Electronic Supplementary Information for

Stereoselective Synthesis of Spirotryprostatin A

Katsushi Kitahara, Jun Shimokawa and Tohru Fukuyama*
Graduate School of Pharmaceutical Sciences, University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
Graduate School of Pharmaceutical Sciences, Nagoya University
Furo-cho, Chikusa, Nagoya, Aichi 464-8601, Japan.
fukuyama@ps.nagoya-u.ac.jp

General. All non-aqueous reactions were carried out under an inert atmosphere of argon in oven-dried glassware unless otherwise noted. Dehydrated diethyl ether, tetrahydrofuran, methylene chloride and toluene were obtained by passing commercially available pre-dried, oxygen-free formulations through activated alumina columns. Dehydrated methanol, ethanol and acetonitrile were also purchased from Wako Pure Chemical Industries, Ltd. and stored over activated MS3A. All other reagents were commercially available and used without further purification. Analytical thin layer chromatography (TLC) was performed on Merck precoated analytical plates, 0.25 mm thick, silica gel $60 \mathrm{~F}_{254}$. Preparative flash chromatography was performed using Silica Gel 60 (spherical, 40-100 $\mu \mathrm{m}$) purchased from Kanto Chemical Co., Inc. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR were recorded on a JEOL ECX-400 spectrometer. Preparative thin layer chromatography (PTLC) separations were performed on Merck analytical plates (0.25 or 0.50 mm thick) precoated with silica gel $60 \mathrm{~F}_{254}$. All ${ }^{1} \mathrm{H}$ NMR spectra are reported in units, parts per million (ppm) downfield from tetramethylsilane as the internal standard and coupling constants are indicated in $\operatorname{Hertz}(\mathrm{Hz})$. The following abbreviations are used for spin multiplicity: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad. All ${ }^{13} \mathrm{C}$ NMR spectra are reported in ppm relative to the central line of the triplet for CDCl_{3} at 77.0 ppm or central line of the septet for DMSO- d_{6} at 39.52 ppm . Infrared spectra (IR) were recorded on a FT/IR-4100 Fourier Transform Infrared Spectrophotometer, and are reported in wavenumbers $\left(\mathrm{cm}^{-1}\right)$. High resolution mass spectra (HRMS) were obtained on a JEOL JMS-T100LP AccuTOF LC-plus in positive electrospray ionization (ESI) method or direct analysis real time (DART) method using PEG as the internal standard. Optical rotations were measured on a JASCO P-2200 Digital Polarimeter at room temperature, using the sodium D line. Melting points, determined on a Yanaco Micro Melting Point Apparatus, are uncorrected.
(S)-benzyl 2-((S)-2-(methoxycarbonyl)pyrrolidine-1-carbonyl)-4-oxopyrrolidine-1-carboxylate (11)

a) $\mathrm{EDCl} \cdot \mathrm{HCl}, \mathrm{Et}_{3} \mathrm{~N}$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 90 \%$
b) TEMPO (10 mol \%) NaOCl aq., KBr sat. NaHCO_{3} aq

9
$\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 90 \%$
To a stirred solution of N-Cbz-trans-4-hydroxy-L-proline (10, $60.7 \mathrm{~g}, 229 \mathrm{mmol}$) and L-proline methyl ester p-toluenesulfonate salt $(\mathbf{9}, 47.7 \mathrm{~g}, 158 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(760 \mathrm{~mL})$ were added $\mathrm{EDCI} \cdot \mathrm{HCl}(65.8 \mathrm{~g}, 343 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(38.3 \mathrm{~mL}, 275 \mathrm{mmol})$ at room temperature. The resulting mixture was stirred at room temperature for 1 h , then quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aq. (760 mL) and partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}(240 \mathrm{~mL})$ and water $(240 \mathrm{~mL})$. The organic phase was collected and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{~mL})$ twice. The combined organic extract was washed with brine (150 mL), dried over MgSO_{4}, filtered and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (n-hexane/EtOAc $=1 / 1$ to $\mathrm{MeOH} / \mathrm{EtOAc}=$ $1 / 10)$ to afford dipeptide $\mathbf{S 1}(53.4 \mathrm{~g}, 142 \mathrm{mmol}, 90 \%)$ as a yellow oil.

$$
\mathrm{R} f=0.31(\mathrm{MeOH} / \mathrm{EtOAc}=1 / 10, \mathrm{PMA}) ;[\alpha]_{\mathrm{D}}^{25}-68\left(c=0.88, \mathrm{CHCl}_{3}\right) ; \mathrm{IR} \text { (neat) 3421, }
$$ 2952, 2361, 1744, 1700, 1647, 1558, 1541, 1421, 1359, 1199, 1174, $1123 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, 400 MHz): (1.4:1 mixture of two rotamers) (major) $\delta 7.34-7.26(\mathrm{~m}, 5 \mathrm{H}), 5.15(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.07(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{dd}, J=7.8,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.62-4.58(\mathrm{~m}, 1 \mathrm{H}), 3.89(\mathrm{dd}, J=7.3,6.9 \mathrm{~Hz}$, 1 H), 3.78-3.31 (m, 4H), 3.72 (s, 3H), 2.29-2.14 (m, 2H), 2.09-1.76 (m, 4H) (minor) $\delta 7.34-7.26(\mathrm{~m}$, 5 H), 5.12 (d, $J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{dd}, J=7.8,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.62-4.58$ (m, 1H), 4.31 (dd, $J=7.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.78-3.31(\mathrm{~m}, 4 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 2.29-2.14$ (m, 2H), 2.09$1.76(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.25(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$: (major and minor) $\delta 172.7(\mathrm{C})$, 172.4 (C), 171.2 (C), 170.9 (C), 155.0 (C), 154.3 (C), 136.5 (C), 136.3 (C), 128.4 (CH), 128.4 (CH), $128.2(\mathrm{CH}), 128.1(\mathrm{CH}), 127.9(\mathrm{CH}), 127.7(\mathrm{CH}), 70.2(\mathrm{CH}), 69.6(\mathrm{CH}), 67.4\left(\mathrm{CH}_{2}\right), 67.0\left(\mathrm{CH}_{2}\right)$, $58.8\left(\mathrm{CH}_{2}\right), 58.6\left(\mathrm{CH}_{2}\right), 56.8\left(\mathrm{CH}_{2}\right), 56.2\left(\mathrm{CH}_{2}\right), 55.5(\mathrm{CH}), 54.8(\mathrm{CH}), 52.2\left(\mathrm{CH}_{3}\right), 52.2\left(\mathrm{CH}_{3}\right), 46.7$ $\left(\mathrm{CH}_{2}\right), 46.5\left(\mathrm{CH}_{2}\right), 38.5\left(\mathrm{CH}_{2}\right), 37.7\left(\mathrm{CH}_{2}\right), 28.8\left(\mathrm{CH}_{2}\right), 28.5\left(\mathrm{CH}_{2}\right), 24.9\left(\mathrm{CH}_{2}\right), 24.5\left(\mathrm{CH}_{2}\right)$; HRMS (ESI): calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{6} \mathrm{~N}_{2} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 399.1532$, found 399.1525.

To a stirred solution of $\mathbf{S 1}(25.6 \mathrm{~g}, 68.0 \mathrm{mmol})$, TEMPO ($1.00 \mathrm{~g}, 6.80 \mathrm{mmol}$) and KBr (809 mg , 6.80 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(170 \mathrm{~mL})$ and saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ aq. $(170 \mathrm{~mL})$ were added 3.5 M

NaOCl aq. ($58 \mathrm{~mL}, 204 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. The resulting mixture was stirred vigorously at $0{ }^{\circ} \mathrm{C}$ for 30 min, then quenched with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ aq. $(170 \mathrm{~mL})$ and partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}(350 \mathrm{~mL})$ and water $(170 \mathrm{~mL})$. The organic phase was collected and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ twice. The combined organic extract was washed with brine (70 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (n-hexane/EtOAc $=1 / 1$ to $0 / 1$) to afford $11(23.0 \mathrm{~g}, 61.4 \mathrm{mmol}, 90 \%)$ as yellow crystals.
$\mathrm{R} f=0.60$ (EtOAc, Ce-PMA); M.p. $103.8-104.6{ }^{\circ} \mathrm{C} ;[\alpha]^{25}{ }_{\mathrm{D}}-26\left(c=1.32, \mathrm{CHCl}_{3}\right)$; IR (neat) $2954,1764,1743,1710,1653,1446,1416,1359,1198,1162 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz})(\mathbf{2 . 1 : 1}$ mixture of two rotamers) (major) $\delta 7.35-7.26(\mathrm{~m}, 5 \mathrm{H}), 5.26(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H})$, $5.09(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{dd}, J=12.8,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{dd}, J=8.7,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.13-3.90$ $(\mathrm{m}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.71-3.63(\mathrm{~m}, 1 \mathrm{H}), 2.87-2.77(\mathrm{~m}, 1 \mathrm{H}), 2.64-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.20(\mathrm{~m}, 1 \mathrm{H})$, $2.10-1.97(\mathrm{~m}, 3 \mathrm{H})$ (minor) $\delta 7.35-7.26(\mathrm{~m}, 5 \mathrm{H}), 5.26(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H})$, 5.03 (dd, $J=12.8,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.38-4.37(\mathrm{~m}, 1 \mathrm{H}), 4.13-3.90(\mathrm{~m}, 1 \mathrm{H}), 3.71-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{~s}$, $3 \mathrm{H}), 3.46-3.42(\mathrm{~m}, 2 \mathrm{H}), 2.87-2.77(\mathrm{~m}, 1 \mathrm{H}), 2.64-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.10-1.97(\mathrm{~m}, 4 \mathrm{H})$; (DMSO- d_{6}, $\left.100{ }^{\circ} \mathrm{C}\right) \delta 7.38-7.32(\mathrm{~m}, 5 \mathrm{H}), 5.14(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~d}, J=9.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.34-4.26(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=18.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~d}, J=18.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 3.60-$ $3.49(\mathrm{~m}, 2 \mathrm{H}), 3.09(\mathrm{dd}, J=18.4,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~d}, J=18.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.17-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.96-$ $1.76(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ (major and minor) $\delta 207.5(\mathrm{C}), 207.0(\mathrm{C}), 171.6(\mathrm{C})$, 171.4 (C), 170.0 (C), 169.9 (C), 154.4 (C), 153.4 (C), 135.5 (C), 135.4 (C), $128.0(\mathrm{CH}), 127.9(\mathrm{CH})$, $127.7(\mathrm{CH}), 127.6(\mathrm{CH}), 127.2(\mathrm{CH}), 127.2(\mathrm{CH}), 67.1\left(\mathrm{CH}_{2}\right), 66.8\left(\mathrm{CH}_{2}\right), 58.2(\mathrm{CH}), 58.0(\mathrm{CH})$, $54.2(\mathrm{CH}), 54.0(\mathrm{CH}), 52.6\left(\mathrm{CH}_{2}\right), 52.2\left(\mathrm{CH}_{2}\right), 51.6\left(\mathrm{CH}_{3}\right), 51.6\left(\mathrm{CH}_{3}\right), 46.3\left(\mathrm{CH}_{2}\right), 46.0\left(\mathrm{CH}_{2}\right), 40.1$ $\left(\mathrm{CH}_{2}\right), 39.6\left(\mathrm{CH}_{2}\right), 28.3\left(\mathrm{CH}_{2}\right) .28 .1\left(\mathrm{CH}_{2}\right), 24.3\left(\mathrm{CH}_{2}\right), 24.0\left(\mathrm{CH}_{2}\right) ;\left(\mathrm{DMSO}-d_{6}, 100{ }^{\circ} \mathrm{C}\right) \delta 207.5(\mathrm{C})$, $171.3(\mathrm{C}), 169.7(\mathrm{C}), 153.6(\mathrm{C}), 136.0(\mathrm{C}), 127.8(\mathrm{CH}), 127.4(\mathrm{CH}), 127.1(\mathrm{CH}), 66.2\left(\mathrm{CH}_{2}\right), 58.0$ $(\mathrm{CH}), 54.3(\mathrm{CH}), 52.4\left(\mathrm{CH}_{2}\right), 51.2\left(\mathrm{CH}_{3}\right), 45.9\left(\mathrm{CH}_{2}\right), 39.9\left(\mathrm{CH}_{2}\right), 27.9\left(\mathrm{CH}_{2}\right) .23 .9\left(\mathrm{CH}_{2}\right)$; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{6} \mathrm{~N}_{2} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 397.1376$, found 397.1361.
(5aS,10aS)-hexahydrodipyrrolo[1,2-a:1',2'-d]pyrazine-2,5,10(3H)-trione (6)

a) $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}, \mathrm{HC}(\mathrm{OMe})_{3}$ $\mathrm{MeOH}, 40^{\circ} \mathrm{C}$
b) H_{2} (1 atm), $\mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}$, rt
c) $\mathrm{HCl}(4 \mathrm{M}$ in dioxane) acetone, rt, 87\% (3 steps)

To a stirred solution of $\mathbf{1 1}(12.5 \mathrm{~g}, 33.3 \mathrm{mmol})$ and $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(3.16 \mathrm{~g}, 16.6 \mathrm{mmol})$ in $\mathrm{MeOH}(150 \mathrm{~mL})$ were added $\mathrm{CH}(\mathrm{OMe})_{3}(7.3 \mathrm{~mL}, 67 \mathrm{mmol})$ at room temperature. The resulting mixture was stirred at $40{ }^{\circ} \mathrm{C}$ for 1 h before quenching with saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ aq. (150 mL) and partitioned between EtOAc (300 mL) and water $(100 \mathrm{~mL})$. The organic phase was collected and the aqueous phase was extracted with EtOAc (200 mL) twice. The combined organic extract was washed with water (200 mL) and brine (60 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo to afford the crude product which was used in the next reaction without further purification.

A mixture of the crude product and $10 \% \mathrm{Pd} / \mathrm{C}$ (M-type (wet, 50% water, Kawaken), 3.50 g , $1.66 \mathrm{mmol})$ was added $\mathrm{MeOH}(150 \mathrm{~mL})$ under Argon atmosphere. The flask was charged with hydrogen gas (1 atm) at room temperature and the resulting suspension was vigorously stirred for 30 min . The reaction mixture was filtered through a Celite pad and the filtrate was stirred at $40^{\circ} \mathrm{C}$ for 2 h. The reaction mixture was concentrated in vacuo to give a crude product, which was used for the next step without further purification.

To a stirred solution of the crude product in acetone (120 mL) were added 4 M HCl in 1,4-dioxane (15.0 mL) at $0{ }^{\circ} \mathrm{C}$ and the mixture was stirred at room temperature for 4 h . The white precipitates were collected in a Büchner funnel using suction filtration, washed with cold acetone (10 mL) twice and dried under vacuum to give the first crop of $\mathbf{6}(3.7 \mathrm{~g}, 17.8 \mathrm{mmol}, 53 \%)$. Concentration of the mother liquor and recrystallization from acetone provided a second crop of $6(0.64 \mathrm{~g}, 3.08$ $\mathrm{mmol}, 9 \%$). Concentrated mother liquor was purified by flash column chromatography on silica gel $(\mathrm{MeOH} / \mathrm{EtOAc}=0 / 1$ to $1 / 10)$ to afford another fraction of $6(1.67 \mathrm{~g}, 8.03 \mathrm{mmol}, 24 \%)$. The overall yield is 87% in three steps ($6.01 \mathrm{~g}, 28.8 \mathrm{mmol}$).

$$
\mathrm{R} f=0.29(\mathrm{MeOH} / \mathrm{EtOAc}=1 / 10, \mathrm{Ce}-\mathrm{PMA}) ; \text { M.p. } 204.8-205.3^{\circ} \mathrm{C} ;[\alpha]^{27} \mathrm{D}-190(c=1.15,
$$ CHCl_{3}); IR (neat): $1764,1660,1437 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 4.68(\mathrm{dd}, J=9.2,8.7 \mathrm{~Hz}$, 1 H), 4.26 (dd, $J=8.3,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~d}, J=19.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~d}, J=19.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.61$ (dd, $J=$ $8.7,5.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.13(\mathrm{dd}, J=19.2,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{dd}, J=19.2,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.45-2.38(\mathrm{~m}, 1 \mathrm{H})$, 2.26-2.16 (m, 1H), 2.12-1.90(m, 2H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 206.2(\mathrm{C}), 166.8(\mathrm{C}), 164.5$ (C), $59.6(\mathrm{CH}), 57.4(\mathrm{CH}), 52.1\left(\mathrm{CH}_{2}\right), 45.7\left(\mathrm{CH}_{2}\right), 39.2\left(\mathrm{CH}_{2}\right), 27.8\left(\mathrm{CH}_{2}\right), 22.9\left(\mathrm{CH}_{2}\right)$; HRMS (DART) calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$209.0926, found 209.0920.

(5aS,10aS)-7-((tert-butyldimethylsilyl)oxy)-1,2,3,5a,6,10a-hexahydrodipyrrolo[1,2-a:1',2'-d]pyr azine-5,10-dione (14)

To a stirred solution of $6(6.00 \mathrm{~g}, 28.8 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(280 \mathrm{~mL})$ was added TBSOTf $(7.90 \mathrm{~mL}, 34.6 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(12.1 \mathrm{~mL}, 86.5 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ and the resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 2.5 h . The reaction mixture was quenched with saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ aq. (280 mL) and partitioned between EtOAc $(500 \mathrm{~mL})$ and water $(220 \mathrm{~mL})$. The organic phase was collected and the aqueous phase was extracted with EtOAc $(250 \mathrm{~mL})$ twice. The combined organic extract was washed with brine (100 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (n-hexane/EtOAc $=1 / 1$ to $0 / 1$) to afford $\mathbf{1 4}(9.22 \mathrm{~g}$, $28.6 \mathrm{mmol}, 99 \%$) as white crystals.

$$
\mathrm{R} f=0.64(\mathrm{MeOH} / \mathrm{EtOAc}=1 / 10, \mathrm{UV}, \mathrm{Ce}-\mathrm{PMA}) ; \text { M.p. } 109.0-109.9^{\circ} \mathrm{C} ;[\alpha]^{27}{ }_{\mathrm{D}}+18(c=
$$ $1.01, \mathrm{CHCl}_{3}$); IR (neat) 2930, 2359, 1677, 1640, 1436, 1255, 931, $839 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta 6.18(\mathrm{~s}, 1 \mathrm{H}), 4.61(\mathrm{dd}, J=10.5,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{dd}, J=8.3,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.60-3.56$ $(\mathrm{m}, 2 \mathrm{H}), 3.30-3.28(\mathrm{~m}, 1 \mathrm{H}), 2.75(\mathrm{dd}, J=16.5,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-2.20(\mathrm{~m}, 2 \mathrm{H}), 2.06-1.89(\mathrm{~m}, 2 \mathrm{H})$, 0.93 (s, 9H), $0.19(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 165.2(\mathrm{C}), 161.8$ (C), 145.0 (C), 105.4 $(\mathrm{CH}), 60.0(\mathrm{CH}), 58.3(\mathrm{CH}), 45.5\left(\mathrm{CH}_{2}\right), 33.7\left(\mathrm{CH}_{2}\right), 27.8\left(\mathrm{CH}_{2}\right), 25.4\left(\mathrm{CH}_{3}\right), 23.3\left(\mathrm{CH}_{2}\right), 18.0(\mathrm{C}),-$ $4.8\left(\mathrm{CH}_{3}\right)$, $-4.9\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SiNa}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$345.1610, found 345.1598.

(5aS,10aS)-3-(2-((triisopropylsilyl)oxy)ethylidene)hexahydrodipyrrolo[1,2-a:1',2'-d]pyrazine-2, 5,10(3H)-trione (16)

To a stirred solution of $\mathbf{1 4}(8.13 \mathrm{~g}, 25.2 \mathrm{mmol})$ and aldehyde $\mathbf{1 5}(8.18 \mathrm{~g}, 37.8 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ was added $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(4.60 \mathrm{~mL}, 50.4 \mathrm{mmol})$ at $-78{ }^{\circ} \mathrm{C}$ and the resulting mixture was stirred at $-40{ }^{\circ} \mathrm{C}$ for 3 h . The reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aq. (200 $\mathrm{mL})$ and partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ and water $(100 \mathrm{~mL})$. The organic phase was collected and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{~mL})$ twice. The combined organic extract was washed with brine (80 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (n-hexane/EtOAc $=1 / 1$ to $\mathrm{MeOH} / \mathrm{EtOAc}$ $=1 / 10)$ to afford $4: 1$ diastereomixtures of aldol $(8.58 \mathrm{~g}, 20.2 \mathrm{mmol}, 80 \%)$ as a clear viscous oil.

To a stirred solution of aldol $(8.55 \mathrm{~g}, 20.1 \mathrm{mmol})$ and pyridine $(6.50 \mathrm{~mL}, 80.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ were added $\mathrm{Tf}_{2} \mathrm{O}(4.10 \mathrm{~mL}, 24.2 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ and the resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min . The reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aq. (200 mL) and partitioned between EtOAc $(300 \mathrm{~mL})$ and water $(100 \mathrm{~mL})$. The organic phase was collected and the aqueous phase was extracted with EtOAc (200 mL) twice. The combined organic extract was washed with brine (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (n-hexane/EtOAc $=1 / 1$ to $0 / 1$) to afford inseparable diastereomixtures (6.6:1) of $\mathbf{1 6}(7.14 \mathrm{~g}, 17.6 \mathrm{mmol}, 87 \%)$ as a yellow viscous oil.
$\mathrm{R} f=0.52$ (EtOAc, UV, Ce-PMA); IR (neat) 2943, 2866, 1742, $1676 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ (major) $\delta 6.30(\mathrm{dd}, J=6.9,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{dd}, J=17.9,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.70$ (dd, $J=9.2,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{dd}, J=17.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{dd}, J=8.2,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.64-3.61(\mathrm{~m}$, 2 H), 3.12 (dd, $J=19.7,8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.93 (dd, $J=19.7,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.42-2.22(\mathrm{~m}, 2 \mathrm{H}), 2.11-1.90$ (m, 2H), 1.16-1.05 (m, 21H); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$ (major) $\delta 195.1$ (C), 164.5 (C), $164.0(\mathrm{C})$, $129.5(\mathrm{C}), 125.2(\mathrm{CH}), 62.1\left(\mathrm{CH}_{2}\right), 59.5(\mathrm{CH}), 57.3(\mathrm{CH}), 46.0\left(\mathrm{CH}_{2}\right), 37.0\left(\mathrm{CH}_{2}\right), 27.8\left(\mathrm{CH}_{2}\right), 22.9$ $\left(\mathrm{CH}_{2}\right), 18.0\left(\mathrm{CH}_{3}\right), 11.9(\mathrm{CH})$; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{~N}_{2} \mathrm{SiNa}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 429.2186$, found 429.2197.
(3S,5aS,10aS,E)-2-(2-bromoethylidene)-3-(2-((triisopropylsilyl)oxy)ethyl)octahydrodipyrrolo[1, 2-a:1',2'-d]pyrazine-5,10-dione (S3)

A mixture of 16 ($7.14 \mathrm{~g}, 17.6 \mathrm{mmol}$) and $10 \% \mathrm{Pd} / \mathrm{C}$ (M-type (wet, 50% water, Kawaken), $3.70 \mathrm{~g}, 1.76 \mathrm{mmol})$ was added $\mathrm{MeOH}(150 \mathrm{~mL})$ under Argon atmosphere. The flask was charged with hydrogen gas (1 atm) at room temperature and the resulting suspension was vigorously stirred for 30 min . The reaction mixture was filtered through a Celite pad and the filtrate was stirred at $40^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was concentrated in vacuo to give 17 , which was used for the next step without further purification.

To a stirred solution of $\mathbf{1 7}$ in THF (85 mL) was added 1.0 M vinyl magnesium bromide solution in THF ($35.1 \mathrm{~mL}, 35.1 \mathrm{mmol}$) at $-78{ }^{\circ} \mathrm{C}$. The resulting mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 30 min and quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aq. $(85 \mathrm{~mL})$. The resulting mixture was partitioned between EtOAc (50 mL) and water (10 mL). The organic phase was collected and the aqueous phase was extracted with EtOAc (100 mL) twice. The combined organic extract was washed with brine (30 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo to afford the crude product which was used in the next reaction without further purification.

To a stirred solution of the crude product and pyridine ($14.3 \mathrm{~mL}, 175 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (85 $\mathrm{mL})$ was added $\mathrm{SOBr}_{2}(6.70 \mathrm{~mL}, 52.7 \mathrm{mmol})$ in one portion at $-20{ }^{\circ} \mathrm{C}$ and the resulting mixture was stirred at $-20{ }^{\circ} \mathrm{C}$ for 20 min . The reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aq. (85 mL) and partitioned between EtOAc $(85 \mathrm{~mL})$ and water $(30 \mathrm{~mL})$. The organic phase was collected and the aqueous phase was extracted with EtOAc $(100 \mathrm{~mL})$ twice. The combined organic extract was washed with brine (30 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (n-hexane/EtOAc $=1 / 1$ to $0 / 1$) to afford $\mathbf{S 3}(5.86 \mathrm{~g}$, $11.7 \mathrm{mmol}, 67 \%$ in three steps) as a yellow viscous oil.

$$
\mathrm{R} f=0.62(\mathrm{MeOH} / \mathrm{EtOAc}=1 / 10, \mathrm{Ce}-\mathrm{PMA}) ;[\alpha]^{25}{ }_{\mathrm{D}}-23\left(c=0.90, \mathrm{CHCl}_{3}\right) ; \text { IR (neat) 2942, }
$$

$2865,1671,1460,1671,1101 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 5.84(\mathrm{tm}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.67$ (dm, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{dd}, J=10.5,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{dd}, J=8.2,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 3.75-3.66(\mathrm{~m}, 2 \mathrm{H}), 3.58-3.54(\mathrm{~m}, 2 \mathrm{H}), 3.04(\mathrm{dd}, J=15.6,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{ddm}, J=15.6$, $10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.29(\mathrm{~m}, 2 \mathrm{H}), 2.23-2.13(\mathrm{~m}, 1 \mathrm{H}), 2.08-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.05-$ $1.04(\mathrm{~m}, 21 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 167.1(\mathrm{C}), 165.9(\mathrm{C}), 142.6(\mathrm{C}), 120.6(\mathrm{CH}), 60.7$ $(\mathrm{CH}), 60.1(\mathrm{CH}), 59.2(\mathrm{CH}), 59.2(\mathrm{CH}), 45.0\left(\mathrm{CH}_{2}\right), 36.0\left(\mathrm{CH}_{2}\right), 27.9\left(\mathrm{CH}_{2}\right), 27.7\left(\mathrm{CH}_{2}\right), 23.3\left(\mathrm{CH}_{2}\right)$, $17.9\left(\mathrm{CH}_{3}\right), 11.8(\mathrm{CH})$; HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{39} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{BrSiNa}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 521.1811$, found 521.1816.
(3S,5aS,10aS,E)-2-ethylidene-3-(2-((triisopropylsilyl)oxy)ethyl)octahydrodipyrrolo[1,2-a:1',2'-d]pyrazine-5,10-dione (18)

To a stirred solution of $\mathbf{S 3}(3.22 \mathrm{~g}, 6.45 \mathrm{mmol})$ in THF (64 mL) was added $1.0 \mathrm{M} \mathrm{LiBHEt}_{3}$ solution in THF ($12.9 \mathrm{~mL}, 12.9 \mathrm{mmol}$) at $-20{ }^{\circ} \mathrm{C}$. The resulting mixture was stirred at $-20{ }^{\circ} \mathrm{C}$ for 30 min , then quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aq. $(64 \mathrm{~mL})$. The reaction mixture was partitioned between EtOAc (100 mL) and water (30 mL). The organic phase was collected and the aqueous phase was extracted with EtOAc (80 mL) twice. The combined organic extract was washed with brine (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (n-hexane/EtOAc $=1 / 1$ to $0 / 1$) to afford $\mathbf{1 8}(2.50 \mathrm{~g}, 5.94$ mmol, 92%) as a yellow oil.
$\mathrm{R} f=0.68(\mathrm{MeOH} / \mathrm{EtOAc}=1 / 10, \mathrm{Ce}-\mathrm{PMA}) ;[\alpha]^{19}{ }_{\mathrm{D}}-68\left(c=1.69, \mathrm{CHCl}_{3}\right) ;$ IR (neat) 2942, 2866, 1673, $1417 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 5.54-4.46(\mathrm{~m}, 1 \mathrm{H}), 4.55-4.53(\mathrm{~m}, 1 \mathrm{H}), 4.17$ (dd, $J=11.0,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{dd}, J=8.7,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.70-3.66(\mathrm{~m}, 2 \mathrm{H}), 3.57-3.54(\mathrm{~m}, 2 \mathrm{H})$, $2.93(\mathrm{dd}, J=15.6,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{dd}, J=15.6,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-2.12(\mathrm{~m}, 3 \mathrm{H}), 2.06-1.86(\mathrm{~m}$, $2 \mathrm{H}), 1.69(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.69-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.07-1.04(\mathrm{~m}, 21 \mathrm{H}),{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ $\delta 167.2(\mathrm{C}), 166.5(\mathrm{C}), 136.3(\mathrm{C}), 119.3(\mathrm{CH}), 61.0(\mathrm{CH}), 60.4(\mathrm{CH}), 59.6\left(\mathrm{CH}_{2}\right), 59.3(\mathrm{CH}), 45.0$ $\left(\mathrm{CH}_{2}\right), 36.3\left(\mathrm{CH}_{2}\right), 27.9\left(\mathrm{CH}_{2}\right), 27.8\left(\mathrm{CH}_{2}\right), 23.4\left(\mathrm{CH}_{2}\right), 17.9\left(\mathrm{CH}_{3}\right), 14.3\left(\mathrm{CH}_{3}\right), 11.9(\mathrm{CH})$; HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{40} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{SiNa}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 443.2706$, found 443.2714 .
(3S,5aS,10aS,E)-2-ethylidene-3-(2-hydroxyethyl)octahydrodipyrrolo[1,2-a:1',2'-d]pyrazine-5,10 -dione (19)

To a stirred solution of $\mathbf{1 8}(1.28 \mathrm{~g}, 3.04 \mathrm{mmol})$ in THF (30 mL) was added 30% HF-pyridine (4.0 mL) at $0{ }^{\circ} \mathrm{C}$. The resulting mixture was stirred at room temperature for 3 h and quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aq. (30 mL) The resulting mixture was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(50 \mathrm{~mL})$ and water $(10 \mathrm{~mL})$. The organic phase was collected and the aqueous phase was extracted with $10 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution (60 mL) twice. The combined organic extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel $(\mathrm{MeOH} / \mathrm{EtOAc}=0 / 1$ to $1 / 10)$ to afford 19 ($780 \mathrm{mg}, 2.95 \mathrm{mmol}, 97 \%$) as a yellow viscous oil.

$$
\mathrm{R} f=0.33(\mathrm{MeOH} / \mathrm{EtOAc}=1 / 10, \mathrm{Ce}-\mathrm{PMA}) ;[\alpha]^{18}{ }_{\mathrm{D}}-133\left(c=0.72, \mathrm{CHCl}_{3}\right) ; \text { IR (neat) } 3415,
$$ $2880,1659,1425 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 5.51(\mathrm{qm}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{dd}, J=6.4$, $6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.19$ (dd, $J=11.0,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.14$ (dd, $J=7.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.36-3.46$ (m, 4H), 3.34 (brs, 1H), $2.94(\mathrm{dd}, J=15.6,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.78-2.70(\mathrm{~m}, 1 \mathrm{H}), 2.41-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.15(\mathrm{~m}, 1 \mathrm{H})$, $2.07-1.86(\mathrm{~m}, 3 \mathrm{H}), 1.79-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.69(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ $169.2(\mathrm{C}), 166.4(\mathrm{C}), 137.3(\mathrm{C}), 119.1(\mathrm{CH}), 60.9(\mathrm{CH}), 60.8(\mathrm{CH}), 59.0\left(\mathrm{CH}_{2}\right), 58.6(\mathrm{CH}), 45.1$ $\left(\mathrm{CH}_{2}\right)$, $39.9\left(\mathrm{CH}_{2}\right)$, $28.1\left(\mathrm{CH}_{2}\right)$, $27.1\left(\mathrm{CH}_{2}\right)$, $23.5\left(\mathrm{CH}_{2}\right), 14.3\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$287.1372, found 287.1366.

2-((3S,5aS,10aS,E)-2-ethylidene-5,10-dioxodecahydrodipyrrolo[1,2-a:1',2'-d]pyrazin-3-yl)acetal dehyde (20)

To a stirred solution of $19(430 \mathrm{mg}, 1.63 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(16 \mathrm{~mL})$ was added Dess-Martin periodinane $(1.00 \mathrm{~g}, 2.44 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ and the resulting mixture was stirred at room temperature for 15 min . The reaction mixture was quenched with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ aq. $(6 \mathrm{~mL})$ and stirred for 10 min at $0{ }^{\circ} \mathrm{C}$. The mixture was added saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ aq. (10 mL) and partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ and water $(5 \mathrm{~mL})$. The organic phase was collected and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ twice. The combined organic extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel $(\mathrm{MeOH} / \mathrm{EtOAc}=0 / 1$ to $1 / 10)$ to afford $20(361 \mathrm{mg}, 1.38 \mathrm{mmol}, 84 \%)$ as a yellow viscous oil.
$\mathrm{R} f=0.37(\mathrm{MeOH} / \mathrm{EtOAc}=1 / 10, \mathrm{Ce}-\mathrm{PMA}) ;[\alpha]^{25}{ }_{\mathrm{D}}-23\left(c=0.66, \mathrm{CHCl}_{3}\right)$; IR (neat) 2881, $2359,1719,1664,1423 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 9.73(\mathrm{dd}, J=1.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.61-$ $5.55(\mathrm{~m}, 1 \mathrm{H}), 4.83-4.81(\mathrm{~m}, 1 \mathrm{H}), 4.25(\mathrm{dd}, J=9.2,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{dd}, J=8.7,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.64$ $3.52(\mathrm{~m}, 2 \mathrm{H}), 3.04-2.95(\mathrm{~m}, 2 \mathrm{H}), 2.87-2.75(\mathrm{~m}, 2 \mathrm{H}), 2.38-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.19-1.89(\mathrm{~m}, 3 \mathrm{H}), 1.69(\mathrm{~d}$, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 198.9(\mathrm{CH}), 167.5(\mathrm{C}), 166.1(\mathrm{C}), 136.7(\mathrm{C}), 120.4$ $(\mathrm{CH}), 60.6(\mathrm{CH}), 60.4(\mathrm{CH}), 56.5(\mathrm{CH}), 48.7\left(\mathrm{CH}_{2}\right), 45.2\left(\mathrm{CH}_{2}\right), 28.3\left(\mathrm{CH}_{2}\right), 27.9\left(\mathrm{CH}_{2}\right), 23.3\left(\mathrm{CH}_{2}\right)$, $14.5\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$285.1215, found 285.1210.
(3S,5aS,10aS,E)-3-(2-(2-bromo-5-methoxyphenyl)-2-oxoethyl)-2-ethylideneoctahydrodipyrrolo[

1,2-a:1',2'-d]pyrazine-5,10-dione (22)

To a stirred solution of the 2-bromo-3-methoxy iodobenzene ($1.50 \mathrm{~g}, 4.89 \mathrm{mmol}$) in THF $(8 \mathrm{~mL})$ was added $1.3 \mathrm{M} i-\mathrm{PrMgBr} \cdot \mathrm{LiCl}$ solution in $\mathrm{THF}(3.1 \mathrm{~mL}, 4.07 \mathrm{mmol})$ at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 30 min at $20^{\circ} \mathrm{C}$ to give the solution of $\mathbf{2 1}$. To a stirred solution of $\mathbf{2 0}$ ($361 \mathrm{mg}, 1.38 \mathrm{mmol}$) in THF (7.0 mL) was added 21 at $-78{ }^{\circ} \mathrm{C}$ by cannulation and the resulting mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 45 min . The reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aq. $(7.0 \mathrm{~mL})$ and partitioned between EtOAc $(15 \mathrm{~mL})$ and water $(5 \mathrm{~mL})$. The organic phase was collected and the aqueous phase was extracted with EtOAc (10 mL) twice. The combined organic extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo to afford the crude product, which was used in the next reaction without further purification.

To a stirred solution of the crude product in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(14 \mathrm{~mL})$ was added Dess-Martin periodinane $(1.40 \mathrm{~g}, 3.26 \mathrm{mmol})$ at room temperature and the resulting mixture was stirred at refluxing temperature for 30 min . The reaction mixture was quenched with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ aq. (6 mL) and stirred for 10 min at $0{ }^{\circ} \mathrm{C}$. The resulting mixture was added saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ aq. (8 mL) and partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and water $(5 \mathrm{~mL})$. The organic phase was collected and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ twice. The combined organic extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (n-hexane $/ \operatorname{EtOAc}=1 / 1$ to $0 / 1$) to afford $22(518 \mathrm{mg}, 1.16 \mathrm{mmol}, 84 \%$ in two steps) as a yellow viscous oil.

$$
\mathrm{R} f=0.40(\mathrm{MeOH} / \mathrm{EtOAc}=1 / 10, \mathrm{UV}, \mathrm{Ce}-\mathrm{PMA}) ;[\alpha]^{25} \mathrm{D}-47\left(c=0.96, \mathrm{CHCl}_{3}\right) ; \text { IR (neat) }
$$ 2937, 2339, 1665, $1422 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.44(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=2.7$ $\mathrm{Hz}, 1 \mathrm{H}), 6.82(\mathrm{dd}, J=8.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.70-5.63(\mathrm{~m}, 1 \mathrm{H}), 4.98-4.96(\mathrm{~m}, 1 \mathrm{H}), 4.24(\mathrm{dd}, J=10.3$, $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{dd}, J=8.2,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{dd}, J=17.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.59-3.54$ (m, 2H), 3.32 (dd, $J=17.0,8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.97 (dd, $J=15.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.88-2-79(\mathrm{~m}, 1 \mathrm{H}), 2.37-$ $2.29(\mathrm{~m}, 1 \mathrm{H}), 2.18-1.86(\mathrm{~m}, 3 \mathrm{H}), 1.67(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 200.6(\mathrm{C})$, 167.3 (C), 166.2 (C), 158.7 (C), 141.6 (C), 136.2 (C), $134.5(\mathrm{CH}), 120.8(\mathrm{CH}), 117.9(\mathrm{CH}), 114.1$ $(\mathrm{CH}), 109.0(\mathrm{C}), 60.6(\mathrm{CH}), 60.4(\mathrm{CH}), 57.7(\mathrm{CH}), 55.6\left(\mathrm{CH}_{3}\right), 46.2\left(\mathrm{CH}_{2}\right), 45.1\left(\mathrm{CH}_{2}\right), 28.2\left(\mathrm{CH}_{2}\right)$, $27.8\left(\mathrm{CH}_{2}\right), 23.3\left(\mathrm{CH}_{2}\right), 14.5\left(\mathrm{CH}_{3}\right) ;$ HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{O}_{6} \mathrm{~N}_{2} \mathrm{BrNa}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 469.0739$, found 469.0750 .

(6aS,8aS,13aS,14aS)-3-methoxy-14a-vinyl-6,6a,8a,9,10,11,14,14a-octahydrobenzo[e]pyrrolo[1', 2':4,5]pyrazino[1,2-a]indole-5,8,13(13aH)-trione (23)

To a stirred solution of $22(277 \mathrm{mg}, 0.620 \mathrm{mmol}),(o-\mathrm{tol})_{3} \mathrm{P}(113 \mathrm{mg}, 0.372 \mathrm{mmol})$ and $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(85.2 \mathrm{mg}, 0.093 \mathrm{mmol})$ in toluene $(6.2 \mathrm{~mL})$ were added $\mathrm{Et}_{3} \mathrm{~N}(0.26 \mathrm{~mL}, 1.86 \mathrm{mmol})$ at room temperature and the resulting mixture was stirred at refluxing temperature for 2 h . The reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aq. (6 mL) and partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and water $(10 \mathrm{~mL})$. The organic phase was collected and the aqueous phase was extracted with 10% MeOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution (60 mL) twice. The combined organic extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The residue was purified by flash column chromatography on silica $\mathrm{gel}(\mathrm{MeOH} / \mathrm{EtOAc}=0 / 1$ to $1 / 10)$ to afford $23(219 \mathrm{mg}, 0.597 \mathrm{mmol}, 96 \%)$ as a yellow viscous oil.

$$
\mathrm{R} f=0.33(\mathrm{MeOH} / \mathrm{EtOAc}=1 / 10, \mathrm{UV}, \mathrm{Ce}-\mathrm{PMA}) ;[\alpha]_{\mathrm{D}}^{22}+167\left(c=0.75, \mathrm{CHCl}_{3}\right) ; \text { IR (neat) }
$$ 2952, 2360, 1667, 1607, 1494, 1416, $1287 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.40(\mathrm{~d}, J=2.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.26(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{dd}, J=8.7,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{dd}, J=17.4,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~d}$, $J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{dd}, J=11.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{dd}, J=9.6,7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.15$ (dd, $J=8.2,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.52-3.48(\mathrm{~m}, 2 \mathrm{H}), 3.42(\mathrm{dd}, J=15.6,5.5 \mathrm{~Hz}, 1 \mathrm{H})$, 2.77 (dd, $J=13.7,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{dd}, J=13.7,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{dd}, J=15.6,11.0 \mathrm{~Hz}, 1 \mathrm{H})$, 2.34-2.18 (m, 2H), 2.05-1.88 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 194.6(\mathrm{C}), 166.9(\mathrm{C}), 166.1$ (C), $158.8(\mathrm{C}), 142.2(\mathrm{CH}), 134.9(\mathrm{C}), 132.0(\mathrm{C}), 130.7(\mathrm{CH}), 122.5(\mathrm{CH}), 115.1\left(\mathrm{CH}_{2}\right), 108.6(\mathrm{CH})$, $61.0(\mathrm{CH}), 60.6(\mathrm{CH}), 60.1(\mathrm{CH}), 55.5\left(\mathrm{CH}_{3}\right), 49.3(\mathrm{C}), 45.1\left(\mathrm{CH}_{2}\right), 40.0\left(\mathrm{CH}_{2}\right), 35.1\left(\mathrm{CH}_{2}\right), 27.3$ $\left(\mathrm{CH}_{2}\right), 23.5\left(\mathrm{CH}_{2}\right)$; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{~N}_{2} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$389.1477, found 389.1489.

(6aS,8aS,13aS,14aS,E)-5-(hydroxyimino)-3-methoxy-14a-vinyl-6,6a,8a,9,10,11,14,14a-octahydr obenzo[e]pyrrolo[1',2':4,5]pyrazino[1,2-a]indole-8,13(5H,13aH)-dione (24)

23

24

To a stirred solution of $\mathbf{2 3}$ ($211 \mathrm{mg}, 0.575 \mathrm{mmol}$) in EtOH (5.8 mL) was added $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}(120 \mathrm{mg}, 1.73 \mathrm{mmol})$ and $\mathrm{NaOAc}(142 \mathrm{mg}, 1.73 \mathrm{mmol})$ at room temperature and the resulting mixture was stirred at $50{ }^{\circ} \mathrm{C}$ for 20 min . The reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aq. $(6 \mathrm{~mL})$ and partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and water $(6 \mathrm{~mL})$. The organic phase was collected and the aqueous phase was extracted with $10 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution (6 mL) twice. The combined organic extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel $(\mathrm{MeOH} / \mathrm{EtOAc}=0 / 1$ to $1 / 10)$ to afford 24 ($190 \mathrm{mg}, 0.499 \mathrm{mmol}, 87 \%$) as a yellow viscous oil.

$$
\mathrm{R} f=0.44(\mathrm{MeOH} / \mathrm{EtOAc}=1 / 10, \mathrm{UV}, \mathrm{Ce}-\mathrm{PMA}) ;[\alpha]_{\mathrm{D}}^{20}+112\left(c=0.92, \mathrm{CHCl}_{3}\right) ; \text { IR (neat) }
$$ $3290,3002,2876,1661,1419 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.72(\mathrm{brs}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=2.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.12(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{dd}, J=8.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{dd}, J=17.4,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~d}$, $J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{dd}, J=11.4,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{dd}, J=11.0,6.9$ $\mathrm{Hz}, 1 \mathrm{H}), 4.28(\mathrm{dd}, J=14.2,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{dd}, J=8.2,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.59-3.49(\mathrm{~m}$, $2 \mathrm{H}), 2.74(\mathrm{dd}, J=13.7,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{dd}, J=13.7,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-2.24(\mathrm{~m}, 2 \mathrm{H}), 2.08-1.88$ (m, 2H), $1.91(\mathrm{dd}, J=14.2,11.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 167.4(\mathrm{C}), 166.5(\mathrm{C}), 158.3$ (C), $151.5(\mathrm{C}), 142.9(\mathrm{CH}), 130.9(\mathrm{C}), 130.7(\mathrm{C}), 130.1(\mathrm{C}), 117.8(\mathrm{CH}), 113.9\left(\mathrm{CH}_{2}\right), 107.2(\mathrm{CH})$, $60.7(\mathrm{CH}), 60.0(\mathrm{CH}), 59.9(\mathrm{CH}), 55.3\left(\mathrm{CH}_{3}\right), 49.3(\mathrm{C}), 45.2\left(\mathrm{CH}_{2}\right), 35.1\left(\mathrm{CH}_{2}\right), 27.4\left(\mathrm{CH}_{2}\right), 24.4$ $\left(\mathrm{CH}_{2}\right), 23.6\left(\mathrm{CH}_{2}\right)$; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{O}_{4} \mathrm{~N}_{3} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$404.1586, found 404.1599.

(6aS,8aS,13aS,14aS,E)-3-methoxy-5-(((methylsulfonyl)oxy)imino)-14a-vinyl-6,6a,8a,9,10,11,14,1 4a-octahydrobenzo[e]pyrrolo[1',2':4,5]pyrazino[1,2-a]indole-8,13(5H,13aH)-dione (25)

To a stirred solution of $\mathbf{2 4}(190 \mathrm{mg}, 0.499 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}(0.2$ $\mathrm{mL}, 1.50 \mathrm{mmol})$ and $\mathrm{MsCl}(0.13 \mathrm{~mL}, 0.998 \mathrm{mmol})$ at room temperature. The resulting mixture was stirred at room temperature for 30 min , then quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aq. (3 mL) and partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ and water (2 mL). The organic phase was collected and the aqueous phase was extracted with $10 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution (3 mL) twice. The combined organic extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel $(\mathrm{MeOH} / \mathrm{EtOAc}=0 / 1$ to $1 / 10)$ to afford $\mathbf{2 5}$ (188 mg , $0.409 \mathrm{mmol}, 82 \%$) as a yellow viscous oil.

$$
\mathrm{R} f=0.46(\mathrm{MeOH} / \mathrm{EtOAc}=1 / 10, \mathrm{UV}, \mathrm{Ce}-\mathrm{PMA}) ;[\alpha]^{19} \mathrm{D}+76\left(c=1.16, \mathrm{CHCl}_{3}\right) ; \mathrm{IR} \text { (neat) }
$$ 2971, 1668, 1495, 1416, 1366, 1296, 1239, $1182 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.40(\mathrm{~d}, J=2.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{dd}, J=9.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{dd}, J=17.4,10.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.32(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{dd}, J=10.1,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{dd}, J=$ $10.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.14 (dd, $J=8.2,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.01$ (dd, $J=15.1,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.83$ (s, 3 H), $3.52-$ 3.49 (m, 2H), $3.24(\mathrm{~s}, 3 \mathrm{H}), 2.73$ (dd, $J=13.8,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{dd}, J=13.8,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.37$ (dd, $J=15.1,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-2.20(\mathrm{~m}, 2 \mathrm{H}), 2.08-1.88(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 167.1$ (C), 166.1 (C), 159.7 (C), 158.5 (C), 142.0 (CH), 132.4 (C), 130.7 (CH), 127.6 (C), 119.7 (C), 115.1 $\left(\mathrm{CH}_{2}\right), 108.6(\mathrm{CH}), 60.6(\mathrm{CH}), 59.9(\mathrm{CH}), 59.6(\mathrm{CH}), 55.5\left(\mathrm{CH}_{3}\right), 49.4(\mathrm{C}), 45.2\left(\mathrm{CH}_{2}\right), 36.7\left(\mathrm{CH}_{3}\right)$, $35.3\left(\mathrm{CH}_{2}\right), 27.3\left(\mathrm{CH}_{2}\right), 26.4\left(\mathrm{CH}_{2}\right), 23.5\left(\mathrm{CH}_{2}\right)$; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{O}_{6} \mathrm{~N}_{3} \mathrm{SNa}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$ 482.1362, found 482.1349.

(7aS,9aS,14aS,15aS)-3-methoxy-15a-vinyl-7,7a,9a,10,11,12,15,15a-octahydro-5H-benzo[b]pyrro lo[1', 2 ':4',5']pyrazino[1',2':1,5]pyrrolo[3,2-d]azepine-6,9,14(14aH)-trione (26)

To a stirred solution of $\mathbf{2 5}(114 \mathrm{mg}, 0.247 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$ was added 1.0 M TiCl_{4} solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL}, 0.98 \mathrm{mmol})$ at room temperature. The resulting mixture was stirred at room temperature for 12 h , then quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aq. (3 mL) and partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ and water $(2 \mathrm{~mL})$. The organic phase was collected and the aqueous phase was extracted with $10 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution (3 mL) twice. The combined organic extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel $(\mathrm{MeOH} / \mathrm{EtOAc}=0 / 1$ to $1 / 10)$ to afford $26(80.9 \mathrm{mg}, 0.212 \mathrm{mmol}$, 86%) as a yellow viscous oil.

$$
\mathrm{R} f=0.16(\mathrm{MeOH} / \mathrm{EtOAc}=1 / 10, \mathrm{UV}, \mathrm{Ce}-\mathrm{PMA}) ; \text { M.p. } 239.0-239.9^{\circ} \mathrm{C} ;[\alpha]^{23}{ }_{\mathrm{D}}+156^{\circ}(c=
$$ $0.60, \mathrm{CHCl}_{3}$); IR (neat) $3234,2984,2360,2338,1671 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.38$ (brs, $1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{dd}, J=8.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{dd}, J=$ $17.4,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{dd}, J=4.6,3.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.22(\mathrm{dd}, J=11.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{dd}, J=8.2,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.64-3.57(\mathrm{~m}, 2 \mathrm{H})$, $3.52-3.46(\mathrm{~m}, 1 \mathrm{H}), 3.12-2.98(\mathrm{~m}, 2 \mathrm{H}), 2.56-2.53(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.22(\mathrm{~m}, 3 \mathrm{H}), 1.97-1.85(\mathrm{~m} \mathrm{1H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 171.5(\mathrm{C}), 167.4(\mathrm{C}), 166.3(\mathrm{C}), 159.4(\mathrm{C}), 141.7(\mathrm{CH}), 137.4(\mathrm{C})$, $131.0(\mathrm{CH}), 125.4(\mathrm{C}), 114.5\left(\mathrm{CH}_{2}\right), 110.7(\mathrm{CH}), 109.1(\mathrm{CH}), 65.4(\mathrm{CH}), 60.8(\mathrm{CH}), 58.1(\mathrm{CH}), 55.4$ $\left(\mathrm{CH}_{3}\right)$, $52.6(\mathrm{C}), 45.2\left(\mathrm{CH}_{2}\right), 35.4\left(\mathrm{CH}_{2}\right), 34.4\left(\mathrm{CH}_{2}\right), 28.0\left(\mathrm{CH}_{2}\right), 23.4\left(\mathrm{CH}_{2}\right)$; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{O}_{4} \mathrm{~N}_{3} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 404.1586$, found 404.1583 .

(7aS,9aS,14aS,15aS)-tert-butyl 3-methoxy-6,9,14-trioxo-15a-vinyl-6,7,7a,9,9a,10,11,12,14,14a,15, 15a-dodecahydro-5H-benzo[b]pyrrolo[1',2':4',5']pyrazino[1',2':1,5]pyrrolo[3,2-d]azepine-5-ca rboxylate (27)

To a stirred solution of $\mathbf{2 6}(80.9 \mathrm{mg}, 0.212 \mathrm{mmol})$ in $\mathrm{MeCN}(1.0 \mathrm{~mL})$ was added $\mathrm{Boc}_{2} \mathrm{O}$ $(69.4 \mathrm{mg}, 0.318 \mathrm{mmol})$ and DMAP ($2.6 \mathrm{mg}, 0.021 \mathrm{mmol}$) at room temperature and the resulting mixture was stirred at room temperature for 30 min . The reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aq. $(1 \mathrm{~mL})$ and partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and water $(2 \mathrm{~mL})$. The organic phase was collected and the aqueous phase was extracted with $10 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution (3 mL) twice. The combined organic extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel $(\mathrm{MeOH} / \mathrm{EtOAc}=0 / 1$ to $1 / 10$) to afford $27(98.1 \mathrm{mg}, 0.204 \mathrm{mmol}, 96 \%)$ as a yellow viscous oil.

$$
\mathrm{R} f=0.37(\mathrm{MeOH} / \mathrm{EtOAc}=1 / 10, \mathrm{UV}, \mathrm{Ce}-\mathrm{PMA}) ;[\alpha]_{\mathrm{D}}^{24}+103\left(c=0.62, \mathrm{CHCl}_{3}\right) ; \text { IR (neat) }
$$ 1772, 1730, 1671, 1611, 1413, 1288, 1243, $1148 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)(\mathbf{1 0 : 1}$ mixture of two rotamers) (major) $\delta 7.31(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{dd}, J=9.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.14(\mathrm{dd}, J=17.4,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{dd}$, $J=3.7,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{dd}, J=11.0,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{dd}, J=8.2,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})$, $3.69-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.51-3.45(\mathrm{~m}, 1 \mathrm{H}), 3.22(\mathrm{dd}, J=12.8,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{dd}, J=14.2,11.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.37-2.25(\mathrm{~m}, 2 \mathrm{H}), 2.31(\mathrm{dd}, J=12.8,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{dd}, J=14.2,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.10-2.00$ $(\mathrm{m}, 1 \mathrm{H}), 1.95-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.52(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)(\boldsymbol{m a j o r}) \delta 168.3(\mathrm{C}), 167.7$ (C), 165.9 (C), $159.3(\mathrm{C}), 151.0(\mathrm{C}), 141.2(\mathrm{CH}), 138.9(\mathrm{C}), 130.1(\mathrm{CH}), 127.5(\mathrm{CH}), 115.0\left(\mathrm{CH}_{2}\right)$, $113.7(\mathrm{CH}), 112.7(\mathrm{CH}) .84 .5(\mathrm{C}), 65.1(\mathrm{CH}), 60.7(\mathrm{CH}), 58.5(\mathrm{CH}), 55.5\left(\mathrm{CH}_{3}\right), 51.9(\mathrm{C}), 45.2$ $\left(\mathrm{CH}_{2}\right), 36.5\left(\mathrm{CH}_{2}\right), 33.9\left(\mathrm{CH}_{2}\right)$, $28.2\left(\mathrm{CH}_{2}\right)$, $27.7\left(\mathrm{CH}_{3}\right), 23.3\left(\mathrm{CH}_{2}\right)$; HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{O}_{6} \mathrm{~N}_{3} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 504.2111$, found 504.2130.

tert-butyl (2-((2S,3S,5aS,10aS)-3-(2-hydroxy-2-methylpropyl)-5,10-dioxo-2-vinyldecahydro dipyrrolo[1,2-a:1',2'-d]pyrazin-2-yl)-5-methoxyphenyl)carbamate (28)

To a stirred solution of $27(27.0 \mathrm{mg}, 0.056 \mathrm{mmol})$ in THF $(0.5 \mathrm{~mL})$ was added 1.11 M MeLi solution in $\mathrm{Et}_{2} \mathrm{O}(0.11 \mathrm{~mL}, 0.118 \mathrm{mmol})$ at $-78{ }^{\circ} \mathrm{C}$ and the resulting mixture was stirred at the same temperature for 30 min . The reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aq. $(1.0 \mathrm{~mL})$ and partitioned between $17 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ and water $(0.5 \mathrm{~mL})$. The organic phase was collected and the aqueous phase was extracted with $17 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ twice. The combined organic extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The residue was purified by PTLC (n-hexane $/ \mathrm{EtOAc} / \mathrm{MeOH}=5 / 4 / 1$) to afford $28(17.0 \mathrm{mg}, 0.033 \mathrm{mmol}, 59 \%)$ as a pale yellow oil.
$\mathrm{R} f=0.38(\mathrm{MeOH} / \mathrm{EtOAc}=1 / 10, \mathrm{UV}, \mathrm{Ce}-\mathrm{PMA}) ;[\alpha]^{22}{ }_{\mathrm{D}}-142\left(c=0.73, \mathrm{CHCl}_{3}\right) ;$ IR (neat) 3402, 2974, 1731, 1680, 1654, 1522, 1465, 1418, 1233, 1156, 1042, $1026 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}, $400 \mathrm{MHz}) \delta 7.48(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{brs}, 1 \mathrm{H}), 6.66$ (dd, $J=8.7,2.8$ $\mathrm{Hz}, 1 \mathrm{H}), 5.94(\mathrm{dd}, J=17.9,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=17.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.86$ (dd, $J=8.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.16(\mathrm{~m}, 1 \mathrm{H}), 4.19(\mathrm{dd}, J=11.4,11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{brs}, 1 \mathrm{H}), 3.82(\mathrm{~s}$, 3 H), 3.62-3.49 (m, 2H), 2.86 (dd, $J=11.4,11.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-2.21$ (m, 3H), 2.05-1.89 (m, 2H), $1.49(\mathrm{~s}, 9 \mathrm{H}), 1.22-1.13(\mathrm{~m}, 2 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 170.1(\mathrm{C})$, $166.5(\mathrm{C}), 159.8(\mathrm{C}), 152.3(\mathrm{C}), 141.7(\mathrm{CH}), 137.2(\mathrm{C}), 128.2(\mathrm{CH}), 121.3(\mathrm{C}), 115.2\left(\mathrm{CH}_{2}\right), 109.8$ $(\mathrm{C}), 108.4(\mathrm{C}), 80.8(\mathrm{C}), 67.8(\mathrm{C}), 61.2(\mathrm{CH}), 58.1(\mathrm{CH}), 55.9(\mathrm{CH}), 55.3\left(\mathrm{CH}_{3}\right), 54.9(\mathrm{C}), 46.0\left(\mathrm{CH}_{2}\right)$, $45.0\left(\mathrm{CH}_{2}\right)$, $34.1\left(\mathrm{CH}_{2}\right)$, $30.7\left(\mathrm{CH}_{3}\right), 28.3\left(\mathrm{CH}_{3}\right), 28.0\left(\mathrm{CH}_{3}\right), 27.5\left(\mathrm{CH}_{2}\right), 23.7\left(\mathrm{CH}_{2}\right)$; HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{39} \mathrm{O}_{6} \mathrm{~N}_{3} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 536.2737$, found 536.2722.
($2 S, 3 S, 5 \mathrm{aS}, 10 \mathrm{aS}$)-tert-butyl 3-(2-hydroxy-2-methylpropyl)-6'-methoxy-2',5,10-trioxo-3,5,5a,6,7,8, 10,10a-octahydro-1H-spiro[dipyrrolo[1,2-a:1',2'-d]pyrazine-2,3'-indoline]-1'-carboxylate (29)

a) $\mathrm{O}_{3}, \mathrm{MeOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ $-78^{\circ} \mathrm{C}$;
$\mathrm{Me}_{2} \mathrm{~S},-78^{\circ} \mathrm{C}$ to rt
b) Jones reagent acetone, $0^{\circ} \mathrm{C}$ 70\% (2 steps)

To a stirred solution of $\mathbf{2 8}(9.4 \mathrm{mg}, 0.018 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ and $\mathrm{MeOH}(1 \mathrm{~mL})$ was cooled to $-78^{\circ} \mathrm{C}$ and ozone was passed through the solution for 2 min until complete consumption of the starting material was observed on TLC analysls. The reaction flask was purged with argon, and $\mathrm{Me}_{2} \mathrm{~S}(0.1 \mathrm{~mL}, 1.34 \mathrm{mmol})$ was added and the reaction mixture was warmed to room temperature. After stirring for 12 h , the reaction mixture was concentrated under reduced pressure and the crude product was used in the next reaction without further purification.

To a stirred solution of the crude product in acetone (0.6 mL) were added 2.7 M Jones reagent $(17 \mu \mathrm{~L}, 0.045 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 2 h and the reaction was quenched with 2-propanol ($50 \mu \mathrm{~L}$). Cold 1 M HCl aq. $(0.1 \mathrm{~mL})$ was added to dissolve the chromium waste and the mixture was partitioned between $17 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ and water (1 mL). The organic phase was collected and the aqueous phase was extracted with 17% MeOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ twice. The combined organic extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The residue was purified by PTLC ($\mathrm{MeOH} / \mathrm{EtOAc}=1 / 20$) to afford 29 (6.5 $\mathrm{mg}, 0.013 \mathrm{mmol}, 70 \%$ in two steps) as a clear oil.

$$
\mathrm{R} f=0.46(\mathrm{MeOH} / \mathrm{EtOAc}=1 / 10, \mathrm{UV}, \mathrm{Ce}-\mathrm{PMA}) ;[\alpha]_{\mathrm{D}}^{22}-107\left(c=0.27, \mathrm{CHCl}_{3}\right) ; \text { IR (neat) }
$$ 3384, 2973, 1792, 1763, 1734, 1671, 1654, $1149 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.54$ (d, $J=2.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{dd}, J=8.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{dd}, J=9.2,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.38$ (dd, $J=5.0,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.37$ (brs, 1 H), 4.29 (dd, $J=8.2,7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.84 (s, 3H), 3.61-3.58 (m, $2 \mathrm{H}), 2.65(\mathrm{dd}, J=13.7,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{dd}, J=13.7,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.19$ $(\mathrm{m}, 1 \mathrm{H}), 2.11-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.64(\mathrm{~s}, 9 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}), 0.55(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 177.1$ (C), 168.5 (C), 166.1 (C), 160.7 (C), 148.8 (C), 141.2 (C), 125.6 (CH), $117.4(\mathrm{C}), 110.0(\mathrm{CH}), 102.0(\mathrm{CH}), 85.0(\mathrm{C}), 68.6(\mathrm{C}), 61.0(\mathrm{CH}), 59.6(\mathrm{CH}), 59.0(\mathrm{CH}), 55.6(\mathrm{CH})$, $55.4(\mathrm{C}), 45.2\left(\mathrm{CH}_{2}\right), 43.5\left(\mathrm{CH}_{2}\right), 34.3\left(\mathrm{CH}_{2}\right), 31.4\left(\mathrm{CH}_{3}\right), 28.1\left(\mathrm{CH}_{3}\right), 27.6\left(\mathrm{CH}_{2}\right), 26.9\left(\mathrm{CH}_{3}\right), 23.6$ $\left(\mathrm{CH}_{2}\right)$; HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{O}_{7} \mathrm{~N}_{3} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 536.2373$, found 536.2386.

Spirotryprostatin A (1)

To a stirred solution of $29(5.3 \mathrm{mg}, 0.010 \mathrm{mmol})$ and $\mathrm{Na}_{2} \mathrm{SO}_{4}(5.0 \mathrm{mg})$ in toluene $(1.0 \mathrm{~mL})$ was added $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(5.9 \mathrm{mg}, 0.030 \mathrm{mmol})$ at room temperature and the resulting mixture was stirred at refluxing temperature for 19 h . The reaction mixture was quenched with saturated NaHCO_{3} aq. $(0.5 \mathrm{~mL})$ and partitioned between $17 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ and water $(0.5 \mathrm{~mL})$. The organic phase was collected and the aqueous phase was extracted with $17 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution (1 mL) twice. The combined organic extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The residue was purified by PTLC (n-hexane $/ \mathrm{EtOAc} / \mathrm{MeOH}=5 / 4 / 1$) to afford spirotryprostatin A (1) ($3.6 \mathrm{mg}, 0.0091 \mathrm{mmol}, 91 \%$) as a clear oil.

$$
\mathrm{R} f=0.45\left(\mathrm{MeOH} / \mathrm{CHCl}_{3}=1 / 20, \mathrm{UV}, \mathrm{PMA}\right) ;[\alpha]_{\mathrm{D}}^{24}-109\left(c=0.18, \mathrm{CHCl}_{3}\right) ; \text { IR (neat) }
$$ 2923, 1718, 1671, 1632, $1460 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.62(\mathrm{brs}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.50(\mathrm{dd}, J=8.4,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{dm}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{dd}, J$ $=10.5,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{dd}, J=7.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.64-3.54$ (m, 2H), $2.61(\mathrm{dd}, J=13.3,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{dd}, J=13.3,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.37-2.25(\mathrm{~m}, 2 \mathrm{H}), 2.08-$ $1.91(\mathrm{~m}, 2 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 180.8(\mathrm{C}), 167.1(\mathrm{C}), 166.9$ (C), $160.4(\mathrm{C}), 141.6(\mathrm{C}), 138.4(\mathrm{C}), 127.3(\mathrm{CH}), 121.3(\mathrm{CH}), 118.7(\mathrm{C}), 106.7(\mathrm{CH}), 96.6(\mathrm{CH})$, $61.0(\mathrm{CH}), 60.2(\mathrm{CH}), 60.2(\mathrm{C}), 58.5(\mathrm{CH}), 55.5\left(\mathrm{CH}_{3}\right), 45.2\left(\mathrm{CH}_{2}\right), 34.3\left(\mathrm{CH}_{2}\right), 27.4\left(\mathrm{CH}_{2}\right), 25.5$ $\left(\mathrm{CH}_{3}\right), 23.7\left(\mathrm{CH}_{2}\right), 18.0\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{O}_{4} \mathrm{~N}_{3} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 418.1743$, found 418.1758.

Electronic Supplementary Material (ESI) for Chemical Science

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Science

${ }^{1} \mathrm{H}$ NMR (400 MHz) in CDCl_{3}

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2013

${ }^{13} \mathrm{C}$ NMR (100 MHz) in CDCl_{3}

Electronic Supplementary Material (ESI) for Chemical Science

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2013

${ }^{13} \mathrm{C}$ NMR (100 MHz) in CDCl_{3}
I 14
TBSO

Electronic Supplementary Material (ESI) for Chemical Science
=

${ }^{1} \mathrm{H}$ NMR (400 MHz) in CDCl_{3}

Electronic Supplementary Material (ESI) for Chemical Science

${ }^{13} \mathrm{C}$ NMR (100 MHz) in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz})$ in CDCl_{3}

Electronic Supplementary Material (ESI) for Chemical Science

\qquad

Electronic Supplementary Material (ESI) for Chemical Science

${ }^{13} \mathrm{C}$ NMR (100 MHz) in CDCl_{3}

Electronic Supplementary Material (ESI) for Chemical Science

Electronic Supplementary Material (ESI) for Chemical Science

${ }^{13} \mathrm{C}$ NMR (100 MHz) in CDCl_{3}

H NMR (400 MHz) in CDCl_{3}

Electronic Supplementary Material (ESI) for Chemical Science

${ }^{13} \mathrm{C}$ NMR (100 MHz) in CDCl_{3}

Electronic Supplementary Material (ESI) for Chemical Science

8.50

Electronic Supplementary Material (ESI) for Chemical Science

${ }^{13} \mathrm{C}$ NMR (100 MHz) in CDCl_{3}

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2013

${ }^{1} \mathrm{H}$ NMR (400 MHz) in CDCl_{3}

Electronic Supplementary Material (ESI) for Chemical Science

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Science

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Science

${ }^{13} \mathrm{C}$ NMR (100 MHz) in CDCl_{3} ${ }^{13} \mathrm{C}$ NMR (100 MHz) in CDC

Electronic Supplementary Material (ESI) for Chemical Science

Electronic Supplementary Material (ESI) for Chemical Science

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2013

${ }^{1} \mathrm{H}$ NMR (400 MHz) in CDCl_{3}

Electronic Supplementary Material (ESI) for Chemical Science
${ }^{13} \mathrm{C}$ NMR (100 MHz) in CDCl_{3}
\qquad

H NMR (400 MHz) in CDCl_{3}

Electronic Supplementary Material (ESI) for Chemical Science

Electronic Supplementary Material (ESI) for Chemical Science

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2013
 MeO spirotryprostatin $\mathrm{A}(1)$
${ }^{1} \mathrm{H}$ NMR (400 MHz) in CDCl_{3}

Electronic Supplementary Material (ESI) for Chemical Science

