Supporting Information for

Synthesis and Energetics of Tp'Rh(P(OMe)₃)(R)H: A Systematic

Investigation of Ligand Effects on C-H Activation at Rhodium

Yunzhe Jiao, William W. Brennessel and William D. Jones*

Department of Chemistry, University of Rochester, Rochester, New York 14627

Experimental Procedures

Table S1-S2. Crystallographic Data for $Tp'Rh[P(OMe)_3]Cl_2$ (1) and $Tp'Rh[P(OMe)_3](CH_3)Cl$ (3)

Figures S3-S69. ¹H, ¹³C{¹H}, ¹⁹F and ³¹P{¹H} NMR spectra of complexes 1 - 5, 6a - 6p, 7b - 7f and 7p.

Figures S70-S84. ¹H NMR spectra of competition reactions.

Table S3. Summary of Kinetic Selectivity Data.

Tables S3-S45. Tables of kinetic data for rates for reductive elimination.

Figures S85-S105. Plots of kinetic data.

Table S46. Summary of thermodynamic data. All values are in kcal mol⁻¹.

Table S47. Summary of DFT calculated thermodynamic data (and notes for experimental calculations).

Computational Details.

Figure S-106. Plots of D(Rh-C) vs. D(C-H) in activation of nonsubstituted hydrocarbons at [Tp'Rh(L)] (L = P(OMe)₃, PMe₃ and CNR), in which C-H bond strengths of terminal alkynes were calculated using M06-2X vs B3LYP methods.

Table S48. Summary of alkynyl C-H bond energies in terminal alkynes calculated with different methods.

 Table S49. Calculated energies for Tp'Rh[P(OMe)₃](R)H complexes and fragments.

Table S50. Calculated coordinates for Tp'Rh[P(OMe)₃](R)H complexes and fragments.

EXPERIMENTAL SECTION

General Procedure. All operations and routine manipulations were performed under a nitrogen atmosphere, either on a high-vacuum line using modified Schlenk techniques or in a Vacuum Atmospheres Corp. Dri-Lab. Benzene- d_6 , THF- d_8 and cyclohexane- d_{12} were dried over CaH₂, and vacuum-distilled prior to use. All hydrocarbons used in reactions are either taken from an Innovative Technologies PS-MD-6 Solvent System or stirred over appropriate drving reagents. distilled, and transferred prior to use. Trimethylphosphite was purchased from Alfa Aesar and used without further purification. All ${}^{1}H$, ${}^{13}C{}^{1}H$, ${}^{19}F{}^{1}H$ and ${}^{31}P{}^{1}H$ NMR spectra were recorded on Bruker Avance 400 or 500 MHz NMR spectrometers. All ¹H chemical shifts are reported in ppm (δ) relative to the chemical shift of residual solvent (benzene- d_6 , δ 7.16; cyclohexane- d_{12} , δ 1.40; THF- d_8 , δ 3.58) or CDCl₃ (δ 7.26). ¹³C{¹H} were referenced to benzene $d_6(\delta 128.0)$, THF- $d_8(\delta 67.4)$, cyclohexane- $d_{12}(\delta 27.2)$ or CDCl₃($\delta 77.2$). ¹⁹F NMR spectra were referenced to external C₆F₅CF₃ in cyclohexane- $d_{12}(\delta 0.0)$. ³¹P{¹H} NMR spectra were referenced to external H₃PO₄ (δ 0.0). IR spectra were recorded in the solid state on a Nicolet 4700 FTIR spectrometer between 4000 and 600 cm⁻¹. All photolysis experiments were carried out using a water-filtered 200-W Hg-Xe lamp, which was fitted with a 270-370 nm band pass filter. Silica gel was heated overnight at 200 °C and then stored under nitrogen. A Bruker-AXS SMART platform diffractometer equipped with an APEX II CCD detector was used for X-ray crystal structure determination. Elemental analyses were performed by the University of Rochester using a Perkin-Elmer 2400 series II elemental analyzer in CHN mode. All kinetic plots and least-squares error analysis were done using Microsoft Excel.

For Tp'Rh[**P**(**OMe**)₃]**Cl**₂ (1). To a suspension of 100 mg (0.195 mmol) of Tp'Rh(CH₃CN)Cl₂ in 20 mL of C₆H₆ was added 34 uL (0.288 mmol) of trimethyl phosphite all at once. The reaction mixture was heated to reflux. A clear yellow-orange solution was observed within 10 min. After refluxing for 20 min, the solvent was evaporated and the crude product was washed with cold hexane to give light orange powders (100 mg, 86%). The product is air-stable and large orange crystals can be obtained from a CH₂Cl₂ solution layered with hexanes. ¹H NMR (400 MHz, C₆D₆): δ 2.11 (s, 6H, 2×pzCH₃), 2.13 (s, 3 H, pzCH₃), 2.79 (s, 6H, 2×pzCH₃), 3.22 (d, ³J_{PH} = 11.4 Hz, 9H, P(OMe)₃), 3.25 (s, 3H, pzCH₃), 5.48 (s, 2H, 2×pzH), 5.55 (d, ⁵J_{PC} = 3.1 Hz, 1H, pzH). ¹³C{¹H} NMR (500 MHz, C₆D₆): δ 12.30 (s, pzCH₃), 12.96 (s, 2×pzCH₃), 15.40 (s, pzCH₃), 16.09 (s, 2×pzCH₃), 52.61 (d, ²J_{PC} = 4.8 Hz, P(OCH₃)₃), 108.74 (d, ⁴J_{PC} = 7.8 Hz, pzCH), 109.94 (s, 2×pzCH), 142.29 (d, ³J_{PC} = 5.6 Hz, pzCq), 144.44 (s, 2×pzCq), 154.71 (d, ³J_{PC} = 7.2 Hz, pzCq), 156.24 (s, 2×pzCq). ³¹P{¹H} NMR (400 MHz, C₆D₆): δ 100.59 (d, ¹J_{RhP} = 161.9 Hz). Anal. Calcd for C₁₈H₃₁BCl₂N₆O₃PRh: C, 36.33; H, 5.25; N, 14.12. Found: C, 36.36; H, 5.28; N, 14.01.

For Tp'Rh[**P**(**OMe**)₃]**H**₂ (2). To a suspension of 100 mg (0.168 mmol) of **1** in 40 mL of C₆H₆ was added 56 mg (0.251 mmol) of Cp₂ZrH₂. The suspension was stirred for 1 h, giving a clear golden-brown solution. The product was purified by flash chromatography through silica gel in a frit funnel using 9:1 hexanes:THF as the eluent. Evaporation gave 88 mg (99%) of **2** as an white powder. ¹H NMR (400 MHz, C₆D₆): δ – 15.96 (dd, ¹*J* _{RhH} = 19.4 Hz, ²*J* _{PH} = 26.2 Hz, 2H, RhH₂), 2.20 (s, 3H, pzCH₃), 2.33 (s, 6H, 2×pzCH₃), 2.40 (s, 6H, 2×pzCH₃), 2.44 (s, 3H, pzCH₃), 3.26 (d, ³*J* _{PH} = 12.2 Hz, 9H, P(OMe)₃), 5.59 (s, 1H, pzH), 5.75 (s, 2H, 2×pzH). ¹³C {¹H} NMR (500 MHz, C₆D₆): 12.69 (s, pzCH₃), 12.94 (s, 2×pzCH₃), 15.11 (s, 2×pzCH₃), 16.79 (s, pzCH₃), 50.76 (s, P(OCH₃)₃), 105.27 (d, ⁴*J*_{PC} = 4.8 Hz, pzCH), 106.06 (s, 2×pzCH), 143.13 (d, ³*J*_{PC} = 4.1 Hz, pzCq), 143.81 (s, 2×pzCq), 149.77 (d, ³*J*_{PC} = 2.9 Hz, pzCq), 151.07 (s, 2×pzCq). ³¹P {¹H} NMR (400 MHz, C₆D₆): δ 153.83 (d, ¹*J* _{RhP} = 228.8 Hz). IR (cm⁻¹): 2512 (B-H), 2060 (Rh-H). UV-Vis (C₆H₆), λ, nm (ε, M⁻¹ cm⁻¹): 282 (1751) Anal. Calcd for C₁₈H₃₃BN₆O₃PRh·THF_{0.35}: C, 42.26; H, 6.54; N, 15.24. Found: C, 42.26; H, 6.47; N, 15.41. (see NMR Fig.S-4 for THF).

For Tp'Rh[P(OMe)₃](CH₃)Cl (3). To a stirred solution of 80 mg (0.134 mmol) of 1 in 10 mL

THF was added dropwise 49 μ L (0.147 mmol) of 3 M CH₃MgCl solution in THF. The color changed from orange to light yellow upon addition of the Grignard reagent. After stirring for 20 min, the reaction was quenched with a saturated solution of NH₄Cl (aq) until the reaction mixture was clear again. The volatiles were removed under vacuum. The solids were mixed with 5 mL of methylene chloride and filtered through celite to give a yellow solution, which was layered with hexane for recrystallization (73 mg, 94%). ¹H NMR (500 MHz, C₆D₆): δ 2.15 (s, 3H, pzCH₃), 2.16 (s, 3H, pzCH₃), 2.29 (s, 3H, pzCH₃), 2.34 (s, 3H, pzCH₃), 2.46 (t, ²J_{RhH} = ³J_{PH} = 2.0 Hz, 3H, CH₃), 2.82 (s, 3H, pzCH₃), 2.91 (s, 3H, pzCH₃), 3.15 (d, ²J_{PH} = 11.0 Hz, 9H, PMe₃), 5.52 (s, 1H, pzH), 5.53 (d, ⁵J_{PH} = 2.4 Hz, 1H, pzH), 5.72 (s, 1H, pzH). ¹³C{¹H} NMR (500 MHz, C₆D₆): δ 0.26 (dd, ¹J_{RhC} = 10.5 Hz, ²J_{PC} = 19.3 Hz, RhCH₃), 12.68 (s, pzCH₃), 12.82 (s, pzCH₃), 13.32 (s, pzCH₃), 14.33 (s, pzCH₃), 14.66 (s, pzCH₃), 15.05 (s, pzCH₃), 51.84 (d, ²J_{PC} = 4.8 Hz, P(OCH₃)₃), 108.10 (s, pzCH), 108.36 (d, ⁴J_{PC} = 6.1 Hz, pzCH), 109.02 (s, pzCH), 142.41 (d, ³J_{PC} = 4.6 Hz, pzCq), 143.22 (s, pzCq), 144.23 (s, pzCq), 152.42 (d, ³J_{PC} = 6.1 Hz, pzCq), 153.47 (s, pzCq), 153.89 (s, pzCq). ³¹P{¹H} NMR (400 MHz, C₆D₆): δ 116.05 (d, ¹J_{RhP} = 199.1 Hz). Anal. Calcd for C₁₉H₃₄BCIN₆O₃PRh: C, 39.71; H, 5.96; N, 14.62. Found: C, 40.01; H, 6.08; N, 14.46.

For Tp'Rh[P(OMe)₃](CH₃)H (4). To a yellow solution of 10 mg (0.017 mmol) of **3** in 0.5 mL THF was added 6 mg (0. 027 mmol) of Cp₂ZrH₂. The suspension was stirred for 1 h and changed from light yellow to white. A white crystalline solid (79%, NMR yield) was then isolated from the zirconium complexes by flash chromatography through silica gel in a pipette with a glass wool plug using 5:1 hexanes:THF as the eluent. ¹H NMR (400 MHz, C₆D₆): δ – 16.31 (dd, ¹J _{RhH} = 22.3 Hz, ²J _{PH} = 24.3 Hz, 1H, RhH), 1.15 (d, ²J_{RhH} = 2.0 Hz, 3H, CH₃), 2.20 (s, 3H, pzCH₃), 2.27 (s, 3H, pzCH₃), 2.33 (s, 3H, pzCH₃), 2.34 (s, 3H, pzCH₃), 2.54 (s, 3H, pzCH₃), 2.57 (s, 3H, pzCH₃), 3.22 (d, ³J _{PH} = 11.9 Hz, 9H, P(OCH₃)₃), 5.64 (s, 1H, pzH), 5.65 (s, 1H, pzH), 5.80 (s, 1H, pzH). ³¹P{¹H} NMR (400 MHz, C₆D₆): δ 146.00 (d, ¹J _{RhP} = 236.9 Hz). Other hydride resonances are attributable to Tp'Rh[P(OMe)₃](Cl)H (10%), Tp'Rh(P(OMe)₃)(furanyl)H (10%) and Tp'Rh[P(OMe)₃]H₂ (1%) (See SI for spectra). For Tp'Rh[P(OMe)₃](Cl)H (**5**). ¹H NMR (500 MHz, C₆D₆): δ -14.87 (dd, ¹J _{RhH} = 11.3 Hz, ²J _{PH} = 23.4 Hz, 1H, RhH). ³¹P{¹H} NMR (400 MHz, C₆D₆): δ 124.84 (d, ¹J _{RhP} = 191.3 Hz).

Preparation of Tp'Rh[P(OMe)₃](R)H (6)-general procedure. 50 mg (0.087 mmol) of **3** was used for *in situ* preparation of **4**, which was then dissolved in 0.6 mL of corresponding RH and transferred to a resealable 5 mm NMR tube. After the reaction is complete at room temperature, the solvent was removed in vacuo and the resulting residue was dissolved in C₆D₆. For activation of fluoromethane, dimethyl ether, and 3,3-trifluoro-1-propyne, **4** was dissolved in 1 mL of pentane and transferred to a high pressure NMR tube, followed by pressurization with 50 psi of the corresponding gas. The yield is almost quantitative for each reaction. ¹H, ¹³C{¹H}, ¹⁹F and ³¹P{¹H} NMR spectra were collected (See SI for spectra).

For Tp'Rh[**P(OMe)**₃](**Ph)H** (**6a**). Reaction was complete after standing overnight. The volatiles were removed to give white solids, which were dissolved in C₆D₆. **6a** can also be generated from photolysis of 10 mg of **2** in 0.6 mL of benzene at room temperature for 6 h. ¹H NMR (400 MHz, C₆D₆): δ – 14.88 (dd, ¹J_{RhH} = 20.5 Hz, ²J_{PH} = 23.1 Hz, 1H, RhH), 1.78 (s, 3H, pzCH₃), 2.16 (s, 3H, pzCH₃), 2.27 (s, 3H, pzCH₃), 2.28 (s, 3H, pzCH₃), 2.33 (s, 3H, pzCH₃), 2.40 (s, 3H, pzCH₃), 3.16 (d, ³J_{PH} = 11.3 Hz, 9H, P(OCH₃)₃), 5.51 (s, 1H, pzH), 5.66 (s, 1H, pzH), 5.90 (s, 1H, pzH), 6.84 (br, 1H, arylH), 7.00 (t, ³J_{HH} = 7.1 Hz, 1H, arylH), 7.96(br, 1H, arylH), other two aryH's are missing due to overlapping with the benzene peak. ³¹P{¹H} NMR (400 MHz, C₆D₆): δ 138.16 (d, ¹J_{RhP} = 235.3 Hz).

For Tp'Rh[P(OMe)₃](C₆D₅)D (6a- d_6). The resulting solution of 6a from 10 mg of 3 was dissolved in C₆D₆ and heated at 70 °C for 17 h. The ¹H NMR spectrum was identical to that of 6a except that the hydride signal had almost disappeared. A new set of resonances was observed for 6a- d_6 in the ³¹P{¹H} NMR spectrum along with a small quantity of residual 6a (16%). ³¹P{¹H}

NMR (400 MHz, C_6D_6): δ 138.32 (d, ${}^1J_{RhP}$ = 235.7 Hz).

For Tp'Rh[P(OMe)₃][CH₂C₆H₃-3,5-(CH₃)₂]H (6b). Reaction was complete after 2 d. ¹H NMR (400 MHz, C₆D₆): δ – 16.18 (t, ¹J_{RhH} = ²J_{PH} = 21.5 Hz, 1H, RhH), 2.20 (s, 3H, pzCH₃), 2.21 (s, 3H, pzCH₃), 2.27 (s, 6H, 2×arylCH₃), 2.28 (s, 3H, pzCH₃), 2.37 (s, 3H, pzCH₃), 2.68 (s, 3H, pzCH₃), 2.69 (s, 3H, pzCH₃), 3.08 (d, ³J_{PH} = 11.7 Hz, 9H, P(OCH₃)₃), 3.42 (br d, 1H, ²J_{HH} = 10.3 Hz, RhCH₂), 3.77 (dd, 1H, ²J_{HH} = 10.3 Hz, ²J_{RhH} = 3.0 Hz, RhCH₂), 5.59 (s, 1H, pzH), 5.61 (s, 1H, pzH), 5.84 (s, 1H, pzH), 6.70 (s, 1H, arylH), 7.22 (s, 2H, 2×arylH). ³¹P{¹H} NMR (400 MHz, C₆D₆): δ 144.12 (d, ¹J_{RhP} = 237.3 Hz).

For Tp'Rh[P(OMe)₃][CH=CHC(CH₃)₃]H (6c). Reaction of **3** and Cp₂ZrH₂ in *t*-butyl ethylene gave **4** as the initial product, which continued to react with the solvent to form **6c** after 2 d in this one-pot reaction. ¹H NMR (400 MHz, C₆D₆): δ – 15.43 (dd, ¹*J*_{RhH} = ²*J*_{PH} = 22.5 Hz, 1H, RhH), 1.15 (s, 9H, t-Bu), 2.17 (s, 3H, pzCH₃), 2.25 (s, 3H, pzCH₃), 2.30 (s, 3H, pzCH₃), 2.33 (s, 3H, pzCH₃), 2.55 (s, 3H, pzCH₃), 2.57 (s, 3H, pzCH₃), 3.24 (d, ³*J*_{PH} = 11.7 Hz, 9H, P(OCH₃)₃), 5.31 (d, ³*J*_{HH} = 15.7 Hz, 1H, RhCHC<u>H</u>), 5.64 (s, 1H, pzH), 5.68 (s, 1H, pzH), 5.89 (s, 1H, pzH), 6.87 (dd, ³*J*_{HH} = 15.7 Hz, ²*J*_{RhH} = 7.2 Hz, 1H, RhCH). ³¹P{¹H} NMR (400 MHz, C₆D₆): δ 142.23 (d, ¹*J*_{RhP} = 234.3 Hz).

For Tp'Rh[P(OMe)₃][CH₂OC(CH₃)₃]H (6d). The synthesis of 6d was identical to that of 6c except that *t*-butyl methyl ether was used as the solvent. ¹H NMR (400 MHz, C₆D₆): δ – 16.10 (dd, ¹J_{RhH} = 21.3 Hz, ²J_{PH} = 23.0 Hz, 1H, RhH), 1.24 (s, 9H, *t*Bu), 2.20 (s, 3H, pzCH₃), 2.25 (s, 3H, pzCH₃), 2.31 (s, 3H, pzCH₃), 2.32 (s, 3H, pzCH₃), 2.62(s, 3H, pzCH₃), 2.78 (s, 3H, pzCH₃), 3.39 (d, ²J_{PH} = 11.9 Hz, 9H, P(OCH₃)₃), 4.49 (m, 1H, RhCH₂), 4.90 (m, 1H, RhCH₂), 5.64 (s, 1H, pzH), 5.71 (s, 1H, pzH), 5.78 (s, 1H, pzH). ³¹P{¹H} NMR (400 MHz, C₆D₆): δ 145.11 (d, ¹J_{RhP} = 245.3 Hz).

For Tp'Rh[P(OMe)₃](CH₂C=CCH₃)H (6e). The synthesis of 6e was identical to that of 6c except that 2-butyne was used as the solvent and the reaction was complete after 3 d. ¹H NMR (400 MHz, C₆D₆): δ – 15.95 (dd, ¹*J*_{RhH} = ²*J*_{PH} = 21.1 Hz, 1H, RhH), 1.61 (br, 3H, CH₃), 2.18 (s, 3H, pzCH₃), 2.22 (s, 3H, pzCH₃), 2.30 (s, 6H, 2×pzCH₃), 2.41 (dt, ¹*J*_{HH} = 13.1 Hz, ²*J*_{RhH} = ³*J*_{PH} = 2.9 Hz, 2H, RhCH₂), 2.55 (s, 3H, pzCH₃), 2.85 (s, 3H, pzCH₃), 3.36 (d, ³*J*_{PH} = 11.8 Hz, 9H, P(OCH₃)₃), 5.62 (s, 1H, pzH), 5.66 (s, 1H, pzH), 5.75 (s, 1H, pzH). ³¹P{¹H} NMR (400 MHz, C₆D₆): δ 142.41 (d, ¹*J*_{RhP} = 234.7 Hz).

For Tp'Rh[P(OMe)₃][CH₂C(O)CH₃]H (6f). The synthesis of 6f was identical to that of 6c except that acetone was used as the solvent and the reaction was complete after standing overnight. ¹H NMR (400 MHz, C₆D₆): δ – 15.77 (dd, ¹J_{RhH} = ²J_{PH} = 20.4 Hz, 1H, RhH), 1.86 (s, 3H, CH₃), 2.15 (s, 3H, pzCH₃), 2.17 (s, 3H, pzCH₃), 2.19 (s, 3H, pzCH₃), 2.32 (s, 3H, pzCH₃), 2.58 (s, 3H, pzCH₃), 2.71 (s, 3H, pzCH₃), 2.79 (m, 1H, RhCH₂), 2.95 (m, 1H, RhCH₂), 3.22 (d, ³J_{PH} = 11.8 Hz, 9H, P(OCH₃)₃), 5.54 (s, 1H, pzH), 5.62 (s, 1H, pzH), 5.84 (s, 1H, pzH). ³¹P{¹H} NMR (400 MHz, C₆D₆): δ 141.13 (d, ¹J_{RhP} = 226.4 Hz).

For Tp'Rh[P(OMe)₃](CH₂F)H (6g). Reaction was complete after two weeks. ¹H NMR (400 MHz, C₆D₆): δ – 15.83 (dt, ¹J_{RhH} = ²J_{PH} = 22.4 Hz, ³J_{FH} = 15.6 Hz, 1H, RhH), 2.17 (s, 3H, pzCH₃), 2.23 (s, 3H, pzCH₃), 2.27 (s, 3H, pzCH₃), 2.28 (s, 3H, pzCH₃), 2.49 (s, 3H, pzCH₃), 2.75 (s, 3H, pzCH₃), 3.30 (d, ³J_{PH} = 12.0 Hz, 9H, P(OCH₃)₃), 5.62 (s, 1H, pzH), 5.66 (s, 1H, pzH), 5.71 (s, 1H, pzH), 6.32 (dq, ²J_{RhH} = ³J_{PH} = ²J_{HH} = 3.1 Hz, ²J_{FH} = 49.5 Hz, 1H, RhCH₂), 6.70 (ddt, ²J_{RhH} = ²J_{HH} = 2.9 Hz, ³J_{PH} = 8.3 Hz, ²J_{FH} = 49.8 Hz, 1H, RhCH₂). ¹⁹F NMR (400 MHz, C₆D₆): -137.72 (m). ³¹P{¹H} NMR (400 MHz, C₆D₆): δ 144.29 (dd, ¹J_{RhP} = 238.5 Hz, ³J_{FP} = 7.7 Hz). As the commercial CH₃F contains 16% impurity of dimethyl ether, a second hydride species was cosynthesized as Tp'Rh[P(OMe)₃](CH₂OMe)H (6h) : ¹H NMR (400 MHz, C₆D₆): δ -16.06 (t, ¹J_{RhH} = ²J_{PH} = 2J₁Hz, 1H, RhCH), ³¹P{¹H} NMR (400 MHz, C₆D₆): δ 145.06 (d, ¹J_{RhP} = 243.1 Hz).

For Tp'Rh[**P**(**OMe**)₃][**C**≡**CC**(**CH**₃)₃]**H** (6i). Reaction was not complete after a week at ambient temperature. The solvent was removed and the residue was dissolved in 0.5 mL of C₆D₆. The solution was heated at 140 °C for 0.5 h. White crystals of **6h** were grown from 1:1 hexane: ether solution at room temperature. ¹H NMR (500 MHz, C₆D₆): δ –15.05 (dd, ¹*J*_{RhH} = 19.4 Hz, ²*J*_{PH} = 24.7 Hz, 1H, RhH), 1.40 (s, 9H, C(CH₃)₃), 2.12 (s, 3H, pzCH₃), 2.23 (s, 3H, pzCH₃), 2.28 (s, 3H, pzCH₃), 2.32 (s, 3H, pzCH₃), 2.87 (s, 3H, pzCH₃), 2.88 (s, 3H, pzCH₃), 3.32 (d, ³*J*_{PH} = 11.9 Hz, 9H, PMe₃), 5.54 (s, 1H, pzH), 5.60 (s, 1H, pzH), 5.79 (s, 1H, pzH). ¹³C {¹H} NMR (500 MHz, C₆D₆): δ 12.61 (s, pzCH₃), 12.86 (s, pzCH₃), 12.89 (s, pzCH₃), 14.76 (s, pzCH₃), 15.58 (s, pzCH₃), 16.45 (s, pzCH₃), 29.83 (s, <u>C</u>(CH₃)₃), 33.01 (s, C(<u>CH</u>₃)₃), 51.41 (d, ²*J*_{PC} = 2.1 Hz, P(OCH₃)₃), 74.57 (dd, ¹*J*_{RhC} = 30.0 Hz, ²*J*_{PC} = 43.7 Hz, Rh-<u>C</u>C), 106.12 (d, ⁴*J*_{PC} = 5.6 Hz, pzCH), 106.46 (s, pzCH), 107.12 (s, pzCH), 112.51 (d, ²*J*_{RhC} = 9.8 Hz, Rh-C<u>C</u>), 142.88 (d, ³*J*_{PC} = 4.4 Hz, pzCq), 143.48 (s, pzCq). ³¹P {¹H} NMR (400MHz, C₆D₆): δ 134.43 (d, ¹*J*_{RhP} = 202.2 Hz). IR (cm⁻¹): *v* 1975, 2028, 2160 (C≡C). Anal. Calcd for C₂₄H₄₁BN₆PRh: C, 47.54; H, 6.82; N, 13.86. Found: C, 47.61; H, 6.70; N, 13.81.

For Tp'Rh[**P**(**OMe**)₃][**C≡CSi**(**CH**₃)₃]**H** (6j). The synthesis was identical to that of 6i except that **4** was dissolved in 0.6 mL of ethynyltrimethylsilane. ¹H NMR (500MHz, C₆D₆): δ -14.69 (dd, ¹J_{RhH} = 19.5 Hz, ²J_{PH} = 24.0 Hz, 1H, RhH), 0.33 (s, 9H, Si(CH₃)₃), 2.10 (s, 3H, pzCH₃), 2.21 (s, 3H, pzCH₃), 2.25 (s, 3H, pzCH₃), 2.31 (s, 3H, pzCH₃), 2.86 (s, 6H, 2*pzCH₃), 3.31 (d, ³J_{PH} = 11.9 Hz, 9H, P(OCH₃)₃), 5.50 (s, 1H, pzH), 5.58 (s, 1H, pzH), 5.76 (s, 1H, pzH). ¹³C{¹H} NMR (500MHz, C₆D₆): δ 1.74 (s, Si(CH₃)₃) 12.60 (s, pzCH₃), 12.83 (s, pzCH₃), 12.87 (s, pzCH₃), 14.79 (s, pzCH₃), 15.52 (s, pzCH₃), 16.63 (s, pzCH₃), 51.63 (d, ²J_{PC} = 2.6 Hz, P(OCH₃)₃), 106.25 (d, ⁴J_{PC} = 5.5 Hz, pzCH), 106.55 (s, pzCH), 107.27 (pzCH), 111.31 (d, ²J_{RhC} = 8.4 Hz, Rh-C<u>C</u>), 119.60 (dd, ¹J_{RhC} = 28.4 Hz, ²J_{PC} = 41.4 Hz, Rh-<u>C</u>C), 143.01 (d, ³J_{PC} = 4.5 Hz, pzCq), 143.61 (s, pzCq), 144.15 (s, pzCq), 151.37 (s, pzCq), 151.49 (d, ³J_{PC} = 4.2 Hz, pzCq), 153.61 (s, pzCq). ³¹P{¹H} NMR (400 MHz, C₆D₆): δ 133.18 (d, ¹J_{RhP} = 200.4 Hz). IR (cm⁻¹): ν 1976, 2044, 2160 (C≡C). Anal. Calcd for C₂₃H₄₁BN₆PRh: C, 44.39; H, 6.64; N, 13.50. Found: C, 44.51; H, 6.72; N, 13.50.

For Tp'Rh[P(OMe)₃](C=C*n***-hexyl)H (6k). The synthesis was identical to that of 6i** except that **4** was dissolved in 0.6 mL of 1-octyne. ¹H NMR (500 MHz, C₆D₆): δ -14.97 (dd, ¹*J*_{RhH} = 19.4 Hz, ²*J*_{PH} = 24.5 Hz, 1H, RhH), 0.89 (t, 3H, CH₂(CH₂)₄C<u>H₃</u>), 1.29 (quintet, 4H, hexyl), 1.52 (m, 2H, hexyl), 1.64 (quintet, 2H, hexyl), 2.14 (s, 3H, pzCH₃), 2.23 (s, 3H, pzCH₃), 2.30 (s, 3H, pzCH₃), 2.35 (t, 2H, C<u>H₂(CH₂)₄CH₃), 2.90 (s, 6H, 2×pzCH₃), 3.34 (d, ²*J*_{PH} = 11.9 Hz, 9H, PMe₃), 5.56 (s, 1H, pzH), 5.61 (s, 1H, pzH), 5.79 (s, 1H, pzH). ¹³C{¹H} NMR (500 MHz, C₆D₆): δ 12.64 (s, pzCH₃), 12.86 (s, pzCH₃), 22.50 (s, <u>CH₂(CH₂)₄CH₃), 23.22 (s, hexyl), 29.23 (s, hexyl), 31.38 (s, hexyl), 32.18 (s, hexyl), 51.47 (d, ³*J*_{PC} = 2.2 Hz, P(OCH₃)₃), 76.40 (dd, ¹*J*_{RhC} = 29.6 Hz, ²*J*_{PC} = 43.8 Hz, Rh-<u>C</u>C), 103.25 (d, ²*J*_{RhC} = 9.9 Hz, Rh-C<u>C</u>), 106.12 (d, ⁴*J*_{PC} = 5.6 Hz, pzCH), 106.49 (s, pzCH), 107.11 (s, pzCH), 142.85 (d, ³*J*_{PC} = 4.7 Hz, pzCq), 143.45 (s, pzCq), 144.05 (s, pzCq), 151.30 (d, ³*J*_{PC} = 4.2 Hz, pzCq), 151.32 (s, pzCq), 153.35 (s, pzCq). ³¹P{¹H} NMR (400 MHz, C₆D₆): δ 134.77 (d, ¹*J*_{RhP} = 202.6 Hz). IR (cm⁻¹): *v* 1977, 2026, 2159 (C**=**C). Anal. Calcd for C₂₆H₄₅BN₆O₃PRh: C, 49.23; H, 7.15; N, 13.25. Found: C, 48.85; H, 7.13; N, 13.25.</u></u>

For Tp'Rh[P(OMe)₃](C=CCF₃)H (6l). The exchange reaction was almost complete after 2 d at ambient temperature. The volatiles were removed and the residue was dissolved in 0.5 mL of C₆D₆. The solution was heated at 140 °C for 2 h. Colorless crystals of **6**l were grown from 1:1 hexane: ether solution at room temperature. ¹H NMR (500 MHz, C₆D₆): δ -14.41 (dd, ¹*J*_{RhH} = 19.7 Hz, ²*J*_{PH} = 23.7 Hz, 1 H, RhH), 2.09 (s, 3H, pzCH₃), 2.17 (s, 3H, 2×pzCH₃), 2.28 (s, 3H, pzCH₃), 2.72(s, 3H, pzCH₃), 2.73 (s, 3H, pzCH₃), 3.14 (d, ³*J*_{PH} = 12.1 Hz, 9H, P(OCH₃)₃), 5.44 (s, 1 H, pzH), 5.54 (s, 1 H, pzH), 5.69 (s, 1 H, pzH). ¹⁹F NMR (400 MHz, C₆D₆): δ 18.13 (s, 3F's).

 $^{31}P{^{1}H}$ NMR (400 MHz, C₆D₆): δ 131.48 (d, $^{1}J_{RhP}$ = 192.2 Hz).

For Tp'Rh[**P**(**OMe**)₃](**C**≡**CPh**)**H** (**6m**). The synthesis was identical to that of **6i** except that **4** was dissolved in 0.6 mL of phenylacetylene. ¹H NMR (500 MHz, THF-*d*₈): δ -15.09 (dd, ¹*J*_{RhH} = 18.8 Hz, ²*J*_{PH} = 24.1 Hz, 1 H, RhH), 2.17 (s, 3H, pzCH₃), 2.28 (s, 3H, pzCH₃), 2.37 (s, 3H, pzCH₃), 2.42 (s, 3H, pzCH₃), 2.53 (s, 3 H, pzCH₃), 2.62 (s, 3H, pzCH₃), 3.51 (d, ³*J*_{PH} = 11.9 Hz, 9H, P(OCH₃)₃), 5.64 (s, 1H, pzH), 5.74 (s, 1H, pzH), 5.75 (s, 1H, pzH), 6.95 (t, *J* = 7.0 Hz, 1H, Ph-*p*), 7.07 (t, *J* = 7.3 Hz, 2 H, Ph-*m*), 7.16 (d, *J* = 7.2 Hz, 2 H, Ph-*o*). ¹³C{¹H} NMR (500 MHz, THF-*d*₈): δ 12.65 (s, pzCH₃), 12.80 (s, pzCH₃), 12.87 (s, pzCH₃), 14.58 (s, pzCH₃), 15.51 (s, pzCH₃), 16.12 (s, pzCH₃), 51.93 (d, ²*J*_{PC} = 2.3 Hz, P(OCH₃)₃), 97.76 (dd, ¹*J*_{RhC} = 29.7 Hz, ²*J*_{PC} = 44.7 Hz, Rh-<u>C</u>C), 106.09 (d, ⁴*J*_{PC} = 5.5 Hz, pzCH), 106.81 (s, pzCH),106.88 (d, ²*J*_{RhC} = 10.5 Hz, Rh-C<u>C</u>), 107.29 (s, pzCH), 124.66 (s, Ph-*p*), 128.29 (s, 2 C's, Ph-*m*), 130.78 (s, *ipso* C of Ph), 131.39 (s, 2 C's, Ph-*o*), 143.54 (d, ³*J*_{PC} = 4.5 Hz, pzCq), 144.11 (s, pzCq), 144.91 (s, pzCq), 151.40 (d, ³*J*_{PC} = 4.2 Hz, pzCq), 151.78 (s, pzCq), 153.65 (s, pzCq). ³¹P{¹H} NMR (400 MHz, C₆D₆): δ 133.25 (d, ¹*J*_{RhP} = 199.0 Hz). IR (cm⁻¹): *v* 1976, 2029, 2160 (C≡C). Anal. Calcd for C₂₆H₃₇BN₆O₃PRh: C, 49.86; H, 5.95; N, 13.42. Found: C, 50.14; H, 5.89; N, 13.24.

For Tp'Rh[**P**(**OMe**)₃](**C**≡**CC**₆**H**₄**-***p***-OMe**)**H** (**6n**). The synthesis was identical to that of **6i** except that **4** was dissolved in 0.6 mL of 4-ethynylanisole. ¹H NMR (500 MHz, C₆D₆): δ -14.65 (dd, ¹*J*_{RhH} = 19.2 Hz, ²*J*_{PH} = 24.3 Hz, 1H, RhH), 2.15 (s, 3H, pzCH₃), 2.24 (s, 3H, pzCH₃), 2.30 (s, 3H, pzCH₃), 2.34 (s, 3H, pzCH₃), 2.91 (s, 3H, pzCH₃), 2.91 (s, 3H, pzCH₃), 3.28 (s, 3H, OCH₃), 3.32 (d, ²*J*_{PH} = 11.9 Hz, 9H, P(OCH₃)₃), 5.52 (s, 1H, pzH), 5.62 (s, 1H, pzH), 5.77 (s, 1H, pzH), 6.79 (d, *J* = 8.8 Hz, 2H, *p*-OMePh-*m*), 7.50 (d, *J* = 8.8 Hz, 2H, *p*-OMePh-*o*). ¹³C NMR (500 MHz, C₆D₆): δ 12.63 (s, pzCH₃), 12.85 (s, pzCH₃), 12.92 (s, pzCH₃), 14.66 (s, pzCH₃), 15.59 (s, pzCH₃), 16.39 (s, pzCH₃), 51.62 (d, ²*J*_{PC} = 2.5 Hz, P(OCH₃)₃), 54.79 (s, OCH₃), 93.37 (dd, ¹*J*_{RhC} = 30.1 Hz, ²*J*_{PC} = 44.4 Hz, Rh-<u>C</u>C), 106.27 (d, ²*J*_{RhC} = 9.0 Hz, Rh-C<u>C</u>), 106.29 (d, ⁴*J*_{PC} = 6.2 Hz, pzCH), 106.60 (s, pzCH), 107.28 (s, pzCH), 114.04 (s, 2 C's, *p*-OMePh-*m*), 123.12 (s, *ipso* C of *p*-OMePh), 132.35 (s, 2 C's, *p*-OMePh-*o*), 142.99 (d, ³*J*_{PC} = 4.6 Hz, pzCq), 143.60 (s, pzCq), 144.21 (s, pzCq), 151.48 (d, ³*J*_{PC} = 5.5 Hz, pzCq), 153.50 (s, pzCq), 157.66 (s, ipso <u>C</u>OMe of Ph). ³¹P NMR (400 MHz, C₆D₆): δ 133.46 (d, ¹*J*_{RhP} = 199.9 Hz). IR (cm⁻¹): *v* 1977, 2026, 2159 (C≡C).

For $Tp'Rh[P(OMe)_3](C \equiv CC_6H_4-p-CF_3)H$ (60). The exchange reaction was almost complete after 2 d at ambient temperature. White crystals of **60** were grown from 1:1 hexane:THF solution at room temperature. ¹H NMR (500 MHz, C₆D₆): δ -14.58 (dd, ¹J_{RhH} = 19.1 Hz, ²J_{PH} = 24.1 Hz, 1 H, RhH), 2.14 (s, 3H, pzCH₃), 2.24 (s, 3H, pzCH₃), 2.27 (s, 3H, pzCH₃), 2.33 (s, 3H, pzCH₃), 2.80 (s, 3H, pzCH₃), 2.81 (s, 3H, pzCH₃), 3.26 (d, ${}^{2}J_{P-H} = 12.0$ Hz, 9H, P(OMe)₃), 5.53 (s, 1H, pzH), 5.61 (s, 1H, pzH), 5.78 (s, 1H, pzH), 7.34 (s, 4H, aryl H's). ¹³C{¹H} NMR (500 MHz, C₆D₆): δ 12.59 (s, pzCH₃), 12.82 (s, pzCH₃), 12.90 (s, pzCH₃), 14.54 (s, pzCH₃), 15.55 (s, pzCH₃), 16.28 (s, pzCH₃), 51.49 (d, ${}^{2}J_{PC} = 2.4$ Hz, P(OCH₃)₃), 104.43 (dd, ${}^{1}J_{RhC} = 29.3$ Hz, ${}^{2}J_{PC} = 2.4$ Hz, P(OCH₃)₃), 104.43 (dd, ${}^{1}J_{RhC} = 29.3$ Hz, ${}^{2}J_{PC} = 2.4$ Hz, P(OCH₃)₃), 104.43 (dd, ${}^{1}J_{RhC} = 29.3$ Hz, ${}^{2}J_{PC} = 2.4$ Hz, P(OCH₃)₃), 104.43 (dd, ${}^{1}J_{RhC} = 29.3$ Hz, ${}^{2}J_{PC} = 2.4$ Hz, P(OCH₃)₃), 104.43 (dd, ${}^{1}J_{RhC} = 29.3$ Hz, ${}^{2}J_{PC} = 2.4$ Hz, P(OCH₃)₃), 104.43 (dd, ${}^{1}J_{RhC} = 29.3$ Hz, ${}^{2}J_{PC} = 2.4$ Hz, P(OCH₃)₃), 104.43 (dd, ${}^{1}J_{RhC} = 29.3$ Hz, ${}^{2}J_{PC} = 2.4$ Hz, P(OCH₃)₃), 104.43 (dd, ${}^{1}J_{RhC} = 29.3$ Hz, ${}^{2}J_{PC} = 2.4$ Hz, P(OCH₃)₃), 104.43 (dd, ${}^{1}J_{RhC} = 29.3$ Hz, ${}^{2}J_{PC} = 2.4$ Hz, P(OCH₃)₃), 104.43 (dd, {}^{1}J_{RhC} = 29.3 Hz, ${}^{2}J_{PC} = 2.4$ Hz, P(OCH₃)₃), 104.43 (dd, {}^{1}J_{RhC} = 29.3 Hz, ${}^{2}J_{PC} = 2.4$ Hz, P(OCH₃)₃), 104.43 (dd, {}^{1}J_{RhC} = 29.3 Hz, ${}^{2}J_{PC} = 2.4$ Hz, P(OCH₃)₃), 104.43 (dd, {}^{1}J_{RhC} = 29.3 Hz, ${}^{2}J_{PC} = 2.4$ Hz, P(OCH₃)₃), 104.43 (dd, {}^{1}J_{RhC} = 29.3 Hz, ${}^{2}J_{PC} = 2.4$ Hz, P(OCH₃)₃), 104.43 (dd, {}^{1}J_{RhC} = 2.4 44.8 Hz, Rh-<u>C</u>C), 106.33 (d, ${}^{4}J_{PC}$ = 5.5 Hz, pzCH), 106.47 (d, ${}^{2}J_{Rh-C}$ = 10.1 Hz, Rh-C<u>C</u>), 106.72 (s, pzCH), $10\overline{7}.34$ (s, pzCH), 125.22 (q, ${}^{3}J_{F-C} = 3.8$ Hz, 2C, p-CF₃-C₆H₄-m), 126.23 (q, ${}^{2}J_{FC} = 32.0$ Hz, ipso CCF₃ of Ph), 131.33 (s, 2C, p-CF₃-C₆H₄-o), 133.74 (s, ipso C of p-CF₃Ph), 143.27 (d, ${}^{3}J_{PC} = 4.6$ Hz, pzCq), 143.83 (s, pzCq), 144.42 (s, pzCq), 151.33 (d, ${}^{3}J_{PC} = 4.2$ Hz, pzCq), 151.54 (s, pzCq), 153.36 (s, pzCq), resonances for CF₃ is not detected due to multiple couplings. ¹⁹F NMR (400 MHz, C₆D₁₂): δ 1.34 (s). ³¹P{¹H} NMR (400 MHz, C₆D₆): δ 133.15 (d, ¹J_{RhP} = 197.8 Hz). IR (cm⁻¹): v 1975, 2024, 2160 (C≡C). Anal. Calcd for C₂₇H₃₆BF₃N₆O₃PRh: C, 46.71; H, 5.23; N, 12.10. Found: C, 47.19; H, 5.00; N, 11.95.

For Tp'Rh[P(OMe)₃](*n*-pentyl)H (6p). No reaction was observed after 2 h. Decomposition occurred after longer reaction times. 6p was prepared from photolysis of Tp'Rh[P(OMe)₃]H₂ (2). A solution of 2 with pentane was irradiated for 10 min at 10 °C. The solvent was removed in

vacuo and the resulting pale yellow residue was dissolved in THF- d_8/C_6D_6 (NMR yield: 39%). ¹H NMR (400 MHz, THF- d_8/C_6D_6): δ -16.59 (t, ¹ $J_{RhH} = {}^2J_{PH} = 22.9$ Hz, 1H, RhH), 1.53 (m, 1H, pentyl), 1.70 (m, 2H, pentyl), 1.96 (m, 2H, pentyl)), 2.06 (s, 3H, pzCH₃), 2.13 (s, 3H, pzCH₃), 2.17 (s, 6H, 2×pzCH₃), 2.36 (s, 3H, pzCH₃), 2.38 (s, 3H, pzCH₃), 3.18 (d, ${}^3J_{PH} = 10.9$ Hz, 9H, P(OMe)₃), 3.34 (m, 2H, RhCH₂), 5.53 (s, 1H, pzH), 5.61 (s, 1H, pzH), 5.73 (s, 1H, pzH), other pentyl resonances are overlapping with those of solvent residues. ³¹P{¹H} NMR (400 MHz, THF- d_8/C_6D_6): δ 146.5 (d, ¹ $J_{RhP} = 241.9$ Hz).

For Tp'Rh[P(OMe)₃][CH₂C₆H₃-3,5-(CH₃)₂]Br (7b). To the resulting solution of 6b (0.087 mmol, \sim 50 mg) in mesitylene, 31 µL of CHBr₃ (0.35 mmol) was added. The mixture was stirred for 10 min at room temperature. The volatiles were removed under vacuum and the crude product was purified as orange solids (9.8 mg, 16%) by chromatography using 5:1 hexane-THF as the eluent. ¹H NMR (500 MHz, C₆D₆): δ 2.04 (s, 3H, pzCH₃), 2.05 (s, 6H, 2×arylCH₃), 2.24 (s, 3H, pzCH₃), 2.24 (s, 3H, pzCH₃), 2.28 (s, 3H, pzCH₃), 2.71 (s, 3H, pzCH₃), 2.85 (s, 3H, pzCH₃), 3.15 (d, ${}^{2}J_{PH} = 10.8$ Hz, 9H, P(OMe)₃), 4.59 (ddd, ${}^{2}J_{HH} = 12.8$ Hz, ${}^{2}J_{RhH} = 7.2$ Hz, ${}^{3}J_{PH} = 1.5$ Hz, 1H, RhCH₂), 5.43 (d, ${}^{5}J_{PH} = 1.9$ Hz, 1H, pzH), 5.44 (s, 1H, pzH), 5.53 (dd, ${}^{3}J_{PH} = 2.5$ Hz, ${}^{2}J_{HH} = 12.8$ Hz, 1H, RhCH₂), 5.70 (s, 1H, pzH), 6.29 (s, 2H, arylH), 6.61 (s, 1H, arylH). ¹³C¹H} NMR (500 MHz, C₆D₆): δ 12.74 (s, pzCH₃), 13.02 (s, pzCH₃), 13.26 (s, pzCH₃), 15.39 (s, pzCH₃), 15.42 (s, pzCH₃), 15.64 (s, pzCH₃), 18.58 (dd, ${}^{1}J_{RhC} = 9.7$ Hz, ${}^{2}J_{PC} = 20.0$ Hz, RhCH₂), 21.46 (s, $2 \times arylCH_3$), 52.56 (d, ${}^2J_{PC} = 6.0$ Hz, P(OCH₃)₃), 108.36 (s, pzCH), 108.52 (d, ${}^4J_{PC} = 6.6$ Hz, pzCH), 108.54 (s, pzCH), 125.42 (s, 2×arylCH), 135.48 (s, 2×arylCq), 142.66 (d, ${}^{4}J_{PC} = 4.6$ Hz, pzCq), 143.66 (s, pzCq), 143.98 (s, pzCq), 148.74 (s, arylCq), 154.27 (s, pzCq), 154.37 (s, pzCq), 154.46 (d, ${}^{3}J_{PC} = 6.4$ Hz, pzCq), one aryCq peak is missing probably overlapped with the residual peaks of C_6D_6 . ³¹P{¹H} NMR (400 MHz, C_6D_6): δ 112.62 (d, ¹J_{RbP} = 196.6 Hz).

For Tp'Rh[P(OMe)₃][CH=CHC(CH₃)₃]Br (7c). To the resulting solution of 6c (0.052 mmol, ~30 mg) in *t*-butylethylene, 23 μL of CHBr₃ (0.26 mmol) was added. The mixture was stirred overnight at room temperature. Orange-yellow crystals (31.1 mg, 87.1%) were grown from THF/hexane. ¹H NMR (400 MHz, C₆D₆): δ 1.17 (s, 9H, *t*Bu), 2.14 (s, 3H, pzCH₃), 2.14 (s, 3H, pzCH₃), 2.27 (s, 3H, pzCH₃), 2.40 (s, 3H, pzCH₃), 2.86 (s, 3H, pzCH₃), 2.90 (s, 3H, pzCH₃), 3.16 (d, ³*J*_{PH} = 10.7 Hz, 9H, P(OCH₃)₃), 5.03 (d, ³*J*_{HH} = 14.6 Hz, 1H, RhCHC<u>H</u>), 5.62 (s, 1H, pzH), 5.69 (s, 2H, 2×pzH), 7.60 (ddd, ³*J*_{HH} = 14.5 Hz, ²*J*_{RhH} = 2.3 Hz, ³*J*_{PH} = 7.9 Hz, 1H, RhCH). ¹³C {¹H} NMR (500 MHz, C₆D₆): δ12.80 (s, pzCH₃), 12.89 (s, pzCH₃), 13.32 (s, pzCH₃), 15.29 (s, pzCH₃), 16.78 (s, pzCH₃), 17.41 (s, pzCH₃), 30.43 (s, C(<u>C</u>H₃)₃), 35.47 (s, <u>C</u>(CH₃)₃), 52.67 (d, ²*J*_{PC} = 6.4 Hz, P(OCH₃)₃), 108.21 (s, pzCH), 108.28 (d, ⁴*J*_{PC} = 6.5 Hz, pzCH), 108.71 (s, pzCH), 126.83 (dd, ¹*J*_{RhC} = 13.6 Hz, ²*J*_{PC} = 24.0 Hz, Rh<u>C</u>HCH), 142.47 (d, ³*J*_{PC} = 4.8 Hz, pzCq), 143.54 (s, pzCq), 143.97 (s, pzCq), 144.85 (s, RhCH<u>C</u>H), 152.93 (s, pzCq), 153.32 (d, ³*J*_{PC} = 6.3 Hz, pzCq), 154.38 (s, pzCq). ³¹P {¹H} NMR (400 MHz, C₆D₆): δ110.90 (d, ¹*J*_{RhP} = 195.8 Hz). Anal. Calcd for C₂₄H₄₂BBrN₆O₃PRh: C, 41.95; H, 6.16; N, 12.23. Found: C, 41.44; H, 6.06; N, 12.09.

For Tp'Rh[P(OMe)₃][CH₂OC(CH₃)₃]**Br** (7d). To the resulting solution of **6d** (0.087 mmol, ~50 mg) in *t*-butyl methyl ether, 0.2 ml of CHBr₃ (2.3 mmol) was added. The mixture was stirred for 10 min at room temperature. Most volatiles were removed under vacuum and the crude product was purified as yellow solids (12.6 mg, 21%) by chromatography with 3:1 hexane-THF as the eluent. ¹H NMR (400 MHz, C₆D₆): δ 1.29 (s, 9H, *t*Bu), 2.12 (s, 3H, pzCH₃), 2.16 (s, 3H, pzCH₃), 2.28 (s, 3H, pzCH₃), 2.59 (s, 3H, pzCH₃), 2.89 (s, 3H, pzCH₃), 3.03 (s, 3H, pzCH₃), 3.16 (d, ³*J*_{PH} = 11.0 Hz, 9H, P(OCH₃)₃), 5.52 (s, 1H, pzH), 5.56 (d, ²*J*_{RhH} = 3.1 Hz, 1H, RhCH₂), 5.63 (s, 1H, pzH), 5.71 (s, 1H, pzH), 6.40 (d, ²*J*_{RhH} = 3.0 Hz, 1H, RhCH₂). ¹³C{¹H}</sup> NMR (500 MHz, C₆D₆): δ 12.73 (s, pzCH₃), 12.95 (s, pzCH₃), 13.46 (s, pzCH₃), 15.10 (s, pzCH₃), 15.53 (s, pzCH₃), 15.97 (s, pzCH₃), 28.15 (s, C(<u>C</u>H₃)₃), 52.03 (d, ²*J*_{PC} = 5.4 Hz, P(OCH₃)₃), 54.98 (dd, ¹*J*_{RhC} = 7.1 Hz, ²*J*_{PC} = 20.1 Hz, RhCH₂), 73.91 (s, <u>C</u>(CH₃)₃), 108.02 (s, pzCH), 108.75 (d, ⁴*J*_{PC} = 5.9 Hz, pzCH), 108.83 (s, pzCH), 142.63 (s, pzCq), 142.67 (d, ³*J*_{PC} = 4.6 Hz, pzCq), 144.70 (s, pzCq), 152.72 (d,

 ${}^{3}J_{PC} = 6.5$ Hz, pzCq), 153.70 (s, pzCq), 154.49 (s, pzCq). ${}^{31}P\{{}^{1}H\}$ NMR (400 MHz, C₆D₆): δ 112.64 (d, ${}^{1}J_{RhP} = 205.6$ Hz). Anal. Calcd for C₂₃H₄₂BBrN₆O₄PRh THF_{0.5}: C, 41.29; H, 6.38; N, 11.56. Found: C, 41.37; H, 6.31; N, 11.56. (see NMR Fig.S-58 for THF).

For Tp'Rh(P(OMe)₃)(CH₂C=CCH₃)Br (7e). To the resulting solution of **6e** (0.087 mmol, ~50 mg) in *t*-butyl methyl ether, 0.1 mL of CHBr₃ (1.1 mmol) was added. The mixture was stirred for 1 d at room temperature. Most volatiles were removed under vacuum and the crude product was purified as orange-yellow solids (14.5 mg, 25%) by chromatography with 5:1 hexane-THF as the eluent. ¹H NMR (500 MHz, C₆D₆): δ 1.06 (t, *J* = 2.6 Hz, 3H, CH₃), 2.17 (s, 3H, pzCH₃), 2.17 (s, 3H, pzCH₃), 2.28 (s, 3H, pzCH₃), 2.60 (s, 3H, pzCH₃), 2.79 (s, 3H, pzCH₃), 3.06 (d, ³*J*_{PH} = 10.9 Hz, 9H, P(OCH₃)₃), 3.16 (s, 3H, pzCH₃), 3.61 (m, 1H, RhCH₂), 4.60 (quintet of d, ²*J*_{RhH} = 13.5 Hz, *J*₂ = 2.8 Hz, 1H, RhCH₂), 5.63 (d, ⁴*J*_{RhH} = 2.0 Hz, 1H, pzH), 5.67 (s, 1H, pzH), 5.69 (s, 1H, pzH). ¹³C{¹H} NMR (500 MHz, C₆D₆): δ -1.98 (dd, ¹*J*_{RhC} = 10.5 Hz, ²*J*_{PC} = 19.1 Hz, RhCH₂), 4.60 (s, CH₃), 12.92 (s, pzCH₃), 12.94 (s, pzCH₃), 13.38 (s, pzCH₃), 14.98 (s, pzCH₃), 15.45 (s, pzCH₃), 15.50 (s, pzCH₃), 52.17 (d, ²*J*_{PC} = 5.3 Hz, P(OCH₃)₃), 75.44 (s, RhCH₂CC), 88.60 (s, RhCH₂CC), 108.09 (d, ⁴*J*_{PC} = 6.3 Hz, pzCH), 108.46 (s, pzCH), 108.62 (s, pzCH), 142.10 (d, ³*J*_{PC} = 4.4 Hz, pzCq), 143.56 (s, 2×pzCq), 153.71 (s, pzCq), 153.74 (d, ³*J*_{PC} = 6.9 Hz, pzCq), 154.62 (s, pzCq). ³¹P{¹H} NMR (400 MHz, C₆D₆): δ 115.12 (d, ¹*J*_{RhP} = 192.4 Hz).

For Tp'Rh[P(OMe)₃](CH₂C(O)CH₃)**Br** (7f). To the resulting solution of **6c** (0.052 mmol, ~30 mg) in *t*-butylethylene, 4.6 μL of CHBr₃ (0.052 mmol) was added. The mixture was stirred overnight at room temperature. Yellow crystals (30.5 mg, 89%) were grown from THF/hexane. ¹H NMR (400 MHz, C₆D₆): δ 1.72 (s, 3H, pzCH₃), 2.11 (s, 3H, pzCH₃), 2.12 (s, 3H, pzCH₃), 2.20 (s, 3H, pzCH₃), 2.47 (s, 3H, CH₃), 2.76 (s, 3H, pzCH₃), 2.94 (s, 3H, pzCH₃), 3.08 (d, ³*J*_{PH} = 10.7 Hz, 9H, P(OCH₃)₃), 4.06 (m, 1H, RhCH₂), 4.36 (dd, ²*J*_{HH} = 9.7 Hz, ²*J*_{RhH} =1.5 Hz, 1H, RhCH₂), 5.50 (s, 1H, pzH), 5.58 (s, 1H, pzH), 5.61 (s, 1H, pzH). ¹³C {¹H} NMR (500 MHz, C₆D₆): δ 12.79 (s, pzCH₃), 21.94 (dd, ¹*J*_{RhC} = 10.1 Hz, ²*J*_{PC} = 21.0 Hz, RhCH₂), 29.60 (s, CH₃), 53.07 (d, ¹*J*_{PC} = 7.2 Hz, P(OCH₃)₃), 108.64 (s, pzCH), 109.33 (d, ⁴*J*_{PC} = 4.7 Hz, pzCH), 109.35 (s, pzCH), 143.09 (d, ³*J*_{PC} = 4.5 Hz, pzCq), 143.86 (s, pzCq), 144.55 (s, pzCq), 153.82 (d, ³*J*_{PC} = 6.9 Hz, pzCq), 154.15 (s, pzCq), 154.69 (s, pzCq), 215.23 (s, C(O)). ³¹P {¹H} NMR (400 MHz, C₆D₆): δ 105.84 (d, ¹*J*_{RhP} = 190.6 Hz). Anal. Calcd for C₂₁H₃₆BBrN₆O₄PRh·THF_{0.5}: C, 39.62; H, 5.78; N, 12.05. Found: C, 39.63; H, 5.44; N, 11.35. (see NMR Fig.S-64 for THF).

For Tp'Rh[P(OMe)₃](*n*-pentyl)Cl (7p). Pentylmagnesiumchloride (0.100 mL of a 2 M solution in THF, 0.200 mmol) was added dropwise to 100 mg (0.168 mmol) of Tp'Rh[P(OMe)₃]Cl₂ in 15 mL of THF. During addition of the Grignard reagent, the color of the solution changed from orange to yellow. The reaction mixture was stirred for an extra 20 min. 1.5 mL of saturated NH_4Cl (aq) solution was added to quench the reaction. The volatiles were removed under vacuum and 5 mL of methylene chloride was added to give a yellow slurry. This mixture was filtered through celite and layered with hexanes for recrystallization. Light yellow crystal clusters were collected (78.8 mg, 74%) and dissolved in C₆D₆. ¹H NMR (500 MHz, C₆D₆): δ 0.84 (t, ³J_{HH} = 7.2 Hz, 3H, pentyl), 1.30 (sextet, ${}^{3}J_{H-H} = 7.3$ Hz, 2H, pentyl), 1.47 (m, 2H, pentyl), 1.59 (m, 2H, pentyl), 2.13 (s, 3H, pzCH₃), 2.15 (s, 3H, pzCH₃), 2.27 (s, 3H, pzCH₃), 2.42 (s, 3H, pzCH₃), 2.76 (s, 3H, pzCH₃), 2.92 (s, 3H, pzCH₃), 3.15 (d, ${}^{2}J_{PH} = 10.8$ Hz, 9H, P(OMe)₃), 3.27 (m, 1H, RhCH₂), 4.02 (m, 1H, RhCH₂), 5.59 (s, 1H, pzH), 5.66 (s, 1H, pzH), 5.69 (s, 1H, pzH). ¹³C{¹H} NMR (500 MHz, C₆D₆): δ 12.82 (s, pzCH₃), 12.87 (s, pzCH₃), 13.47 (s, pzCH₃), 14.61 (s, 2C's, pzCH₃ and pentyl-CH₃), 14.70 (s, pzCH₃), 14.74 (s, pzCH₃), 23.19 (s, pentyl-CH₂), 32.51 (s, pentyl-CH₂), 35.32 (s, pentyl-CH₂), 52.02 (d, ${}^{1}J_{PC} = 5.2$ Hz, P(OCH)₃)₃), 20.43 (dd, ${}^{1}J_{RhC} = 8.9$ Hz, ${}^{2}J_{PC} = 19.6$ Hz, RhCH₂), 108.01 (s, pzCH), 108.21 (d, ${}^{4}J_{PC} = 5.9$ Hz, pzCH), 108.71 (s, pzCH), 142.68 (d, ${}^{4}J_{PC}$ = 4.4 Hz, pzCq), 143.29 (s, pzCq), 144.27 (s, pzCq), 152.68 (d, ${}^{3}J_{PC}$ = 6.4 Hz, pzCq), 153.23 (s, pzCq), 153.96 (s, pzCq). ³¹P{¹H} NMR (400 MHz, C₆D₆): δ 114.22 (d,

 ${}^{1}J_{RhP} = 201.7$ Hz). Anal. Calcd for C₂₃H₄₂BClN₆O₃PRh·hexane_{0.25}: C, 45.11; H, 7.03; N, 12.88. Found: C, 45.07; H, 6.98; N, 12.84. (see NMR Fig.S-67 for hexane).

formula	C18 H31 B Cl2 N6 O3 P Rh
formula weight	595.08
crystal system	Monoclinic
space group	$P2_{1}/n$
Ζ	4
<i>a</i> , Å	10.677(3)
<i>b</i> , Å	12.392(3)
<i>c</i> , Å	18.636(4)
b, deg	90.104(5)
<i>V</i> , Å ³	2465.8(10)
crystal dimensions, mm	0.32 x 0.20 x 0.08
Т, К	100.0(1)
theta range for data collection, deg	1.09 to 37.78
reflections collected	73278
absorption coefficient, mm ⁻¹	1.006
max. and min. transmission	0.9238 and 0.7389
R_1/R_2	0.0445/ 0.0836
goodness of fit	1.071
largest diff. peak and hole, e.Å ⁻³	1.279 and -1.653

Table S-1.	Crystallographic Data for	$Tp'Rh[P(OMe)_3]Cl_2(1)$
------------	---------------------------	--------------------------

formula	C19 H34 B CI N6 O3 P Rh
formula weight	574.66
ormatal system	Manaalinia
crystal system	Monochine
space group	$P2_{1}/n$
Ζ	8
<i>a</i> , Å	19.0753(11)
<i>b</i> , Å	8.1941(5)
<i>c</i> , Å	33.2922(19)
<i>V</i> , Å ³	5002.7(5)
crystal dimensions, mm	0.32 x 0.12 x 0.08
Т, К	100.0(1)
theta range for data collection, deg	1.93 to 34.97
reflections collected	138012
absorption coefficient, mm ⁻¹	0.886
max. and min. transmission	0.9166 and 0.7895
R_1/R_2	0.0614/ 0.1272
goodness of fit	1.048
largest diff. peak and hole, e.Å ⁻³	1.037 and -1.172

Table S-2.	Crystallographic Data	for Tp'Rh[P(OMe) ₃](CH	(3)Cl(3)
------------	-----------------------	------------------------------------	----------

Figure S-5. ¹³C $\{^{1}H\}$ NMR for Tp'Rh[P(OMe)_3]H₂ (2) in C₆D₆.

Figure S-6. ${}^{31}P{}^{1}H{}$ NMR for Tp'Rh[P(OMe)₃]H₂ (2) in C₆D₆.

Figure S-12. ¹H NMR for Tp'Rh[P(OMe)₃](Ph)H (6a) in C₆D₆. X denotes Cp₂ZrHCl.

Figure S-14. ${}^{31}P{}^{1}H$ NMR for Tp'Rh[P(OMe)_3](C_6D_5)D (6a-d_6) in C_6D_6.

Figure S-17. ¹H NMR for Tp'Rh[P(OMe)₃](CH=CHC(CH₃)₃)H (6c) in C₆D₆. **X** denotes Cp₂ZrHCl; **Y** denotes Cp₂ZrCl₂ and presumable cyclopentadienyl resonances; **Z** denotes 3,3-dimethyl-1-butene.

Figure S-18. ³¹P{¹H} NMR for Tp'Rh[P(OMe)₃](CH=CHC(CH₃)₃)H (6c) in C₆D₆.

Figure S-19. ¹H NMR for Tp'Rh[P(OMe)₃](CH₂OC(CH₃)₃)H (6d) in C₆D₆. **X** denotes Cp₂ZrHCl; **Y** denotes 2-methoxy-2-methylpropane; **H1** denotes two isomers of Tp'Rh[P(OMe)₃](H₄furanyl)H; **H2** denotes Tp'Rh[P(OMe)₃]H₂ (2).

Figure S-20. ³¹P{¹H} NMR for Tp'Rh[P(OMe)₃](CH₂OC(CH₃)₃)H (6d) in C₆D₆.

Figure S-21. ¹H NMR for Tp'Rh[P(OMe)₃](CH₂C=C==CH₃)H (6e) in C₆D₆. X denotes Cp₂ZrHCl.

Figure S-23. ¹H NMR for Tp'Rh[P(OMe)₃](CH₂C(O)CH₃)H (**6f**) in C₆D₆. **X** denotes Cp₂ZrHCl; **Y** denotes impurity in acetone as shown in the ¹H NMR spectrum of Tp'Rh[PMe₃](CH₂C(O)CH₃)H in ref 25; **H1** denotes Tp'Rh[P(OMe)₃](Cl)H (**5**); **H2** denotes Tp'Rh[P(OMe)₃]H₂ (**2**).

Figure S-24. ³¹P{¹H} NMR for Tp'Rh[P(OMe)₃](CH₂C(O)CH₃)H **(6f)** in C₆D₆.

Figure S-27.¹⁹F NMR for Tp'Rh[P(OMe)₃](CH₂F)H (6g) in C₆D₆.

Figure S-28. ¹H NMR of Tp'Rh[P(OMe)₃](C=CC(CH₃)₃)H (6i) in C₆D₆. H1 denotes Tp'Rh[P(OMe)₃](Cl)H (5); H2 denotes Tp'Rh[(P(OMe)₃]H₂ (2); H3 denotes Tp'Rh[P(OMe)₃](CH₃)H (4).

Figure S-30. ${}^{31}P{}^{1}H$ NMR of Tp'Rh[P(OMe)₃](C=CC(CH₃)₃)H (6i) in C₆D₆.

Figure S-33. ${}^{31}P{}^{1}H$ NMR of Tp'Rh[P(OMe)_3](C=CSi(CH_3)_3)H (6j) in C₆D₆.

Figure S-34. ¹H NMR of Tp'Rh[P(OMe)₃](C=C*n*-hexyl)H (6k) in C₆D₆. H1 denotes Tp'Rh[P(OMe)₃](C1)H (5); H2 denotes Tp'Rh[P(OMe)₃]H₂ (2).

Figure S-43. ¹H NMR for Tp'Rh[P(OMe)₃]($C \equiv CC_6H_4$ -*p*-OMe)H (6n) in C₆D₆. H1 denotes Tp'Rh[P(OMe)₃](Cl)H (5); H2 denotes Tp'Rh[P(OMe)₃](furanyl)H; H3 denotes Tp'Rh[P(OMe)₃]H₂ (2).

Figure S-46. ¹H NMR for Tp'Rh[P(OMe)₃](C=CC₆H₄-*p*-CF₃)H (**60**) in C₆D₆. **H1** denotes Tp'Rh[P(OMe)₃](Cl)H (**5**); **H2** denotes Tp'Rh[P(OMe)₃](furanyl)H; **H3** denotes Tp'Rh[P(OMe)₃]H₂ (**2**).

mixture with $Tp'Rh[P(OMe)_3]H_2$ (2)).

Tp'Rh(P(OMe)₃)H₂ Tp'Rh(P(OMe)₃) (n-pentyl)H Figure S-51. ³¹P{¹H} NMR for Tp'Rh[P(OMe)₃](n-pentyl)H (6p) in THF- d_8/C_6D_6 . hexane, pentane 3.4 f1 (ppm) 5.4 4.4 2.4 1.4 6.4 Figure S-52. ¹H NMR for Tp'Rh[P(OMe)₃](CH₂C₆H₃-3,5-(CH₃)₂)Br (7b) in C₆D₆. 139 138 137 136 135 152 151 53.5 53.0 52.5 52.0 36 34 32 30 28 26 24 22 20 18 16 14 12 Figure S-53. ${}^{13}C{}^{1}H{}$ NMR for Tp'Rh[P(OMe)_3](CH₂C₆H₃-3,5-(CH₃)₂)Br (7b) in C₆D₆.

X denotes *n*-pentane; Y denotes *n*-hexane.

130 125 120 115 110 Figure S-54. ³¹P{¹H} NMR for Tp'Rh[P(OMe)₃](CH₂C₆H₃-3,5-(CH₃)₂)Br (7b) in C₆D₆.

S-28

Figure S-60. ³¹P{¹H} NMR for Tp'Rh[P(OMe)₃](CH₂OC(CH₃)₃)Br (7d) in C₆D₆.

Figure S-63. ³¹P{¹H} NMR for Tp'Rh[P(OMe)₃](CH₂C=CCH₃)Br (7e) in C₆D₆.

Figure S-66. ³¹P{¹H} NMR for Tp'Rh[P(OMe)₃](CH₂C(O)CH₃)Br (7f) in C₆D₆.

Figure S-73. ¹H NMR for competition between *t*-butylmethylether and benzene. Due to overlap of **6d** with **2** in hydride area, the ratio was calculated based on the integration of pzCH₃ area for **6d** and **6a** (integration from 2.750 to 2.820 for **6d**; 1.733 to 1.830 for **6a**). The ratio of **6a** and **6d** is 1.2164.

Figure S-74. ¹H NMR for competition between 2-butyne and benzene. Due to overlap of **6e** with **2** in hydride area, the ratio was calculated based on the integration of CH₃ area for **6e** and pzCH₃ area for **6a** (integration from 1.730 to 1.844 for **6a**; 1.579 to 1.655 for **6e**). The ratio of **6a** and **6e** is 1.4517.

7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 Figure S-75. ¹H NMR for competition between acetone and benzene.

Figure S-77. ³¹P{¹H} NMR for competition between fluoromethane, dimethylether and benzene (due to the ambiguity of assignment in ¹H NMR, integration of ³¹P{¹H} NMR resonances is used instead to calculate the ratio of Tp'Rh(P(OMe)₃)(CH₂F)H (**6g**) and Tp'Rh(P(OMe)₃)(CH₂OMe)H (**6h**) relative to Tp'Rh(P(OMe)₃)(C₆H₅)H (**6a**)). X denotes
an unknow compound, which probably has a set of doublet signals (the other singlet peak is presumably overlapping with that of Tp'Rh(P(OMe)₃)(CH₂F)H **(6g)** at 145.05 ppm.

Figure S-78. ¹H NMR for competition between *t*-butylacetylene and benzene.

Figure S-79. ¹H NMR for competition between ethynyltrimethylsilane and benzene.

Figure S-80. ¹H NMR for competition between 1-octyne and benzene. Due to overlap of **6a** and **6k** in hydride area, the ratio was calculated based on the integration of pzCH₃ area for **6a** and **6k** (integration from 2.256 to 2.285 for **6a**; 2.292 to 2.305 for **6k**). The ratio of **6a** and **6k** is 5.9554.

Electronic Supplementary Material (ESI) for Chemical Science This journal is O The Royal Society of Chemistry 2013

Figure S-82. ¹H NMR of 3,3,3-trifluoro-1-propyne vs *t*-butylethylene in C_6D_{12} . **X** denotes an unknown hydride.

Figure S-83. ¹H NMR of phenylacetylene vs benzene. The ratio of **6a** and **6m** is approximately (1.8666-0.3037): 1 due to overlapping with an unknown hydride.

Figure S-84. ¹H NMR of 4-ethynyl- α , α , α -trifluorotoluene vs benzene.

substrate2: substrate 1	<i>n</i> ₂ : <i>n</i> ₁	<i>I</i> ₂ : <i>I</i> ₁	k 2: k 1	$\Delta\Delta G_{oa}^{\ddagger}$
benzene:methane	0.5781	0.8475	1.4660	0.2152
benzene: mesitylene	0.6852	1.2618	1.8416	0.3193
benzene: t-butylethylene	1.3891	9.7329	7.0066	1.0955
benzene: t-butyl methyl ether	0.4642	1.2164	2.6205	0.5038
benzene: 2-butyne	1.1489	1.4517	1.2636	0.1316
benzene: acetone	0.1548	0.4286	2.7689	0.5427
benzene: pentane	0.5556	1.8868	3.3961	0.6710
benzene: fluoromethane	0.6659	0.5051	0.7585	-0.1556
benzene: dimethylether	2.2642	1.4493	0.6401	-0.2510
benzene: t-butylacetylene	1.0536	5.1445	4.8826	0.8922
benzene: ethynyltrimethylsilane	0.7510	2.5111	3.3439	0.6792
benzene: 1-octyne	1.4271	5.9554	4.1731	0.8039
benzene: 4-ethynylanisole	2.2068	6.0107	2.7237	0.5638
t-butylethylene: 3,3,3-trifluoro-1-propyne	5.1870	0.1360	0.02623	-1.9040
benzene: phenylacetylene	1.1186	1.5629	1.3972	0.1882
benzene: 4-ethynyl- α , α , α -trifluorotoluene	1.8765	2.2335	1.1903	0.09801

Table S-3. Summary of kinetic selectivity data

Figure S-85: Reductive elimination of benzene from $Tp'Rh[P(OMe)_3](C_6H_5)H$ (6a) at 70.0 °C.

Table S-4: Kinetic data for reductive elimination of benzene from $Tp'Rh[P(OMe)_3](C_6H_5)H$ (6a) at 70.0 °C. Hydride integration was measured relative to an internal standard (hexamethyldisiloxane).

Time (sec)	Hydride Area	Ln(conc)
0	21.4127	-3.540350443
3600	18.873	-3.666602318
11010	14.5922	-3.923847508
20615	10.4599	-4.256785749
27335	8.3437	-4.482827884
34355	6.5949	-4.718038024
41555	5.1753	-4.960437339
47869	4.057	-5.203890863
55605	3.2802	-5.416430251
63355	2.5932	-5.651442013

Table	S-5.	Regression	data	for	reductive	elimination	of	benzene	from
Tp'Rh[F	P(OMe))3](C6H5)H (68	a) at 70	.0 °C.					

Regression Statistics				
Multiple R	0.999656466			
R Square	0.999313051			
Adjusted R Square	0.999227182			
Standard Error	0.02042887			
Observations	10			

	df	SS	MS	F	Significance F
Regression	1	4.856861555	4.856861555	11637.6964	6.09082E-14
Residual	8	0.00333871	0.000417339		
Total	9	4.860200265			

	Coefficients	Standard Error	t Stat	P-value
Intercept	-3.55480812	0.011506939	-308.927336	1.3497E-17
Slope	-3.36476E-05	3.11904E-07	-107.8781553	6.09082E-14
				_
Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%	
-3.581343169	-3.52827307	-3.581343169	-3.52827307	
-3.43668E-05	-3.29283E-05	-3.43668E-05	-3.29283E-05	

Figure S-86: Reductive elimination of benzene from Tp'Rh[P(OMe)₃](C₆H₅)H (6a) at 80.0 °C.

Table S-6: Kinetic data for reductive elimination of benzene from $Tp'Rh[P(OMe)_3](C_6H_5)H$ (6a) at 80.0 °C. Hydride integration was measured relative to an internal standard (hexamethyldisiloxane).

Time (sec)	Hydride Area	Ln(conc)
0	24.9791	-3.540350443
1200	21.4785	-3.691337483
3000	16.8973	-3.931236072
5010	12.9893	-4.194263977
6810	10.3475	-4.421644974
8610	8.2878	-4.643605364
10410	6.6451	-4.864510177
12210	5.2575	-5.09873429
14010	4.2174	-5.319171094
15810	3.3905	-5.537412515
17610	2.7125	-5.760519199

Table S-7. Regression data for reductive elimination of benzene from $Tp'Rh[P(OMe)_3](C_6H_5)H$ (6a) at 80.0 °C.

Regression Statistics				
Multiple R	0.99992897			
R Square	0.999857945			
Adjusted R Square	0.999842162			
Standard Error	0.009435767			
Observations	11			

	df	SS	MS	F	Significance F
Regression	1	5.640009179	5.640009179	63346.90078	1.25561E-18
Residual	9	0.000801303	8.90337E-05		
Total	10	5.640810482			

	Coefficients	Standard Error	t Stat	P-value
Intercept	-3.551578757	0.005165178	-687.6004959	1.48187E-22
Slope	-1.26061E-04	5.0086E-07	-251.6881022	1.25561E-18
				_
Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%	-
-3.563263201	-3.539894313	-3.563263201	-3.539894313	-
-1.27194E-04	-1.24928E-04	-1.27194E-04	-1.24928E-04	

Figure S-87. Reductive elimination of benzene from $Tp'Rh[P(OMe)_3](C_6H_5)H$ (6a) at 90.0 °C.

Table S-8. Kinetic data for reductive elimination of benzene from $Tp'Rh[P(OMe)_3](C_6H_5)H$ (6a) at 90.0 °C. Hydride integration was measured relative to an internal standard (hexamethyldisiloxane).

Time (sec)	Hydride Area	Ln(conc)
0	28.6911	-3.540350443
360	24.2074	-3.710279042
900	18.8072	-3.962697638
1500	14.1422	-4.247774178
1980	11.401	-4.463236342
2580	8.6787	-4.736065665
3060	6.9611	-4.956599905
3660	5.3255	-5.224430809
4260	3.9228	-5.530131729
4860	3.1067	-5.763376344

Table S-9. Regression data for reductive elimination of benzene from $Tp'Rh[P(OMe)_3](C_6H_5)H$ (6a) at 90.0 °C.

Regression Statistics				
Multiple R	0.999889224			
R Square	0.99977846			
Adjusted R Square	0.999750767			
Standard Error	0.012018205			
Observations	10			

	df	SS	MS	F	Significance F
Regression	1	5.214586504	5.214586504	36102.7806	6.58732E-16
Residual	8	0.001155498	0.000144437		
Total	9	5.215742002			

	Coefficients	Standard Error	t Stat	P-value
Intercept	-3.548364046	0.006772589	-523.9302275	1.97235E-19
Slope	-4.59901E-04	2.42044E-06	-190.0073172	6.58732E-16
Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%	
-3.563981664	-3.532746428	-3.563981664	-3.532746428	-
-4.65482E-04	-4.54319E-04	-4.65482E-04	-4.54319E-04	

Figure S-88: Reductive elimination of benzene from $Tp'Rh[P(OMe)_3](C_6H_5)H$ (6a) at 100.0 °C.

Table S-10: Kinetic data for reductive elimination of benzene from $Tp'Rh[P(OMe)_3](C_6H_5)H$ (6a) at 100.0 °C. Hydride integration was measured relative to an internal standard (hexamethyldisiloxane).

Time (sec)	Hydride Area	Ln(conc)
0	8.9777	-4.608285052
46	8.5655	-4.655286269
120	7.1925	-4.82998996
240	6.0184	-5.008207333
380	4.9624	-5.201139282
520	4.1073	-5.390262898
660	3.4168	-5.574324336
800	2.9387	-5.72506147
940	2.4172	-5.920418931
1140	1.8328	-6.197183924
1320	1.4904	-6.403984236
1560	1.0942	-6.713005274

Table	S-11.	Regression	data	for	reductive	elimination	of	benzene	from
Tp'Rh[I	P(OMe)	3](C6H5)H (6a) at 100).0 °C	۱ ۲-				

Regression Statistics				
Multiple R	0.998784654			
R Square	0.997570786			
Adjusted R Square	0.997327864			
Standard Error	0.035895379			
Observations	12			

	df	SS	MS	F	Significance F
Regression	1	5.291209341	5.291209341	4106.557059	2.08387E-14
Residual	10	0.012884782	0.001288478		
Total	11	5.304094124			

	Coefficients	Standard Error	t Stat	P-value
Intercept	-4.656586762	0.016984045	-274.1741849	1.02464E-20
Slope	-1.33939E-03	2.0901E-05	-64.08242395	2.08387E-14
				_
Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%	-
-4.694429573	-4.618743951	-4.694429573	-4.618743951	-
-1.38596E-03	-1.29282E-03	-1.38596E-03	-1.29282E-03	

Figure S-89. Eyring Plot for Reductive Elimination of benzene in Tp'Rh[P(OMe)₃](C₆H₅)H (6a).

Table S-12: Kinetic data for Eyring Plot of reductive elimination of benzene from Tp'Rh[P(OMe)₃](C₆H₅)H (6a).

Т	<i>k</i> , s ⁻¹	1/T	log(<i>k</i> /T)
373.15	1.33939E-03	0.002679887	-5.444977204
363.15	4.59901E-04	0.002753683	-5.89742192
353.15	1.26061E-04	0.002831658	-6.447379772
343.15	3.36476E-05	0.002914177	-7.00853022
Calculated:			
303.15	7.92057E-08		

Regression Statistics				
Multiple R	0.999628512			
R Square	0.999257162			
Adjusted R	0 0088857/3			
Square	0.990000740			
Standard	0.022611266			
Error	0.022011200			
Observations	4			

Table S-13. Regression data for Eyring Plot of reductive elimination of benzene from Tp'Rh[P(OMe)₃](C₆H₅)H **(6a)**.

	df	SS	MS	F	Significance F
Regression	1	1.375507532	1.375507532	2690.377367	3.71488E-04
Residual	2	0.001022539	0.000511269		
Total	3	1.37653007			
		Ctondord			-

	Coefficients	Standard Error	t Stat	P-value
Intercept	12.56785555	0.362001335	34.71770499	0.000828625
Slope	-6715.00185	129.4611726	-51.86884775	3.71488E-04
Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%	
11.01028952	14.12542159	11.01028952	14.12542159	_
-7272.028317	-6157.975382	-7272.028317	-6157.975382	

Figure S-90: Reductive elimination of methane from $Tp'Rh[P(OMe)_3](CH_3)H$ (4) at 30.0 °C.

Table S-14: Kinetic data for reductive elimination of methane from $Tp'Rh[P(OMe)_3](CH_3)H$ (4). Hydride integration was measured relative to an internal standard (hexamethyldisiloxane).

Time (sec)	Hydride Area	Ln(conc)
0	11.2194	-3.540350443
563	9.3612	-3.721421378
1125	7.9671	-3.882674304
1689	6.6719	-4.060090189
2252	5.6266	-4.230489514
2814	4.759	-4.397957304
3376	4.0198	-4.566762716
3938	3.3905	-4.737017463
4500	2.8177	-4.922073916
5063	2.3645	-5.097428283
5625	2.0635	-5.233591296
6187	1.7556	-5.395184187
6750	1.4648	-5.576276151
7312	1.2066	-5.770188379

Regression Statistics					
Multiple R	0.999872438				
R Square	0.999744892				
Adjusted R	0 000723633				
Square	0.333723033				
Standard	0.011815775				
Error	0.011010110				
Observations	14				

Table S-15. Regression data for reductive elimination of methane from $Tp'Rh[P(OMe)_3](CH_3)H$ (4).

	df	SS	MS	F	Significance F
Regression	1	6.565535578	6.565535578	47026.83122	6.21882E-23
Residual	12	0.001675351	0.000139613		
Total	13	6.567210928			
	Coefficients	Standard Error	t Stat	P-value	_
Intercept	-3.547714346	0.005992909	-591.9853476	3.63568E-28	-
Slope	-0.000302057	1.39289E-06	-216.8567067	6.21882E-23	
				_	-
Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%	_	
-3.560771773	-3.534656919	-3.560771773	-3.534656919	-	
-3.05092E-04	-2.99022E-04	-3.05092E-04	-2.99022E-04		
				-	

Figure S-91: Reductive elimination of mesitylene from $Tp'Rh[P(OMe)_3](CH_2C_6H_3-3,5-(CH_3)_2)H$ (6b) at 19.7 °C.

Table S-16: Kinetic data for reductive elimination of mesitylene from $Tp'Rh[P(OMe)_3](CH_2C_6H_3-3,5-(CH_3)_2)H$ (6b). Hydride integration was measured relative to an internal standard (hexamethyldisiloxane).

Time (sec)	Hydride Area	Ln(conc)
0	425.95	-3.540350443
138	391.69	-3.624201701
277	389.05	-3.630964541
416	333.12	-3.786169626
555	330.24	-3.794852749
693	312.53	-3.849971947
832	307.42	-3.866457521
971	305.27	-3.873475781
1110	291.47	-3.919735327
1249	282.55	-3.950816885
1526	255.62	-4.050980445
1665	255.63	-4.050941325
1804	239.91	-4.114408559
1943	222.6	-4.189295973

Table	S-17.	Regression	data	for	reductive	elimination	of	mesitylene	from
Tp'Rh[]	P(OMe)	3](CH ₂ C ₆ H ₃ -3	,5-(CF	H3)2)H	I (6b).				

Regression Statistics				
Multiple R	0.98249958			
R Square	0.965305425			
Adjusted R Square	0.96241421			
Standard Error	0.037067318			
Observations	14			

	df	SS	MS	F	Significance F
Regression	1	0.458740148	0.458740148	333.8753962	3.99430E-10
Residual	12	0.016487833	0.001373986		
Total	13	0.475227981			
	Coefficients	Standard Error	t Stat	P-value	
Intercept	-3.595107042	0.018218064	-197.3374943	1.92814E-22	-
Slope	-2.96769E-04	1.62415E-05	-18.27225756	3.99430E-10	_
				_	
Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%	-	
-3.634800793	-3.555413292	-3.634800793	-3.555413292	-	
-3.32157E-04	-2.61382E-04	-3.32157E-04	-2.61382E-04		
				-	

Figure S-92: Reductive elimination of 3,3-dimethyl-1-butene from Tp'Rh[P(OMe)₃](CH=CHC(CH₃)₃)H **(6c)** at 30.0 °C.

Table S-18: Kinetic data for reductive elimination of 3,3-dimethyl-1-butene from $Tp'Rh[P(OMe)_3](CH=CHC(CH_3)_3)H$ (6c). Hydride integration was measured relative to an internal standard (hexamethyldisiloxane).

Time (sec)	Hydride Area	Ln(conc)
0	8.1881	-3.540350443
173190	7.9959	-3.564103413
416060	7.5726	-3.618495854
1020100	6.9929	-3.698136975
1624920	6.3931	-3.78781304
2231520	5.7194	-3.899168419
2840230	5.2406	-3.986596328
3524890	4.7236	-4.090461103
4148010	4.2714	-4.191090681
4838290	3.825	-4.301473856
5607990	3.3833	-4.424180759
6452550	2.9801	-4.551075467
7315890	2.5979	-4.688328897
8276570	2.2203	-4.845390002
9557290	1.7972	-5.056802426
10777470	1.4792	-5.251530923
11973250	1.2499	-5.419968776
13277020	1.0505	-5.593766082

Table S-19.	Regression	data for	reductive	elimination	of 3,3-dimethyl-1-butene	from
Tp'Rh[P(OM	e)3](CH=CH	IC(CH ₃) ₃)H (6c) .			

Regression Statistics					
Multiple R	0.999870033				
R Square	0.999740082				
Adjusted R Square	0.999723837				
Standard Error	0.010954511				
Observations	18				

df	SS	MS	F	Significance F
1	7.385108676	7.385108676	61541.89645	4.09108E-30
16	0.001920021	0.000120001		
17	7.387028698			
Coefficients	Standard Error	t Stat	P-value	-
-3.542776563	0.004190609	-845.4086023	1.23856E-38	-
-1.56703E-07	6.31673E-10	-248.0763924	4.09108E-30	
				-
Upper 95%	Lower 95.0%	Upper 95.0%	-	
-3.53389287	-3.551660256	-3.53389287	-	
-1.55364E-07	-1.58042E-07	-1.55364E-07	_	
	<i>df</i> 1 1 1 6 17 <i>Coefficients</i> -3.542776563 -1.56703E-07 <i>Upper 95%</i> -3.53389287 -1.55364E-07	df SS 1 7.385108676 16 0.001920021 17 7.387028698 17 7.387028698 Coefficients Standard Error -3.542776563 0.004190609 -1.56703E-07 6.31673E-10 Upper 95% Lower 95.0% -3.53389287 -3.551660256 -1.55364E-07 -1.58042E-07	dfSSMS17.3851086767.385108676160.0019200210.000120001177.3870286980.000120001177.3870286981Standard Error-3.5427765630.004190609-845.4086023-1.56703E-076.31673E-10-248.0763924Upper 95%Lower 95.0%Upper 95.0%-3.53389287-3.551660256-3.53389287-1.55364E-07-1.58042E-07-1.55364E-07	dfSSMSF17.3851086767.38510867661541.89645160.0019200210.00012000161541.89645177.3870286980.0001200017177.387028698VVCoefficientsStandard Errort StatP-value-3.5427765630.004190609-845.40860231.23856E-38-1.56703E-076.31673E-10-248.07639244.09108E-30Upper 95%Lower 95.0%Upper 95.0%-3.53389287-3.53389287-3.551660256-3.53389287-1.55364E-07-1.58042E-07-1.55364E-07

Figure S-93: Reductive elimination of 2-methoxy-2-methylpropane from Tp'Rh[P(OMe)₃](CH₂OC(CH₃)₃)H **(6d)** at 30.0 °C.

Table S-20: Kinetic data for reductive of	elimination of 2-methoxy-2-methylpropane from
$Tp'Rh[P(OMe)_3](CH_2OC(CH_3)_3)H$ (6d).	Hydride integration was measured relative to an
internal standard (hexamethyldisiloxane)	

Time (sec)	Hydride Area	Ln(conc)
0	7.989	-3.540350443
86400	6.5438	-3.739898002
172800	5.3103	-3.948767708
259560	4.1533	-4.19451284
345940	3.4364	-4.383991627
498730	2.3513	-4.763447672
538330	2.111	-4.87125427
579730	1.9628	-4.944044013
662650	1.5798	-5.161117782
762610	1.1268	-5.499034282
851700	1.0229	-5.595774308

Table S-21	. Regression	data for r	eductive	elimination	of 2-methoxy	y-2-methylpropane
from Tp'Rh	$P(OMe)_3](C)$	$H_2OC(CH_3)$	3)H (6d)			

Regression Statistics				
Multiple R	0.999004967			
R Square	0.998010925			
Adjusted R Square	0.997789916			
Standard Error	0.032675535			
Observations	11			

	df	SS	MS	F	Significance F
Regression	1	4.821387108	4.821387108	4515.715662	1.80744E-13
Residual	9	0.009609215	0.001067691		
Total	10	4.830996323			

	Coefficients	Standard Error	t Stat	P-value
Intercept	-3.53286791	0.018736553	-188.5548498	1.68842E-17
Slope	-2.47573E-06	3.68418E-08	-67.19907486	1.80744E-13
Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%	-
-3.575252937	-3.490482883	-3.575252937	-3.490482883	-
-2.55907E-06	-2.39239E-06	-2.55907E-06	-2.39239E-06	

Figure S-94: Reductive elimination of 2-butyne from Tp'Rh[P(OMe)₃](CH₂C=CCH₃)H **(6e)** at 30.0 °C.

Table S-22: Kinetic data for reductive elimination of 2-butyne from $Tp'Rh[P(OMe)_3](CH_2C=CCH_3)H$ (6e). Hydride integration was measured relative to an internal standard (hexamethyldisiloxane).

Time (sec)	Hydride Area	Ln(conc)
0	2.4829	-3.540350443
173190	2.0171	-3.748116839
416060	1.4347	-4.088821907
603690	1.1048	-4.350113352
781155	0.7503	-4.737059827
1016125	0.6921	-4.8178025
1200325	0.5278	-5.08881553
1462525	0.4092	-5.34332892
1618925	0.4023	-5.360334875

Regression Statistics			
Multiple R	0.988545639		
R Square	0.97722248		
Adjusted R	0 073068548		
Square	0.97 3900340		
Standard	0 108177284		
Error	0.100177201		
Observations	9		

Table S-23. Regression data for reductive elimination of 2-butyne from $Tp'Rh[P(OMe)_3](CH_2C=CCH_3)H$ (6e).

	df	SS	MS	F	Significance F
Regression	1	3.514448571	3.514448571	300.3205488	5.23707E-07
Residual	7	0.081916273	0.011702325		
Total	8	3.596364843			
	Coefficients	Standard Error	t Stat	P-value	
Intercept	-3.612518779	0.065680095	-55.00172848	1.72194E-10	
Slope	-1.17740E-06	6.79412E-08	-17.32975905	5.23707E-07	
Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%		
-3.767827526	-3.457210032	-3.767827526	-3.457210032		
-1.33806E-06	-1.01675E-06	-1.33806E-06	-1.01675E-06		

Figure S-95: Reductive elimination of acetone from Tp'Rh[P(OMe)₃](CH₂C(O)CH₃)H (6f) at 30.0 °C.

Table S-24: Kinetic data for reductive elimination of acetone from Tp'Rh[P(OMe)₃](CH₂C(O)CH₃)H (6f). Hydride integration was measured relative to an internal standard (hexamethyldisiloxane).

Time (sec)	Hydride Area	Ln(conc)
0	9.0563	-3.540350443
86460	6.1564	-3.9263189
172860	4.6086	-4.215886968
237600	3.7391	-4.42496615
281370	3.0918	-4.615057646
343620	2.6147	-4.782661723
496410	1.5728	-5.290953621
620430	1.2101	-5.55310809
649410	1.1012	-5.647410597

Table	S-25.	Regression	data	for	reductive	elimination	of	acetone	from
Tp'Rh[I	P(OMe)3	$[(CH_2C(O)CH_2)]$	<u>H3)H</u> (6	f) .					

Regression Statistics				
Multiple R	0.996167527			
R Square	0.992349742			
Adjusted R Square	0.991256848			
Standard Error	0.068006788			
Observations	9			

	df	SS	MS	F	Significance F
Regression	1	4.199438465	4.199438465	908.0017736	1.14313E-08
Residual	7	0.032374462	0.004624923		
Total	8	4.231812927			
	Coefficients	Standard Error	t Stat	P-value	
Intercept	-3.648312184	0.040683907	-89.67457699	5.64825E-12	-
Slope	-3.17223E-06	1.05274E-07	-30.13306778	1.14313E-08	
					-
Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%		
-3.744514338	-3.55211003	-3.744514338	-3.55211003	-	
-3.42116E-06	-2.92330E-06	-3.42116E-06	-2.92330E-06	_	

Figure S-96: Reductive elimination of fluoromethane from Tp'Rh[P(OMe)₃](CH₂F)H (6g) at 66.9 °C.

Table S-26: Kinetic data for reductive elimination of fluoromethane from Tp'Rh[P(OMe)₃](CH₂F)H **(6g)**. Hydride integration was measured relative to an internal standard (hexamethyldisiloxane).

Time (sec)	Hydride Area	Ln(conc)
0	7.3789	-3.310620862
1740	7.2058	-3.334359181
16640	6.422	-3.449515842
76480	4.0307	-3.91530538
100900	3.388	-4.089005661
165110	2.0361	-4.598209225
178430	1.8116	-4.715035005
188630	1.6399	-4.814610174
246690	0.9795	-5.32995848
259800	0.902	-5.412386197
287080	0.7189	-5.639278451

Regression Statistics			
Multiple R	0.999628338		
R Square	0.999256815		
Adjusted R			
Square	0.999174238		
Standard			
Error	0.024534368		
Observations	11		

 Table S-27.
 Regression data for reductive elimination of dimethylether from Tp'Rh[P(OMe)_3](CH_2F)H (6g).

	df	SS	MS	F	Significance F
Regression	1	7.284037689	7.284037689	12101.03307	2.15203E-15
Residual	9	0.005417417	0.000601935		
Total	10	7.289455106			

	Standard		
Coefficients	Error	t Stat	P-value
-3.299994706	0.012577197	-262.3791926	8.63523E-19
-8.08961E-06	7.35388E-08	-110.0046957	2.15203E-15
Upper 95%	Lower 95.0%	Upper 95.0%	
-3.27154311	-3.328446301	-3.27154311	
-7.92325E-06	-8.25597E-06	-7.92325E-06	_
	Coefficients -3.299994706 -8.08961E-06 Upper 95% -3.27154311 -7.92325E-06	Standard Coefficients Error -3.299994706 0.012577197 -8.08961E-06 7.35388E-08 Upper 95% Lower 95.0% -3.27154311 -3.328446301 -7.92325E-06 -8.25597E-06	Standard Coefficients Error t Stat -3.299994706 0.012577197 -262.3791926 -8.08961E-06 7.35388E-08 -110.0046957 Upper 95% Lower 95.0% Upper 95.0% -3.27154311 -3.328446301 -3.27154311 -7.92325E-06 -8.25597E-06 -7.92325E-06

Figure S-97: Reductive elimination of dimethylether from Tp'Rh[P(OMe)₃](CH₂OMe)H **(6h)** at 30.0 °C.

Table S-28: Kinetic data for reductive elimination of dimethylether from Tp'Rh[P(OMe)₃](CH₂OMe)H **(6h)**. Hydride integration was measured relative to an internal standard (hexamethyldisiloxane).

Time (sec)	Hydride Area	Ln(conc)
0	1.4702	-4.96024174
8790	1.4647	-4.963989743
72230	1.1374	-5.21689523
156090	0.8024	-5.565788228
241130	0.5719	-5.904431314
330720	0.4598	-6.122603853
408940	0.3127	-6.508151201
493170	0.234	-6.79807435
519250	0.1575	-7.193970007
580200	0.135	-7.348120687

TableS-29.Tp'Rh[P(OMe).Regression StateMultiple RR SquareAdjustedR SquareSquareStandardError	Regression data 3](CH ₂ OMe)H (6) atistics 0.994707297 0.989442606 0.988122932 0.096692132	n for reductive h).	elimination of	of dimethylether	from
Observations	10				
ANOVA	df	SS	MS	F	Significance
Regression Residual Total	1 8 9	7.009808229 0.074794948 7.084603176	7.009808229 0.009349368	749.7627515	7 3.41136E-09
	Coefficients	Standard Error	t Stat	P-value	
Intercept Slope	-4.915430698 -4.06614E-06	0.05173778 1.48498E-07	-95.00660169 -27.38179599	1.68191E-13 3.41136E-09	
<i>Lower 95%</i> -5.034738234 -4.40857E-06	<i>Upper 95%</i> -4.796123163 -3.72370E-06	<i>Lower 95.0%</i> -5.034738234 -4.40857E-06	<i>Upper 95.0%</i> -4.796123163 -3.72370E-06		

Figure S-98: Reductive elimination of *t*-butylacetylene from $Tp'Rh[P(OMe)_3](C \equiv CC(CH_3)_3)H$ (6i) at 140.0 °C.

Table S-30: Kinetic data for reductive elimination of *t*-butylacetylene from $Tp'Rh[P(OMe)_3](C \equiv CC(CH_3)_3)H$ (6i). Hydride integration was measured relative to an internal standard (hexamethyldisiloxane).

Time (sec)	Hydride Area	Ln(conc)
0	12.2928	-3.540350443
87950	11.7238	-3.587743205
172070	11.5189	-3.605375004
434780	10.624	-3.686248575
1019620	9.4318	-3.80527721
1652740	8.183	-3.947305337
2591875	6.1097	-4.239486496
3195625	4.7876	-4.483334926

Regression Statistics

Multiple R	0.995141947				
R Square	0.990307494				
Adjusted R					
Square	0.988692077				
Standard Error	0.036272654				
Observations	8	_			
ANOVA					
					Significance
	df	SS	MS	F	F
Regression	1	0.806573471	0.806573471	613.034982	2.85590E-07
Residual	6	0.007894233	0.001315705		
Total	7	0.814467703			
					_
		Standard			-
	Coefficients	Error	t Stat	P-value	_
Intercept	-3.543992934	0.01814698	-195.2938109	1.21617E-12	
Slope	-2.77801E-07	1.122E-08	-24.75954325	2.85590E-07	_
					_
Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%	_	
-3.588396995	-3.499588873	-3.588396995	-3.499588873	-	
-3.05256E-07	-2.50347E-07	-3.05256E-07	-2.50347E-07	_	

Table S-31. Regression data for reductive elimination of *t*-butylacetylene from $\underline{Tp'Rh[P(OMe)_3](C \equiv CC(CH_3)_3)H}$ (6i).

Figure S-99: Reductive elimination of ethynyltrimethylsilane from $Tp'Rh[P(OMe)_3](C\equiv CSi(CH_3)_3)H$ (6j) at 140.0 °C.

Table S-32: Kinetic data for reductive elimination of ethynyltrimethylsilane from $Tp'Rh[P(OMe)_3](C \equiv CSi(CH_3)_3)H$ (6j). Hydride integration was measured relative to an internal standard (hexamethyldisiloxane).

Time (sec)	Hydride Area	Ln(conc)
0	6.5571	-3.540350443
87950	6.3694	-3.569393601
172070	6.1323	-3.607328992
434780	5.6375	-3.69145817
1019620	4.7227	-3.868518205
1652740	3.7333	-4.103606314
1994155	3.2874	-4.230801896
2592025	2.7912	-4.394427264
3195775	2.368	-4.558853158
4056795	1.6969	-4.892095818
4659855	1.4254	-5.066446399
5340395	1.2468	-5.200318606

Table S-33.	Regression	data	for	reductive	elimination	of	ethynyltrimethylsilane	from
Tp'Rh[P(OM	e)3](C≡CSi((CH3)	3)H	(6j).				

Regression Statistics			
Multiple R	0.998885874		
R Square	0.997772989		
Adjusted R			
Square	0.997550288		
Standard			
Error	0.029663012		
Observations	12		

					Significance
	df	SS	MS	F	F
Regression	1	3.942211917	3.942211917	4480.324392	1.34932E-14
Residual	10	0.008798943	0.000879894		
Total	11	3.95101086			
		Standard			-
	Coefficients	Error	t Stat	P-value	_
Intercept	-3.556137399	0.013182045	-269.7712986	1.20467E-20	

Intercept	-3.556137399	0.013182045	-269.7712986	1.20467E-20
Slope	-3.19364E-07	4.77125E-09	-66.93522535	1.34932E-14
Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%	-
-3.585508826	-3.526765973	-3.585508826	-3.526765973	-
-3.29995E-07	-3.08733E-07	-3.29995E-07	-3.08733E-07	

Figure S-100: Reductive elimination of 1-octyne from $Tp'Rh[P(OMe)_3](C \equiv Cn-hexyl)H$ (6k) at 140.0 °C.

Table	S-34:	Kinetic	data	for	reductive	elimination	of	1-octyne	from
Tp'Rh[P	$P(OMe)_3](OMe)_3]$	$C \equiv Cn$ -hexy	/l)H (6	k) .]	Hydride integ	gration was r	neasui	red relative	to an
internal	standard (hexamethy	ldisilo	(xane					

Time (sec)	Hydride Area	Ln(conc)
0	104.7394	-3.540350443
84120	93.9668	-3.648884275
346830	73.6877	-3.891989911
608610	54.4849	-4.193902204
930340	41.437	-4.467651602
1131340	33.9516	-4.666889822
1561420	23.373	-5.040244293
1815890	20.8082	-5.156478664
1897390	18.6346	-5.266805736
2172730	13.2655	-5.606659123
2518930	9.0796	-5.985795665

Regression Statistics

0.997844483

Multiple R

R Square	0.995693612				
Square	0.995215124				
Error	0.055895064				
Observations	11	_			
ANOVA					
	df	SS	MS	F	Significance F
Regression	1	6.501326686	6.501326686	2080.918522	5.84864E-12
Residual	9	0.028118323	0.003124258		
Total	10	6.52944501			
		Standard			
	Coefficients	Error	t Stat	P-value	_
Intercept	-3.574175232	0.029500616	-121.1559526	9.02982E-16	
Slope -9.29759E-07		2.03818E-08	-45.61708586	5.84864E-12	_
					-
Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%	_	
-3.640910261	-3.507440202	-3.640910261	-3.507440202	-	
-9.75866E-07	-8.83653E-07	-9.75866E-07	-8.83653E-07		
				-	

Table S-35. Regression data for reductive elimination of 1-octyne from $Tp'Rh[P(OMe)_3](C \equiv Cn-hexyl)H$ (6k).

Figure S-101: Reductive elimination of 1-octyne from 3,3,3-trifluoro-1-propyne from Tp'Rh[P(OMe)₃](C=CCF₃)H **(61)** at 140.0 °C.

Table S-36: Kinetic data for reductive elimination of 3,3,3-trifluoro-1-propyne from Tp'Rh[P(OMe)₃](C=CCF₃)H (61). Hydride integration was measured relative to an internal standard (hexamethyldisiloxane).

Time (sec)	Hydride Area	Ln(conc)
0	2.7102	-3.540350443
63210	2.4647	-3.63530278
85710	2.2205	-3.73964048
319180	1.3497	-4.23749053
405580	1.0583	-4.480709029
504280	0.8716	-4.674797552
591220	0.6705	-4.937104452
679180	0.5558	-5.124719638
774640	0.3811	-5.502066347
858760	0.2931	-5.764614307
947500	0.2229	-6.038404915

Regression Statistics				
Multiple R	0.996250732			
R Square	0.992515521			
Adjusted R				
Square	0.991683912			
Standard				
Error	0.078805843			
Observations	11			

Table S-37. Regression data for reductive elimination of 3,3,3-trifluoro-1-propyne from Tp'Rh[P(OMe)_3](C=CCF_3)H (6I).

ANOVA

	df	SS	MS	F	Significance F
Regression	1	7.411994273	7.411994273	1193.488497	7.04435E-11
Residual	9	0.055893248	0.006210361		
Total	10	7.467887521			

		Standard		
	Coefficients	Error	t Stat	P-value
Intercept	-3.459340214	0.043006869	-80.43692332	3.59172E-14
Slope	-2.60505E-06	7.5406E-08	-34.54690286	7.04435E-11
Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%	
-3.55662851	-3.362051917	-3.55662851	-3.362051917	
-2.77563E-06	-2.43446E-06	-2.77563E-06	-2.43446E-06	

Figure S-102: Reductive elimination of phenylacetylene from Tp'Rh[P(OMe)₃](C≡CPh)H (6m) at 140.0 °C.

Table S-38: Kinetic data for reductive elimination of phenylacetylene from $Tp'Rh[P(OMe)_3](C = CPh)H$ (6m). Hydride integration was measured relative to an internal standard (hexamethyldisiloxane).

Time (sec)	Hydride Area	Ln(conc)
0	19.9765	-3.540350443
87680	19.3025	-3.574672405
428540	17.4249	-3.677006808
769160	15.6267	-3.785926036
1362260	14.108	-3.888165013
1970210	11.7469	-4.07131765
2831230	8.6044	-4.382633325
3525920	6.7434	-4.626342777
4206730	4.5219	-5.025974766
4981750	3.4248	-5.30386395
5842390	2.6415	-5.563560088
6708350	1.6864	-6.012310946

TableS-39.Tp'Rh[P(OMe)Regression StandardMultiple RR SquareAdjustedRSquareStandardError	Regression data)₃](C≡CPh)H (6m atistics 0.995229128 0.990481018 0.989529119 0.086543769	for reductive	elimination of	phenylacetylene	from
Observations	12				
ANOVA	df	SS	MS	F	Significance
Regression Residual Total	1 10 11	7.793404828 0.074898239 7.868303067	7.793404828 0.007489824	1040.532452	7 1.93100E-11
	Coefficients	Standard Error	t Stat	P-value	
Intercept Slope	-3.467146009 -3.62117E-07	0.039506312 1.12259E-08	-87.76182443 -32.25728526	9.02530E-16 1.93100E-11	
<i>Lower 95%</i> -3.555171557 -3.87130E-07	<i>Upper 95%</i> -3.379120461 -3.37104E-07	<i>Lower 95.0%</i> -3.555171557 -3.87130E-07	<i>Upper 95.0%</i> -3.379120461 -3.37104E-07		

Figure S-103: Reductive elimination of 4-ethynylanisole from $Tp'Rh[P(OMe)_3](C \equiv CC_6H_4-p-OMe)H$ (6n) at 140.0 °C.

Table S-40: Kinetic data for reductive elimination of 4-ethynylanisole from $Tp'Rh[P(OMe)_3](C \equiv CC_6H_4$ -*p*-OMe)H (6n). Hydride integration was measured relative to an internal standard (hexamethyldisiloxane).

Time (sec)	Hydride Area	Ln(conc)
0	119.13	-3.540350443
76410	102.21	-3.693536257
248760	76.15	-3.987860698
510540	51.79	-4.373368696
832270	29.9	-4.922707296
922710	24.94	-5.104092837
1120070	19.28	-5.361497488
1460930	10.82	-5.939169503

Table	S-41.	Regression	data	for	reductive	elimination	of	4-ethynylanisole	from
Tp'Rh[P(OMe	e)3](C≡CC6H	4- <i>p</i> -O	Me)I	H (6n).				

Regression Statistics				
Multiple R	0.999653306			
R Square	0.999306732			
Adjusted R				
Square	0.999191187			
Standard				
Error	0.024275607			
Observations	8			

ANOVA

	df	SS	MS	F	Significance F
Regression	1	5.096698784	5.096698784	8648.659182	1.04152E-10
Residual	6	0.00353583	0.000589305		
Total	7	5.100234614			
	Coefficients	Standror	t Stat	P-value	
Intercept	-3.561515947	0.014214978	-250.5467123	2.72811E-13	
Slope	-1.63012E-06	1.75285E-08	-92.99816763	1.04152E-10	
Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%		
-3.596298744	-3.526733149	-3.596298744	-3.526733149	-	
-1.67301E-06	-1.58723E-06	-1.67301E-06	-1.58723E-06		

Figure S-104: Reductive elimination of 4-ethynyl- α , α , α -trifluorotoluene from Tp'Rh[P(OMe)_3](C=CC_6H_4-p-CF_3)H (60) at 30.0 °C.

Table S-42: Kinetic data for reductive elimination of 4-ethynyl- α , α , α -trifluorotoluene from Tp'Rh[P(OMe)_3](C \equiv CC_6H_4-p-CF_3)H (60). Hydride integration was measured relative to an internal standard (hexamethyldisiloxane).

Time (sec)	Hydride Area	Ln(conc)
0	14.2337	-3.540350443
74450	13.6825	-3.579845191
676730	9.5521	-3.93920181
2148520	4.1828	-4.764981957
2489320	3.482	-4.948355994
2749810	3.0358	-5.085487854
3089700	2.6092	-5.236919174
3607815	1.8883	-5.560285882
4297025	1.3005	-5.93321403
4719755	0.9956	-6.200372544
5155745	0.7456	-6.489528851
5741400	0.4728	-6.945045648

Regression Statistics

0.999027598

0.998056142

Multiple R

R Square

Adjusted R Square Standard	0.997861756				
Error	0.051434589				
Observations	12	_			
ANOVA					
	df	SS	MS	F	Significance F
Regression	1	13.58316616	13.58316616	5134.408971	6.83558E-15
Residual	10	0.02645517	0.002645517		
Total	11	13.60962133			
					_
		Standard			-
	Coefficients	Error	t Stat	P-value	_
Intercept	-3.519598229	0.027583421	-127.5983222	2.14501E-17	
Slope	-5.75202E-07	8.0274E-09	-71.65479029	6.83558E-15	_
					-
Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%	_	
-3.58105792	-3.458138537	-3.58105792	-3.458138537		
-5.93088E-07	-5.57315E-07	-5.93088E-07	-5.57315E-07	_	

Table S-43. Regression data for reductive elimination of 4-ethynyl- α , α , α -trifluorotoluene from Tp'Rh[P(OMe)_3](C=CC_6H_4-p-CF_3)H (60).

Figure S-105: Reductive elimination of *n*-pentane from $Tp'Rh[P(OMe)_3](n-pentyl)H$ (6p) at 25.3 °C.

Table	S-44:	Kinetic	data	for	reduc	ctive	elimi	natio	n c	of <i>n</i> -	-pentane	fr	om
Tp'Rh[P	P(OMe)3](<i>n</i>	-pentyl)H	(6p) .	Hy	dride	integra	ation	was	mea	sured	relative	to	an
internal	standard (h	nexamethy	ldisiloz	(xane									

Time (sec)	Hydride Area	Ln(conc)
0	20.48	-3.540350443
101	16.03	-3.785337277
304	13.2	-3.979582414
405	10.24	-4.233497624
506	8.13	-4.46423832
608	7.82	-4.503114689
709	6.07	-4.756440638
810	5.36	-4.880835268
912	3.78	-5.230075234

Regression Statistics				
Multiple R	0.991755451			
R Square	0.983578875			
Adjusted R	0 981233			
Square	0.901233			
Standard	0 074683273			
Error	0.07 1000270			
Observations	9			

Table S-45. Regression data for reductive elimination of *n*-pentane from $Tp'Rh[P(OMe)_3](n-pentyl)H$ (6p).

ANOVA

df	SS	MS	F	Significance F
1	2.338573387	2.338573387	419.2801641	1.66202E-07
7	0.039043139	0.005577591		
8	2.377616526			
Coefficients	Standard Error	t Stat	P-value	-
-3.534554904	0.047997083	-73.64103612	2.23972E-11	-
-1.73650E-03	8.48055E-05	-20.4763318	1.66202E-07	
				-
Upper 95%	Lower 95.0%	Upper 95.0%	-	
-3.421059838	-3.64804997	-3.421059838	_	
-1.53597E-03	-1.93704E-03	-1.53597E-03	_	
	<i>df</i> 1 7 8 <i>Coefficients</i> -3.534554904 -1.73650E-03 <i>Upper 95%</i> -3.421059838 -1.53597E-03	df SS 1 2.338573387 7 0.039043139 8 2.377616526 8 2.377616526 Coefficients Standard Error -3.534554904 0.047997083 -1.73650E-03 8.48055E-05 Upper 95% Lower 95.0% -3.421059838 -3.64804997 -1.53597E-03 -1.93704E-03	dfSSMS12.3385733872.33857338770.0390431390.00557759182.377616526V2.377616526CoefficientsStandard Errort Stat-3.5345549040.047997083-73.64103612-1.73650E-038.48055E-05.20.4763318Upper 95%Lower 95.0%Upper 95.0%-3.421059838-3.64804997-3.421059838-1.53597E-03-1.93704E-03-1.53597E-03	dfSSMSF12.3385733872.338573387419.280164170.0390431390.005577591419.280164182.3776165260.005577591419.2801641CoefficientsStandard Errort StatP-value-3.5345549040.047997083-73.641036122.23972E-11-1.73650E-038.48055E-05-73.641036122.23972E-11Upper 95%Lower 95.0%Upper 95.0%3.421059838-3.64804997-3.421059838-1.53597E-03-1.93704E-03-1.53597E-03

$Drel(Rh-C) = [\Delta H(Rh-R2) - \Delta H(Rh-R1)] = \Delta G^{\circ} + RT \ln(H1/H2) + [\Delta H(R2-H) - \Delta H(R1-H)]$				ΔΔG° ≈ ΔΔH° - RT In(H1/H2)						
	T= -10 to +10			Т	$T = 20 \text{ to } 140 \text{ corr. for } \Delta S$					
R	D(C-H) ^a	k _{phH} /k _{RH}	T _{comp}	∆∆G _{oa} ‡ vs PhH	∆G _{re} ‡	T _{re} (R-H)	∆G ⁰ vs PhH	#H	D _{rel} (M-C)	line calc
c-pentyl	95.6									
Ph ^b	112.9	1	283	0	27.61	303	0.01	6	0.0	0.42
t-butylvinyl ^c	111.1	7.01	283	1.10	27.20	303	1.51	1	-2.3	-2.38
methyl	105.0	1.47	283	0.22	22.64	303	5.20	4	-12.9	-11.83
n-pentyl	100.2	3.40	276	0.67	21.24	298	7.10	6	-19.8	-19.28
CF3-acetylene d, e	135.4	0.18	263	-0.81	35.01	413	-9.33	1	32.9	35.30
1-octyne *	131.0	4.17	283	0.80	35.86	413	-8.57	1	27.7	28.48
trimethylsilylacetylene *	131.6	3.34	283	0.68	36.74	413	-9.58	1	29.3	29.35
t-butylacetylene *	131.4	4.88	283	0.89	36.85	413	-9.47	1	29.0	29.10
phenylacetylene *	133.2	1.40	283	0.19	36.63	413	-9.95	1	31.3	31.89
p-CF₃phenylacetylene [€]	127.8	1.19	283	0.10	36.25	413	-9.67	1	25.6	23.52
p-MeOphenylacetylene ^e	122.7	2.72	283	0.56	35.40	413	-8.35	1	19.2	15.61
mesityl	89.4	1.84	263	0.32	21.86	293	6.18	9	-29.9	-28.11
CH2C(O)CH3	96.0	2.77	268	0.54	25.39	303	2.77	6	-19.7	-18.52
CH2CCCH3	90.7	1.26	283	0.13	25.98	303	1.77	6	-24.0	-26.22
CH2O [®] Bu ¹	93.0	2.62	263	0.50	25.53	303	2.59	3	-22.1	-22.88
CH2OCH3	96.1	0.64	283	-0.25	25.24	303	2.13	6	-18.9	-18.37
CH2F	101.3	0.76	283	-0.16	27.92	340	-0.84	3	-10.4	-10.82
CHF2	103.2									
CH2CF3	106.7									

Table S46. Summary of thermodynamic data. All values are in kcal mol⁻¹. Data for plot of M-R vs C-H bond strengths-P(OMe)3

Notes:

ΔG^{0} calculated using: ΔG_{re}^{\dagger} for benzene at same T as ΔG_{re}^{\dagger} for substrate R-H	expt				
∆∆G [‡] calculated at temperature at which competition was carried out.	slope of Phenyl to pentyl+ acetylenes = 1.55				
A positive $\Delta\Delta G^{\ddagger}$ or ΔG^{0} means benzene is kinetically or thermodynamically favored.					
Competion ratios in bold are calculated using two separate competition ratios.	slope of Mesitylene to CF2H2 = 1.45				
^a D(C-H) from Luo, YR. Comprehensive Handbook of Chemical Bond Energies, 2007					
^b ΔG _{re} [±] =30.74-0.303*10.30=27.6; Calcd using ΔH=30.74 kcal/mol and ΔS=10.30 e.u. from Eyring Plot. k(3	03) = 7.92x10 ⁻⁸ s ⁻¹				
^c D(C-H) for propene					
^d Data for CF ₃ -acetylene competition k _{PhH} /k _{RH} = (k _{PhH} /k _{tbutylethylene})(k _{tbutylethylene} /k _{CF3-acetylene})					
* Terminal C-H bond strengths in italics for alkynes and nitriles were calculated using DFT; B3LYP/6-31g**					
^f D(C-H) for MeOEt					

Table S47. Summary of DFT calculated thermodynamic data (and notes for experimental calculations).

Data for eliot of M-R vs C-H band strengths	as TarihtPODVe)33RH model				
	A062x				
	OFT:				
₿.	Breißh C)cale	Esperamental Notes			
c-partyl	-26.67				
21°	0.00				
1-ke utgebehrepi "	-4.18				
" lettom	-18.76				
n-pentel	-20.04				
CF ₀ -acetylene *	36.67	λ ₁₀ ./Δ ₁₀ = (λ ₁₀ Δ _{10.000}			
I-odyne *	26,88				
" ere igtersteletene	31.30				
Usuzytacodykma "	26.64				
phanylecolplane "	27.71				
p-CF ghonglapolylana "	31.18				
p-NeOpherylacetylane '	23.71				
iştirmen	-29.57				
CH2C(0)CH3	-18.95				
CH2CCCH3	-25.55				
CI-20'8**	- ડિકે.સે.ડે				
G-20G-3	-19.23				
CH2F	-12.72				
CI-F2	-5.03				
CH2CF3	-7.37				

Computational Details.

Calculations were done using the Gaussian 09 set of programs (Revision A.02).¹ Homolytic Rh-C bond energies were calculated from the reaction:

 $Tp'Rh[P(OMe)_3](R)(H) \rightarrow Tp'Rh[P(OMe)_3](H) + R$.

C-H bond energies in terminal alkynes and the corresponding Rh-C bond energies in Tp'Rh(PMe₃)(C=CR)(H) were calculated previously with the functionals B3LYP and M06-2X, respectively.²⁻³ Here Rh-C bond energies in Tp'Rh[P(OMe)₃](R)(H) complexes were calculated with the functional M06-2X using the same basis set (6-31g**), Stuttgart core potentials, and augmentation functions as the B3LYP calculations.⁴⁻⁵ X-ray crystallographic structures were used as the starting points for the calculations if a corresponding or similar structure was available. Heavy atoms of rhodium, phosphorous and silicon were treated with the core potentials described by the Stuttgart group, with additional *d*, and *f* polarization functions (alpha for Rh=1.350, P= 0.387, Si=0.284). The remaining atoms (C, H, N, B, O, and F) were represented by 6-31g(d,p) basis set.⁶⁻⁷ The geometry optimizations were performed without any symmetry constraints, and the local minima were checked by frequency calculations.

Calculation of C-H Bond Strengths:

As reported previously the choice of calculation method has little influence in calculating C-H bond strengths for terminal alkynes. Alkynyl C-H bond strengths were calculated by comparing the enthalpies of the organic molecule with the corresponding radicals. Enthalpy values were taken at 298 K and 1 atm using the harmonic oscillator approximation as implemented by Gaussian 09. Two methods of M06-2X and B3LYP were used in the calculation. Using methods of M06-2X vs B3LYP led to a difference in bond energy with less than 5 kcal/mol in energy for the same alkyne. However, calculation with M06-2X method gave more congregated bond energies spanning a narrower range of 5.8 kcal/mol in comparison with B3LYP, which gave a differentiation of 12.7 kcal/mol for calculated bond energies.

For the other substrates, literature recorded C-H bond strengths were used in plotting against experimental and calculated Rh-C bond strengths, which ensures the direct

comparison between experimental and calculated Rh-C bond energies by sharing the same set of C-H bond energy values. When comparing the performance of method choice (choosing M06-2X or B3LYP in alkynyl C-H bond energy calculation) in $R_{M-C/C-H}$ among the three systems of [Tp'Rh(L)] (L = P(OMe)₃, PMe₃ and CNMe), using one unified method (M06-2X) to calculate both C-H and Rh-C bond energies does not necessarily produce a better match with the experimental results. Therefore, it is reasonable to keep in our final plots the existing calculated C-H bond strengths for terminal alkynes using M06-2X, especially considering that systematic errors due to the chosen functional itself in calculating alkynyl C-H bonds is mostly cancelled out between experimental and calculated correlations.

Calculation of Rh-C Bond Strengths: Effect of Method and Model:

The model of $Tp'Rh[P(OMe)_3](R)(H)$ was chosen as previously it was found that replacing Tp' with Tp have little influence in Tp'Rh(PMe)₃(R)(H) system but make big difference in Tp'Rh(CNMe)(R)(H) case. In the previous computation for the $Tp'Rh(PMe)_3(R)(H)$ available model, the X-ray crystal structures for $Tp'Rh(PMe)_3(C=CR)(H)$ species enabled us to directly compare the reliability of DFT methods. Comparison between calculated (M06-2X or B3LYP) and crystal structures led to RMSD values of 4.4-5.1 for all atoms in all five complexes. DFT calculated bond distances were slightly off by less than 0.1 Å in the coordination atmosphere around rhodium. The model choice here is out of concern at least in terminal alkyne activation as both methods produced almost identical molecular structures with small RMSD values of less than 0.6 for all atoms.

Computational References:

 Gaussian 09, Revision A.02, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji,H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.

- 2. Choi, G.; Morris, J.; Brennessel, W. W.; Jones, W. D. J. Am. Chem. Soc., 2012, 134, 9276-9284.
- 3. Jiao, Y; Morris, J; Brennessel, W. W.; Jones, W. D. J. Am. Chem. Soc. 2013, 135, Article ASAP, DOI: 10.1021/ja4080985.
- 4. Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215–241.
- 5. Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257-2261.
- 6. Andrae, D., Häussermann, U., Dolg, M., Stoll, H. and Preuss, H. *Theor. Chim. Acta* **1990**, *77*, 123-141.
- Ehlers, A. W.; Böhme, M.; Dapprich, S.; Gobbi, A.; Höllwarth, A.; Jonas, V.; Köhler, K. F.; Stegmann, R.; Veldkamp, A.; Frenking, G. *Chem. Phys. Lett.* **1993**, *208*, 111-114.

Table S48. Summary of alkynyl C-H bond energies in terminal alkynes calculated with different methods.

	M06-2X	B3LYP
R	calc. D(C-H)	calc. D(C-H)
CF ₃ -acetylene	133.1	135.4
1-octyne	131.9	131.0
trimethylsilylacetylene	129.7	131.6
<i>t</i> -butylacetylene	131.6	131.4
phenylacetylene	130.5	133.2
<i>p</i> -CF ₃ phenylacetylene	132.6	127.8
<i>p</i> -MeOphenylacetylene	127.3	122.7

Figure S-106. Plots of D(Rh-C) vs. D(C-H) in activation of nonsubstituted hydrocarbons at [Tp'Rh(L)] (L = P(OMe)_3, PMe_3 and CNR), in which C-H bond strengths of terminal alkynes were calculated using M06-2X vs B3LYP methods.

	Lit D(C-H)	calc D(Rh-C)
R	kcal/mol	kcal/mol
c-pentyl	95.60	42.84
Ph	112.90	69.51
<i>t</i> -butylvinyl	111.09	65.33
methyl	105.00	50.75
n-pentyl	100.19	49.47
CF ₃ -acetylene	135.40	106.14
1-octyne	131.00	96.39
trimethylsilylacetylene	131.56	100.89
t-butylacetylene	131.40	96.15
phenylacetylene	133.20	97.21
<i>p</i> -CF ₃ phenylacetylene	127.80	100.67
<i>p</i> -MeOphenylacetylene	122.70	93.22
mesityl	89.40	39.94
CH ₂ C(O)CH ₃	96.00	50.56
CH ₂ CCCH ₃	90.70	43.96
CH2OtBu	93.00	49.88
CH ₂ OCH ₃	96.10	50.28
CH ₂ F	101.30	56.79
CHF ₂	103.20	64.48
CH ₂ CF ₃	106.70	62.14

Table S49. Calculated energies for Tp'Rh[P(OMe)₃](R)H complexes and fragments.

Table S50. Calculated coordinates for $Tp'Rh[P(OMe)_3](R)H$ complexes and fragments. The following is a list of xyz coordinates of species used for the calculation of C-H and Rh-C bond strengths. Molecules R-H are followed by the corresponding radicals.

Tp'Rh[P(OMe)3]H

Center	Atomic	 ; /	Atomic	Coordinate	 s (Angstroms)
Number	Numł	ber	Туре	X Y	Ž
		0	0 407005	0 470705	0 354006
2	43 7	0	-0.407093	1 /11220	-0.334900
2	7	0	0.322388	-1.411339	-0.911423
5	7	0	1.604222	1 225/003	-0.330737
4	7	0	2 726256	0.701615	-1.03/910
5	7	0	2.730330	0.701013	-0.308489
07	7	0	0.021017	0.108320	1.02/309
/ Q	6	0	0.002510	-0.324130	1.599780
0	6	0	1 122042	2 409751	-1.003737
9 10	1	0	1.123943	-3.406/31	-1.09/011
10	1	0	1.095701	-4.30/630	-2.192378
11	0	0	2.195920	-2.833328	-1.010849
12	0	0	2.031040	2.330844	-1.810838
13	0	0	3.438137	2.331219	-1.044/21
14	I C	0	4.0900/1	3.031304	-2.388314
15	6	0	3.855843	1.2962/5	-1.043508
16	6	0	0.260956	0.209165	2.905952
1/	6	0	1.33/81/	-0.164106	3./2/565
18	l	0	1.363652	-0.196324	4.806496
19	6	0	2.362110	-0.499218	2.858305
20	5	0	2.615958	-0.601365	0.254855
21	l	0	3.710484	-1.034568	0.4/46//
22	6	0	3.743117	-0.983381	3.165778
23	1	0	3.877637	-1.030598	4.247643
24	1	0	3.919114	-1.980163	2.752224
25	1	0	4.504121	-0.315799	2.752534
26	6	0	-1.101784	0.675518	3.308784
27	1	0	-1.821269	0.509693	2.501397
28	1	0	-1.442785	0.134748	4.194808
29	1	0	-1.093577	1.745087	3.542318
30	6	0	3.564125	-3.412278	-0.789889
31	1	0	3.775147	-3.536787	0.275901
32	1	0	3.641152	-4.388363	-1.271569
33	1	0	4.336988	-2.760404	-1.206327
34	6	0	5.237068	0.819676	-0.724295
35	1	0	5.413986	0.788039	0.354160
36	1	0	5.415612	-0.185456	-1.116975
37	1	0	5.965705	1.497197	-1.172621

38	6	0	1.089570	3.224979	-2.531073
39	1	0	1.463138	3.454814	-3.532218
40	1	0	0.113316	2.744798	-2.613069
41	1	0	0.949853	4.175566	-2.004564
42	6	0	-1.294161	-2.506610	-2.163131
43	1	0	-1.497743	-3.487868	-2.595988
44	1	0	-2.033866	-2.307736	-1.382584
45	1	0	-1.422935	-1.747141	-2.939354
46	15	0	-1.530440	2.264261	0.146910
47	1	0	-1.104513	0.605395	-1.707305
48	8	0	-1.733604	3.330114	-1.083593
49	6	0	-2.474218	4.527347	-0.879344
50	1	0	-3.539183	4.301646	-0.765237
51	1	0	-2.112131	5.068608	0.001378
52	1	0	-2.330261	5.143496	-1.767814
53	8	0	-0.949252	3.235426	1.351502
54	6	0	0.447912	3.543457	1.311134
55	1	0	0.661495	4.130237	2.205314
56	1	0	1.049530	2.629270	1.308962
57	1	0	0.686553	4.135855	0.420917
58	8	0	-3.046387	2.062274	0.741313
59	6	0	-3.592961	2.849071	1.797934
60	1	0	-3.063948	2.655946	2.733813
61	1	0	-3.541867	3.918478	1.578472
62	1	0	-4.636118	2.545365	1.892966

$Tp'Rh[P(OMe)_3](R)H R = methyl$

Cent Nun	ter nber	Atomic Number	Atomic Type	Coordin X	ates (A Y	Angstroms) Z
1	45	0	-0.466099	0.428488	-0.37	6871
2	7	0	0.511682	-1.432657	-0.931	610
3	7	0	1.784765	-1.645532	-0.526	518
4	7	0	1.514487	1.318608	-1.000	179
5	7	0	2.638127	0.727042	-0.532	2101
6	7	0	0.542268	0.050247	1.672	783
7	7	0	1.840480	-0.332060	1.631	077
8	6	0	0.135155	-2.483147	-1.659	9341
9	6	0	1.193452	-3.404262	-1.722	2044
10	1	0	1.206886	-4.353317	-2.23	36602
11	6	0	2.223001	-2.836118	-0.99	92410
12	6	0	1.891802	2.330675	-1.78	80753
13	6	0	3.295139	2.401712	-1.80	8630
14	1	0	3.906171	3.105973	-2.35	3288

15	6	0	3.732976	1.361674	-1.007727
16	6	Ő	0 197148	0 117600	2 958813
17	6	Ő	1 298659	-0 217518	3 764678
18	1	Ő	1 337186	-0 256260	4 843179
19	6	0	2.324132	-0.502883	2.881837
20	5	0	2.559365	-0.581504	0.287581
21	1	0	3.667832	-0.979166	0.503007
22	6	0	3.727696	-0.931082	3.170826
23	1	0	3.877252	-0.971504	4.251042
24	1	0	3.938031	-1.921099	2.756969
25	1	0	4.457318	-0.235411	2.747527
26	6	0	-1.184232	0.472363	3.407990
27	1	0	-1.714718	1.036295	2.640021
28	1	0	-1.768199	-0.429674	3.616785
29	1	0	-1.144504	1.062245	4.328407
30	6	0	3.595937	-3.364244	-0.724445
31	1	0	3.781314	-3.474185	0.347583
32	1	0	3.704598	-4.343193	-1.194104
33	1	0	4.366581	-2.701114	-1.127169
34	6	0	5.130716	0.935164	-0.690197
35	1	0	5.312957	0.920415	0.387712
36	1	0	5.340645	-0.067243	-1.073862
37	1	0	5.834323	1.632317	-1.148186
38	6	0	0.906594	3.201150	-2.493451
39	1	0	1.350464	3.588663	-3.413378
40	1	0	0.007662	2.634903	-2.747080
41	1	0	0.602938	4.050239	-1.873494
42	6	0	-1.221175	-2.580906	-2.280342
43	1	0	-1.175981	-3.192663	-3.183888
44	1	0	-1.940668	-3.037968	-1.594650
45	1	0	-1.592473	-1.587331	-2.540183
46	15	0	-1.455221	2.317476	-0.051148
47	1	0	-1.067473	0.554044	-1.751799
48	8	0	-2.165343	2.975892	-1.361272
49	6	0	-2.786246	4.255684	-1.284391
50	1	0	-3.684296	4.210964	-0.660120
51	1	0	-2.092078	5.004084	-0.891843
52	1	0	-3.072886	4.522012	-2.301747
53	8	0	-0.509316	3.595562	0.386894
54	6	0	0.427251	3.379269	1.448530
55	1	0	-0.082801	3.036137	2.357298
56	1	0	1.175702	2.637612	1.155031
57	1	0	0.902628	4.341812	1.639798
58	8	0	-2.631085	2.365683	1.100851
59	6	0	-2.938739	3.497809	1.908070
60	1	0	-2.742790	3 236199	2,952729

61	1	0	-2.337130	4.368424	1.636947
62	1	0	-3.999876	3.729766	1.789688
63	6	0	-2.158974	-0.580796	0.153886
64	1	0	-2.899288	-0.640548	-0.649024
65	1	0	-1.824849	-1.594270	0.400955
66	1	0	-2.647289	-0.152654	1.032464

$Tp'Rh[P(OMe)_3](R)H R = phenyl$

Cent	ter	Atomic	Atomic	Coordin	ates (Angstr	oms)
Nurr	nber	Number	Туре	Х	Y Z	
1	45	0	-0 489563	0 5472.05	-0 352564	•
2	7	Õ	0 443108	-1 331901	-0 919308	
3	7	Ő	1.689954	-1.589104	-0.454580	
4	7	0	1.497689	1.365104	-1.082998	
5	7	0	2.617399	0.744267	-0.634055	
6	7	0	0.567524	0.187040	1.691495	
7	7	0	1.875785	-0.148860	1.618483	
8	6	0	0.013259	-2.420055	-1.558285	
9	6	0	1.007995	-3.409402	-1.500295	
10	1	0	0.968378	-4.401350	-1.924726	
11	6	0	2.054933	-2.845413	-0.793211	
12	6	0	1.881895	2.242331	-2.013031	
13	6	0	3.279542	2.201577	-2.149412	
14	1	0	3.889356	2.791389	-2.817447	
15	6	0	3.709379	1.231936	-1.263360	
16	6	0	0.278595	0.348424	2.984780	
17	6	0	1.428752	0.122649	3.758958	
18	1	0	1.515948	0.167268	4.834432	
19	6	0	2.424270	-0.195100	2.852367	
20	5	0	2.527816	-0.505922	0.267392	
21	1	0	3.630078	-0.927425	0.466615	
22	6	0	3.854654	-0.551867	3.103928	
23	1	0	4.060612	-0.485687	4.173500	
24	1	0	4.079049	-1.569139	2.771667	
25	1	0	4.535965	0.123462	2.579164	
26	6	0	-1.086350	0.714689	3.469629	
27	1	0	-1.834586	0.435029	2.727014	
28	1	0	-1.308736	0.184383	4.399038	
29	1	0	-1.168324	1.789772	3.658022	
30	6	0	3.379586	-3.439090	-0.434490	
31	1	0	3.546414	-3.424365	0.645923	
32	1	0	3.412667	-4.475851	-0.773290	
33	1	0	4.204909	-2.897236	-0.904861	

34	6	0	5.097481	0.739689	-1.003975
35	1	0	5.359198	0.810349	0.055073
36	1	0	5.215150	-0.305514	-1.303649
37	1	0	5.805735	1.341932	-1.575367
38	6	0	0.928800	3.087813	-2.794593
39	1	0	1.331118	3.250445	-3.797397
40	1	0	-0.045843	2.604950	-2.872289
41	1	0	0.776149	4.062897	-2.324470
42	6	0	-1.328707	-2.500339	-2.212647
43	1	0	-1.301440	-3.239299	-3.016693
44	1	0	-2.104246	-2.790447	-1.496074
45	1	0	-1.611919	-1.531165	-2.628586
46	15	0	-1.459949	2.426417	0.187923
47	1	0	-1.109276	0.746665	-1.710302
48	6	0	-2.164977	-0.459324	0.084360
49	6	0	-3.392146	-0.279648	-0.573879
50	6	0	-2.083589	-1.512467	1.008201
51	6	0	-4.484568	-1.107881	-0.318982
52	6	0	-3.175468	-2.340604	1.270526
53	6	0	-4.383599	-2.143725	0.606664
54	1	0	-3.502662	0.521266	-1.299605
55	1	0	-1.143048	-1.696676	1.521591
56	1	0	-5.417780	-0.943060	-0.850731
57	1	0	-3.074930	-3.147301	1.991489
58	1	0	-5.233085	-2.789670	0.805893
59	8	0	-1.296942	3.595158	-0.933759
60	6	0	-1.866045	4.882272	-0.685589
61	1	0	-2.951066	4.840933	-0.796651
62	1	0	-1.614794	5.230692	0.320509
63	1	0	-1.438347	5.557182	-1.427987
64	8	0	-0.926439	3.137732	1.571675
65	6	0	0.479705	3.368503	1.718232
66	1	0	0.739462	3.166224	2.759390
67	1	0	1.069826	2.709895	1.073889
68	1	0	0.694767	4.413200	1.474952
69	8	0	-3.060537	2.575910	0.447448
70	6	0	-3.701214	2.121666	1.639393
71	1	0	-3.704590	1.029742	1.685477
72	1	0	-3.210476	2.544777	2.519367
73	1	0	-4.728825	2.482453	1.582969

$Tp'Rh[P(OMe)_3](R)H R = n-pentyl$

Center	Atomic	Atomic	Coordinates (Angstroms)
Number	Number	Туре	X Y Z	

1	45	0	-0.616106	0.591058	-0.738279
2	7	0	0.704014	-0.972099	-1.475882
3	7	0	1.959410	-1.045110	-0.975637
4	7	0	1.221722	1.866485	-1.136105
5	7	0	2.406535	1.413708	-0.663653
6	7	0	0.360314	0.166965	1.322616
7	7	0	1.702672	0.004152	1.320490
8	6	0	0.571397	-1.938049	-2.383545
9	6	0	1.770137	-2.664381	-2.465074
10	1	0	1.983809	-3.508617	-3.103319
11	6	0	2.627921	-2.065181	-1.559100
12	6	0	1.461210	3.005241	-1.785782
13	6	0	2.833561	3.302198	-1.720037
14	1	0	3.342918	4.150725	-2.152030
15	6	0	3.401602	2.263406	-1.004290
16	6	0	-0.043692	0.071193	2.589683
17	6	0	1.064689	-0.148670	3.425546
18	1	0	1.066646	-0.275903	4.497906
19	6	0	2.157729	-0.189042	2.579183
20	5	0	2.507726	0.022498	0.004119
21	1	0	3.656009	-0.217023	0.243413
22	6	0	3.600065	-0.409024	2.907914
23	1	0	3.710055	-0.529312	3.987009
24	1	0	3.990273	-1.306415	2.420114
25	1	0	4.219435	0.434390	2.590541
26	6	0	-1.484007	0.164558	2.981909
27	1	0	-2.110139	0.383327	2.115536
28	1	0	-1.824428	-0.778650	3.421638
29	1	0	-1.631918	0.946109	3.735707
30	6	0	4.045937	-2.410002	-1.233575
31	1	0	4.174192	-2.615605	-0.167534
32	1	0	4.337540	-3.299760	-1.793941
33	1	0	4.728439	-1.597490	-1.498415
34	6	0	4.835339	2.033247	-0.646770
35	1	0	4.969778	1.925764	0.433025
36	1	0	5.226302	1.127521	-1.118930
37	1	0	5.432856	2.881637	-0.984470
38	6	0	0.380309	3.781071	-2.468653
39	1	0	0.797008	4.328990	-3.316984
40	1	0	-0.402546	3.111292	-2.831383
41	1	0	-0.083543	4.500599	-1.787648
42	6	0	-0.699459	-2.151916	-3.140523
43	1	0	-0.494558	-2.680558	-4.073650
44	1	0	-1.411735	-2.747972	-2.559614
45	1	0	-1.172853	-1.194482	-3.369565

46	15	0	-1.874164	2.275900	-0.236981
47	1	0	-1.179612	0.800532	-2.119673
48	8	0	-2.638589	2.979230	-1.492735
49	6	0	-3.445656	4.135295	-1.290272
50	1	0	-4.334458	3.885595	-0.702345
51	1	0	-2.877249	4.927403	-0.794739
52	1	0	-3.756900	4.473138	-2.278695
53	8	0	-1.125338	3.611296	0.373220
54	6	0	-0.209788	3.420539	1.456958
55	1	0	-0.693610	2.899069	2.291810
56	1	0	0.659758	2.844513	1.128544
57	1	0	0.096070	4.416303	1.779665
58	8	0	-3.071520	2.033115	0.866679
59	6	0	-3.547019	3.005606	1.790695
60	1	0	-3.349770	2.639031	2.802716
61	1	0	-3.056865	3.972496	1.654264
62	1	0	-4.625527	3.116867	1.653985
63	6	0	-2.187067	-0.714449	-0.472534
64	1	0	-2.612468	-0.956129	-1.454215
65	1	0	-3.001895	-0.255024	0.100162
66	6	0	-1.781476	-2.009456	0.231857
67	1	0	-0.991178	-2.526580	-0.325801
68	1	0	-1.346491	-1.787987	1.212934
69	6	0	-2.963189	-2.963789	0.421269
70	1	0	-3.766615	-2.446061	0.965044
71	1	0	-3.382993	-3.229659	-0.560103
72	6	0	-2.587301	-4.238563	1.173558
73	1	0	-2.180113	-3.965511	2.155854
74	1	0	-1.775156	-4.746079	0.637795
75	6	0	-3.764342	-5.193831	1.351315
76	1	0	-4.161740	-5.507902	0.380872
77	1	0	-4.579176	-4.709741	1.899309
78	1	0	-3.477271	-6.093307	1.902813

$Tp'Rh[P(OMe)_3](R)H R = c$ -pentyl

Cei	nter	Atomic	Atomic	Coordir	nates (A	Angst
Nu	mber	Number	Туре	Х	Y	Z
1	45	0	-0.929762	1.210133	-0.07	 '3018
2	7	0	1.010003	0.281235	0.367	461
3	7	0	1.907387	0.971873	1.107	885
4	7	0	0.475090	2.946474	-0.560)301
5	7	0	1.335893	3.317888	0.416	5246
6	7	0	-0.855009	2.001076	2.100)688

7	7	0	0.365387	2.362938	2.560208
8	6	0	1.615555	-0.821371	-0.072759
9	6	0	2.932953	-0.853322	0.410249
10	1	0	3.676965	-1.616320	0.236927
11	6	0	3.082927	0.306228	1.150586
12	6	0	0.589826	3.830430	-1.550505
13	6	0	1.539025	4.806789	-1.199873
14	1	0	1.861436	5.652280	-1.789301
15	6	0	1.995712	4.442074	0.054224
16	6	0	-1.697900	2.079970	3.132120
17	6	0	-1.005729	2.499926	4.279848
18	1	0	-1.409527	2.657681	5.268954
19	6	0	0.306582	2.665758	3.876008
20	5	0	1.595543	2.393625	1.631187
21	1	0	2.537810	2.804530	2.245192
22	6	0	1.493914	3.095526	4.677465
23	1	0	1.188172	3.266529	5.711034
24	1	0	2.277557	2.333064	4.671784
25	1	0	1.930545	4.019980	4.289679
26	6	0	-3.152329	1.749347	3.024418
27	1	0	-3.519537	1.915078	2.010680
28	1	0	-3.339591	0.698724	3.270773
29	1	0	-3.728049	2.363925	3.721552
30	6	0	4.286561	0.811030	1.880107
31	1	0	4.072850	0.986584	2.937793
32	1	0	5.086672	0.072492	1.807972
33	1	0	4.648184	1.751770	1.455226
34	6	0	3.032008	5.094039	0.913024
35	1	0	2.637019	5.338903	1.902874
36	1	0	3.900564	4.444991	1.056483
37	1	0	3.367990	6.017445	0.438358
38	6	0	-0.197834	3.712465	-2.816206
39	1	0	0.409682	4.033496	-3.665849
40	1	0	-0.507002	2.677073	-2.975338
41	1	0	-1.099678	4.331250	-2.784287
42	6	0	0.925338	-1.814417	-0.949719
43	1	0	1.655169	-2.502803	-1.380360
44	1	0	0.189868	-2.400810	-0.390115
45	1	0	0.396133	-1.305989	-1.759877
46	15	0	-2.684773	2.190188	-0.863419
47	1	0	-0.882769	0.607147	-1.452550
48	8	0	-2.948810	1.953753	-2.453936
49	6	0	-4.029013	2.601969	-3.118834
50	1	0	-4.988679	2.215177	-2.762148
51	1	0	-3.983186	3.685339	-2.975597
52	1	0	-3.923632	2.369639	-4.178622

53	8	0	-2.699072	3.838079	-0.852281
54	6	0	-2.340462	4.493066	0.369188
55	1	0	-3.022340	4.207536	1.179757
56	1	0	-1.314701	4.244244	0.654197
57	1	0	-2.429987	5.563452	0.181221
58	8	0	-4.137195	1.844053	-0.166066
59	6	0	-5.241832	2.739753	-0.088347
60	1	0	-5.471650	2.905855	0.968692
61	1	0	-5.023167	3.699130	-0.563433
62	1	0	-6.103610	2.274499	-0.572743
63	6	0	-2.671347	-1.314831	-0.562692
64	6	0	-2.115271	-0.363950	0.504275
65	6	0	-3.248399	-2.460250	0.275227
66	6	0	-1.498301	-1.297794	1.573815
67	6	0	-2.183976	-2.678693	1.367914
68	1	0	-1.875443	-1.690792	-1.216281
69	1	0	-4.191441	-2.132575	0.729802
70	1	0	-2.997406	0.087684	0.972182
71	1	0	-1.672466	-0.896854	2.578547
72	1	0	-0.415490	-1.388827	1.473327
73	1	0	-2.613008	-3.077995	2.291107
74	1	0	-1.450206	-3.415004	1.019853
75	1	0	-3.457742	-3.367884	-0.298955
76	1	0	-3.416221	-0.828620	-1.203336

$Tp'Rh[P(OMe)_3](R)H R = tBuCHCH$

Cen	ter	Atomic	Atomic	Coordin	ates (A	ngstroms)
Nun	nber	Number	Type	Х	Ŷ	L
1	45	0	-0.531673	0.587276	-0.333	226
2	7	0	0.312578	-1.306148	-0.9408	345
3	7	0	1.563863	-1.625656	-0.5365	544
4	7	0	1.483557	1.365779	-0.9727	29
5	7	0	2.578229	0.682643	-0.5663	68
6	7	0	0.507585	0.150992	1.6951	55
7	7	0	1.775722	-0.316675	1.6170)50
8	6	0	-0.155580	-2.320781	-1.665	754
9	6	0	0.818316	-3.331141	-1.723	138
10	1	0	0.748057	-4.279418	-2.234	4528
11	6	0	1.894728	-2.852546	-0.996	5938
12	6	0	1.901096	2.363738	-1.751	506
13	6	0	3.302795	2.331178	-1.840)490
14	1	0	3.940985	2.999488	-2.399	139
15	6	0	3.695693	1.244799	-1.077	769

16	6	0	0.206335	0.251122	2.990604
17	6	0	1.307008	-0.155921	3.765092
18	1	0	1.375246	-0.193773	4.842235
19	6	0	2.284274	-0.512632	2.854722
20	5	0	2.434740	-0.620359	0.254087
21	1	0	3.519110	-1.093397	0.437226
22	6	0	3.663687	-1.033727	3.104649
23	1	0	3.840736	-1.084673	4.180235
24	1	0	3.797089	-2.034903	2.685901
25	1	0	4.425489	-0.387164	2.660351
26	6	0	-1.123761	0.727699	3.481131
27	1	0	-1.811257	0.893416	2.651083
28	1	0	-1.569224	-0.015294	4.149377
29	1	0	-1.013775	1.654614	4.057173
30	6	0	3.215963	-3.499358	-0.729214
31	1	0	3.396945	-3.614750	0.342979
32	1	0	3.232035	-4.489281	-1.188155
33	1	0	4.041895	-2.914558	-1.143621
34	6	0	5.069877	0.710540	-0.828102
35	1	0	5.287932	0.643987	0.241085
36	1	0	5.194446	-0.289522	-1.253050
37	1	0	5.804485	1.372913	-1.289051
38	6	0	0.952284	3.320363	-2.400616
39	1	0	1.397117	3.723759	-3.313024
40	1	0	0.016478	2.818233	-2.657198
41	1	0	0.710514	4.155606	-1.736351
42	6	0	-1.507756	-2.299570	-2.302172
43	1	0	-1.506494	-2.919783	-3.201489
44	1	0	-2.271474	-2.675533	-1.616370
45	1	0	-1.784187	-1.277644	-2.569836
46	15	0	-1.414712	2.524479	0.076772
47	1	0	-1.136451	0.778207	-1.699251
48	8	0	-2.137262	3.231761	-1.200745
49	6	0	-2.729401	4.522017	-1.076433
50	1	0	-3.612016	4.479547	-0.430578
51	1	0	-2.009913	5.245905	-0.683551
52	1	0	-3.035670	4.819762	-2.079148
53	8	0	-0.411230	3.756579	0.508848
54	6	0	0.566574	3.485915	1.520098
55	1	0	0.086226	3.153020	2.447748
56	1	0	1.267198	2.718620	1.179701
57	1	0	1.090621	4.425246	1.698797
58	8	0	-2.551631	2.574699	1.259688
59	6	0	-2.805601	3.693438	2.102930
60	1	0	-2.604186	3.393230	3.135407
61	1	0	-2.176908	4.549350	1.845977

62	1	0	-3.859148	3.967561	2.008432
63	6	0	-2.263434	-0.275008	0.147027
64	1	0	-3.178921	0.067893	-0.339282
65	6	0	-2.344782	-1.295904	1.004707
66	1	0	-1.432621	-1.649333	1.496247
67	6	0	-3.594983	-2.053303	1.420765
68	6	0	-3.832394	-1.811243	2.919948
69	6	0	-3.356383	-3.554891	1.199603
70	1	0	-3.211046	-3.777373	0.137781
71	1	0	-2.463442	-3.889970	1.737757
72	1	0	-4.210534	-4.141255	1.557331
73	1	0	-2.959219	-2.120102	3.505430
74	1	0	-4.697945	-2.382665	3.275328
75	1	0	-4.014021	-0.749173	3.114671
76	6	0	-4.833816	-1.617766	0.638212
77	1	0	-4.691917	-1.767102	-0.437477
78	1	0	-5.704625	-2.202998	0.952179
79	1	0	-5.057155	-0.559746	0.808117

$Tp'Rh[P(OMe)_3](R)HR = \alpha$ -mesityl

Cent	ter	Atomic	Atomic	Coordin	ates (Anostro	nms)
Nun	nber	Number	Туре	X	Y Z	51115
1	45	0	-4.088516	-0.379956	2.461538	
2	7	0	-1.933445	-0.342980	2.160970	
3	7	0	-1.140316	-0.888187	3.114608	
4	7	0	-3.510836	0.266610	4.545838	
5	7	0	-2.532940	-0.435533	5.164543	
6	7	0	-3.705823	-2.550784	3.213289	
7	7	0	-2.641003	-2.703744	4.035388	
8	6	0	-1.141799	0.177952	1.224187	
9	6	0	0.199347	-0.042562	1.578093	
10	1	0	1.079018	0.256921	1.028366	
11	6	6 0	0.159113	-0.719117	2.783893	
12	6	6 0	-3.917923	1.213778	5.390696	
13	6	6 0	-3.192934	1.113216	6.590030	
14	1	0	-3.282302	1.738292	7.466028	
15	6	6 0	-2.318262	0.056968	6.405132	
16	6	5 0	-4.256955	-3.756728	3.063621	
17	6	6 0	-3.538296	-4.704051	3.810916	
18	1	0	-3.735115	-5.762605	3.893583	
19	6	5 0	-2.513580	-3.995473	4.411525	
20	5	5 0	-1.728772	-1.512671	4.399638	
21	1	0	-0.836004	-1.904047	5.094224	

22	6	0	-1.427749	-4.488735	5.314020
23	1	0	-1.559726	-5.558424	5.485008
24	1	0	-0.438936	-4.329687	4.875284
25	1	0	-1.444440	-3.980036	6.281707
26	6	0	-5.449964	-4.007582	2.197232
27	1	0	-6.063451	-3.110878	2.100105
28	1	0	-5.146137	-4.308207	1.189495
29	1	0	-6.056150	-4.814933	2.617570
30	6	0	1.291454	-1.203622	3.631845
31	1	0	1.247687	-2.286034	3.780439
32	1	0	2.236400	-0.961887	3.142578
33	1	0	1.284613	-0.733350	4.619142
34	6	0	-1.284296	-0.489065	7.337318
35	1	0	-1.428679	-1.557615	7.517930
36	1	0	-0.274685	-0.354964	6.939018
37	1	0	-1.348325	0.032930	8.293497
38	6	0	-4.981165	2.201705	5.032289
39	1	0	-4.840324	3.121821	5.603916
40	1	0	-4.941682	2.437962	3.966742
41	1	0	-5.979385	1.809422	5.249089
42	6	0	-1.675452	0.870599	0.013449
43	1	0	-0.975521	1.643572	-0.312097
44	1	0	-1.818223	0.171653	-0.816227
45	1	0	-2.644883	1.329245	0.219656
46	15	0	-6.218976	-0.202448	2.809600
47	1	0	-4.209546	1.028990	1.953890
48	8	0	-6.850619	1.286258	2.592877
49	6	0	-8.247117	1.514576	2.753754
50	1	0	-8.807972	1.023566	1.952276
51	1	0	-8.592777	1.159982	3.729181
52	1	0	-8.394863	2.592593	2.685819
53	8	0	-6.764594	-0.461278	4.342521
54	6	0	-6.282527	-1.614031	5.041163
55	1	0	-6.539474	-2.534202	4.502600
56	1	0	-5.197843	-1.561550	5.168853
57	1	0	-6.777539	-1.611716	6.012775
58	8	0	-7.195988	-1.188839	1.927793
59	6	0	-8.462593	-1.684071	2.354205
60	1	0	-8.418388	-2.777204	2.343709
61	1	0	-8.713387	-1.343250	3.361496
62	1	0	-9.225302	-1.349255	1.647479
63	6	0	-4.381861	-1.082436	0.554449
64	1	0	-3.434444	-1.593716	0.338909
65	1	0	-5.147005	-1.864399	0.614723
66	6	0	-4.735442	-0.205186	-0.623636
<	(Δ	4 2 (2 1 0 5	0 5 (2000	1 002(17

68	6	0	-5.564686	0.917016	-0.537489
69	6	0	-4.593855	0.158314	-3.039750
70	6	0	-5.917420	1.657134	-1.667609
71	6	0	-5.428878	1.268261	-2.914244
72	1	0	-3.617954	-1.436352	-1.985239
73	1	0	-5.934509	1.240541	0.430371
74	1	0	-5.699145	1.839913	-3.800061
75	6	0	-4.041414	-0.250620	-4.382261
76	1	0	-2.978347	0.000147	-4.462398
77	1	0	-4.133211	-1.329712	-4.535424
78	1	0	-4.564461	0.254648	-5.197690
79	6	0	-6.788469	2.880873	-1.529893
80	1	0	-7.323339	3.095855	-2.458629
81	1	0	-7.524878	2.752719	-0.731481
82	1	0	-6.188701	3.763022	-1.281638

$Tp'Rh[P(OMe)_3](R)H R = CH_3OCH_2$

Cent	ter	Atomic	Atomic	Coordina	ates (Angstro	oms)
Num	nber	Number	Type	Х	Y Z	,
1	45	0	-3.966562	-0.349735	2.296967	
2	7	0	-1.805060	-0.460321	2.124308	
3	7	0	-1.086115	-0.884203	3.188896	
4	7	0	-3.481829	0.552604	4.312216	
5	7	0	-2.561300	-0.084619	5.072413	
6	7	0	-3.747811	-2.396374	3.371442	
7	7	0	-2.729730	-2.480898	4.260797	
8	6	0	-0.949565	-0.124755	1.159530	
9	6	0	0.362514	-0.345875	1.612754	
10	1	0	1.281167	-0.172560	1.072620	
11	6	0	0.234034	-0.825046	2.904038	
12	6	0	-3.892689	1.621194	4.994529	
13	6	0	-3.229657	1.668283	6.232914	
14	1	0	-3.339286	2.411752	7.008356	
15	6	0	-2.387336	0.570500	6.242307	
16	6	0	-4.362371	-3.580091	3.370186	
17	6	0	-3.732719	-4.444030	4.281497	
18	1	0	-3.993609	-5.467590	4.506434	
19	6	0	-2.695662	-3.708600	4.825271	
20	5	0	-1.774465	-1.292208	4.512356	
21	1	0	-0.940734	-1.621550	5.306042	
22	6	0	-1.679956	-4.120123	5.842907	
23	1	0	-1.878300	-5.146781	6.155325	
24	1	0	-0.665579	-4.073658	5.437187	

25	1	0	-1.709950	-3.477901	6.727170
26	6	0	-5.533369	-3.885811	2.491514
27	1	0	-6.003451	-2.969500	2.132132
28	1	0	-5.224862	-4.467223	1.616756
29	1	0	-6.272521	-4.479716	3.037713
30	6	0	1.299028	-1.225225	3.874195
31	1	0	1.185955	-2.266993	4.186730
32	1	0	2.277010	-1.110656	3.403995
33	1	0	1.275862	-0.605659	4.775046
34	6	0	-1.422215	0.125368	7.294396
35	1	0	-1.629734	-0.896136	7.624881
36	1	0	-0.391578	0.150374	6.929566
37	1	0	-1.496809	0.788229	8.158017
38	6	0	-4.897084	2.583226	4.444482
39	1	0	-4.709204	3.583134	4.842554
40	1	0	-4.834905	2.620525	3.354711
41	1	0	-5.918229	2.294339	4.710784
42	6	0	-1.394704	0.401872	-0.168467
43	1	0	-0.819872	1.294335	-0.429468
44	1	0	-1.226559	-0.340801	-0.955579
45	1	0	-2.457306	0.654095	-0.158707
46	15	0	-6.099277	0.002905	2.373908
47	1	0	-3.966078	0.979949	1.596732
48	8	0	-6.597696	1.456959	1.845429
49	6	0	-7.979746	1.797892	1.847839
50	1	0	-8.523969	1.197040	1.112558
51	1	0	-8.416006	1.664622	2.842254
52	1	0	-8.039409	2.848223	1.562584
53	8	0	-6.805158	0.030757	3.865987
54	6	0	-6.468515	-1.020382	4.776226
55	1	0	-6.743236	-1.999257	4.363532
56	1	0	-5.397958	-1.010282	5.000412
57	1	0	-7.044056	-0.836845	5.684206
58	8	0	-7.047498	-1.079376	1.575137
59	6	0	-8.375173	-1.430780	1.951402
60	1	0	-8.394325	-2.502609	2.172452
61	1	0	-8.709497	-0.877384	2.832110
62	1	0	-9.041917	-1.226157	1.110355
63	6	0	-4.194335	-1.193317	0.483056
64	1	0	-3.195753	-1.546152	0.173250
65	1	0	-4.857493	-2.071364	0.537386
66	8	0	-4.704016	-0.295859	-0.490156
67	6	0	-4.775961	-0.894163	-1.756953
68	1	0	-3.780260	-1.210013	-2.106492
69	1	0	-5.432292	-1.777773	-1.747804
70	1	0	-5.179959	-0.156870	-2.454088

$Tp'Rh[P(OMe)_3](R)HR = tBuOCH_2$

Cen Nur	iter nber	Atomic Number	Atomic Type	Coordin X	ates (Angstroms) Y Z
1	45	0	-0.174291	-2.344178	-2.006655
2	7	0	1.104263	-0.597276	-1.897529
3	7	0	2.152351	-0.497841	-2.746703
4	7	0	1.803132	-3.437481	-2.154774
5	7	0	2.723161	-2.939810	-3.013015
6	7	0	0.031703	-2.069000	-4.306318
7	7	0	1.279550	-1.780784	-4.746780
8	6	0	1.131871	0.459666	-1.086821
9	6	0	2.227363	1.271490	-1.428639
10	1	0	2.527355	2.198454	-0.963239
11	6	0	2.851125	0.628912	-2.483223
12	6	0	2.343418	-4.501436	-1.562230
13	6	0	3.643421	-4.702872	-2.057991
14	1	0	4.341782	-5.476261	-1.774731
15	6	0	3.850046	-3.686643	-2.974076
16	6	0	-0.758460	-2.116360	-5.380139
17	6	0	-0.004290	-1.860601	-6.537378
18	1	0	-0.355791	-1.828705	-7.557984
19	6	0	1.287591	-1.648130	-6.092061
20	5	0	2.464816	-1.616144	-3.769082
21	1	0	3.444532	-1.320090	-4.390206
22	6	0	2.515802	-1.327285	-6.883039
23	1	0	2.260892	-1.289192	-7.943479
24	1	0	2.937768	-0.360599	-6.595174
25	1	0	3.294607	-2.081781	-6.742845
26	6	0	-2.227912	-2.385074	-5.297821
27	1	0	-2.487466	-2.864319	-4.353011
28	1	0	-2.800260	-1.453843	-5.366197
29	1	0	-2.542774	-3.026417	-6.126515
30	6	0	4.075399	1.028728	-3.242632
31	1	0	3.865669	1.149255	-4.308979
32	1	0	4.446020	1.979219	-2.855429
33	1	0	4.869490	0.283530	-3.143284
34	6	0	5.062048	-3.385773	-3.796846
35	1	0	4.828286	-3.364259	-4.864713
36	1	0	5.494942	-2.416249	-3.534562
37	1	Õ	5.816004	-4.155843	-3.625474
38	6	0	1.612747	-5.296490	-0.526985
39	1	0	2.323238	-5.714092	0.190323
40	1	0	0.902176	-4.664861	0.011107
----	----	---	-----------	-----------	-----------
41	1	0	1.052847	-6.122631	-0.976428
42	6	0	0.125453	0.673022	0.000289
43	1	0	0.632470	0.936047	0.932482
44	1	0	-0.552364	1.495401	-0.251499
45	1	0	-0.474133	-0.225358	0.164170
46	15	0	-1.440772	-4.094460	-1.841481
47	1	0	-0.218238	-2.420922	-0.505294
48	8	0	-1.683840	-4.657069	-0.336039
49	6	0	-2.530197	-5.779579	-0.115329
50	1	0	-3.569632	-5.528021	-0.348409
51	1	0	-2.206985	-6.638584	-0.711034
52	1	0	-2.452442	-6.022477	0.944422
53	8	0	-0.898322	-5.489668	-2.538223
54	6	0	-0.412621	-5.402062	-3.880910
55	1	0	-1.198088	-5.045236	-4.559111
56	1	0	0.446854	-4.727960	-3.938545
57	1	0	-0.118843	-6.411874	-4.169321
58	8	0	-2.952962	-3.975528	-2.488917
59	6	0	-3.686665	-5.055551	-3.055029
60	1	0	-3.899051	-4.811660	-4.100853
61	1	0	-3.130797	-5.995188	-3.011332
62	1	0	-4.630910	-5.159601	-2.513939
63	6	0	-1.831442	-1.202549	-1.913280
64	1	0	-1.500608	-0.153838	-1.890841
65	1	0	-2.411002	-1.357826	-2.831810
66	8	0	-2.622025	-1.511977	-0.777770
67	6	0	-3.886543	-0.858252	-0.652034
68	6	0	-4.542417	-1.568849	0.527711
69	6	0	-4.745311	-1.038420	-1.907984
70	1	0	-4.391487	-0.423007	-2.739921
71	1	0	-4.724262	-2.087961	-2.217507
72	1	0	-5.778937	-0.749157	-1.695783
73	1	0	-4.682088	-2.627008	0.286721
74	1	0	-5.514020	-1.124910	0.763374
75	1	0	-3.895995	-1.500427	1.406538
76	6	0	-3.688254	0.625644	-0.336055
77	1	0	-3.079236	0.735959	0.566299
78	1	0	-3.186184	1.141351	-1.160002
79	1	0	-4.652512	1.115919	-0.170160

$Tp'Rh[P(OMe)_3](R)HR = MeCCCH_2$

Center	Atomic	Atomic	Coordinates (Angstroms)
Number	Number	Type	X Y Z

1	45	0	-0.481348	0.400913	-0.385773
2	7	0	0.522196	-1.437305	-0.967080
3	7	0	1.795954	-1.631956	-0.555159
4	7	0	1.467087	1.309056	-1.034027
5	7	0	2.598233	0.758072	-0.534738
6	7	0	0.549396	0.075105	1.656032
7	7	0	1.832580	-0.350768	1.615877
8	6	0	0.147814	-2.513399	-1.654805
9	6	0	1.208068	-3.433594	-1.686115
10	1	0	1.224236	-4.398843	-2.169660
11	6	0	2.236618	-2.837499	-0.977740
12	6	0	1.827991	2.334037	-1.806183
13	6	0	3.227629	2.456874	-1.793915
14	1	0	3.826862	3.182917	-2.322767
15	6	0	3.681161	1.433464	-0.980411
16	6	0	0.164284	0.041316	2.930640
17	6	0	1.227407	-0.406830	3.734633
18	1	0	1.232695	-0.536114	4.806826
19	6	0	2.269763	-0.651941	2.859162
20	5	0	2.552418	-0.563177	0.268624
21	1	0	3.670405	-0.939630	0.473105
22	6	0	3.649143	-1.153244	3.146870
23	1	0	3.773681	-1.269759	4.224869
24	1	0	3.831751	-2.122454	2.674192
25	1	0	4.413582	-0.461052	2.783832
26	6	0	-1.220892	0.395145	3.364464
27	1	0	-1.740155	0.961045	2.589985
28	1	0	-1.800964	-0.514440	3.548942
29	1	0	-1.198716	0.981928	4.287932
30	6	0	3.612933	-3.350707	-0.697812
31	1	0	3.799103	-3.439849	0.376091
32	1	0	3.728802	-4.337533	-1.149061
33	1	0	4.379535	-2.690020	-1.112074
34	6	0	5.084309	1.058430	-0.624501
35	1	0	5.234517	1.043141	0.458294
36	1	0	5.342948	0.067185	-1.007294
37	1	0	5.773799	1.784930	-1.057586
38	6	0	0.835420	3.166929	-2.552477
39	1	0	1.284109	3.537344	-3.477147
40	1	0	-0.050336	2.578788	-2.801433
41	1	0	0.511089	4.027449	-1.959256
42	6	0	-1.216052	-2.650903	-2.247696
43	1	0	-1.194139	-3.357251	-3.080256
44	1	0	-1.921930	-3.019196	-1.496374
45	1	0	-1.574882	-1.685674	-2.612823

46	15	0	-1.441906	2.315211	-0.055076
47	1	0	-1.101452	0.509816	-1.754375
48	8	0	-2.155465	2.975513	-1.361480
49	6	0	-2.763893	4.261696	-1.279732
50	1	0	-3.653140	4.225971	-0.642528
51	1	0	-2.057270	5.004259	-0.898509
52	1	0	-3.061827	4.527745	-2.293810
53	8	0	-0.471174	3.574936	0.368001
54	6	0	0.471422	3.354632	1.425184
55	1	0	-0.030490	2.985493	2.327979
56	1	0	1.229201	2.629774	1.116290
57	1	0	0.930880	4.321776	1.631364
58	8	0	-2.611404	2.386930	1.101758
59	6	0	-2.873869	3.512547	1.934213
60	1	0	-2.648000	3.234614	2.968371
61	1	0	-2.269180	4.377534	1.652532
62	1	0	-3.934691	3.760432	1.852270
63	6	0	-2.203794	-0.602276	0.177418
64	1	0	-2.774902	-0.875683	-0.714229
65	1	0	-2.853233	0.025121	0.794419
66	6	0	-1.828193	-1.792083	0.924723
67	6	0	-1.448890	-2.758017	1.548813
68	6	0	-0.916685	-3.891633	2.304159
69	1	0	-0.222267	-3.539763	3.073921
70	1	0	-1.709253	-4.462753	2.796757
71	1	0	-0.368856	-4.571621	1.644879

$Tp'Rh[P(OMe)_3](R)HR = MeC(O)CH_2$

-						
Cen	ter	Atomic	Atomic	Coordir	nates (A	Angstr
Nun	nber	Number	Туре	Х	Y	Z
1	45	0	-0.404112	0.064191	-0.32	.7776
2	7	0	0.517130	-1.828145	-0.90	1479
3	7	0	1.768539	-2.094713	-0.462	2129
4	7	0	1.596366	0.877363	-0.875	5423
5	7	0	2.686678	0.248814	-0.375	5308
6	7	0	0.523951	-0.415409	1.762	2194
7	7	0	1.806120	-0.850526	1.736	5836
8	6	0	0.142466	-2.835111	-1.689	9275
9	6	0	1.175832	-3.783730	-1.75	3205
10	1	0	1.183071	-4.709705	-2.30	08265
11	6	5 0	2.192063	-3.276131	-0.90	63333
12	6	5 0	2.025602	1.896424	-1.61	19613
13	6	5 0	3.430145	1.934059	-1.58	39597

14	1	0	4.077667	2.635980	-2.093480
15	6	0	3.812846	0.868829	-0.794194
16	6	0	0.157730	-0.365590	3.044210
17	6	0	1.227052	-0.768956	3.861108
18	1	0	1.242198	-0.834470	4.938915
19	6	0	2.257722	-1.073461	2.991090
20	5	0	2.550495	-1.078042	0.404387
21	1	0	3.641739	-1.513075	0.634174
22	6	0	3.637103	-1.564201	3.296338
23	1	0	3.761207	-1.641212	4.377824
24	1	0	3.818783	-2.549396	2.858128
25	1	0	4.401541	-0.885240	2.909060
26	6	0	-1.209107	0.047351	3.491468
27	1	0	-1.673113	0.728838	2.776746
28	1	0	-1.864879	-0.822882	3.600199
29	1	0	-1.149866	0.539221	4.466262
30	6	0	3.539440	-3.854027	-0.670039
31	1	0	3.687020	-4.003106	0.403044
32	1	0	3.634146	-4.820573	-1.167510
33	1	0	4.341698	-3.202293	-1.027009
34	6	0	5.187387	0.403653	-0.432603
35	1	0	5.323713	0.351310	0.650925
36	1	0	5.393418	-0.590561	-0.839200
37	1	0	5.922659	1.099975	-0.838984
38	6	0	1.091222	2.804396	-2.351716
39	1	0	1.577914	3.190849	-3.250167
40	1	0	0.185154	2.269589	-2.644843
41	1	0	0.787058	3.650707	-1.729680
42	6	0	-1.188289	-2.872690	-2.369002
43	1	0	-1.084792	-3.279094	-3.377823
44	1	0	-1.889548	-3.512600	-1.823053
45	1	0	-1.611517	-1.868003	-2.437068
46	15	0	-1.310756	2.017694	0.029291
47	1	0	-0.954016	0.256417	-1.712137
48	8	0	-1.895029	2.850255	-1.235078
49	6	0	-3.165444	3.494111	-1.204734
50	1	0	-3.923191	2.823716	-0.795804
51	1	0	-3.110339	4.425894	-0.631685
52	1	0	-3.411996	3.725830	-2.240919
53	8	0	-0.262138	3.180949	0.554057
54	6	0	0.604365	2.862581	1.643930
55	1	0	0.032937	2.525388	2.517856
56	1	0	1.317316	2.083863	1.359283
57	1	0	1.134877	3.782254	1.893491
58	8	0	-2.470990	2.063458	1.191057
59	6	0	-2.813039	3.248637	1.906747

60	1	0	-2.765030	3.016146	2.974356
61	1	0	-2.124239	4.067468	1.685028
62	1	0	-3.833315	3.539376	1.645048
63	6	0	-2.151305	-0.874956	0.168452
64	1	0	-1.966112	-1.956036	0.161074
65	1	0	-2.389898	-0.610633	1.208585
66	6	0	-3.398620	-0.559849	-0.606064
67	8	0	-3.663679	0.556291	-1.016548
68	6	0	-4.380978	-1.695966	-0.825838
69	1	0	-4.588675	-2.205301	0.119931
70	1	0	-5.304005	-1.313415	-1.261692
71	1	0	-3.937242	-2.436508	-1.498507

$Tp'Rh[P(OMe)_3](R)HR = CH_2F$

Cente	r	Atomic	Atomic	Coordin	ates (Ar	ngstro
Numb	ber	Number	Туре	Х	Y	Ζ
1	45	0	-0.447071	0.428594	-0.3482	292
2	7	0	0.509048	-1.435964	-0.9135	87
3	7	0	1.782645	-1.663011	-0.5179	54
4	7	0	1.545778	1.307747	-0.9717	99
5	7	0	2.662568	0.700038	-0.5082	55
6	7	0	0.569195	0.071306	1.7009	00
7	7	0	1.852926	-0.358035	1.6489	50
8	6	0	0.128547	-2.460673	-1.6763	91
9	6	0	1.185782	-3.381747	-1.7680	61
10	1	0	1.196817	-4.314512	-2.311	586
11	(5 0	2.217592	-2.838830	-1.023	606
12	(5 0	1.933722	2.318595	-1.748	162
13	6	6 0	3.337849	2.373357	-1.777	452
14	1	0	3.956758	3.073085	-2.319	024
15	6	6 0	3.764323	1.324358	-0.981	977
16	(5 0	0.245651	0.174360	2.991	254
17	6	6 0	1.344274	-0.188952	3.787	389
18	1	0	1.396371	-0.210571	4.865	737
19	6	6 0	2.346675	-0.524728	2.895	992
20	4	5 0	2.567417	-0.612743	0.303	113
21]	l 0	3.670540	-1.024699	0.518	015
22	6	6 0	3.739088	-0.993352	3.175	875
23	1	0	3.893853	-1.038505	4.255	129
24]	0	3.918376	-1.988451	2.759	953
25]	0	4.485330	-0.318138	2.748	429
26	6	6 0	-1.111045	0.596681	3.458	681
27	1	0	-1.650561	1.128654	2.674	179

28	1	0	-1.712219	-0.271462	3.747612
29	1	0	-1.024694	1.243475	4.336761
30	6	0	3.589975	-3.377520	-0.774804
31	1	0	3.780125	-3.512313	0.293490
32	1	0	3.693165	-4.345741	-1.267237
33	1	0	4.360628	-2.707691	-1.166292
34	6	0	5.157260	0.880761	-0.666850
35	1	0	5.338791	0.857467	0.411046
36	1	0	5.356738	-0.121387	-1.056751
37	1	0	5.868567	1.573117	-1.120127
38	6	0	0.954685	3.201438	-2.454374
39	1	0	1.398166	3.587516	-3.375016
40	1	0	0.049727	2.644046	-2.707015
41	1	0	0.660159	4.051078	-1.831158
42	6	0	-1.224012	-2.538149	-2.311542
43	1	0	-1.127039	-2.810737	-3.365577
44	1	0	-1.841712	-3.301083	-1.827468
45	1	0	-1.745244	-1.581957	-2.242511
46	15	0	-1.470724	2.314776	-0.060855
47	1	0	-1.031605	0.554549	-1.730598
48	8	0	-2.180562	2.933529	-1.385127
49	6	0	-2.881076	4.172534	-1.325144
50	1	0	-3.800074	4.063686	-0.741217
51	1	0	-2.251691	4.958934	-0.898460
52	1	0	-3.140136	4.430663	-2.351797
53	8	0	-0.558478	3.620828	0.365721
54	6	0	0.381454	3.440622	1.430590
55	1	0	-0.129075	3.146463	2.356050
56	1	0	1.121346	2.678523	1.167894
57	1	0	0.868866	4.404851	1.577130
58	8	0	-2.641283	2.329295	1.093301
59	6	0	-3.031544	3.472750	1.847825
60	1	0	-2.899210	3.237641	2.908317
61	1	0	-2.430120	4.349825	1.596797
62	1	0	-4.086981	3.678275	1.654965
63	6	0	-2.113475	-0.540806	0.192805
64	1	0	-1.924165	-1.615922	0.089341
65	1	0	-2.385602	-0.322585	1.231311
66	9	0	-3.232108	-0.237536	-0.586962

$Tp'Rh[P(OMe)_3](R)H R = CHF_2$

Center	Atomic	Atomic	Coor	rdinates (A	Angstron	ıs)
Number	Number	Туре	Х	Y	Z	

1	45	0	-0.492409	0.397555	-0.254196
2	7	0	0.484616 -	1.423082	-0.883180
3	7	0	1.776420 -	1.618396	-0.526941
4	7	0	1.447616	1.329630	-0.970425
5	7	0	2.596968	0.762568	-0.536983
6	7	0	0.586692 (0.009613	1.725449
7	7	0	1.893801 -	0.330579	1.640598
8	6	0	0.096224 -2	2.470145	-1.607273
9	6	0	1.166976 -	3.371698	-1.721276
10	1	0	1.173969	-4.315578	-2.245180
11	6	0	2.214216	-2.796917	-1.023898
12	6	0	1.781329	2.348885	-1.761842
13	6	0	3.180564	2.450225	-1.831299
14	1	0	3.760285	3.166969	-2.393478
15	6	0	3.663417	1.419373	-1.044237
16	6	0	0.261179	-0.001744	3.018517
17	6	0	1.387554	-0.338769	3.786016
18	1	0	1.445384	-0.433305	4.860145
19	6	0	2.405248	-0.548498	2.872140
20	5	0	2.567457	-0.556884	0.270170
21	1	0	3.688911	-0.938954	0.440368
22	6	0	3.824077	-0.954642	3.113775
23	1	0	4.003443	-1.016195	4.188405
24	1	0	4.040693	-1.931720	2.673067
25	1	0	4.528997	-0.236391	2.686723
26	6	0	-1.130531	0.248561	3.504640
27	1	0	-1.598983	1.091092	2.990726
28	1	0	-1.753472	-0.635463	3.334597
29	1	0	-1.119516	0.454433	4.577079
30	6	0	3.603099	-3.308772	-0.812383
31	1	0	3.827483	-3.431254	0.250842
32	1	0	3.707265	-4.279975	-1.298766
33	1	0	4.350827	-2.630653	-1.233064
34	6	0	5.078157	1.020930	-0.769023
35	1	0	5.290878	1.005056	0.303196
36	1	0	5.296813	0.024747	-1.163602
37	1	0	5.754003	1.734362	-1.243347
38	6	0	0.761203	3.200491	-2.447418
39	1	0	1.161743	3.570554	-3.393956
40	1	0	-0.144791	2.624197	-2.651628
41	1	0	0.489045	4.063727	-1.831603
42	6	0	-1.285106	-2.590265	-2.161055
43	1	0	-1.287903	-3.279782	-3.007782
44	1	0	-1.976610	-2.961338	-1.401088
45	1	0	-1.654078	-1.616600	-2.489603
46	15	0	-1.436818	2.329519	0 096976

47	1	0	-1.140192	0.531682	-1.610376
48	8	0	-2.198081	3.017555	-1.165435
49	6	0	-2.319075	4.418297	-1.412859
50	1	0	-3.362338	4.714093	-1.276210
51	1	0	-1.674683	5.004287	-0.755815
52	1	0	-2.028611	4.589646	-2.451569
53	8	0	-0.455659	3.576581	0.523125
54	6	0	0.500902	3.331014	1.563438
55	1	0	0.000218	2.986485	2.474763
56	1	0	1.230378	2.582451	1.242785
57	1	0	0.994169	4.284202	1.753799
58	8	0	-2.559693	2.339360	1.294587
59	6	0	-3.336168	3.510897	1.529568
60	1	0	-3.824970	3.378980	2.495072
61	1	0	-2.700554	4.401826	1.563072
62	1	0	-4.095237	3.621281	0.750300
63	6	0	-2.124625	-0.539609	0.386064
64	1	0	-2.615820	-0.056530	1.237021
65	9	0	-3.097045	-0.713625	-0.570125
66	9	0	-1.788146	-1.806389	0.805562

$Tp'Rh[P(OMe)_3](R)H R = CH_2CF_3$

Cent	ter	Atomic	Atomic	Coordin	ates (A	ngsti
Nun	nber	Number	Туре	Х	Ŷ	Z
1	45	0	-0.485328	0.450637	-0.459	555
2	7	0	0.496996	-1.423342	-1.0010)98
3	7	0	1.750544	-1.632215	-0.5298	302
4	7	0	1.469319	1.309812	-1.0708	319
5	7	0	2.590974	0.741095	-0.5704	40
6	7	0	0.472268	0.052649	1.6361	50
7	7	0	1.784011	-0.283487	1.6072	261
8	6	0	0.165444	-2.478530	-1.7460)71
9	6	0	1.226278	-3.397742	-1.7452	257
10	1	0	1.268097	-4.348476	-2.255	5153
11	6	0	2.214521	-2.824182	-0.966	6256
12	6	0	1.846569	2.304227	-1.875	5209
13	6	0	3.249036	2.387124	-1.883	6079
14	1	0	3.860769	3.081508	-2.439	9333
15	6	0	3.685672	1.373662	-1.048	3184
16	6	0	0.119960	0.123396	2.921	997
17	6	0	1.229561	-0.159524	3.735	5443
18	1	0	1.262788	-0.183492	4.814	506
19	6	0	2.268729	-0.419661	2.861	247

20	5	0	2.510980	-0.551784	0.273672
21	1	0	3.619802	-0.937939	0.504247
22	6	0	3.684175	-0.797208	3.162474
23	1	0	3.831202	-0.810145	4.243643
24	1	0	3.926636	-1.788656	2.770336
25	1	0	4.393411	-0.088273	2.726874
26	6	0	-1.272072	0.422128	3.381051
27	1	0	-1.810046	1.033278	2.656456
28	1	0	-1.838549	-0.503438	3.527377
29	1	0	-1.244264	0.945650	4.340713
30	6	0	3.572461	-3.350297	-0.627394
31	1	0	3.711424	-3.435484	0.453802
32	1	0	3.695272	-4.340470	-1.069109
33	1	0	4.363067	-2.700652	-1.012961
34	6	0	5.082767	0.968587	-0.701657
35	1	0	5.249966	0.979837	0.378647
36	1	0	5.307524	-0.039837	-1.060120
37	1	0	5.785691	1.662476	-1.165416
38	6	0	0.869042	3.148012	-2.628551
39	1	0	1.325491	3.503714	-3.555011
40	1	0	-0.027620	2.575466	-2.875209
41	1	0	0.558283	4.015996	-2.040081
42	6	0	-1.139325	-2.582864	-2.466138
43	1	0	-1.022531	-3.219196	-3.346020
44	1	0	-1.918541	-3.024411	-1.836904
45	1	0	-1.485413	-1.598673	-2.781889
46	15	0	-1.361367	2.400217	-0.074048
47	1	0	-1.061086	0.606777	-1.836943
48	8	0	-2.089770	3.112514	-1.335622
49	6	0	-2.871567	4.287537	-1.145672
50	1	0	-3.779991	4.047514	-0.585591
51	1	0	-2.297760	5.063954	-0.629616
52	1	0	-3.145033	4.641213	-2.139448
53	8	0	-0.303937	3.601605	0.314047
54	6	0	0.621188	3.348829	1.377434
55	1	0	0.101943	3.001752	2.279319
56	1	0	1.354540	2.596260	1.075021
57	1	0	1.117659	4.297318	1.584804
58	8	0	-2.429848	2.491850	1.168250
59	6	0	-2.655140	3.643550	1.976156
60	1	0	-2.515449	3.349791	3.020591
61	1	0	-1.962675	4.452740	1.732924
62	1	0	-3.684083	3.981245	1.831305
63	6	0	-2.207306	-0.520851	0.056898
64	1	0	-1.991841	-1.591418	-0.017583
65	1	0	-2.464195	-0.313240	1.099692

66	6	0	-3.461254	-0.271852	-0.723125
67	9	0	-3.911191	0.996813	-0.601254
68	9	0	-3.342417	-0.496826	-2.047576
69	9	0	-4.474462	-1.063856	-0.304715

$Tp'Rh[P(OMe)_3](R)H R = tBuCC$

Cent	ter	Atomic	Atomic	Coordin	ates (Angs	 troms)
Nun	nber	Number	Туре	Х	Y Z	<u>r</u>
1	45	0	-0.938264	0.501930	-0.340513	3
2	7	0	0.129440	-1.263197	-0.984241	
3	7	0	1.478708	-1.273190	-0.871070	1
4	7	0	0.656341	1.493088	-1.525948	
5	7	0	1.935704	1.178470	-1.199148	
6	7	0	0.530785	0.447878	1.434374	
7	7	0	1.828123	0.205922	1.140677	
8	6	0	-0.246521	-2.421688	-1.521367	,
9	6	0	0.893266	-3.207288	-1.759773	
10	1	0	0.927773	-4.197503	-2.18854	6
11	6	0	1.967064	-2.445055	-1.33447	1
12	6	0	0.706892	2.358792	-2.54094	3
13	6	0	2.049019	2.635459	-2.85165	5
14	1	0	2.418497	3.295431	-3.62219	1
15	6	0	2.797282	1.860119	-1.98694	5
16	6	0	0.438767	0.530865	2.76202	7
17	6	0	1.707455	0.343913	3.33526	0
18	1	0	1.959320	0.348642	4.385324	4
19	6	0	2.565304	0.133394	2.27023	8
20	5	0	2.252432	-0.053393	-0.31325	7
21	1	0	3.427895	-0.275173	-0.35253	6
22	6	0	4.034405	-0.146363	2.27414	5
23	1	0	4.403198	-0.128901	3.30094	2
24	1	0	4.255257	-1.128352	1.84639	2
25	1	0	4.588917	0.597757	1.695894	4
26	6	0	-0.857211	0.792710	3.45564	1
27	1	0	-1.650031	0.208973	2.98192	2
28	1	0	-0.785172	0.507270	4.50755	9
29	1	0	-1.121236	1.853454	3.40327	8
30	6	0	3.425882	-2.771844	-1.35354	2
31	1	0	3.856485	-2.744734	-0.34873	5
32	1	0	3.565703	-3.774473	-1.76074	0
33	1	0	3.987350	-2.067196	-1.97341	9
34	6	0	4.282801	1.719891	-1.89073	6
35	1	0	4.636447	1.887418	-0.87014	4

36	1	0	4.611707	0.722252	-2.194828
37	1	0	4.757066	2.452507	-2.545834
38	6	0	-0.499497	2.867759	-3.261918
39	1	0	-0.294930	2.876352	-4.335544
40	1	0	-1.364323	2.234466	-3.066262
41	1	0	-0.755665	3.885719	-2.956290
42	6	0	-1.677915	-2.755825	-1.787766
43	1	0	-1.745298	-3.504296	-2.580436
44	1	0	-2.156104	-3.149096	-0.887249
45	1	0	-2.233536	-1.863752	-2.083918
46	15	0	-2.057021	2.305492	0.201857
47	1	0	-1.868933	0.447858	-1.520822
48	8	0	-2.326053	3.285877	-1.067449
49	6	0	-3.030033	4.513395	-0.864809
50	1	0	-4.083945	4.313817	-0.664039
51	1	0	-2.596642	5.074958	-0.032072
52	1	0	-2.925306	5.082537	-1.789380
53	8	0	-1.342518	3.294302	1.305015
54	6	0	0.003410	3.706749	1.031383
55	1	0	0.680702	2.848724	1.027321
56	1	0	0.056723	4.219791	0.064361
57	1	0	0.279925	4.397061	1.828628
58	8	0	-3.558397	2.288012	0.814352
59	6	0	-3.843631	2.004861	2.183568
60	1	0	-3.636771	0.955176	2.398952
61	1	0	-3.260675	2.658359	2.837719
62	1	0	-4.907237	2.208007	2.316104
63	6	0	-2.287282	-0.558364	0.592102
64	6	0	-3.096706	-1.256924	1.177633
65	6	0	-4.050888	-2.109534	1.915657
66	6	0	-3.980229	-3.548061	1.379569
67	1	0	-2.967731	-3.948637	1.484272
68	1	0	-4.670199	-4.193958	1.934229
69	1	0	-4.255919	-3.576878	0.321263
70	6	0	-5.480542	-1.574049	1.736625
71	1	0	-5.755015	-1.555855	0.678580
72	1	0	-6.192891	-2.210789	2.273218
73	1	0	-5.567459	-0.555921	2.127679
74	6	0	-3.686539	-2.107004	3.409489
75	1	0	-4.374011	-2.749760	3.970741
76	1	0	-2.665887	-2.471452	3.556818
77	1	0	-3.749843	-1.095252	3.824260

 $Tp'Rh[P(OMe)_3](R)H R = SiMe_3CC$

Center		Atomic	Atomic	Coordin	ates (Ar	igsti
Numbe	r	Number	Туре	Х	Y	Ζ
1 4	 45	0	-0 906172	0 555300	-0 4202	. <u></u> 238
2	7	0	0.165421	-1.214059	-1.0373	13
3	7	0	1.509920	-1.220393	-0.8648	23
4	7	0	0.676082	1.536954	-1.6111	55
5	7	0	1.959541	1.211362	-1.3131	02
6	7	0	0.516508	0.481694	1.37382	21
7	7	0	1.830485	0.359091	1.0786	36
8	6	0	-0.194766	-2.402923	-1.5155	37
9	6	0	0.950177	-3.204215	-1.6577	14
10	1	0	0.997234	-4.218615	-2.024	066
11	6	0	2.009245	-2.420693	-1.234	566
12	6	0	0.704520	2.335526	-2.680	955
13	6	0	2.039202	2.553206	-3.061	809
14	1	0	2.391806	3.153832	-3.886	920
15	6	0	2.804022	1.815569	-2.178	461
16	6	0	0.417233	0.587707	2.699	327
17	6	0	1.701950	0.550068	3.269	538
18	1	0	1.954823	0.605469	4.317	958
19	6	0	2.573987	0.396279	2.206	572
20	5	0	2.272321	0.032307	-0.359	803
21	1	0	3.449327	-0.183665	-0.373	458
22	6	0	4.063710	0.265953	2.211:	588
23	1	0	4.434973	0.393193	3.229	587
24	1	0	4.382231	-0.715656	1.849	738
25	1	0	4.535416	1.020110	1.575	792
26	6	0	-0.890767	0.729841	3.408	654
27	1	0	-1.675961	0.209499	2.856	240
28	1	0	-0.818361	0.292318	4.407	342
29	1	0	-1.169086	1.782985	3.515	989
30	6	0	3.464942	-2.755626	-1.169	464
31	1	0	3.851452	-2.667391	-0.150	430
32	1	0	3.613345	-3.783257	-1.505	017
33	1	0	4.059329	-2.096034	-1.807	807
34	6	0	4.288245	1.639666	-2.133	548
35	1	0	4.689227	1.857293	-1.140	401
36	1	0	4.577175	0.616351	-2.389	449
37	1	0	4.753482	2.317508	-2.850	985
38	6	0	-0.516751	2.841277	-3.378	993
39	1	0	-0.364753	2.771888	-4.459	170
40	1	0	-1.394379	2.256918	-3.103	827
41	1	0	-0.718910	3.885442	-3.128	471
42	6	0	-1.616220	-2.749360	-1.818	321

43	1	0	-1.656537	-3.500220	-2.610699
44	1	0	-2.116941	-3.143999	-0.930091
45	1	0	-2.170042	-1.862303	-2.132124
46	15	0	-1.943486	2.389031	0.191550
47	1	0	-1.829498	0.534846	-1.609620
48	8	0	-2.013819	3.503570	-0.988690
49	6	0	-2.648544	4.756960	-0.721406
50	1	0	-3.729100	4.622352	-0.647025
51	1	0	-2.268325	5.192818	0.207030
52	1	0	-2.407447	5.408723	-1.561657
53	8	0	-1.252832	3.187183	1.448332
54	6	0	0.129863	3.554458	1.349559
55	1	0	0.639873	3.018156	0.543163
56	1	0	0.190463	4.631579	1.171272
57	1	0	0.611097	3.299919	2.296288
58	8	0	-3.486835	2.426415	0.681848
59	6	0	-3.892495	2.048816	2.000964
60	1	0	-3.736913	0.978536	2.147222
61	1	0	-3.342329	2.629119	2.745899
62	1	0	-4.955843	2.282417	2.063067
63	6	0	-2.268758	-0.502050	0.470913
64	6	0	-3.089713	-1.217577	1.036636
65	14	0	-4.242581	-2.292372	1.963385
66	6	0	-4.164093	-4.048752	1.290011
67	1	0	-3.149405	-4.449540	1.371142
68	1	0	-4.836874	-4.713135	1.841913
69	1	0	-4.453558	-4.073924	0.235165
70	6	0	-6.000779	-1.634101	1.802273
71	1	0	-6.311488	-1.608665	0.754040
72	1	0	-6.708204	-2.262194	2.353439
73	1	0	-6.075640	-0.616364	2.197469
74	6	0	-3.740508	-2.280483	3.780442
75	1	0	-4.393279	-2.920748	4.382327
76	1	0	-2.711709	-2.633351	3.897614
77	1	0	-3.792881	-1.266190	4.189759

$Tp'Rh[P(OMe)_3](R)H R = n-hexylCC$

Cei Nu	nter mber	Atomic Number	Atomic Type	Coordin X	ates (Y	Angstron Z	ns)
1	45	0	-0.634772	-0.055438	-0.7	06592	
2	7	0	0.415184	-1.887699	-1.15	59491	
3	7	0	1.766933	-1.875515	-1.06	58391	
4	7	0	0.872577	0.762261	-2.10	3043	

5	7	0	2.173562	0.481024	-1.837179
6	7	0	0.901836	0.106941	0.994209
7	7	0	2.195814	-0.067933	0.643627
8	6	0	0.035686	-3.119332	-1.490939
9	6	0	1.175522	-3.931197	-1.617170
10	1	0	1.207389	-4.978259	-1.878640
11	6	0	2.252184	-3.107213	-1.342003
12	6	0	0.836504	1.431228	-3.257568
13	6	0	2.147156	1.611863	-3.730765
14	1	0	2.450305	2.115086	-4.636722
15	6	0	2.965114	0.986646	-2.809296
16	6	0	0.880311	0.393550	2.295978
17	6	0	2.195665	0.418895	2.792124
18	1	0	2.509936	0.614188	3.806672
19	6	0	3.003884	0.113579	1.711462
20	5	0	2.551013	-0.572923	-0.767073
21	1	0	3.726306	-0.791557	-0.826280
22	6	0	4.491002	-0.030872	1.648909
23	1	0	4.920636	0.229718	2.617610
24	1	0	4.785118	-1.056232	1.407601
25	1	0	4.927562	0.624641	0.890549
26	6	0	-0.386785	0.645406	3.047835
27	1	0	-1.203347	0.075245	2.599605
28	1	0	-0.268392	0.333355	4.088239
29	1	0	-0.650372	1.707879	3.037017
30	6	0	3.711783	-3.431643	-1.332486
31	1	0	4.162158	-3.225571	-0.357639
32	1	0	3.846771	-4.491124	-1.555960
33	1	0	4.258545	-2.850189	-2.080148
34	6	0	4.452222	0.830711	-2.820029
35	1	0	4.898633	1.174329	-1.883353
36	1	0	4.745166	-0.213277	-2.962723
37	1	0	4.870533	1.418934	-3.638444
38	6	0	-0.426415	1.840672	-3.944369
39	1	0	-0.335798	1.631979	-5.013485
40	1	0	-1.281015	1.296023	-3.543831
41	1	0	-0.623283	2.908227	-3.819314
42	6	0	-1.398475	-3.494712	-1.674100
43	1	0	-1.486841	-4.277536	-2.431201
44	1	0	-1.824182	-3.863433	-0.737111
45	1	0	-1.986940	-2.627023	-1.977262
46	15	0	-1.668358	8 1.828190	-0.281875
47	1	0	-1.631989	-0.229745	-1.820790
48	8	0	-1.829918	2.775631	-1.593044
49	6	0	-2.485234	4.039194	-1.462022
50	1	0	-3.564741	3.895740	-1.388674

51	1	0	-2.126540	4.573389	-0.577261
52	1	0	-2.242016	4.607868	-2.360270
53	8	0	-0.929772	2.802310	0.814943
54	6	0	0.438071	3.167668	0.592730
55	1	0	0.941236	2.472253	-0.086175
56	1	0	0.469469	4.178792	0.176968
57	1	0	0.946812	3.140786	1.558577
58	8	0	-3.183407	1.917542	0.288553
59	6	0	-3.504385	1.700811	1.665241
60	1	0	-3.340203	0.653822	1.924621
61	1	0	-2.905667	2.356785	2.302028
62	1	0	-4.560497	1.951770	1.768321
63	6	0	-1.941953	-0.995134	0.400991
64	6	0	-2.726662	-1.628231	1.085116
65	6	0	-3.667983	-2.389229	1.916166
66	1	0	-3.369146	-2.324255	2.971492
67	1	0	-4.667629	-1.937767	1.852426
68	6	0	-3.766427	-3.867696	1.519469
69	1	0	-2.771700	-4.323324	1.601272
70	1	0	-4.056865	-3.933063	0.463551
71	6	0	-4.762955	-4.639256	2.379648
72	1	0	-4.475496	-4.553783	3.436881
73	1	0	-5.754740	-4.173964	2.292972
74	6	0	-4.863630	-6.114899	2.002315
75	1	0	-5.143003	-6.201159	0.943203
76	1	0	-3.873847	-6.582448	2.096099
77	6	0	-5.868936	-6.887192	2.853557
78	1	0	-6.856902	-6.419781	2.755958
79	1	0	-5.590020	-6.796765	3.911019
80	6	0	-5.955982	-8.361202	2.468064
81	1	0	-4.984525	-8.851893	2.584640
82	1	0	-6.259124	-8.473120	1.422259
83	1	0	-6.679585	-8.898727	3.086404

$Tp'Rh[P(OMe)_3](R)HR = p-MeOC_6H_4CC$

Cent Nun	ter nber	Atomic Number	Atomic Type	Coordir X	nates (A Y	ngstrom Z	s)
1	45	0	-0.934582	0.301348	-0.558	3099	
2	7	0	0.136806	-1.502285	-1.072	032	
3	7	0	1.482720	-1.500078	-0.912	472	
4	7	0	0.648367	1.216302	-1.799	719	
5	7	0	1.931996	0.904135	-1.4886	508	
6	7	0	0.500990	0.333885	1.2326	530	

7	7	0	1.812864	0.181049	0.943317
8	6	0	-0.227415	-2.714080	-1.485842
9	6	0	0.917071	-3.521298	-1.598684
10	1	0	0.961064	-4.552600	-1.915093
11	6	0	1.979608	-2.717041	-1.226637
12	6	0	0.676233	1.964193	-2.905649
13	6	0	2.010353	2.163364	-3.297770
14	1	0	2.362116	2.724944	-4.150340
15	6	0	2.775859	1.467530	-2.381658
16	6	0	0.406677	0.532760	2.547335
17	6	0	1.692386	0.523617	3.116124
18	1	0	1.948902	0.649768	4.157435
19	6	0	2.560015	0.290218	2.064092
20	5	0	2.248240	-0.224291	-0.476519
21	1	0	3.424957	-0.442314	-0.484628
22	6	0	4.048777	0.148955	2.074372
23	1	0	4.424570	0.351719	3.078574
24	1	0	4.358472	-0.860557	1.789568
25	1	0	4.523907	0.847762	1.380677
26	6	0	-0.901315	0.730410	3.242649
27	1	0	-1.686065	0.175442	2.723933
28	1	0	-0.834269	0.365069	4.269954
29	1	0	-1.177665	1.789091	3.272343
30	6	0	3.436521	-3.046837	-1.161401
31	1	0	3.835180	-2.906330	-0.152993
32	1	0	3.582978	-4.089950	-1.446207
33	1	0	4.022126	-2.419545	-1.839254
34	6	0	4.260209	1.294866	-2.329187
35	1	0	4.660276	1.552994	-1.345413
36	1	0	4.550604	0.262407	-2.543557
37	1	0	4.725153	1.943715	-3.073181
38	6	0	-0.545976	2.438686	-3.623246
39	1	0	-0.389843	2.336925	-4.700196
40	1	0	-1.419528	1.855978	-3.331970
41	1	0	-0.757887	3.488174	-3.405231
42	6	0	-1.650723	-3.078448	-1.759155
43	1	0	-1.696347	-3.841413	-2.539745
44	1	0	-2.134720	-3.468264	-0.859237
45	1	0	-2.218529	-2.201865	-2.075862
46	15	0	-2.003166	2.148487	-0.056520
47	1	0	-1.860592	0.210927	-1.741544
48	8	0	-2.114785	3.185442	-1.302961
49	6	0	-2.786491	4.432984	-1.109577
50	1	0	-3.864917	4.273862	-1.056628
51	1	0	-2.442506	4.920350	-0.192545
52	1	0	-2.539436	5.052310	-1.972381

53	8	0	-1.324223	3.044435	1.140027
54	6	0	0.051485	3.425115	1.007313
55	1	0	0.591838	2.770320	0.316246
56	1	0	0.098522	4.458186	0.651455
57	1	0	0.510618	3.345699	1.994669
58	8	0	-3.543531	2.179062	0.445596
59	6	0	-3.932162	1.863482	1.786126
60	1	0	-3.771812	0.802588	1.985016
61	1	0	-3.375877	2.480376	2.496225
62	1	0	-4.995169	2.097933	1.850528
63	6	0	-2.300518	-0.713415	0.388052
64	6	0	-3.126404	-1.415055	0.949080
65	6	0	-4.093264	-2.236749	1.615985
66	6	0	-5.458519	-1.895562	1.612627
67	6	0	-3.710381	-3.401836	2.289091
68	6	0	-6.392495	-2.685499	2.257897
69	6	0	-4.642898	-4.206482	2.939591
70	6	0	-5.991295	-3.847695	2.925783
71	1	0	-5.773472	-1.000081	1.085461
72	1	0	-2.660584	-3.677781	2.299838
73	1	0	-7.447137	-2.431701	2.258391
74	1	0	-4.306877	-5.101933	3.448743
75	8	0	-6.984842	-4.557493	3.526540
76	6	0	-6.623236	-5.750020	4.183248
77	1	0	-6.167857	-6.467478	3.489525
78	1	0	-5.925269	-5.559135	5.007851
79	1	0	-7.545698	-6.170705	4.583078

$Tp'Rh[P(OMe)_3](R)HR = CF_3CC$

Cent	er	Atomic	Atomic	Coordir	nates (A	ngstr
Num	ıber	Number	Туре	Х	Y	Ζ
1	45	0	-0.943279	0.434355	-0.513	3226
2	7	0	0.085858	-1.365941	-1.084	448
3	7	0	1.436721	-1.385383	-0.998	387
4	7	0	0.648819	1.370223	-1.7220	004
5	7	0	1.922825	1.055747	-1.3718	828
6	7	0	0.508420	0.425767	1.2624	416
7	7	0	1.796636	0.121192	0.9844	152
8	6	0	-0.315724	-2.546290	-1.555	045
9	6	0	0.811406	-3.352860	-1.780	176
10	1	l 0	0.825856	-4.362811	-2.16	1085
11	e	6 0	1.902384	-2.583230	-1.41	5019
12	(5 0	0.715892	2.211574	-2.750	6866

13	6	0	2.062806	2.473914	-3.056301
14	1	0	2.444770	3.113964	-3.837382
15	6	0	2.796614	1.714984	-2.164682
16	6	0	0.399714	0.496390	2.590799
17	6	0	1.648532	0.240354	3.178226
18	1	0	1.885096	0.226221	4.231621
19	6	0	2.511155	-0.001320	2.123426
20	5	0	2.225070	-0.164099	-0.463892
21	1	0	3.397245	-0.401062	-0.495670
22	6	0	3.965745	-0.347123	2.145954
23	1	0	4.322898	-0.340983	3.176878
24	1	0	4.146763	-1.340818	1.726662
25	1	0	4.559622	0.367683	1.569977
26	6	0	-0.889228	0.801417	3.281767
27	1	0	-1.610035	-0.008210	3.137540
28	1	0	-0.714876	0.927987	4.352175
29	1	0	-1.322731	1.726155	2.893357
30	6	0	3.356901	-2.926757	-1.449084
31	1	0	3.805463	-2.874075	-0.453273
32	1	0	3.478844	-3.942834	-1.827319
33	1	0	3.914334	-2.247634	-2.100182
34	6	0	4.279958	1.569256	-2.047300
35	1	0	4.620018	1.745513	-1.023643
36	1	0	4.607660	0.567008	-2.337158
37	1	0	4.766301	2.292868	-2.703400
38	6	0	-0.478346	2.708177	-3.505970
39	1	0	-0.255358	2.698374	-4.575769
40	1	0	-1.346506	2.077909	-3.315099
41	1	0	-0.739731	3.731218	-3.222556
42	6	0	-1.755489	-2.882987	-1.774721
43	1	0	-1.843056	-3.651297	-2.545804
44	1	0	-2.218122	-3.255078	-0.856477
45	1	0	-2.316439	-1.999357	-2.085997
46	15	0	-2.085813	2.260464	-0.053115
47	1	0	-1.872236	0.341520	-1.695001
48	8	0	-2.363349	3.167383	-1.370185
49	6	0	-3.100590	4.386566	-1.237063
50	1	0	-4.149298	4.169186	-1.028326
51	1	0	-2.684655	5.003850	-0.435814
52	1	0	-3.006631	4.905143	-2.191662
53	8	0	-1.402688	3.309940	1.008088
54	6	0	-0.046796	3.704299	0.749896
55	1	0	0.622532	2.840395	0.784421
56	1	0	0.028382	4.188860	-0.230020
57	1	0	0.218529	4.414994	1.532428
58	8	0	-3.588927	2.217026	0.545338

59	6	0	-3.894877	1.994895	1.924617
60	1	0	-3.644374	0.972401	2.209210
61	1	0	-3.364053	2.716934	2.550318
62	1	0	-4.970189	2.146114	2.018447
63	6	0	-2.256145	-0.585150	0.472888
64	6	0	-3.028871	-1.275249	1.108303
65	6	0	-3.913171	-2.089858	1.920187
66	9	0	-5.072773	-1.458835	2.188564
67	9	0	-4.228389	-3.252181	1.325852
68	9	0	-3.361423	-2.395256	3.109165

$Tp'Rh[P(OMe)_3](R)H R = phenylCC$

Cen	ter	Atomic	Atomic	Coordin	ates (Ang	 stroms)
Nur	nber	Number	Туре	X	Y	Z
1	45	0	-0.936177	0.302908	-0.53898	 80
2	7	0	0.127310	-1.509712	-1.03166	0
3	7	0	1.474603	-1.507076	-0.88485	6
4	7	0	0.636560	1.194903	-1.80854	9
5	7	0	1.922301	0.887133	-1.50173	5
6	7	0	0.515056	0.366898	1.23870	9
7	7	0	1.823796	0.201913	0.94166.	3
8	6	0	-0.242534	-2.727262	-1.42329	2
9	6	0	0.899668	-3.537757	-1.53457	0
10	1	0	0.939050	-4.574054	-1.8348	83
11	6	0	1.966788	-2.729495	-1.1850	04
12	6	0	0.656813	1.926846	-2.9252	85
13	6	0	1.988161	2.120560	-3.3291	03
14	1	0	2.334140	2.669861	-4.1919	76
15	6	0	2.759999	1.437995	-2.4082	58
16	6	0	0.432397	0.586918	2.5509	90
17	6	0	1.722401	0.578997	3.1096	70
18	1	0	1.987803	0.719899	4.14684	47
19	6	0	2.580335	0.324029	2.0547.	31
20	5	0	2.245956	-0.226342	-0.4754	32
21	1	0	3.422123	-0.446445	-0.4906	18
22	6	0	4.068267	0.173998	2.0557	95
23	1	0	4.452617	0.387184	3.0545	74
24	1	0	4.369712	-0.840946	1.7817	27
25	1	0	4.542388	0.861081	1.3498	15
26	6	0	-0.868010	0.804211	3.2547	25
27	1	0	-1.662703	0.251550	2.7492	24
28	1	0	-0.795943	0.448463	4.2850	57
29	1	0	-1.134446	1.865632	3.2764	03

30	6	0	3.423743	-3.060591	-1.128286
31	1	0	3.831963	-2.905046	-0.125925
32	1	0	3.565932	-4.108267	-1.398011
33	1	0	4.003823	-2.444961	-1.821409
34	6	0	4.244735	1.266672	-2.362919
35	1	0	4.650887	1.539495	-1.385613
36	1	0	4.534372	0.231340	-2.564006
37	1	0	4.704597	1.904715	-3.119310
38	6	0	-0.570463	2.390109	-3.641487
39	1	0	-0.421395	2.272912	-4.717853
40	1	0	-1.441437	1.810767	-3.336018
41	1	0	-0.781929	3.442400	-3.437152
42	6	0	-1.668924	-3.094170	-1.676106
43	1	0	-1.723852	-3.866784	-2.446477
44	1	0	-2.142268	-3.473117	-0.765925
45	1	0	-2.239944	-2.221425	-1.997696
46	15	0	-2.000361	2.159994	-0.059339
47	1	0	-1.872757	0.193154	-1.712611
48	8	0	-2.123356	3.174081	-1.323032
49	6	0	-2.793837	4.424895	-1.146876
50	1	0	-3.872406	4.267388	-1.092303
51	1	0	-2.449902	4.924411	-0.236404
52	1	0	-2.545900	5.032310	-2.017847
53	8	0	-1.311520	3.076451	1.115255
54	6	0	0.063269	3.454437	0.965257
55	1	0	0.597848	2.787850	0.281102
56	1	0	0.107565	4.481301	0.591657
57	1	0	0.530048	3.391267	1.950213
58	8	0	-3.536304	2.198352	0.455571
59	6	0	-3.914664	1.909017	1.805022
60	1	0	-3.765474	0.849475	2.018965
61	1	0	-3.343314	2.529637	2.499639
62	1	0	-4.973956	2.157581	1.876557
63	6	0	-2.291658	-0.693212	0.439054
64	6	0	-3.108965	-1.380930	1.029183
65	6	0	-4.059188	-2.186670	1.738300
66	6	0	-5.428417	-1.878018	1.704650
67	6	0	-3.637629	-3.298850	2.484382
68	6	0	-6.345796	-2.657923	2.398751
69	6	0	-4.559793	-4.075475	3.175271
70	6	0	-5.916228	-3.758774	3.136717
71	1	0	-5.756834	-1.023200	1.121195
72	1	0	-2.579411	-3.538919	2.510349
73	1	0	-7.401560	-2.407296	2.361923
74	1	0	-4.219451	-4.933116	3.747450
75	1	0	-6.634142	-4.367033	3.677484

$Tp'Rh[P(OMe)_3](R)H R = p-CF_3C_6H_4CC$

Cent	ter 1ber	Atomic Number	Atomic Type	Coordin X	ates (Angstroms) Y Z
1	45	0	-0.931431	0.279841	-0.541410
2	7	0	0.144885	-1.520746	-1.041140
3	7	0	1.492087	-1.507691	-0.893408
4	7	0	0.630866	1.188314	-1.805889
5	7	0	1.919441	0.893051	-1.497834
6	7	0	0.515354	0.348855	1.238479
7	7	0	1.825607	0.195165	0.941872
8	6	0	-0.214151	-2.738158	-1.443575
9	6	0	0.934772	-3.537733	-1.560680
10	1	0	0.983311	-4.570959	-1.869917
11	6	0	1.994772	-2.723233	-1.203601
12	6	0	0.644935	1.922915	-2.921222
13	6	0	1.974788	2.131544	-3.322159
14	1	0	2.316099	2.686452	-4.183276
15	6	0	2.752471	1.454902	-2.401889
16	6	0	0.430475	0.565057	2.551463
17	6	0	1.719986	0.565949	3.110751
18	1	0	1.983684	0.706360	4.148407
19	6	0	2.580544	0.320771	2.055548
20	5	0	2.252574	-0.222427	-0.476787
21	1	0	3.430418	-0.432329	-0.492320
22	6	0	4.069649	0.183435	2.057112
23	1	0	4.451461	0.396246	3.056896
24	1	0	4.379874	-0.827868	1.779567
25	1	0	4.538225	0.877204	1.354029
26	6	0	-0.871331	0.771324	3.255840
27	1	0	-1.663042	0.216406	2.748314
28	1	0	-0.797473	0.411629	4.284633
29	1	0	-1.144136	1.830974	3.282192
30	6	0	3.454498	-3.042208	-1.149088
31	1	0	3.860987	-2.891348	-0.145346
32	1	0	3.605847	-4.086318	-1.427332
33	1	0	4.029280	-2.415899	-1.837003
34	6	0	4.238790	1.298977	-2.354700
35	1	0	4.640388	1.573025	-1.375878
36	1	0	4.539377	0.267332	-2.558530
37	1	0	4.693162	1.944179	-3.108261
38	6	0	-0.585124	2.374166	-3.640357
39	1	0	-0.433334	2.254686	-4.716057

40	1	0	-1.452307	1.789210	-3.334961
41	1	0	-0.804637	3.425526	-3.439917
42	6	0	-1.637303	-3.114307	-1.700977
43	1	0	-1.685262	-3.884996	-2.473568
44	1	0	-2.109984	-3.499982	-0.793324
45	1	0	-2.213648	-2.244907	-2.022411
46	15	0	-2.002946	2.134493	-0.056553
47	1	0	-1.864682	0.169641	-1.717642
48	8	0	-2.130243	3.149742	-1.317486
49	6	0	-2.806086	4.397997	-1.139191
50	1	0	-3.883894	4.235580	-1.085060
51	1	0	-2.463955	4.897293	-0.227995
52	1	0	-2.560497	5.007502	-2.009242
53	8	0	-1.318093	3.048104	1.121176
54	6	0	0.055265	3.433901	0.973035
55	1	0	0.593406	2.772286	0.286916
56	1	0	0.093979	4.462174	0.603075
57	1	0	0.521329	3.369659	1.958172
58	8	0	-3.539271	2.160885	0.458837
59	6	0	-3.914601	1.880313	1.810645
60	1	0	-3.758458	0.823497	2.033428
61	1	0	-3.346705	2.509222	2.500434
62	1	0	-4.975402	2.122409	1.881606
63	6	0	-2.283230	-0.725560	0.430263
64	6	0	-3.103726	-1.409436	1.021278
65	6	0	-4.061502	-2.195739	1.736512
66	6	0	-5.428232	-1.871245	1.692115
67	6	0	-3.653234	-3.295258	2.509416
68	6	0	-6.355231	-2.618897	2.402876
69	6	0	-4.581624	-4.043753	3.219309
70	6	0	-5.931150	-3.703290	3.168327
71	1	0	-5.745698	-1.024639	1.092008
72	1	0	-2.598246	-3.545308	2.546703
73	1	0	-7.408722	-2.360200	2.375269
74	1	0	-4.262932	-4.886861	3.822951
75	6	0	-6.945251	-4.529629	3.899299
76	9	0	-7.965536	-3.779461	4.346097
77	9	0	-7.481537	-5.479659	3.115041
78	9	0	-6.410844	-5.156616	4.958478