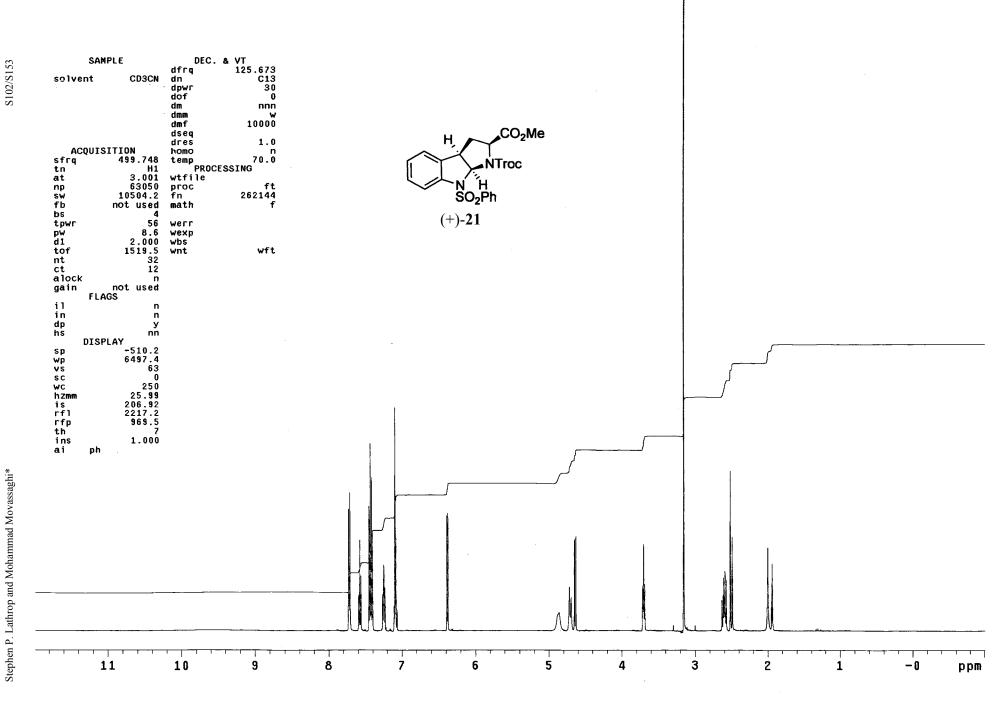

SAMPLE



	SAMPLE	DEC. & VT dfra 300.107
solven	t CDC13	dfrq 300.107 dn H1
301161	00013	dpwr 30
		dof 0
		dm nnn
		dmm C
		dmf 200
		PROCESSING
		1b 0.30
	UISITION	wtfile
sfrq	282.382	proc ft
tn	F19	fn 262144
at	0.300	
np	59906	werr
sw	100000.0	wexp
fb	55000 4	wbs wnt
bs tpwr	56	WIIC
υ pw	11.0	
d1	4.000	
tof	29637.2	
nt	32	
ct	16	
alock	'n	
gain	not used	
3	FLAGS	
i l	n	
in	n	
dp	У	
	ISPLAY	
sp	-42384.3	
wp	84781.6	
VS	43	
S C	0 25 0	
WC hzmm	339.13	
n∠mm is	500.00	
rf]	49862.6	
rfp	73002.0	
th	47	
ins	100.000	
nm	ph	
	•	

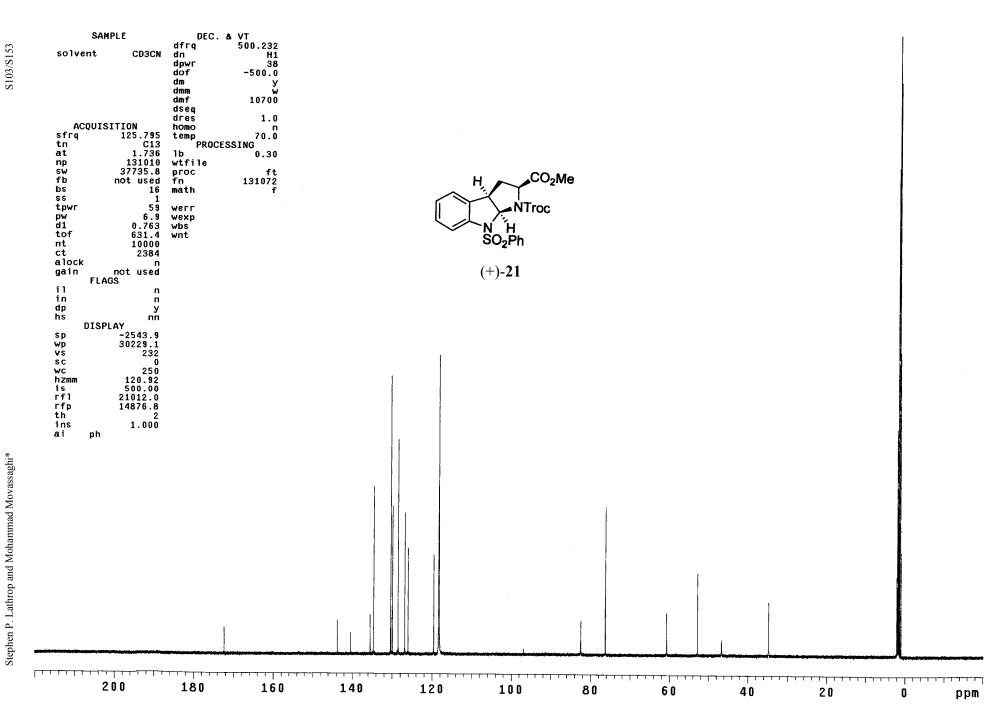


tn H1 at 3.001 wtfile proc ft sw 10504.2 fin 262144 fb not used by 4 tpwr 56 werr bw 8.6 wexp d1 2.000 wbs tof 1518.5 wnt wft nt 16 alock n again not used FLAGS 1	th 7 ins 100.000 ai ph	•				 -	
nt 16 ct 16 alock n gain not used	il rin				ı		
	bs	werr wexp wbs wnt	wft	(-)-20			

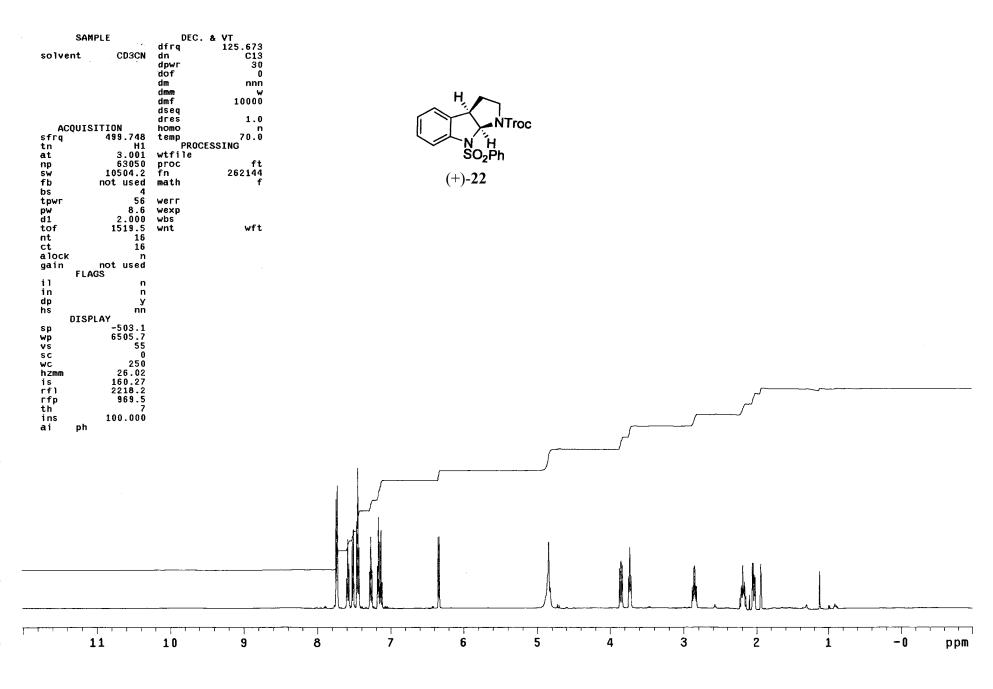


ille alla l'elatea lleteloullitelle alkalolas.	athrop and Mohammad Movassaghi*
Ξ.	۵.

	SAMPLE	DEC. 8	
		dfrq	500.229
solver	nt Benzene	dn	H1
	•	dpwr	39
		dof	-500.0
		dm	У
		dmm	W
	OUISITION	dmf	10000
sfrq	125.795	dseq	
tņ	C13	dres	1.0
at	1.736	homo	n
np	131010	PROCES	
SW	37735.8	1b	0.30
fb	not used	wtfile	
bs	32	proc	ft
SS	1	fn	131072 f
tpwr	58	math	т
pw	6.9		
d1	0.763	werr	
tof	631.4	wexp wbs	
nt	10000 6496	wnt	
ct		WIIL	
alock	not used		
gain	not used		
i 1	r LAGS		
in	n		
dp	y Y		
սբ hs	nn nn		
	DISPLAY		
sp '	-2528.7		
wp	30199.7		
vs vs	853		
sc	0		
wc	250		
hzmm	120.80		
is	500.00		
rf1	22374.0		
rfp	16149.2		
th	20		
ins	1.000		
ai	ph		

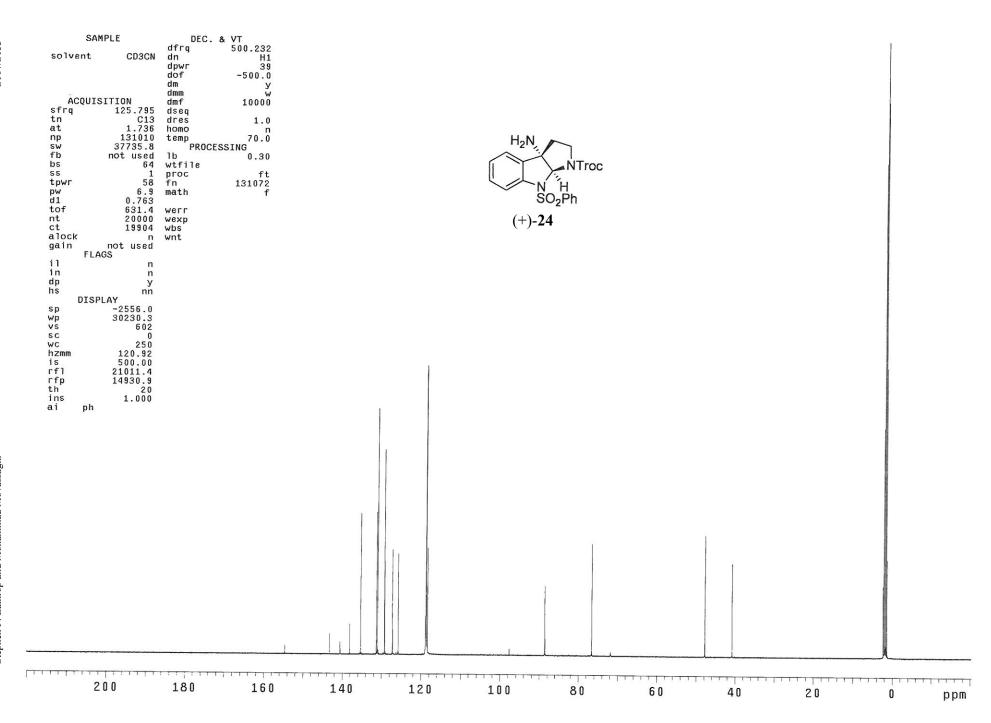


ppm



line and related heterodimeric alkaloids.	Lathron and Mohammad Movassaohi*
heterodim	hammado
related	M pue
une and	Lathror

I CIAICA IICICIOAIIIICIIC AINAIOIAS.	throp and Mohammad Movassaghi*
number and related	. La
=	Ь

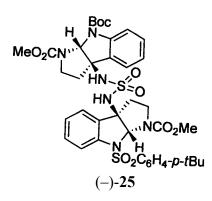


SAMPLE solvent CD3CN	DEC. & VT dfrq 500.232 dn H1 dpwr 38 dof -500.0 dm y dmm w dmf 10700 dseq			
np 131010 sw 37735.8 fb not used bs 16 ss 16 ss 1 tpwr 59 pw 6.9 d1 0.763 tof 631.4 nt 20000 ct 3264 alock n gain not used FLAGS il n dp y hs nn DISPLAY	dres 1.0 homo n temp 70.0 PROCESSING lb 0.30 wtfile proc ft fn 131072 math f	NTroc N H SO ₂ Ph (+)-22		
sp -2551.1 wp 30229.1 vs 121 sc 0 wc 250 hzmm 120.92 is 500.00 rf1 21012.8 rfp 14929.1 th 20 ins 1.000 ai ph				

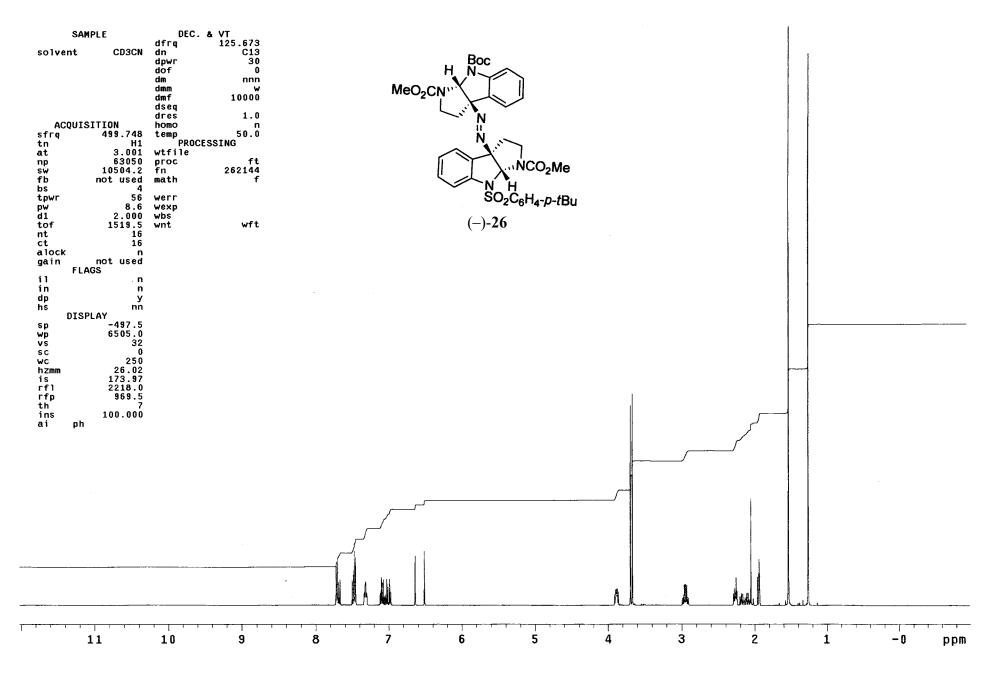
ppm

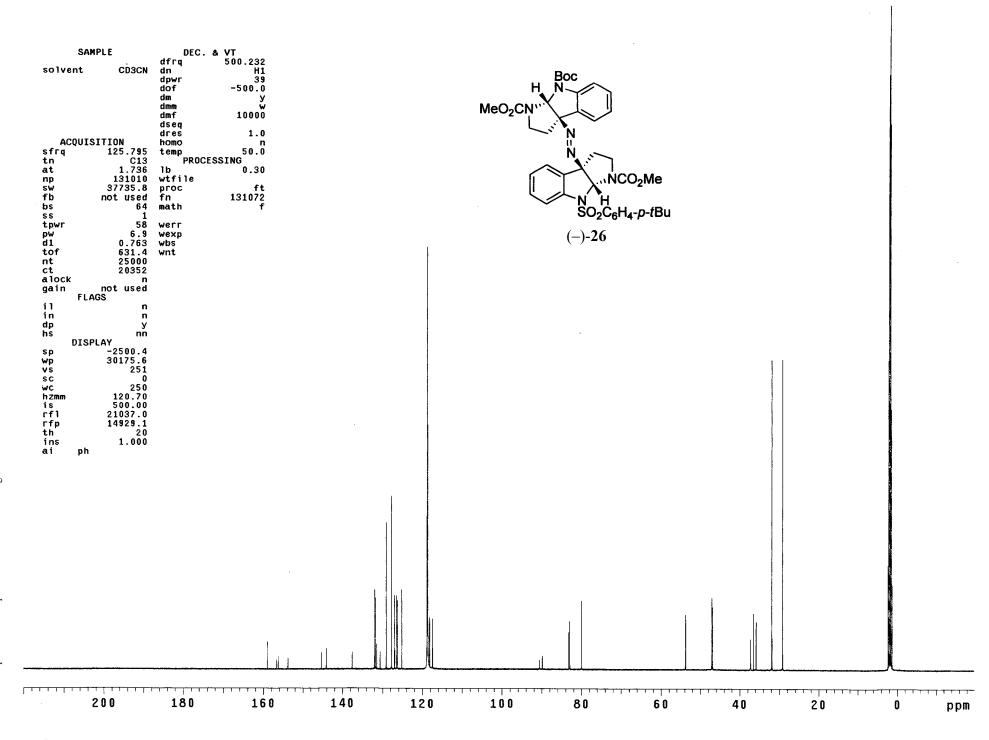
√ovassaghi*
_
Mohammad
ы
an
athrop

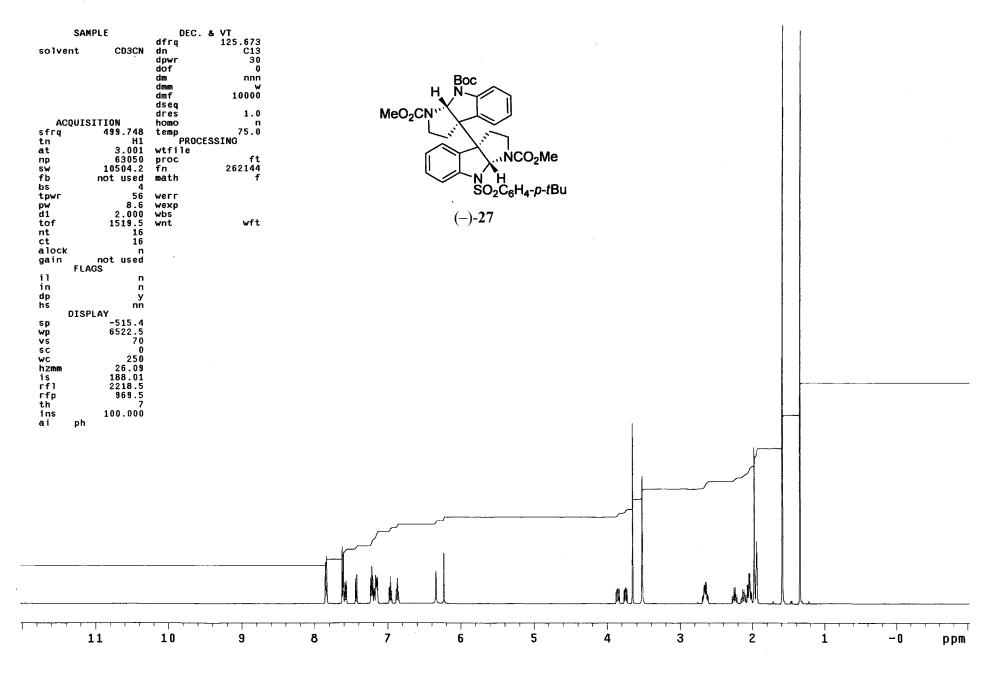
ACQUISITION flows 70.0 string 499.748 temp 70.0 tat 3.091 mp 63950 proc ft 50 proc ft 70.0 the processing from 26.14 f	SAMPLE solvent CD3CN	dpwr 30 dof 0 dm nnn dmm w dmf 10000 dsea	$H_2N_{r_1}$
il n in n dp y hs nn DISPLAY sp -518.1 wp 6494.3 vs 98 sc 0 wc 250 hzmm 25.98 is 186.52 rfl 2218.3 rfp 969.5 th	sfrq 499.748 tn H1 at 3.001 np 63050 sw 10504.2 fb not used bs 4 tpwr 56 pw 8.6 d1 2.000	homo n temp 70.0 PROCESSING Wtfile proc ft fn 262144 math f werr wexp wbs wnt wft	N H SO ₂ Ph (+)-24
ai ph	il n n n dp y hs DISPLAY sp 6494.3 vs 98 sc 0 wc 250 hzmm 25.98 is 186.52 rfl 2218.3 rfp 969.5		
	ins 100.000		

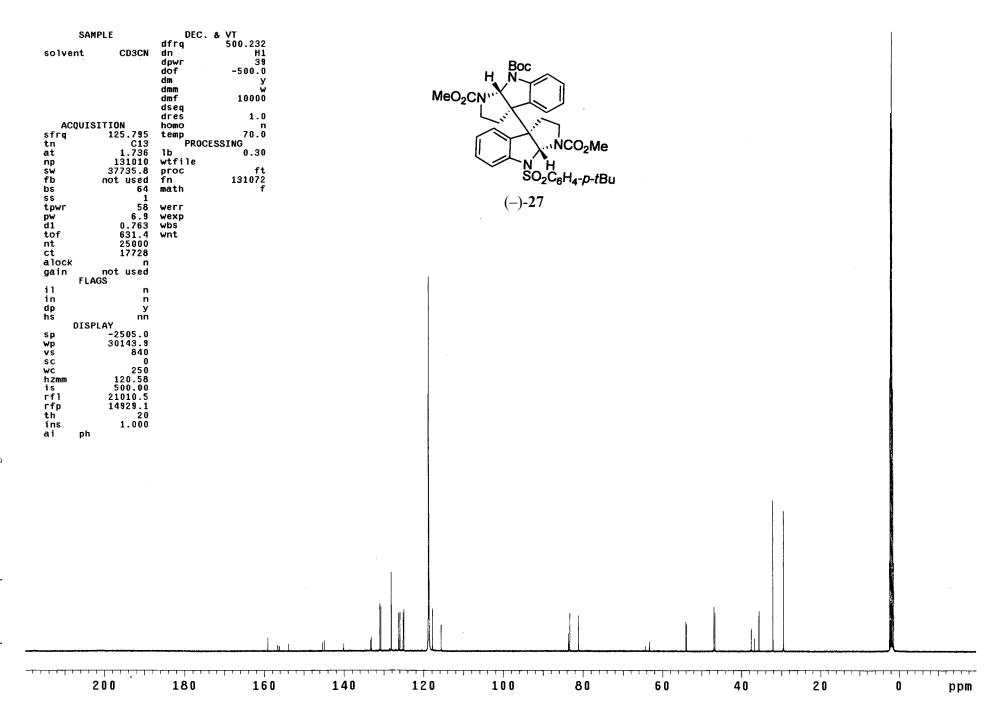


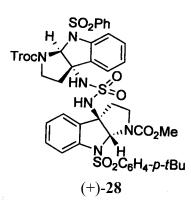
SAMPLE

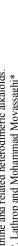

DEC. & VT q 125.672 dfrq solvent Benzene dn 30 dpwr Boc dof 0 dm nnn dmm MeO₂CN" 10000 dmf dseq dres 1.0 ACQUISITION rq 499.746 H1 3.001 homo temp / 70.0 sfrq tn wtfile at 63050 10504.2 not used np sw fb proc fn ...NCO₂Me 262144 math bs 4 56 8.6 werr tpwr pw d1 wexp 2.000 1519.5 wbs wft (-)-25wnt tof nt ct 16 16 alock gain not used FLAGS 11 in dp hs n У DISPLAY sp wp vs sc -502.9 6494.3 77 250 wc 25.98 hzmm is 167.69 4793.6 3578.2 rfl гfр th ins 100.000 аi ph 11 10 7 5 3 2 9 8 6 1 -0 ррп

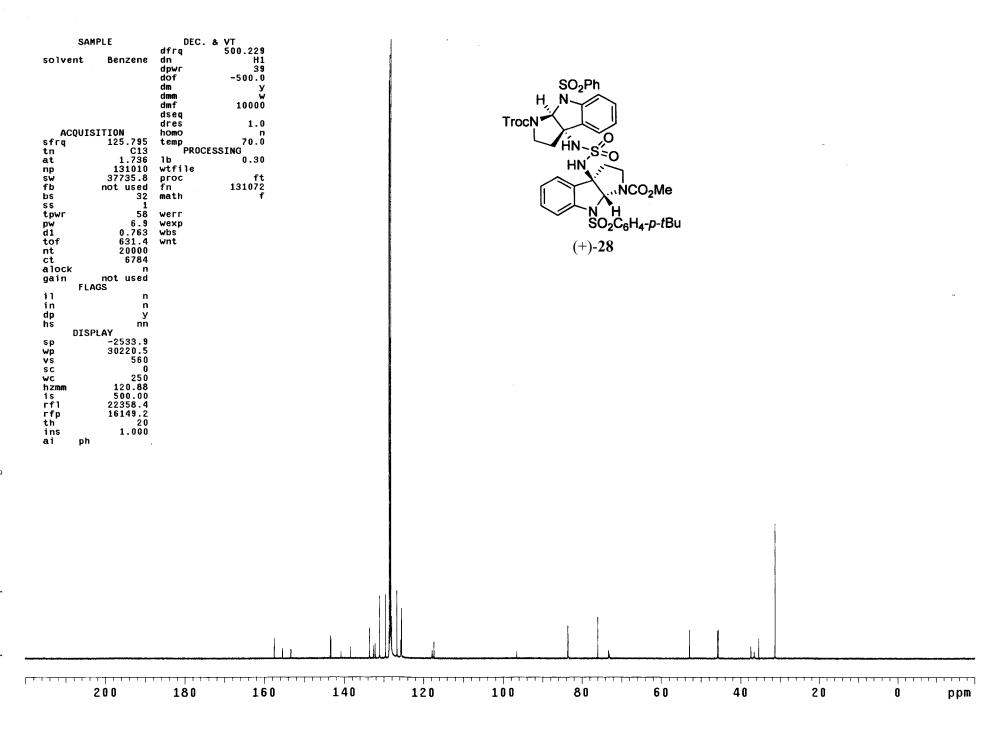

	SAMPLE		& VT 500,229
		dfrq	
solven	t Benzene	dn	H1
		dpwr	39
		dof	-500.0
		dm	У
		qww	w
		dmf	10000
		dseq	
		dres	1.0
	UISITION	homo	n
sfrq	125.795	temp	70.0
tn	C13		ESSING
at	1.736	1b	0.30
ıρ	131010	wtfile	
SW .	37735.8	proc	ft
fb	not used	fn	131072
28	32	math	f
SS	1		
tрwг	58	werr	
). Wc	6.9	wexp	
11	0.763	wbs	
tof	631.4	wnt	
nt	20000		
ct	6560		
lock	n		
gain	not used		
	FLAGS		
i 1	n		
in	n		
ab	У		
าร	nň		
D	ISPLAY		
sp	-2533.9		
νp	30188.2		
/S	1147		
sc	0		
VC.	250		
zmm	120.75		
is	500.00		
rf1	22358.4		
rfp	16149.2		
th	20		
ins	1.000		
	ph	•	
	•		

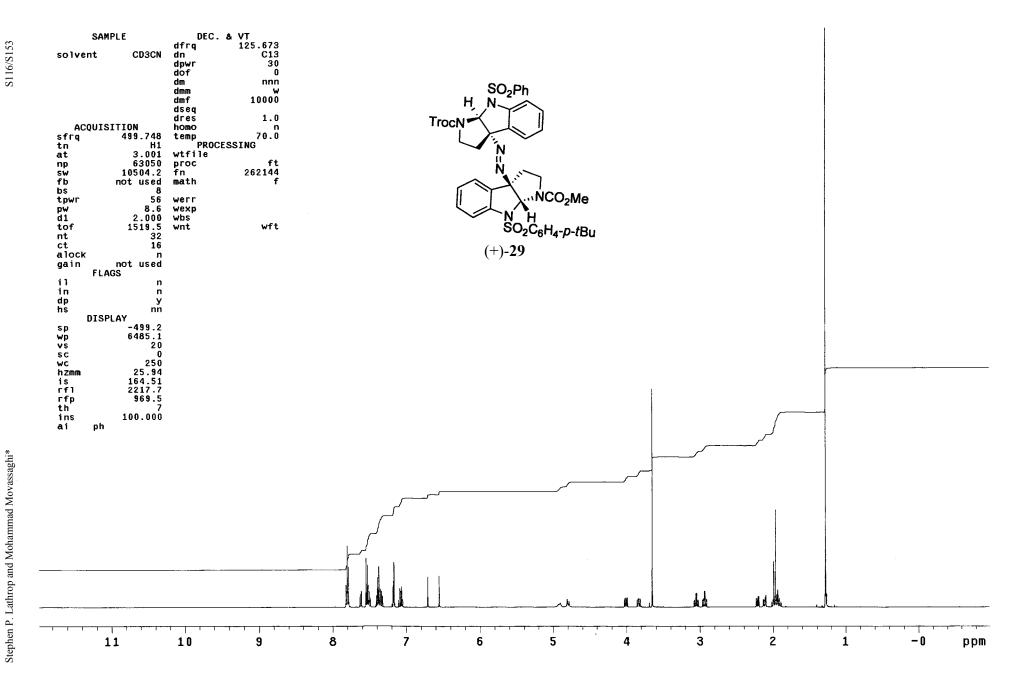

ppm

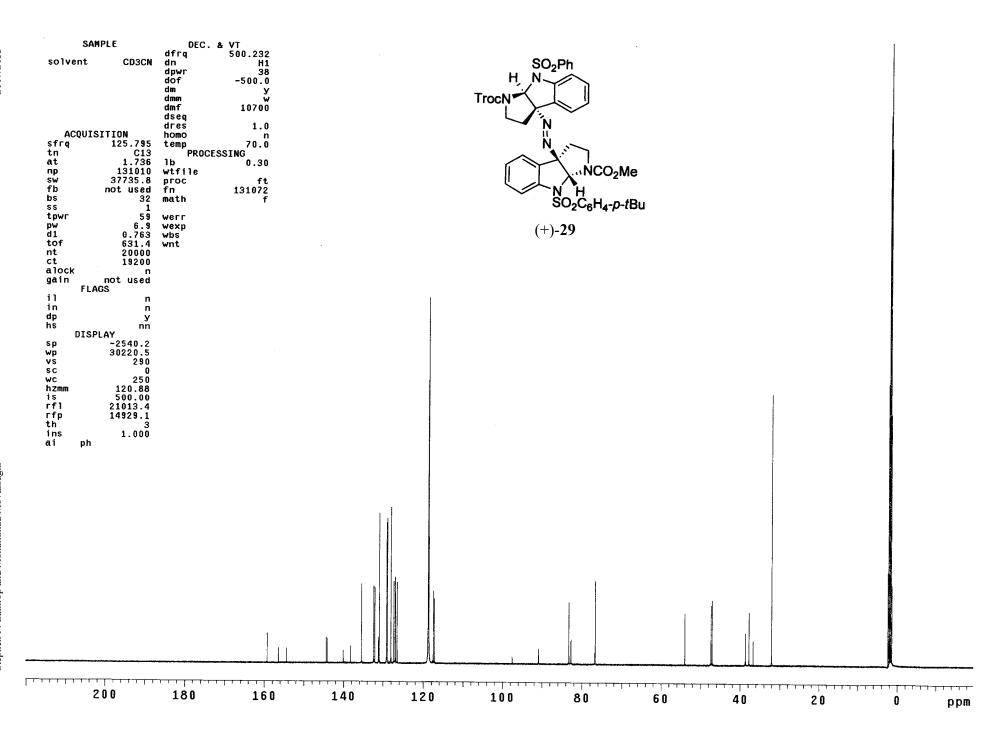


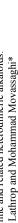


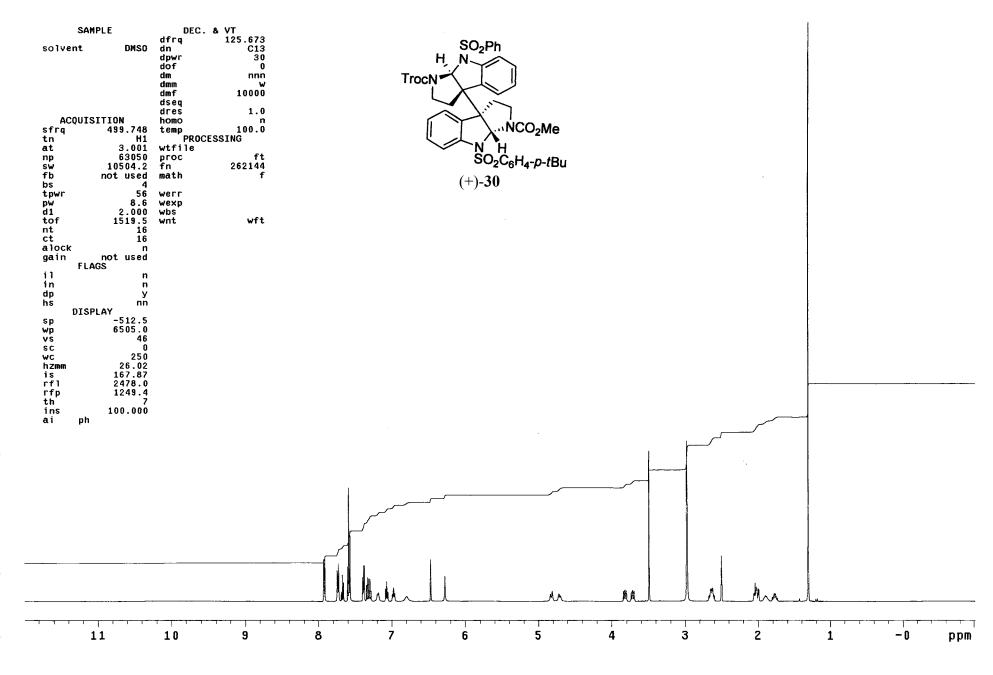


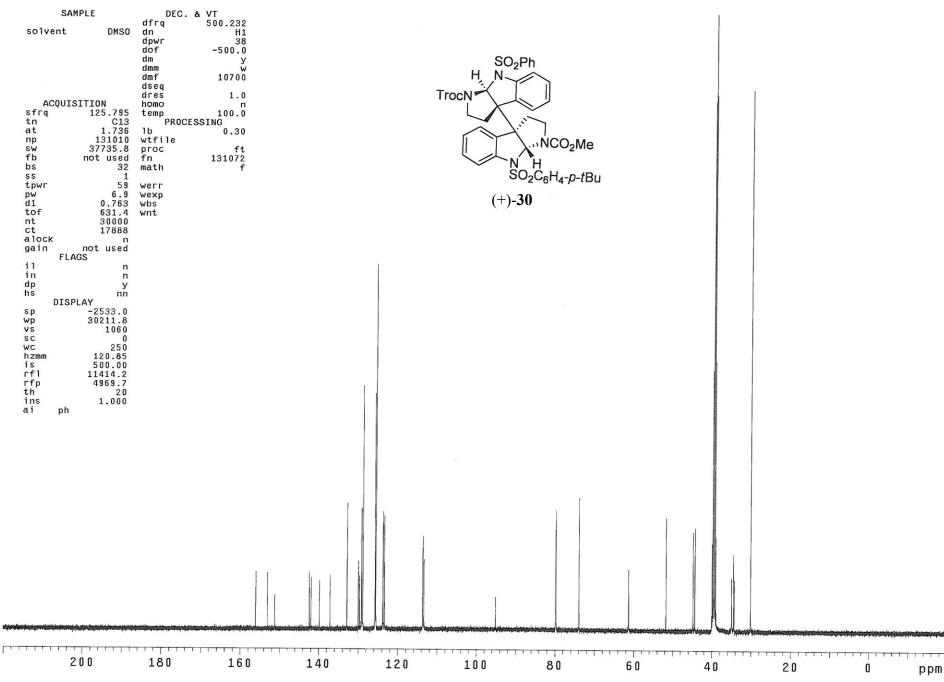


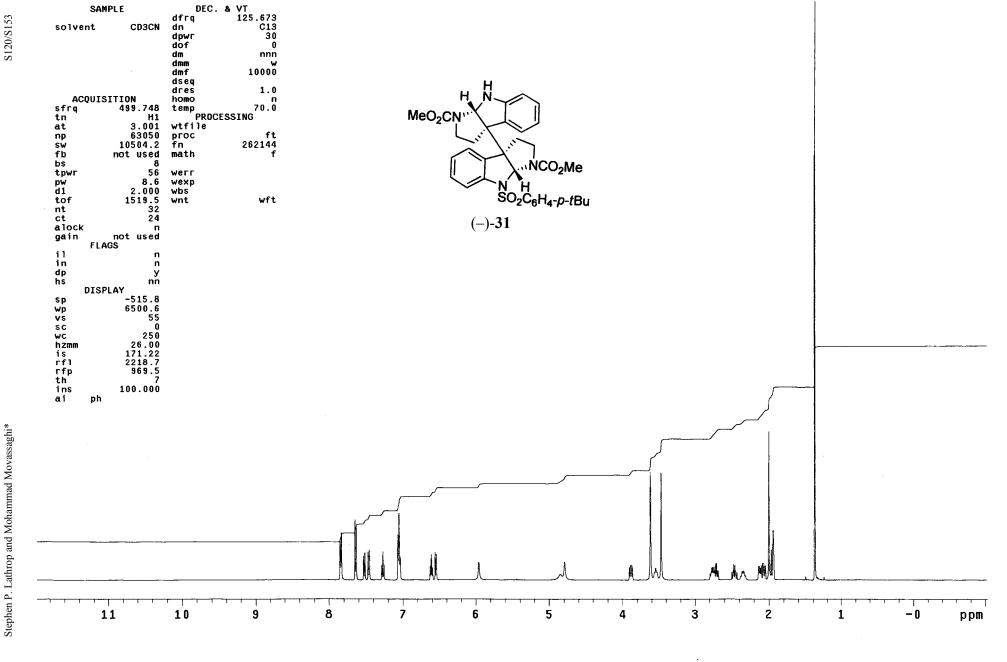

	SAMPLE	DEC.	
		dfrq	125.672
solver	nt Benzene	dn	C13
		dpwr	30
		dof	0
		dm	nnn
		dmm dm f	10000
		dseq	10000
		usey dres	1.0
ΔCC	UISITION	homo	1.0 n
sfrq	499.746	temp	70.0
tn	H1	PROCES	
at	3.001	wtfile	
np	63050	ргос	ft
sw	10504.2	fn	262144
fb	not used	math	f
bs	4		•
tpwr	56	werr	
DW	8.6	wexp	
d1	2.000	wbs	
tof	1519.5	wnt	wft
nt	16		
ct	16		
a lock	n		
gain	not used		
	FLAGS		
11	n		
in	n		
dp	У		
hs	nn no na		
_	01SPLAY -512.5		
sp	6512.6		
Wp Vs	25		
S C	23		
WC	250		
h Zmm	26.05		
is	156.68		
rf1	4793.9		
rfp	3578.2		
th	7		
ins	100.000		
ai	ph		

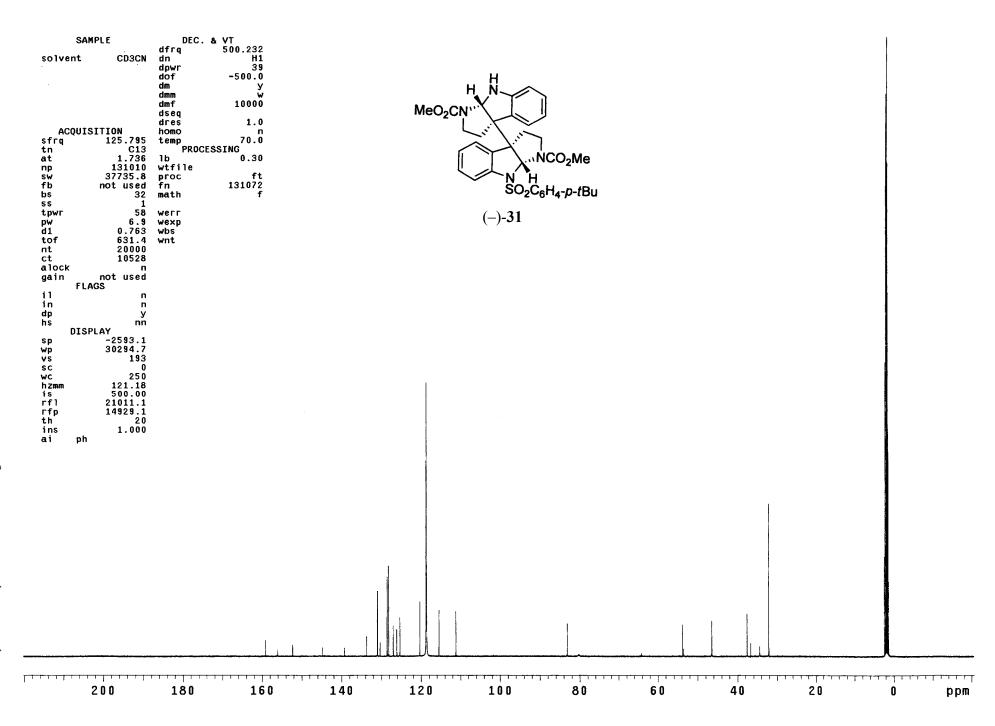


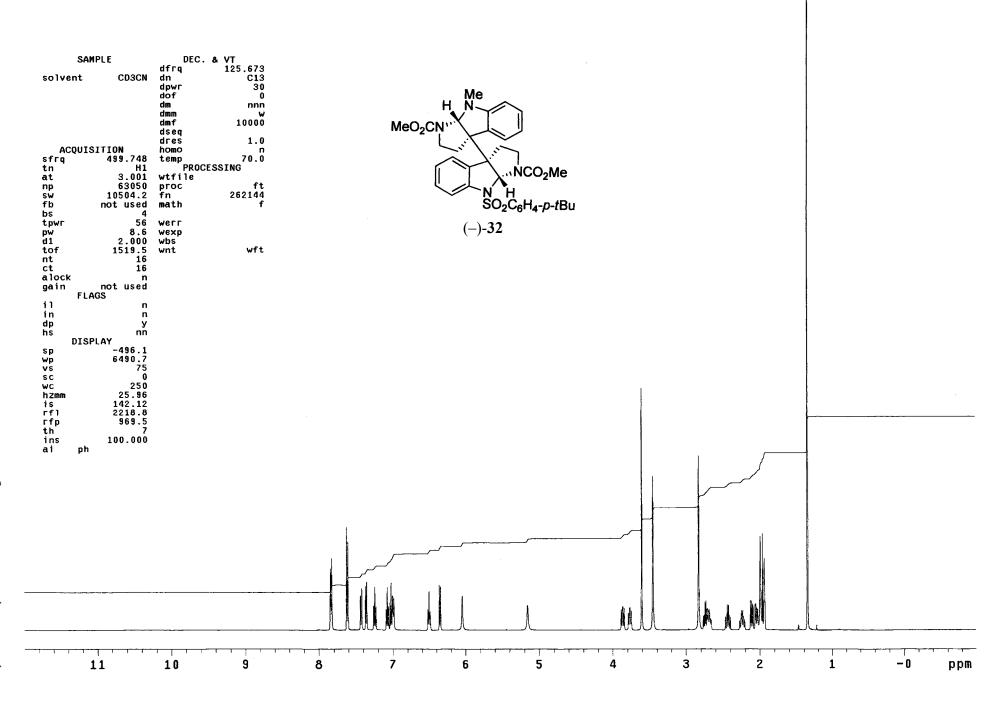




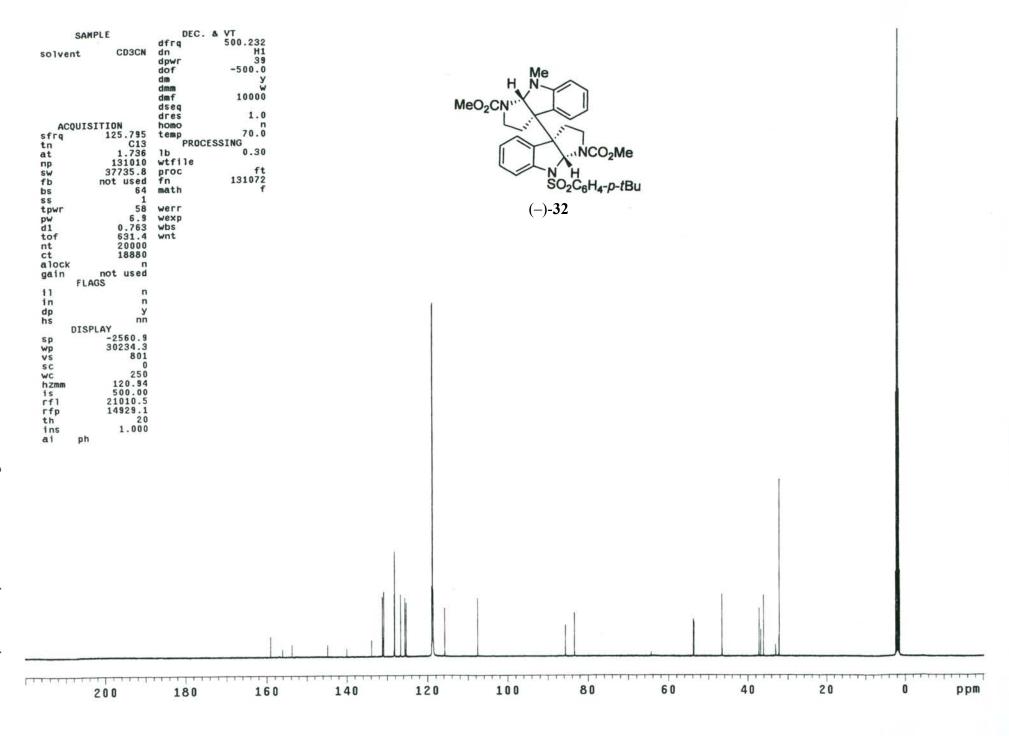


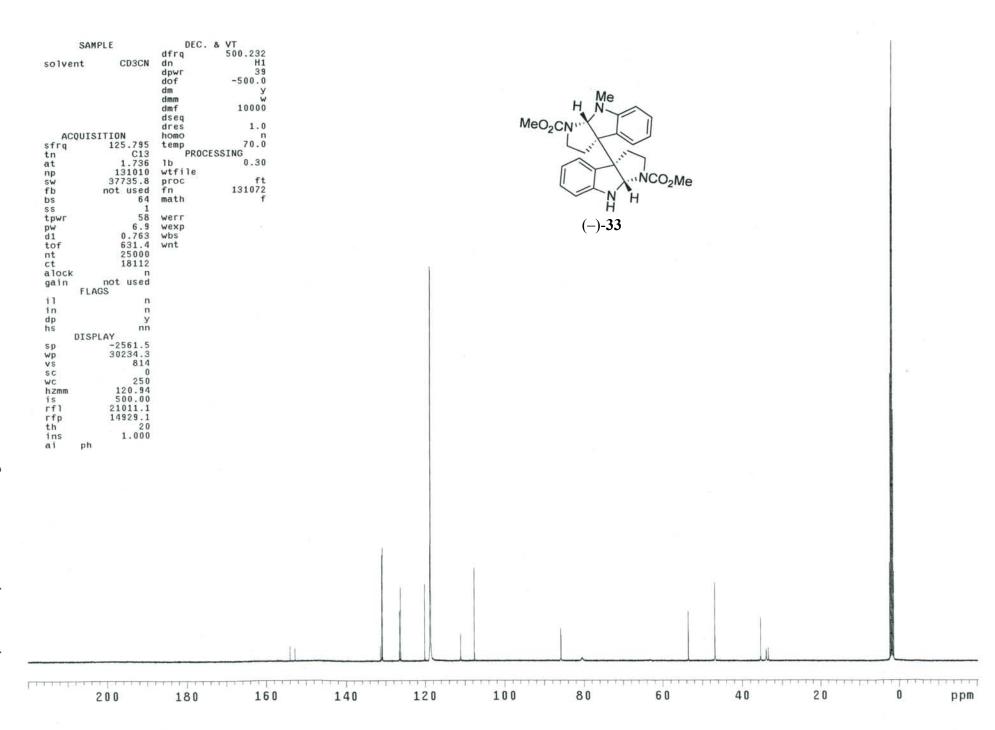


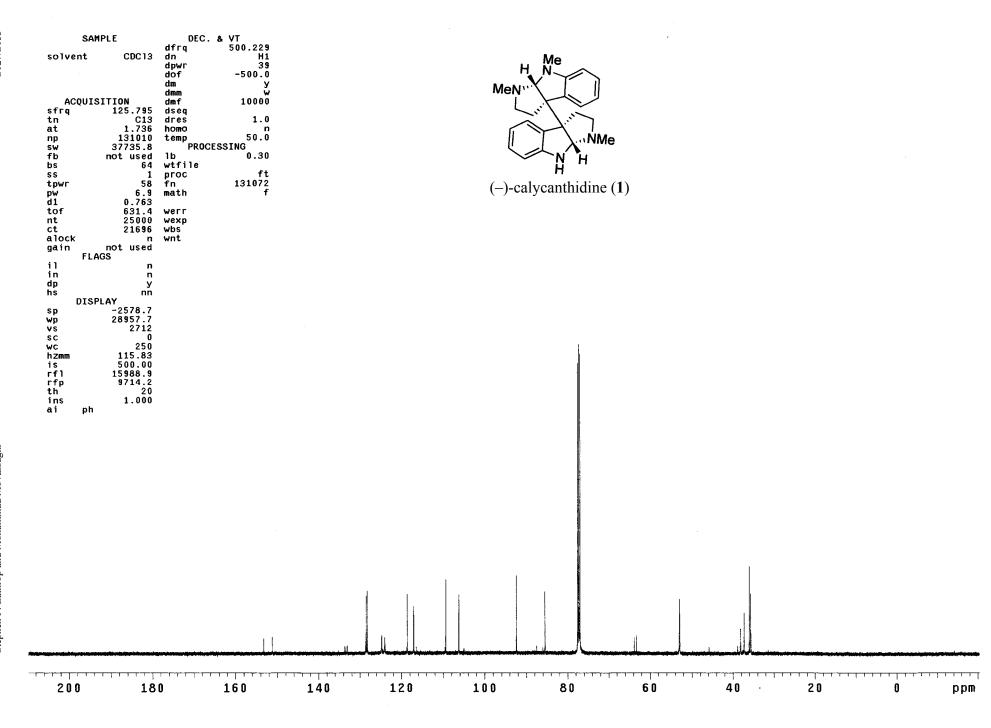




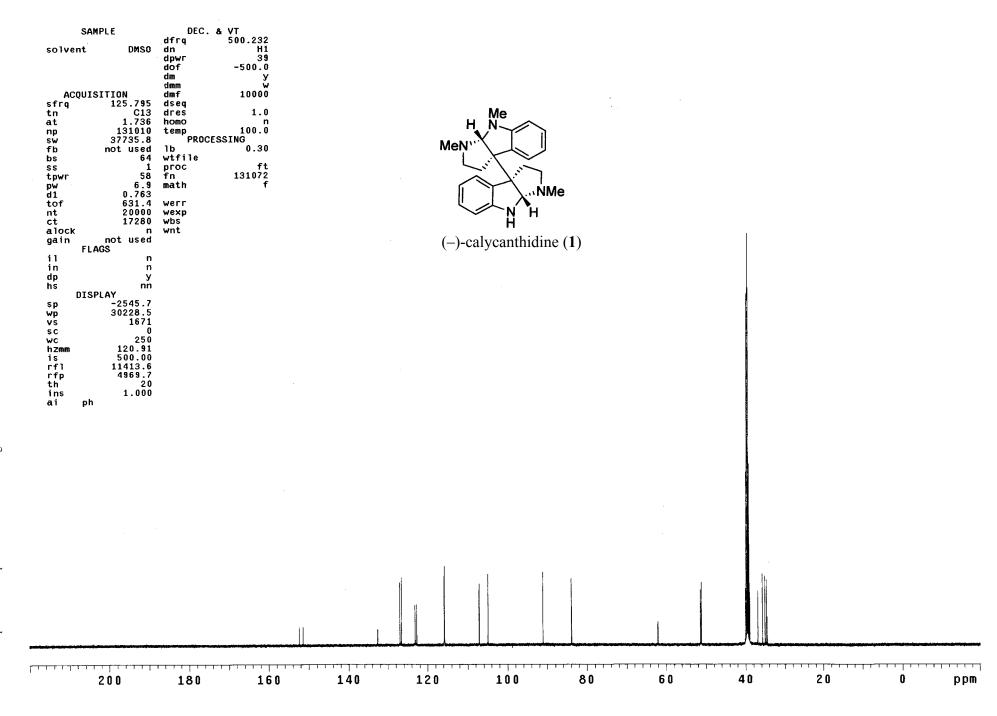


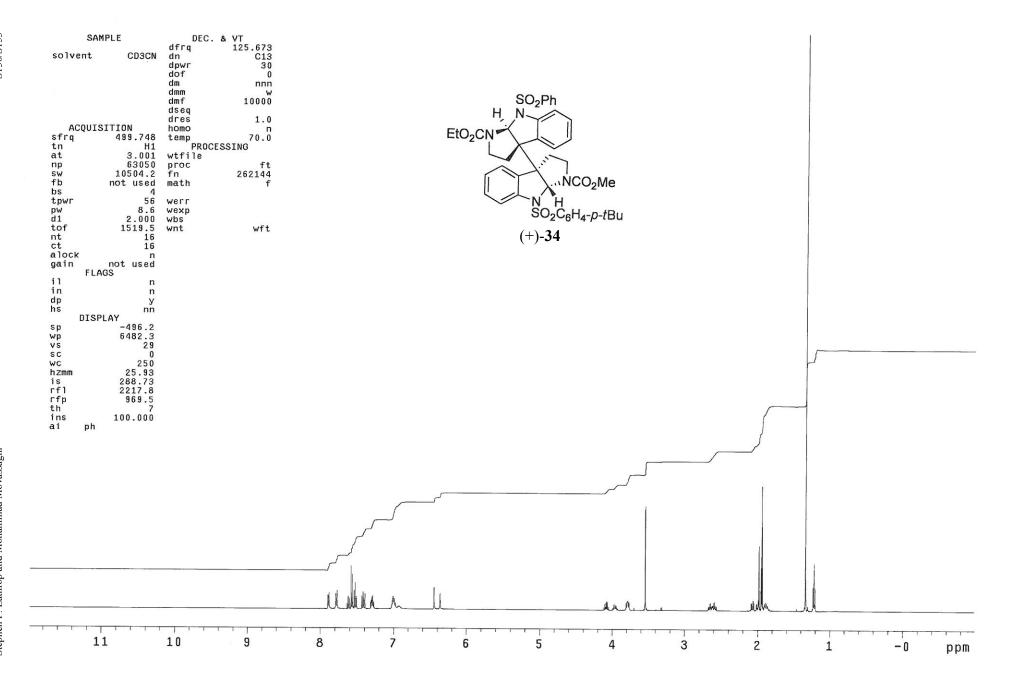






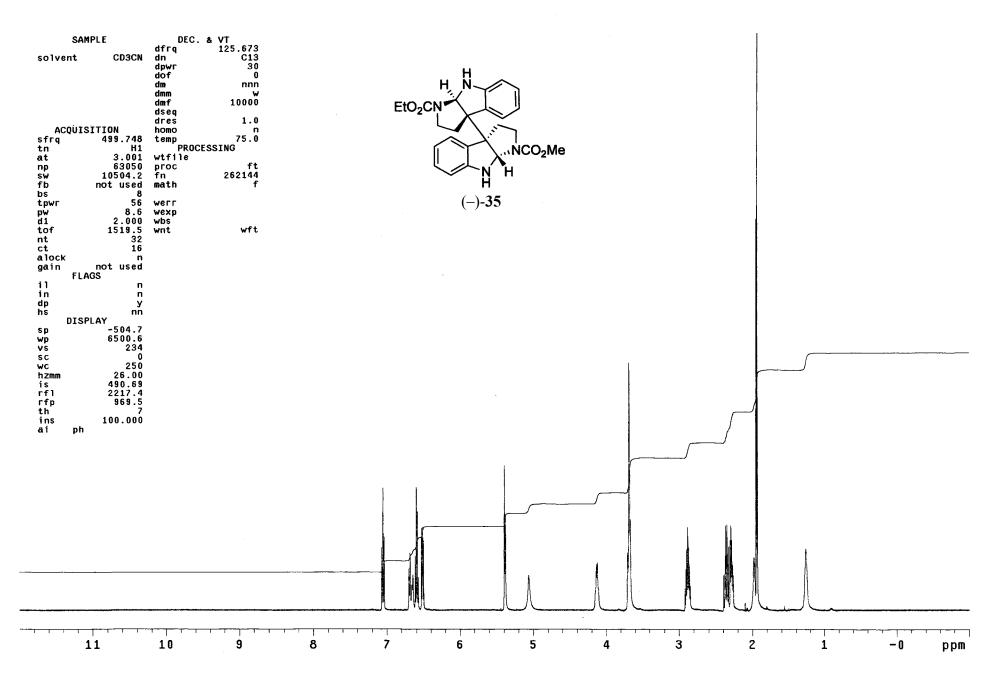
pw 8.6 d1 2.000 tof 1519.5 nt 16 ct 16	dpwr 30 dof 0 0 dm nnn dmm w dmf 10000 dseq dres 1.0 homo n temp 70.0 PROCESSING wtfile proc ft fn 262144 math f werr wexp wbs wnt wft		MeO ₂ CN	NCO₂Me			
alock not used FLAGS il not used fLAGS il n not used fLAGS il n n not used flags			(-)-33				
11	10 9	8 7	6 5	4	3 2	1	-0 ppm

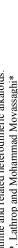



thine and related heterodimeric alkaloids. Lathrop and Mohammad Movassaghi*		
thine and related for the Lathrop and Mo	neterodimeric alkaloids.	hammad Movassaghi*
thine and . Lathrop	related I	and Mo
	thine and	. Lathrop

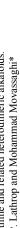
11 10 9 8 7 6 5 4 3 2 1 -0 ppm	ACQUISITION sfrq 499.7 tn at 3.0 np 630 sw 10504 fb not us bs tpwr pw 8 d1 2.0 tof 1519 nt ct alock gain not us FLAGS in dp hs DISPLAY sp 6499	dn dpwr dof dm dmm dmf dseq dres H1 homo D1 temp D50 PROCE 4 fn math 3.6 werr Wexp 16 wbs 16 wnt n n 1.5 wexp 16 whs 16 m n 1 1.7 45 0 0 0 0 0 0 23 9 1 7	& VT				NMe H dine (1)					
	11	10	9	8	6	5	4	3	2	1	-0	ppm

tpwr 56 pw 8.6 d1 2.000 tof 1519.5 nt 16	dn dpwr dof dm dmm	& VT 125.673 C13 30 0 nnn w 10000 1.0 n 100.0 ESSING ft 262144 f			(-)-c		Me line (1)					
sc	10	9	8	7	6	5	4	3	2	1	-0	ррп

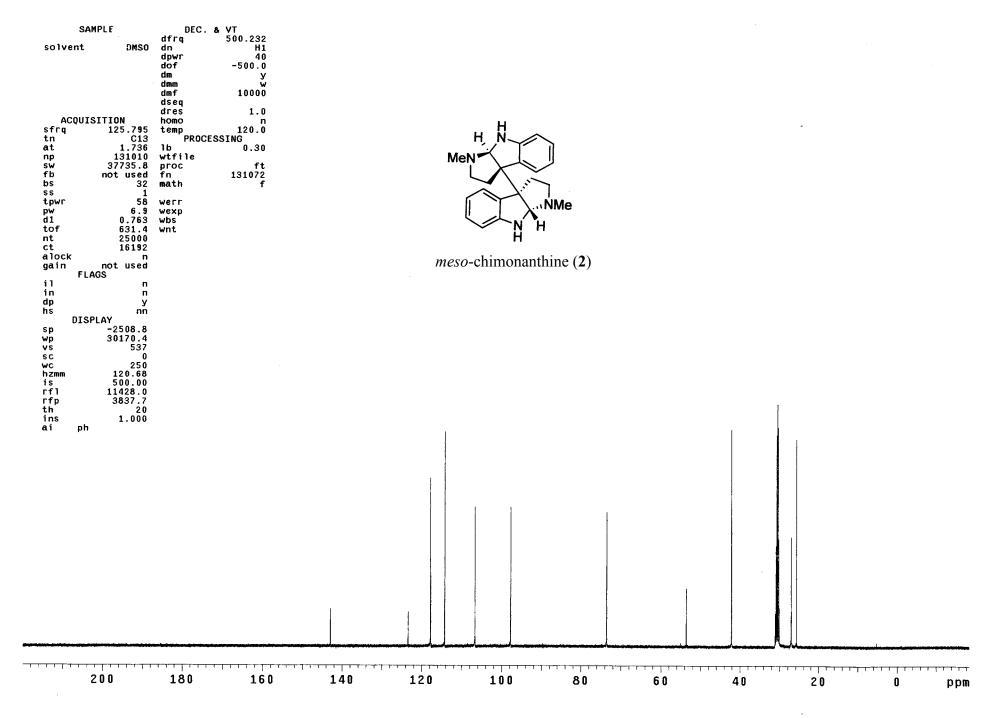


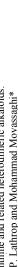


SAMPLE DEC. & dfrq dn dpwr dof dm ddmm dmm dmf dseq dres homo temp ACQUISITION Sfrq 125.795 tn C13 at 1.736 np 131010 sw 37735.8 fb not used bs 32 ss 1 tpwr 59 pw 6.9 d1 0.763 werr wexp d1 0.763 tof 631.4 nt 25000 ct 20992 alock n gain not used FLAGS il n	500.232 H1 38 -500.0 W 10700 1.0			EtO ₂	HN	NCO ₂ Me N H SO ₂ C ₆ H ₄ -p-tBu)-34			
in n dp y hs nn DISPLAY sp -2522.3 wp 30188.2 vs 2423 sc 0 wc 250 hzmm 120.75 is 500.00 rfl 21011.6 rfp 14929.1 th 20 ins 1.000 ai ph									
200 180	160	140	120	100	All Market Services	60	40	20	ppi

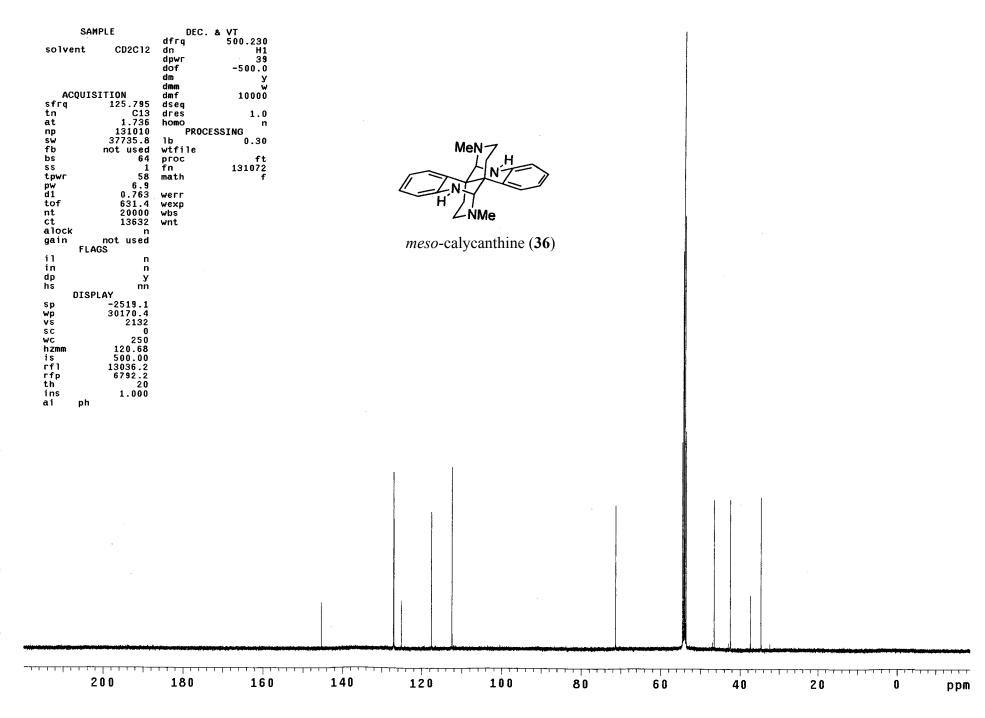


ACQUISITION


tpwr 56 pw 8.6 d1 2.000 tof 1519.5 nt 16	dpwr 30 dof 0 dm 0 mm nnn dmm w dmf 10000 dseq dres 1.0 homo n temp 55.0 PROCESSING wtfile proc ft fn 262144 math f werr wexp wbs		MeN MeN Meso-chin	N H H nonanthine (2)				
rfp 1654.1 th 7 ins 100.000 ai ph								
11	10 9	8 7	6	5 4	3	2	1 -0	ppm

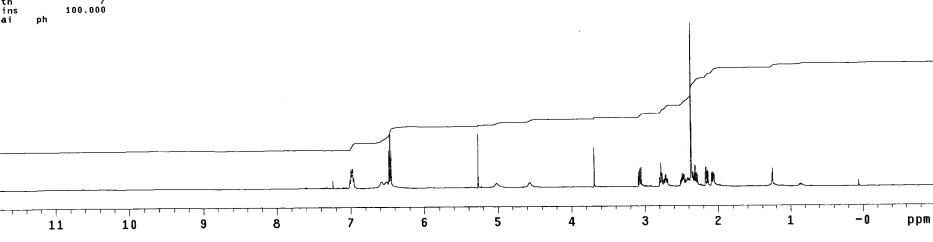


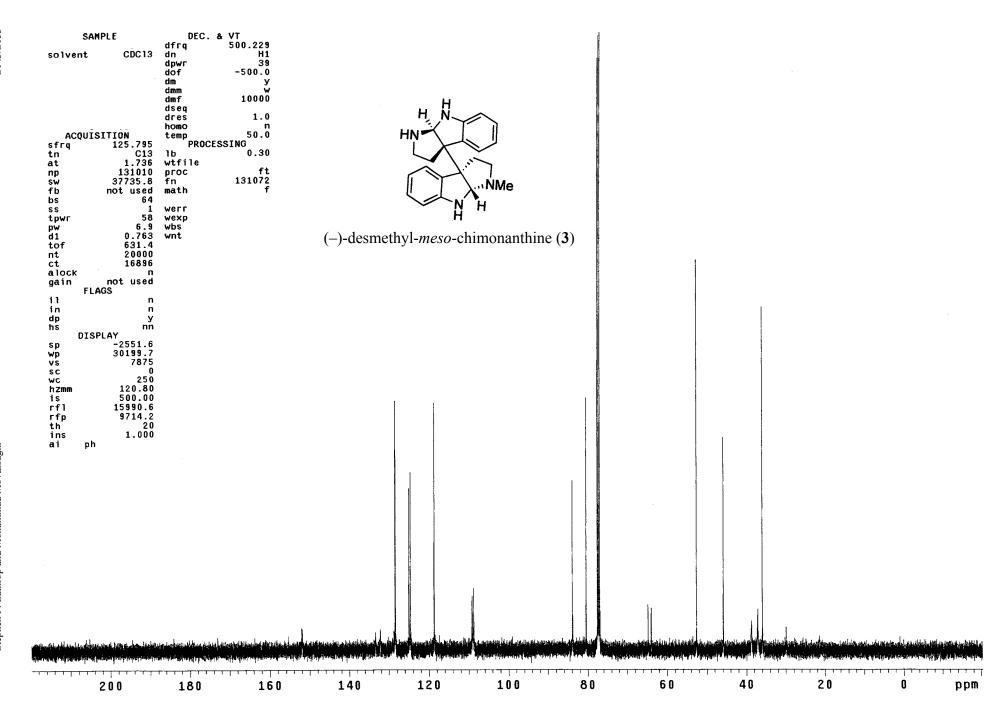
SAMPLE SOLVENT CD30D ACQUISITION Sfrq 125.795 tn C13 at 1.736 np 131010 Sw 37735.8 fb not used bs 64 ss 1 tpwr 58 pw 6.9 d1 0.763 tof 631.4 nt 18000 ct 16832 alock n gain not used FLAGS il n in n dp y hs nn	dpwr dof dm dmm dmf dseq dres homo temp PROCE b wtfile proc fn math werr wexp wbs	500.231 H1 39 -500.0 Y 10000		Mel meso] IMe nine (2)					
DISPLAY sp											
200	180	160	140	120	100	80	6 0	40	20	0	ppm


SAMPLE DMS solvent DMS ACQUISITION	dpwr 39 dof 0 dm nnn dmm c						
ss tpwr 6 pw 9. d1 1.80 tof 1498.	1 fn 131072 0 math f 0 werr 2 wexp		N	NMe			
nt 3. ct 3: alock gain not use FLAGS	2 wbs 2 wnt		H meso-chimonar				
il in in dp y	n /						
sp -498.0 wp 6501.0 vs 65	0 5 1						
sc (5 (5 (6 (6 (6 (6 (6 (6 (6 (6 (6 (6 (6 (6 (6	1						
rfp 1250.6 th ins 1.000 ai ph) '						
-							
11	10 9	8 7	6	5 4	3	2 1	-0 ppm

SAMPLE solvent CD2C12	dpwr 30 dof 0 dm nnn dmm w						
ACQUISITION sfrq 499.747 tn H1 at 3.001 np 63050 sw 10504.2 fb not used bs 44 tpwr 56 pw 8.6 d1 2.000 tof 1519.5 nt 16 ct 8 alock n gain not used FLAGS il n dp y hs not	dseq dres 1.0 homo n PROCESSING wtfile proc ft fn 262144 math f werr wexp wbs wnt wft		MeN7, H N N N N N N N N N N N N N N N N N N N	(36)			
DISPLAY Sp							
11	10 9	8 7	6 5	4	3 2	1 -0	ppm

SAMPLE solvent CD3CN	dpwr dof dm dmm dmf	5.673 C13 30 0 nnn W	HN H						
ACQUISITION sfrq 499.748 tn H1 at 3.001 np 63050 sw 10504.2 fb not used bs 8 tpwr 56 pw 8.6	dres homo temp PROCESSIN wtfile proc fn 2 math	1.0 n 75.0 G ft 62144 f	(-)-37	l NCO₂Me					
pw 8.6 d1 2.000 tof 1519.5 nt 32 ct 24 alock n gain not used FLAGS il n in n dp y hs nn	wexp wbs wnt	wft							
hs nn DISPLAY sp -497.2 wp 6487.5 vs 172 sc 0 wc 250 hzmm 25.95 is 208.11 rf1 2217.7 rfp 969.5									
th 7 ins 100.000 a1 ph									
11	10	9 8	7 6	5	4	3 2	1	-0	ppm

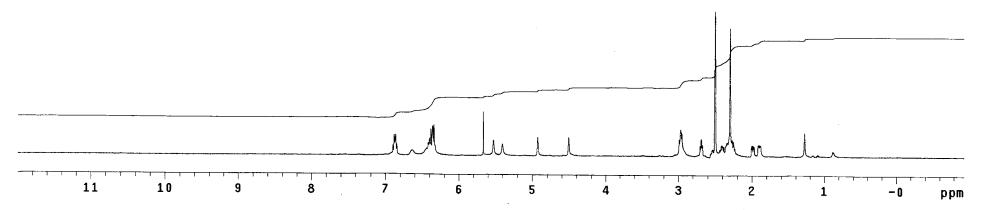



SAMPLE solvent CD3CM	dpwr dof -5 dm dmm	H1 38 00.0 y w		н Н	\sim		
ACQUISITION sfrq 125.795 tn C13 at 1.736 np 131010 sw 37735.8 fb not used bs 32 ss 1 tpwr 58 pw 6.9 d1 0.763 tof 631.4 nt 30000 ct 24608 alock rgain not used spain not used il rin r flags in rdp y hs DISPLAY sp -2590.2 wp 30223.3 vs 748 sc 0 wc 256 hzmm 120.88 is 500.00 rf1 21008.2 rfp 14929.1 th 20 ins 1.000 ai ph	dseq dres homo temp PROCESSING b wffile fn 13 math werr wexp white wexp white wexp white math discovery	0700 1.0 75.0 0.30 ft 1072 f		HN (-)-37	NCO₂Me		

time and refused moved of minerial and	nd Mohammad Movassaghi*
The carrie	. Lathrop and

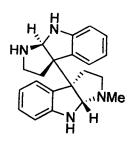
	. & VT		PLE	SAM
	125.672 C13	dfrq dn	CDC13	solvent
	30	dpwr		
	0	dof		
	nnn	dm		
	w	dmm		
H	10000	dmf		
3		dseq		
HN T	1.0	dres		
	n	homo		
	50.0	temp		ACQUIS
	CESSING		499.746	sfrq
		wtfile	H1	tn
li l	ft	proc	3.001	at
Į!	262144	fn	63050	np
\sim	f	math	10504.2	sw
-			not used	fb
		werr	_4	bs
/ \ 1		wexp	56	tpwr
(–)-desmethyl	wft	wbs	8.6	₽₩
	WIL	wnt	2.000	d1
			1519.5	tof
			16 12	nt
			12 n	ct
			not used	alock
				gain FLA
			n	i 1
			n	in
			У	dp
			nn NAV	hs DISP
			-499.8	sp DISF
			6485.7	₩p
			29	vs vs
			ō	s c
			250	wc
			25.94	hzmm
			89.53	is
			4865.4	rf1
			3618.1	rfp
				th
			100.000	ins
				ai ph
			100.000	ph

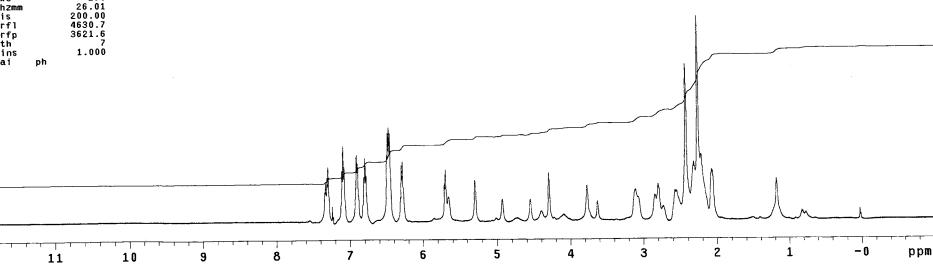
neso-chimonanthine (3)



including in airaidias.	Iohammad Movassaghi*
מוכם	Σ
27.	hrop and
titile and related	. Lathrog

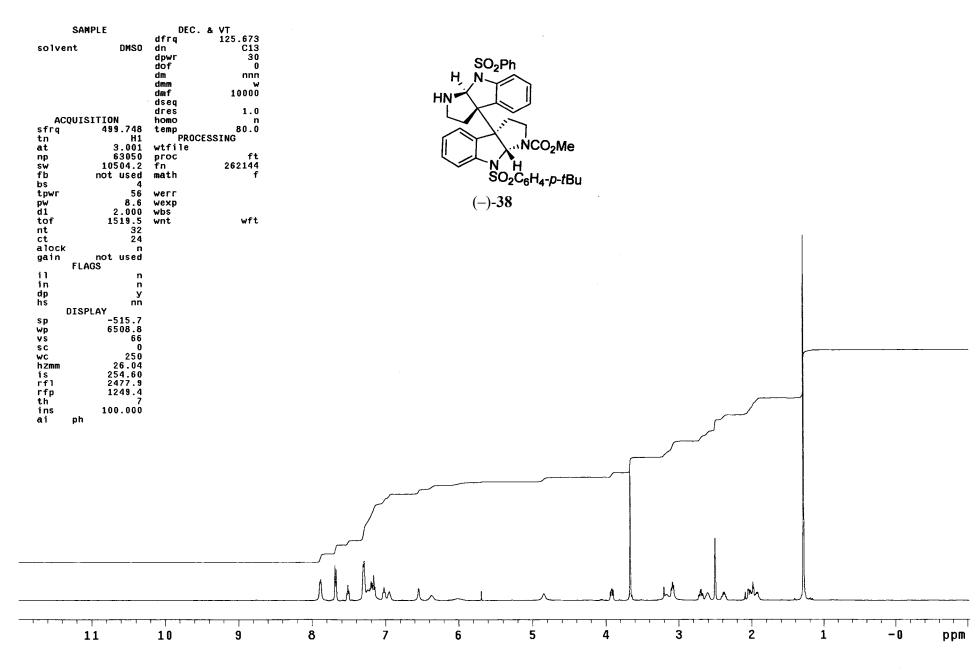
	SAMPLE		. a VT
		dfrq	125.673
solve	ent DMSO	dn	C13
		dpwr	30
		dof	0
		dm	nnn
		dmm	w
		dmf	10000
		dseq	
		dres	1.0
		homo	n
AC	QUISITION	temp	100.0
sfrq	499.748	PRO	CESSING
tn	H1	wtfile	
at	3.001	proc	ft
np	63050	fn	262144
sw	10504.2	math	f
fb	not used		
bs	8	werr	
tpwr	56	wexp	
pw	8.6	wbs	
d1	2.000	wnt	wft
tof	1519.5		
nt	32		
ct	24		
alock	n		
gain	not used		
3	FLAGS		
i I	n		
in	'n		
dp	ÿ		
hs	nň		
	DISPLAY		
sp	-497.9		
wp	6493.7		
VS	60		
S C	0		
wc	250		
hzmm	25.97		
is	107.81		
rfl	2478.7		
rfp	1249.4		
th	7		
ins	100.000		
ai	ph		


(-)-desmethyl-meso-chimonanthine (3)


SAMPLE solvent DMS0	dpwr 39 dof -500.0 dm y dmm w dmm 10000	H, H	
ACQUISITION sfrq 125.795 tn C13 at 1.736 np 131010 sw 37735.8 fb not used bs 64 ss 1	lb 0.30 wtfile proc ft fn 131072 math f	HN NMe	
tpwr 58 pw 6.9 d1 0.763 tof 631.4 nt 25000 ct 17600 alock n gain not used FLAGS il n	wexp wbs wnt	(–)-desmethyl- <i>meso</i> -chimonanthine (3)	
dp y hs nn DISPLAY sp -2573.9 wp 30257.3 vs 10088 sc 0 wc 2500 hzmm 121.03 is 500.00 rf1 11412.4 rfp 4969.7			
th 20 ins 1.000 ai ph			

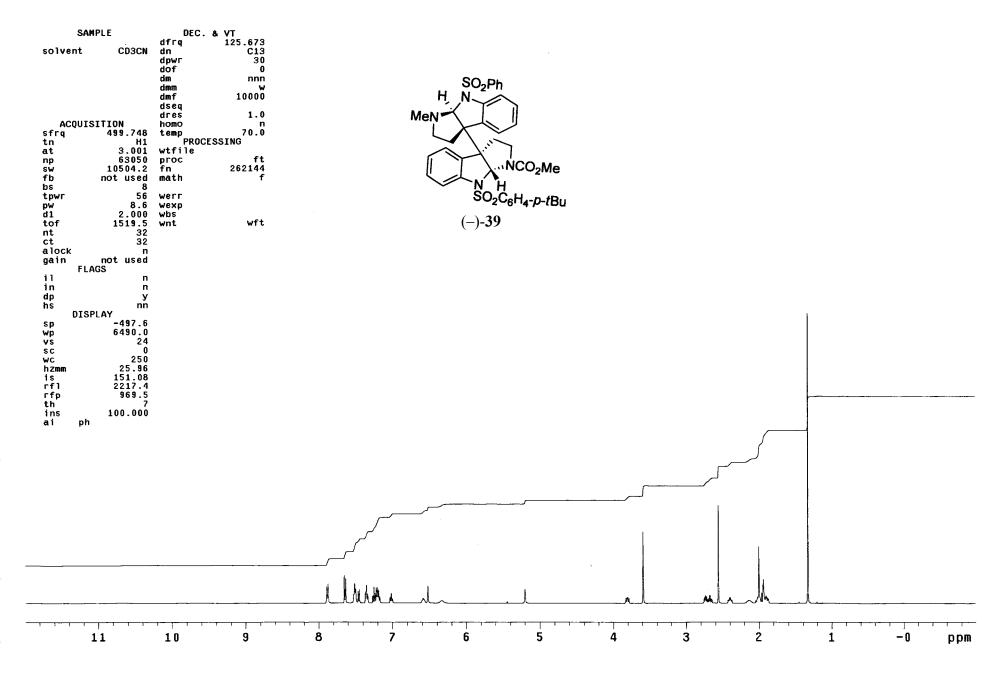
ppm

	SAME	PLE	DEC.	& VT
_			dfrq	125.794 C13
solve	nt	CDC13	dn dpwr	39
			dof	ő
			dm	nnn
			dmm	1 0 0 0 0
			dmf dsea	10000
			dres	1.0
			homo	n
AC	QUIS	TION	temp	-40.0
sfrq		500.231		ESSING
tn		H1	wtfile	ft
at		3.200 64000	proc fn	131072
np sw		10000.0	math	f
fb		not used		
bs		4	werr	
55		1	wexp	
tpwr		60 9.0	wbs wnt	
pW d1		1.800	WIIL	
tof		1498.2		
nt		16		
ct		16		
alock		n		
gain	FLA	not used		
i 1	FLA	n n		
in		n		
dp		У		
hs		nn		
.	DISP	-511.7		
S p Wp		6503.3		
vs		307		
s c		0		
wc		250 26.01		
hzmm is		200.00		
rfl		4630.7		
rfp		3621.6		
th		7		
ins		1.000		
ai	ph			


(-)-desmethyl-*meso*-chimonanthine (3)

SAMPLE FOR COULS OF THE STATE			and all the second seco	· · · · · · · · · · · · · · · · · · ·						onty find a second or other constitutions of the	
solvent CDC13 dn H1 dpwr 39 dof -500.0 dm y dmm w dmm f 10000	th C13 at 1.736 np 131010 sw 37735.8 fb not used bs 32 ss 1 tpwr 58 pw 6.9 d1 0.763 tof 631.4 nt 15000 ct 4256 alock nt 15000 ct 4256 alock flAGS il not used FLAGS il n n not used FLAGS il n n n n n n n n n n n n n n n n n n n	dres homo temp PROCES lb wtfile proc fn math werr wexp wbs wnt	-40.0 SSING 0.30	(–)-desi	HN	ų^н ,	ne (3)				
	••	dn dpwr dof dm dmm	H1 39 -500.0 y w		н						

ppm



ACQUISITION sfrq 125.795 tn C13 at 1.736 np 131010 sw 37735.8 fb not used bs 64 ss 1 tpwr 58 pw 6.9 d1 0.763 tof 631.4 nt 25000 ct 16448 alock n gain not used slock in not used FLAGS il n not used FLAGS il 1399.8 sp -2554.9 wp 30221.6 vs 2340 sc 2500 bzmm 120.89 is 500.00 rf1 11399.8 rfp 4969.7 th 20 ins 1.000 ai ph	dfrq dn dpwr dof dm dmm dmf dseq dres homo temp PROCI b wtfile proc fn math werr wexp wbs wnt	& VT 500.232 H1 39 -500.0 V 10000 1.0 80.0 ESSING 0.30 ft 131072 f			H, K		NCO₂Me d ₆ H ₄ - <i>p</i> - <i>t</i> Bu							
200	180	160		140	120	. , , , , , , , , , , , , , , , , , , ,	L 0 0	80	60	4	10 10	20	0	bbw

200

th

ins

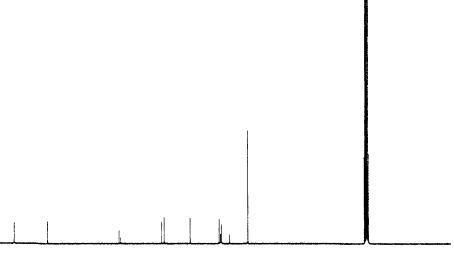
ph

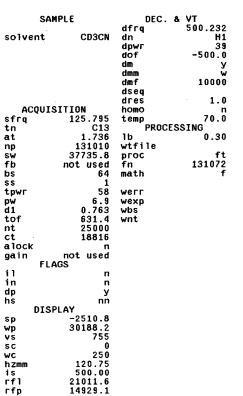
SO₂Ph

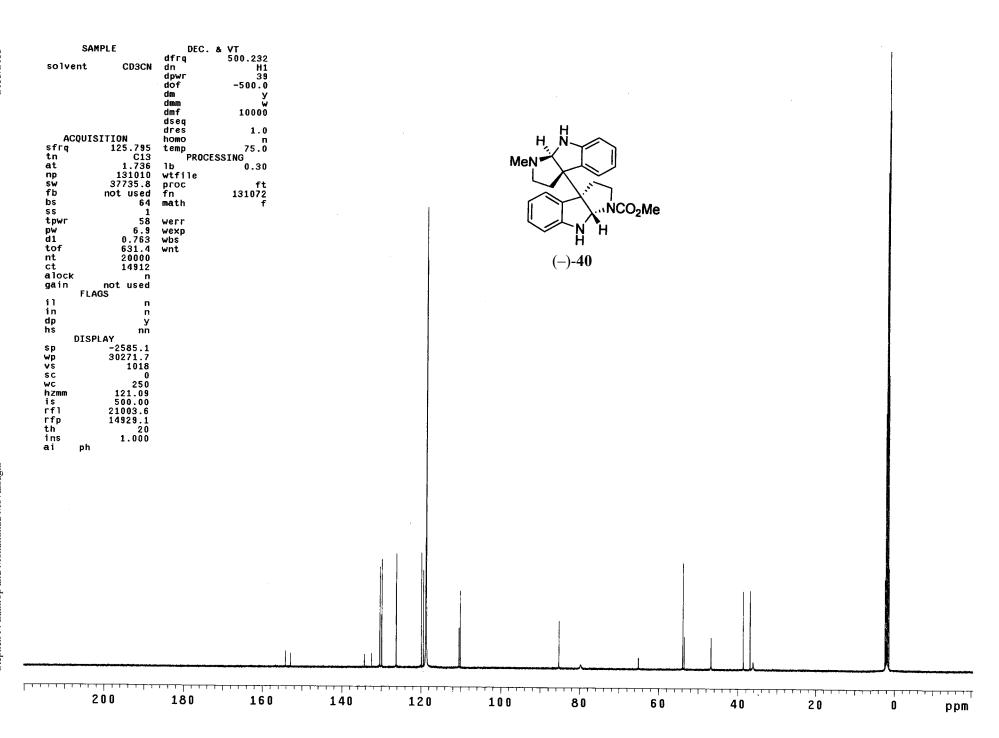
...NCO₂Me

H

MeN'







20 1.000

SAMPLE solvent CD3CN	DEC. & VT dfrq 125.673 dn C13 dpwr 30 dof 0 dm nnn dmm w dmf 10000 dseq						
ACQUISITION sfrq 499.748 tn H1 at 3.001 np 63050 sw 10504.2 fb not used bs 4 tpwr 56 nw 86	Werr	Men	H NCO₂Me				
pw 8.6 d1 2.000 tof 1519.5 nt 16 ct 16 alock n gain not used FLAGS il n in n dp y hs nn	wbs wnt wft	· (-	N H H -)-40				
SPLAY SP -508.0 WP 6508.8 VS 23 SC 0 WC 250 Hzmm 26.04 is 72.74 rf1 2218.5 rfp 969.5					ı		
th 7 ins 100.000 ai ph				<i>م</i> سم			
11	10 9	8 7	6 5	4 3	_MMN	1 -0	ppm

