Supporting Information:

BiVO₄-Ru/SrTiO₃:Rh Composite of Z-Scheme Photocatalyst for Solar Water Splitting Qingxin Jia,¹ Akihide Iwase,^{1,2} Akihiko Kudo^{1,2,*}

¹ Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo

162-8601, Japan

² Photocatalysis International Research Center, Research Institute of Science and Technology,

Tokyo University of Science, 2641 Noda-shi, Yamazaki, Chiba-ken 278-8510, Japan (*) corresponding author: a-kudo@rs.kagu.tus.ac.jp

Fig. S1 Schematic flow chart of the synthetic procedures for the $BiVO_4$ -Ru/SrTiO₃:Rh composite.

Fig. S2 X-ray diffraction patterns of $BiVO_4(250 \text{ wt\%})$ -Ru(0.7 wt%)/SrTiO₃:Rh(1%) composite of Z-scheme photocatalyst.

Methods for preparation of composites: (A) impregnation (Composite-Imp), (B) nitric acid treatment at room temperature for 5 days after impregnation (Composite-Imp-AT), and (C) a liquidsolid state reaction (Composite-LSR).

SrTiO₃:Rh was prepared by a solid state reaction at 1273 K for 10 h. Ru cocatalyst was loaded by photodeposition.

Fig. S3 (A-I), (B-I) Scannig electron microscope images and (A-II), (B-II) EDS mapping images of BiVO₄(250 wt%)-Ru(0.7 wt%)/SrTiO₃:Rh(1%) composites.

Methods for preparation of composites: (A) impregnation (Composite-Imp), (B) a liquid-solid state reaction(Composite-LSR).

Fig. S4 Water splitting over BiVO₄(250 wt%)-Ru(0.7 wt%)/ SrTiO₃:Rh(1%) composite (Composite-LSR) of Z-scheme photocatalyst under visible light irradiation without adjustment of pH. Catalyst: 0.3 g; light source: 300 W Xelamp with a cold mirror and a cutoff filter (420 nm < λ < 800 nm); reactor: top irradiation cell with Pyrex window.

Fig. S5 Photoresponse of the composite Z-scheme photocatalysis system. (A) Action spectrum of overall water splitting over $BiVO_4(250 \text{ wt\%})$ -Ru(0.7 wt%)/ SrTiO₃:Rh(1%) composite of Z-scheme photocatalyst system, (B) diffuse reflection spectra of $BiVO_4$, (C) SrTiO₃:Rh(1%), and (D) SrTiO₃:Rh(1%) reduced with H₂ at 673 K.

 $\begin{array}{l} \textbf{Table S1} \ Effect \ of \ pH \ on \ photocatalytic \ activities \ for \ H_2 \ evolution \ over \ Ru/SrTiO_3: Rh \ photocatalyst \ and \ O_2 \ evolution \ over \ BiVO_4 \ photocatalyst. \end{array}$

Entry	Photocatalyst	pН	Reaction condition	Rate of H ₂ evolution /µmol h ⁻¹	Rate of O ₂ evolution /µmol h ⁻¹
1	Ru(0.7 wt%)/SrTiO ₃ :Rh(1%)	8.7	10 vol % of CH_3OH aq.	43	-
2	Ru(0.7 wt%)/SrTiO ₃ :Rh(1%)	3.5ª	10 vol % of CH_3OH aq.	30	-
3	BiVO ₄	5.4	20 mmol L^{-1} of AgNO ₃ aq.	-	130
4	BiVO ₄	3.4 ^b	20 mmol L^{-1} of AgNO ₃ aq.	-	140

Catalyst: 0.2 g; water: 150 mL (pH was adjusted by ${}^{a}H_{2}SO_{4 aq}$ or ${}^{b}HNO_{3 aq}$); light source: 300 W Xearc lamp with a cold mirror and a cut-off filter (420 nm $\leq \lambda \leq 800$ nm); reactor: top irradiation cell with a Pyrex window.