Supplementary information For

Tunable mechano-responsive organogels by ring-opening copolymerizations of *N*-carboxyanhydrides

Jingwei Fan, Jiong Zou,^{*} Xun He, Fuwu Zhang, Shiyi Zhang, Jeffery E. Raymond and Karen L. Wooley^{*}

Departments of Chemistry and Chemical Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. BOX 30012, 3255 TAMU, College Station, TX 77842 (USA).

* Corresponding author: Email: jiong.zou@chem.tamu.edu, Wooley@chem.tamu.edu Tel: (979) 845-4077

Fig. S1 Images of organogels from polymers 6, 7, 8, 9, 10, 11 and 12 in DMF (2.5 wt %).

Fig. S2 (a) Second derivative and (b) ATR-FTIR spectra (black), fitting curve (red), baseline (blue) and fitting peaks (green) for polymer 7 in the solid state.

Fig. S3 WAXS patterns for polymers 7, 10, 11 and 12 in the solid state.

Fig. S4 DSC traces of polymers (a) **11** and (b) **12** in the solid state. The samples were heated from -100 °C to 200 °C and cooled back to -100 °C, each with a rate of 10 °C /min. The second heating and cooling traces are shown here.

Fig. S5 Moduli of organogels from polymer **11** in DMF (5 wt %) before and after sonication as a function of frequency conducted by DMA. E' and E'' indicate storage and loss modulus, respectively.

Fig. S6 Tan (δ) of organogels from polymers 7, 10, 11 and 12 in DMF (5 wt %) as a function of frequency, conducted by DMA.