## **Supporting Information**

# Pre-Inverse-Crowns: Synthetic, Structural and Reactivity Studies of Alkali Metal Magnesiates Primed for Inverse Crown Formation

Antonio J. Martínez-Martínez, David R. Armstrong, Ben Conway, Ben J. Fleming, Jan Klett, Alan. R. Kennedy, Robert E. Mulvey, Stuart D. Robertson and Charles T. O'Hara\*

WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde,

Glasgow, G1 1XL (UK)

[\*] To whom correspondence should be addressed. E-mail: charlie.ohara@strath.ac.uk

# **Supporting Information Contents**

| X-ray Data4                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------|
| Experimental4                                                                                                                              |
| General Procedures4                                                                                                                        |
| Crystal Structure Determinations4                                                                                                          |
| Computational Details5                                                                                                                     |
| Chart 1: Atom numbering and abbreviations used for NMR assignments5                                                                        |
| Synthesis of $[KMg(TMP)_2Bu]_{\infty}$ (3), $[KMg(TMP)_2Bu]_4$ (4), $[KMg(TMP)_2Bu]_6$                                                     |
| (5)5                                                                                                                                       |
| Synthesis of $[KMg(TMP)_2(2-C_{10}H_7)]_6$                                                                                                 |
| (6)                                                                                                                                        |
| Synthesis of $[NaMg(TMP)_2^n Bu]$ (7)                                                                                                      |
| Alternative synthesis of 7                                                                                                                 |
| Synthesis of $[Na_2Mg(TMP)_3^nBu]$ (7·NaTMP)                                                                                               |
| Synthesis of $[Na_4Mg_2(TMP)_4(TTHP)_2(1,4-C_{10}H_6)]$ (8).                                                                               |
| 8                                                                                                                                          |
| Alternative Synthesis of <b>8</b> from an in situ mixture of 7.NaTMP <b>8</b>                                                              |
| Synthesis of 2-Iodonaphthalene (9) by Reaction of 6 with Iodine                                                                            |
| Synthesis of 2-Iodonaphthalene (9) by Reaction of Crude Solution of 6 with Iodine9                                                         |
| Synthesis of 1,4-Diodonaphthalene (10) by Reaction of 8 with Iodine                                                                        |
| Synthesis of 1,4-Diiodonaphthalene (10) by Reaction of Crude Solution of 8 with Iodine.10                                                  |
| NMR Spectra11                                                                                                                              |
| Figure S1. <sup>1</sup> H NMR spectrum of <b>3</b> (400.13 MHz, 300 K, $cvc$ -C <sub>6</sub> D <sub>12</sub> )                             |
| Figure S2. ${}^{13}C{}^{1}H{}$ NMR spectrum of <b>3</b> (100.62 MHz, 300K, <i>cvc</i> -C <sub>6</sub> D <sub>12</sub> )11                  |
| Figure S3. <sup>1</sup> H, <sup>1</sup> H-COSY NMR spectrum of <b>3</b> (400.13 MHz, 300 K, <i>cvc</i> -C <sub>6</sub> D <sub>12</sub> )12 |
| Figure S4. <sup>1</sup> H, <sup>13</sup> C-HSQC NMR spectrum of <b>3</b> (400.13 MHz, 300 K, $cyc$ -C <sub>6</sub> D <sub>12</sub> )       |
|                                                                                                                                            |
| Figure S5. <sup>1</sup> H NMR spectrum of 4 (up), 5 (middle) and reaction crude from                                                       |
| KTMP·TMPMgBu (down) in situ mixture (400.13 MHz, 300 K, cyc-C <sub>6</sub> D <sub>12</sub> )                                               |
|                                                                                                                                            |
| Figure S6. <sup>13</sup> C NMR spectrum of 4 (up), 5 (middle) and reaction crude from                                                      |
| KIMP-IMPMgBu (down) in situ mixture (100.62 MHz, 300K, $cyc$ -C <sub>6</sub> D <sub>12</sub> )                                             |
| Figure S7 <sup>1</sup> H NMR spectrum of $6:C-H_{\odot}$ (400.13 MHz 300 K do THE)                                                         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                       |
| Figure S8 ${}^{13}C{}^{1}H$ NMR spectrum of 6.C <sub>7</sub> H <sub>2</sub> (100.62 MHz 300K $d_{2}$ -THF)                                 |
| 14                                                                                                                                         |
| Figure S9. ${}^{1}$ H, ${}^{1}$ H-COSY NMR spectrum of <b>6</b> ·C <sub>7</sub> H <sub>8</sub> (400.13 MHz, 300 K. $d_{8}$ -THF)           |
|                                                                                                                                            |
| Figure S10. <sup>1</sup> H, <sup>13</sup> C-HSQC NMR spectrum of 6. C <sub>7</sub> H <sub>8</sub> (400.13 MHz, 300 K, d <sub>8</sub> -THF) |
| 15                                                                                                                                         |

### 

| Figure S28. Optimized Geometries and Energies (a.u.) for $[K(\mu-TMP)_2Mg(^nBu)]$ (Model 1-<br>3) and $[K(\mu-TMP)(\mu-^nBu)MgTMP]$ (Model 4-6). Hydrogen atoms omitted for clarity26<br>Table S1. Principal Bond Lengths (Å) and Angles (°) for Models 1-6 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure S29. Optimized Geometries and Energies (a.u.) for $[K(\mu-TMP)_2Mg(^nBu)]_2$ (Model 7-9). Hydrogen atoms omitted for clarity                                                                                                                         |
| Table S2 Dringing Pond Longths (Å) and Angles (°) for Models 7.0                                                                                                                                                                                            |
| Table 52. Principal Bond Lengths (A) and Angles () for Models 7-9                                                                                                                                                                                           |
| Figure S30. Optimized Geometry and Energy (a.u.) for $[K(\mu-TMP)_2Mg(^nBu)]_3$ (Model 10),<br>$[K(\mu-TMP)_2Mg(^nBu)]_4$ (Model 11) and $[K(\mu-TMP)_2Mg(^nBu)]_6$ (Model 12). Hydrogen<br>atoms omitted for clarity                                       |
| Table S3. Principal Bond Lengths (Å) and Angles (°) for Models 10-1231                                                                                                                                                                                      |
| Table S4. Relatives Energies of Association (kcal·mol <sup>-1</sup> ) for $[K(\mu-TMP)_2Mg(^nBu)]_2$ , $[K(\mu-TMP)_2Mg(^nBu)]_3$ , $[K(\mu-TMP)_2Mg(^nBu)]_4$ and $[K(\mu-TMP)_2Mg(^nBu)]_6$                                                               |
| XYZ Files for Optimized Structures                                                                                                                                                                                                                          |

| Compound                                                                                                                                           | 3                                                                                                                                                 | 4                                                                                                                                                 | 5                                                                                                                                      | 6                                                                                                                                                         | 8                                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Formula                                                                                                                                            | C <sub>22</sub> H <sub>45</sub> KMgN                                                                                                              | $V_2 C_{88} H_{180} K_4 Mg$                                                                                                                       | $_{4}\mathrm{NC}_{168}\mathrm{H}_{342}\mathrm{K}_{6}\mathrm{Mg}$                                                                       | <sub>6</sub> N <sub>1</sub> C <sub>189</sub> H <sub>282</sub> K <sub>6</sub> Mg                                                                           | <sub>6</sub> N <sub>1</sub> C <sub>62</sub> H <sub>106</sub> Mg <sub>2</sub> N <sub>6</sub> Na                                                             |
| Fw<br>Cryst. System<br>Space Group<br>Wavelength/Å<br>a/Å<br>b/Å<br>c/Å<br>a/°<br>$\beta/°$<br>$\gamma/°$<br>Volume/Å <sup>3</sup><br>Z<br>Tamp /K | 401.01<br>Monoclinic<br>P2 <sub>1</sub><br>1.5418<br>12.8807(5)<br>26.5173(9)<br>16.1073(6)<br>90<br>105.997(4)<br>90<br>5288.6(3)<br>6<br>123(2) | <sup>8</sup><br>1604.04<br>Monoclinic<br>Cc<br>1.5418<br>25.779(3)<br>25.754(3)<br>16.135(2)<br>90<br>94.132(11)<br>90<br>10684(2)<br>4<br>123(2) | 2911.00<br>Trigonal<br><i>R</i> -3<br>0.71073<br>37.852(2)<br>37.852(2)<br>11.5850(6)<br>90<br>90<br>120<br>14374.9(13)<br>3<br>123(2) | <sup>2</sup><br>3102.73<br>Trigonal<br><i>R</i> -3<br>1.5418<br>37.8751(15)<br>37.8751(15)<br>11.7865(4)<br>90<br>90<br>120<br>14642.8(10)<br>3<br>123(2) | 4<br>1076.10<br>Orthorhombic<br><i>Pna2</i> <sub>1</sub><br>1.5418<br>16.9437(6)<br>16.1245(5)<br>23.5059(8)<br>90<br>90<br>90<br>6422.0(4)<br>4<br>123(2) |
| Temp./K<br>Refls. Collect.<br>$2\theta_{max}$<br>$R_{int}$<br>Goodness of fir<br>$R[F^2>2\sigma], F$<br>$R_w$ (all data),<br>$F^2$                 | 20246<br>111.48<br>0.0499<br>t 0.805<br>0.0468<br>0.0975                                                                                          | 123(2)<br>37909<br>140<br>0.0797<br>1.718<br>0.1495<br>0.4047                                                                                     | 123(2)<br>14300<br>53.98<br>0.0314<br>1.021<br>0.0621<br>0.1734                                                                        | 123(2)<br>20485<br>139.94<br>0.0297<br>1.053<br>0.0842<br>0.2627                                                                                          | 123(2)<br>24813<br>140<br>0.0352<br>1.017<br>0.0575<br>0.1523                                                                                              |

Table S1. Selected crystallographic and refinement data for 3-6, and 8.

#### **EXPERIMENTAL SECTION**

**General Procedures.** All reactions and manipulations were performed under a protective atmosphere of dry pure argon gas using standard Schlenk techniques. Products were isolated inside an argon-filled dry box. Solvents were dried by heating to reflux over sodium benzophenone ketyl and distilled under nitrogen prior to use. cyc-C<sub>6</sub>D<sub>12</sub> and  $d_8$ -THF were degasified and stored over 4 Å molecular sieves prior to use. 2,2,6,6-tetramethylpiperidine [TMP(H)] was purchased from Merck KGaA, distilled from CaH<sub>2</sub> and stored over 4 Å molecular sieves. *n*-BuLi, Me<sub>3</sub>SiCH<sub>2</sub>Li and *n*,*s*-Bu<sub>2</sub>Mg solution were purchased from Aldrich. *n*-BuNa,<sup>1</sup> and Me<sub>3</sub>SiCH<sub>2</sub>K<sup>2</sup> were prepared according to literature methods.

NMR spectra were recorded on a Bruker DPX 400 MHz spectrometer, operating at 400.13 and 100.62 MHz for <sup>1</sup>H and <sup>13</sup>C NMR, respectively. The NMR assignments were performed, in some cases, with the help  $^{13}C{^{1}H}$ -DEPT135, COSY, HMQC and HMBC experiments. Despite several attempts, satisfactory elemental analyses of the compounds **3-8**, carried out using a Perkin Elmer 2400 elemental analyser, could not be obtained due to their high air- and moisture-sensitive nature. Mass spectra for **9** and **10** were recorded on an Agilent 5975C GCMS running in CI mode with methane as reagent gas, helium carrier gas He at 1ml /min and an Agilent DB-5MS UI column.

Crystal Structure Determinations. Single-crystal data were recorded at 123(2) K on Oxford Diffraction Gemini and Xcalibur Diffractometers with Cu- $K\alpha$  ( $\lambda = 1.5418$  Å; for 3, 4, 6, and 8) and Mo- $K\alpha$  ( $\lambda = 0.71073$  Å; for 5) radiation, respectively. The structures were refined to convergence on  $F^2$  and against all independent reflections by full-matrix least-squares using SHELXL programs.<sup>3</sup> For structures 3 and 4 the SQUEEZE routine of PLATON was used to remove the effects of disordered solvent molecules.<sup>4</sup> For **3**, approximately 557 electron equivalents were removed from 2092 Å<sup>3</sup> of "void" space. This approximated to 11.6 molecules of cyclohexane per unit cell. For **4**, approximately 204 electron equivalents were removed from 1234 Å<sup>3</sup> of "void" space. This solvent was too disordered to identify. Measurement with several samples of 4 were attempted. All samples were polycrystalline and gave diffraction patterns with many non-indexed peaks. This clearly leads to a low quality structural model for 4, but one which does show atomic connectivity. The butyl group of 5 was modeled as disordered over two sites, as was the naphthalenide ligand in 6 and the two TTHP anions in 8. The geometries of the disordered groups were restrained to approximate typical values. Selected crystallographic parameters are given in Table S1 and full details are given in the deposited cif files. CCDC-964188 (3), CCDC-964189 (4), CCDC-964190 (5), CCDC-964191 (6) and CCDC-964192 (8) contain the supplementary crystallographic data for this paper. These data can be obtained of charge from the Cambridge Crystallographic free Data Centre via www.ccdc.cam.ac.uk/data request/cif.

**Computational Details.** All structures were optimized at the B3LYP<sup>5-8</sup>/6-31G\* level of theory.<sup>9, 10</sup> Geometry optimizations were carried out with standard procedures based on analytical energy gradients. All calculations were performed within the Gaussian 03 package.<sup>11</sup>

Chart 1. Atom numbering and abbreviations used for NMR assignments.



TTHP = 2,2,6-trimethyl-1,2,3,4-tetrahydropyridine

Synthesis of  $[KMg(TMP)_2Bu]_{\infty}$  (3),  $[KMg(TMP)_2Bu]_4$  (4),  $[KMg(TMP)_2Bu]_6$  (5). In a Schlenk tube, freshly prepared KCH<sub>2</sub>SiMe<sub>3</sub> (0.24 g, 2 mmol) was suspended in 8 mL of the appropriate solvent (cyclohexane for 3, and methylcyclohexane for 4 and 5), and then reacted with TMP(H) (0.34 mL, 2 mmol) for 1 h, forming KTMP in situ as a yellow suspension. In a second Schlenk tube, n,s- $Bu_2Mg$  (2 mL from a 1M commercial solution in *n*-heptane, 2 mmol) in 3 mL of the appropriate solvent (cyclohexane for 3, and methylcyclohexane for 4 and 5) was reacted with TMP(H) (0.34 mL, 2 mmol) for 1 h to give *n*-BuMgTMP in situ as a pale vellow solution. This *n*-BuMgTMP solution was cannulated into the newly formed KTMP suspension, forming a yellow/orange solution which was stirred for 1 h. For **3**, cyclohexane was replaced by deuterated cyclohexane (*ca* 1 mL, *cyc*- $C_6D_{12}$ ) and transferred via syringe to a NMR tube and after 48 h at room temperature, a small crop of colourless prism crystals of **3** was obtained. For **4**, the methylcylcohexane solution was concentrated in vacuo (ca 5 mL) and after 2 days at room temperature, a crop of colourless block crystals of 4 (0.401 g, 50%) was obtained. For 5, the methylcyclohexane was replace by cyclohexane (ca 1 mL) and then transferred via syringe to an NMR tube which was allowed to cool at 8 °C for 48 h, depositing a small crop of colourless block crystals of 5. Crystals of 3, 4 and 5 were suitable for an X-Ray diffraction study. The synthesis and crystallisation for **3** and **5** are optimized for X-ray crystallography quality crystal growth rather than yield of isolated product. The NMR spectra of isolated crystalline 3, 4 and 5 are coincident and the respective in situ mixtures resemble the same compounds. <sup>1</sup>H NMR (400.13 MHz, 300 K, *cyc*-C<sub>6</sub>D<sub>12</sub>): δ -0.83 (m, 2 H, Mg-CH<sub>2</sub>, *n*-Bu), 0.78 (t, 3 H,  ${}^{3}J(H,H) = 7.0$  Hz, CH<sub>3</sub>, *n*-Bu), 1.19-1.34 (v br s, 12 H,  $\beta$ -CH<sub>2</sub>-TMP + CH<sub>2</sub>-*n*-Bu + CH<sub>2</sub>-*n*-Bu), 1.27 (s, 24 H, CH<sub>3</sub>, TMP), 1.80 (br s, 4 H, γ-CH<sub>2</sub>, TMP). <sup>13</sup>C{<sup>1</sup>H} NMR (100.62 MHz, 300 K, cyc-C<sub>6</sub>D<sub>12</sub>): δ14.7 (CH<sub>3</sub>, n-Bu), 18.5 (Mg-CH<sub>2</sub>), 20.0 (γ-TMP), 34.2 (CH<sub>2</sub>, n-Bu), 34.4 (CH<sub>2</sub>, n-Bu), 36.3 (br s, *C*H<sub>3</sub>-TMP), 42.2 (β-TMP).

Synthesis of  $[KMg(TMP)_2(2-C_{10}H_7)]_6$  (6). In a Schlenk tube, freshly prepared KCH<sub>2</sub>SiMe<sub>3</sub> (0.24 g, 2 mmol) was suspended in methylcyclohexane (8 mL), and then reacted with TMP(H) (0.34 mL, 2 mmol) for 1 h, forming KTMP *in situ* as a yellow suspension. In a second Schlenk tube, *n*,*s*-Bu<sub>2</sub>Mg (2

mL from a 1M commercial solution in *n*-heptane, 2 mmol) in methylcyclohexane (3 mL) was reacted with TMP(H) (0.34 mL, 2 mmol) for 1 h, forming n-BuMgTMP as a pale yellow solution. This n-BuMgTMP solution was cannulated into the newly formed KTMP suspension, forming a yellow/orange solution. Naphthalene (0.256 g, 2 mmol) was then added, dissolving after 2 min. This solution was then refluxed at 100°C for 1 h to give a pale yellow suspension. The solvent was then removed in vacuo until dryness, and replaced by toluene (10 mL). After vigorous heating, an orange solution was achieved, and this immediately placed in a Dewar containing hot water overnight to give yellow needle crystals of  $6 \cdot C_7 H_8$  suitable for an X-ray diffraction study (0.385 g, 41%). The <sup>1</sup>H NMR spectrum of the reaction crude shows that the metallation is almost quantitative. <sup>1</sup>H NMR (400.13 MHz, 300 K,  $d_8$ -THF):  $\delta$  1.26 (s, 24 H, CH<sub>3</sub>, TMP), 1.29 (t, 8 H, <sup>3</sup>J(H,H) = 6.1 Hz,  $\beta$ -TMP), 1.73 (m, 4 H,  $\gamma$ -TMP), 2.30 (s, 3H, Me, C<sub>7</sub>H<sub>8</sub>), 7.01 (t, 1 H, <sup>3</sup>J(H,H) = 7.2 Hz, C8), 7.09 (t, 1 H, <sup>3</sup>J(H,H) = 6.9 Hz, C7), 7.12 (m, 3H,  $C_7H_8$ ), 7.18 (t, 2H, <sup>3</sup>J(H,H) = 7.4 Hz,  $C_7H_8$ ), 7.31 (d, 1 H, <sup>3</sup>J(H,H) = 7.4 Hz, C4), 7.49 (d, 1 H,  ${}^{3}J(H,H) = 7.8$  Hz, C9), 7.57 (d, 1H,  ${}^{3}J(H,H) = 7.9$  Hz, C6), 8.20 (d, 1 H,  ${}^{3}J(H,H) =$ 7.5 Hz, C3), 8.37 (s, 1 H, C1).  ${}^{13}C{}^{1}H{}$  NMR (100.62 MHz, 300 K,  $d_8$ -THF):  $\delta$  21.7 (y-TMP), 21.3 (Me, C<sub>7</sub>H<sub>8</sub>), 36.2 (CH<sub>3</sub>, TMP), 42.5 (β-TMP), 52.9 (C-N, TMP), 121.9 (C4), 121.85 (C8), 122.8 (C7), 127.8 (C9), 128.0 (C6), 128.9 (C<sub>7</sub>H<sub>8</sub>), 129.6 (C<sub>7</sub>H<sub>8</sub>), 140.6 (C1), 142.1 (C3).

Synthesis of [NaMg(TMP)<sub>2</sub>"Bu] (7). In a Schlenk tube, NaTMP was prepared *in situ* by reaction of *n*-BuNa (0.32 mg, 4 mmol) with TMP(H) (0.68 mL, 4 mmol) in methylcyclohexane (10 mL) for 1h, forming a pale yellow suspension. In a separate Schlenk tube, n,s-Bu<sub>2</sub>Mg (4 mL from a 1M n-heptane commercial solution, 4 mmol) was reacted with TMP(H) (0.68 mL, 4 mmol) for 1h, forming a pale vellow solution. This *n*-BuMgTMP solution was cannulated into the newly formed NaTMP suspension, obtaining a pale yellow solution. The reaction mixture was stirred for 1h, concentrated under vacuum to ca 5 mL and immediately placed in a fridge operating at 8 °C. After 48 h, pale yellow block crystals of 7 were obtained (0.932 g, 2.42 mmol, 61%). Alternative synthesis of 7. Freshly prepared *n*-BuNa (0.32 g, 4 mmol) was suspended in methylcyclohexane (10 mL) in an argon-filled Schlenk tube. The suspension was placed in an ultrasonic bath for 30 min to obtain a more reactive fine suspension and TMP(H) (1.36 mL, 8 mmol) was then added. The resulting pale yellow suspension was stirred for 30 min and then  $n_s$ -Bu<sub>2</sub>Mg (4 mL from a 1M *n*-heptane commercial solution, 4 mmol) was added via syringe to give a pale yellow solution. The reaction mixture was stirred for 30 min, concentrated under vacuum (ca 5 mL) and immediately placed in a fridge operating at 4°C. After 48 h, pale yellow block crystals of 7 were obtained (0.874 g, 2.27 mmol, 57%).

Attempts to analyse the crystalline material by X-ray diffraction studies were futile due to the high disorder nature present within the structure of 7. Unfortunately, attempts to study by X-ray diffraction different samples of single crystals of 7 have so far been unsuccessful due to the disorder found within

the structure. The NMR spectra of isolated crystalline 7 and the respective *in situ* mixture resemble the same compound. <sup>1</sup>H NMR (400.13 MHz, 300 K, *cyc*-C<sub>6</sub>D<sub>12</sub>):  $\delta$ -0.80 (br m, 2 H, Mg-CH<sub>2</sub>, *n*-Bu), 0.89 (t, 3 H, <sup>3</sup>J(H,H) = 7.0 Hz, CH<sub>3</sub>, *n*-Bu), 1.03-1.34 (several m, 10 H,  $\beta$ -CH<sub>2</sub>-TMP + CH<sub>2</sub>-*n*-Bu), 1.25 (s, 24 H, CH<sub>3</sub>, TMP), 1.69 (m, 6H, CH<sub>2</sub>-*n*-Bu +  $\gamma$ -CH<sub>2</sub>-TMP). <sup>13</sup>C{<sup>1</sup>H} NMR (100.62 MHz, 298K, *cyc*-C<sub>6</sub>D<sub>12</sub>):  $\delta$  14.5 (Mg-CH<sub>2</sub>-*n*-Bu + Me-*n*-Bu), 20.0 ( $\gamma$ -TMP), 32.4 (CH<sub>2</sub>, *n*-Bu), 36.7 (br s, CH<sub>3</sub>-TMP), 39.2 (CH<sub>2</sub>, *n*-Bu), 42.2 ( $\beta$ -TMP), 52.8 (N-C, TMP).

[Na<sub>2</sub>Mg(TMP)<sub>3</sub><sup>*n*</sup>Bu] (7·NaTMP). When 7 is treated with an equimolar amount of NaTMP, equimolar amounts of [NaMg(TMP)<sub>2</sub><sup>*n*</sup>Bu] (7), NaTMP and [Na<sub>2</sub>Mg(TMP)<sub>3</sub><sup>*n*</sup>Bu] in hydrocarbon solvent are identified in *cyc*-C<sub>6</sub>D<sub>12</sub> solution by <sup>1</sup>H NMR. Small amount of TMPH are also detected. <sup>1</sup>H NMR (400.13 MHz, 300 K, *cyc*-C<sub>6</sub>D<sub>12</sub>): δ-0.80 (br m, 2 H, Mg-CH<sub>2</sub>, *n*-Bu, [Na<sub>2</sub>Mg(TMP)<sub>3</sub><sup>*n*</sup>Bu]), -0.43 (v br s, 2 H, Mg-CH<sub>2</sub>, *n*-Bu, [Na<sub>2</sub>Mg(TMP)<sub>3</sub><sup>*n*</sup>Bu], 1.03-1.34 (several m, 24 H, β-CH<sub>2</sub>-TMP + CH<sub>2</sub>-*n*-Bu, [Na<sub>2</sub>Mg(TMP)<sub>3</sub><sup>*n*</sup>Bu] + [Na<sub>2</sub>Mg(TMP)<sub>3</sub><sup>*n*</sup>Bu]), 1.04 (s, 12 H, CH<sub>3</sub>-TMP, NaTMP), 1.25 (s, 64 H, CH<sub>3</sub>-TMP, [Na<sub>2</sub>Mg(TMP)<sub>3</sub><sup>*n*</sup>Bu] + NaTMP).

Synthesis of [Na<sub>4</sub>Mg<sub>2</sub>(TMP)<sub>4</sub>(TTHP)<sub>2</sub>(1,4-C<sub>10</sub>H<sub>6</sub>)] (8). Freshly prepared *n*-BuNa (0.32 g, 4 mmol) was suspended in methylcyclohexane (10 mL) in an argon-filled Schlenk tube. The suspension was placed in an ultrasonic bath for 30 min to obtain a more reactive fine suspension and TMP(H) (1.36 mL, 8 mmol) was then added. The resulting pale yellow suspension was stirred for 1h and then *n.s.* Bu<sub>2</sub>Mg (4 mL from a 1M commercial solution in *n*-heptane, 4 mmol) was added to give a pale yellow solution, which was stirred for 30 min. Naphthalene (256.3 mg, 2 mmol) was then added and after 2 min of stirring it was dissolved. The reaction mixture was refluxed at 100°C overnight to give a pale brown suspension which was filtered. The solid collected was dried under vacuum to give  $\mathbf{8}$  as a pale brown solid (1.13 g, 1.02 mmol, 51%). Alternative Synthesis of 8 from an in situ mixture of 7.NaTMP. Freshly prepared n-BuNa (0.481 g, 6 mmol) was suspended in methylcyclohexane (10 mL) in an argon-filled Schlenk tube. The suspension was placed in an ultrasonic bath for 30 min to obtain a more reactive fine suspension and TMP(H) (1.6 mL, 9 mmol) was then added. The resulting pale yellow suspension was stirred for 1h and then n,s-Bu<sub>2</sub>Mg (3 mL from a 1M commercial solution in *n*-heptane, 3 mmol) was added to give a pale yellow solution, which was stirred for 30 min. Naphthalene (192.3 mg, 1.5 mmol) was then added and after 2 min of stirring it was dissolved. The reaction mixture was refluxed at 100°C overnight to give a pale brown suspension which was filtered. The solid collected was dried under vacuum to give 8 as a pale brown solid (1.23 g, 1.14 mmol, 76%).

Crystals of **8** suitable for an X-ray diffraction study were obtained by filtration of a hot suspension of **8** (0.5 g, 0.46 mmol) in toluene (20 mL), and allowing the filtrate to cool slowly to ambient temperature (185 mg, 0.17 mmol, 37%). The NMR spectra of isolated pale brown solid and crystals of

**8** are coincident and resemble its X-ray structure retains its configuration *cyc*-C<sub>6</sub>D<sub>12</sub> solution. <sup>1</sup>H NMR (400.13 MHz, 300 K, *cyc*-C<sub>6</sub>D<sub>12</sub>):  $\delta$  0.06 (s, 12H, *CMe*<sub>2</sub>, TTHP), 0.81 (s, 12H, Me, TMP), 1.04 (s, 12H, Me, TMP), 1.23-1.58 (several m, 28H, TMP + TTHP), 1.28 (s, 6H, *CMe*, TTHP), 1.53 (s, 24H, Me, TMP), 1.90 (m, 6 H, TTHP + TMP), 7.29 (m, 2H, H7+H6), 7.92 (s, 2H, H2+H3), 7.95 (m, 1H, H5+H8). <sup>13</sup>C{<sup>1</sup>H} (100.62 MHz, 300 K, *cyc*-C<sub>6</sub>D<sub>12</sub>):  $\delta$  18.9 (Me), 19.3 (Me), 20.4 (Me), 30.1 (Me), 31.9 (TMP), 32.9 (CH2, TTHP), 33.0 (TMP), 36.7 (TMP), 37.4 (TTHP), 38.2 (TMP), 38.8 (RMP), 39.7 (TMP), 40.8 (TTHP), 41.9 (br s, TMP), 42.2 (TMP), 42.7 (CH2, TTHP), 125.6 (C9+C10), 126.1 (C6+C7), 136.5 (C8+C5), 140.0 (C2+C3).

Synthesis of 2-Iodonaphthalene (9) by Reaction of 6 with Iodine. In a Schlenk tube, magnesiate 6 (933 mg, 0.33 mmol) was suspended in 10 methylcyclohexane (10 mL). In a second Schlenk tube, an excess of iodine (5.08 g, 20 mmol) was dissolved in THF (10 mL). Both samples were then cooled to -78°C in a dry ice/acetone cooling bath and stirred for 15 min, Then, the cold magnesiate suspension was added dropwise to the stirring cold iodine THF solution via syringe. The reaction mixture was stirred at -78°C for 3h, followed by stirring at room temperature for 12 h. Then, saturated aqueous NH<sub>4</sub>Cl (10 mL) was added along with the addition of saturated Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> until bleaching occurred (15 mL). The organic layer was separated from the aqueous layer and dried over anhydrous MgSO<sub>4</sub> for 30 min. After filtration, the solvent was removed *in vacuo* and the resultant oily crude was extracted with *n*-hexane (1 mL). The *n*-hexane extract was subjected to flash column chromatography on silica with *n*-hexane as eluent. 2-iodonaphthalene **9** was obtained as an off-white solid (425 mg, 1.68 mmol, 84%). R<sub>F</sub> (*n*-hexane) 0.9.

Synthesis of 2-Iodonaphthalene (9) by Reaction of Crude Solution of 6 with Iodine. In a Schlenk tube, freshly prepared KCH<sub>2</sub>SiMe<sub>3</sub> (0.24 g, 2 mmol) was suspended in methylcyclohexane (8 mL), and then reacted with TMP(H) (0.34 mL, 2 mmol) for 1 h, forming KTMP in situ as a yellow suspension. In a second Schlenk tube, n-Bu<sub>2</sub>Mg (2 mL from a 1M commercial solution in n-heptane, 2 mmol) in methylcyclohexane (3 mL) was reacted with TMP(H) (0.34 mL, 2 mmol) for 1 h, forming *n*-BuMgTMP as a pale yellow solution. This *n*-BuMgTMP solution was cannulated into the newly formed KTMP suspension, forming a yellow/orange solution which was stirred for 30 min. Naphthalene (0.256 g, 2 mmol) was then added, dissolving after 2 min. This solution was then refluxed at  $100^{\circ}$ C for 1 h to give 6 a pale yellow suspended in methylcyclohexane. In a second Schlenk tube, an excess of iodine (5.08 g, 20 mmol) was dissolved in THF (10 mL). Both samples were then cooled to -78°C in a dry ice/acetone cooling bath and stirred for 15 min, and then the cold magnesiate suspension was added dropwise to the stirring cold iodine solution via syringe. The reaction mixture was stirred at -78°C for 3h, followed by stirring at room temperature for 12 h. Then, saturated aqueous NH<sub>4</sub>Cl (10 mL) was added along with the addition of saturated Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> until bleaching occurred (15 mL). The organic layer was separated from the aqueous layer and dried over anhydrous MgSO4 for 30 min. After filtration, the solvent was removed in vacuo and the resultant oily crude was extracted with *n*-hexane (1 mL). The *n*-hexane extract was subjected to flash column chromatography on silica with *n*-hexane as eluent. 2-Iodonaphthalene **9** was obtained as an off-white solid (338 mg, 1.33 mmol, 67%).  $R_F$  (*n*-hexane) 0.9.

**2-Iodonaphthalene**<sup>12-17</sup> (9): <sup>1</sup>H NMR (400.13 MHz, 300 K, CDCl<sub>3</sub>):  $\delta$  7.49 (m, 2H, H<sup>6+7</sup>), 7.57 (d, 1H, <sup>3</sup>J(H,H) = 8.6 Hz, H<sup>4</sup>), 7.72 (m, 2H, H<sup>3+8</sup>), 7.81 (m, 1H, H<sup>5</sup>), 8.25 (d, 1H, <sup>3</sup>J(H,H) = 1.1 Hz, H<sup>1</sup>). <sup>13</sup>C{<sup>1</sup>H} NMR (100.62 MHz, 300 K, CDCl<sub>3</sub>):  $\delta$  91.5 (C2), 126.4 (C6 or C7), 126.7 (C6 or C7), 126.8 (C8); 127.8 (C5), 129.4 (C4), 132.1 (C10), 134.4 (C3), 135.0 (C9), 136.6 (C1). GC-MS (CI) *m/z* calc. for C<sub>10</sub>H<sub>7</sub>I [M]<sup>+</sup>, 254.0; found 253.8.

Synthesis of 1,4-Diodonaphthalene (10) by Reaction of 8 with Iodine. In a Schlenk tube, magnesiate 8 (2.22 g, 2 mmol) was suspended in methylcyclohexane (20 mL). In a second Schlenk tube, an excess of iodine (5.08 g, 20 mmol) was dissolved in THF (20 mL). Both samples were then cooled to  $-78^{\circ}$ C in a dry ice/acetone cooling bath and stirred for 15 min, Then, the cold magnesiate suspension was added drop wise to the stirring cold iodine THF solution via syringe. The reaction mixture was stirred at  $-78^{\circ}$ C for 3h, followed by stirring at room temperature for 12 h. Then, saturated aqueous NH<sub>4</sub>Cl (10 mL) was added along with the addition of saturated Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> until bleaching occurred (20 mL). The organic layer was separated from the aqueous layer and dried over anhydrous MgSO<sub>4</sub> for 30 min. After filtration, the solvent was removed *in vacuo* and the resultant oily crude was extracted with *n*-hexane (1 mL). The *n*-hexane extract was subjected to flash column chromatography on silica with *n*-hexane as eluent. 1,4-diiodonaphthalene **10** was obtained as an white solid (0.676 mg, 1.78 mmol, 89%). R<sub>F</sub> (*n*-hexane) 0.85.

Synthesis of 1,4-Diiodonaphthalene (10) by Reaction of Crude Solution of 8 with Iodine. In a Schlenk tube, freshly prepared BuNa (0.32 g, 4 mmol) was suspended in methylcyclohexane (10 mL), and then reacted with TMP(H) (0.68 mL, 4 mmol) for 1 h, forming NaTMP *in situ* as a yellow suspension. In a second Schlenk tube, *n,s*-Bu<sub>2</sub>Mg (2 mL from a 1M commercial solution in *n*-heptane, 2 mmol) in methylcyclohexane (10 mL) was reacted with TMP(H) (0.34 mL, 2 mmol) for 1 h, forming *n*-BuMgTMP as a pale yellow solution. This *n*-BuMgTMP solution was cannulated into the newly formed KTMP suspension, forming a yellow/orange solution which was stirred for 30 min. Naphthalene (256.3 g, 2 mmol) was then added, dissolving after 2 min. This solution was then refluxed at 100°C for 12 h to give **8** a pale yellow suspended in methylcyclohexane. In a second Schlenk tube, an excess of iodine (5.08 g, 20 mmol) was dissolved in THF (20 mL). Both samples were then cooled to  $-78^{\circ}$ C in a dry ice/acetone cooling bath and stirred for 15 min, and then the cold magnesiate suspension was added dropwise to the stirring cold iodine solution via syringe. The reaction mixture was stirred at  $-78^{\circ}$ C for 3h, followed by stirring at room temperature for 12 h. Then, saturated aqueous NH<sub>4</sub>Cl (15 mL) was added along with the addition of saturated Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> until bleaching occurred (20 mL). The organic layer was separated from the aqueous layer and dried over

anhydrous MgSO<sub>4</sub> for 30 min. After filtration, the solvent was removed *in vacuo* and the resultant oily crude was extracted with *n*-hexane (1 mL). The *n*-hexane extract was subjected to flash column chromatography on silica with *n*-hexane as eluent. 2-Iodonaphthalene **10** was obtained as an off-white solid (0.653 mg, 1.72 mmol, 86%).  $R_F$  (*n*-hexane) 0.85.

**1,4-Diiodonaphthalene**<sup>18</sup> (**10**): <sup>1</sup>H NMR (400.13 MHz, 300 K, CDCl<sub>3</sub>):  $\delta$  7.61 (m, 2H, H<sup>6+7</sup>), 7.78 (s, 2H, H<sup>2+3</sup>), 8.06 (m, 2H, H<sup>5+8</sup>). <sup>13</sup>C{<sup>1</sup>H} NMR (100.62 MHz, 300 K, CDCl<sub>3</sub>):  $\delta$  100.7 (C1+C4), 128.7 (C6+C7), 133.1 (C5+C8), 134.8 (C9+C10), 138.2 (C2+C3). GC-MS (CI) *m*/*z* calc. for C<sub>10</sub>H<sub>6</sub>I<sub>2</sub> [M]<sup>+</sup>, 379.9; found 379.7.



## **Figure S1**. <sup>1</sup>H NMR spectrum of **3** (400.13 MHz, 300 K, *cyc*-C<sub>6</sub>D<sub>12</sub>).



Figure S2. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of 3 (100.62 MHz, 300K, *cyc*-C<sub>6</sub>D<sub>12</sub>).



**Figure S3**. <sup>1</sup>H, <sup>1</sup>H-COSY NMR spectrum of **3** (400.13 MHz, 300 K, *cyc*-C<sub>6</sub>D<sub>12</sub>).



Figure S4. <sup>1</sup>H, <sup>13</sup>C-HSQC NMR spectrum of **3** (400.13 MHz, 300 K, *cyc*-C<sub>6</sub>D<sub>12</sub>).



**Figure S5**. <sup>1</sup>H NMR spectrum of **4** (up), **5** (middle) and reaction crude from KTMP·TMPMgBu (down) *in situ* mixture (400.13 MHz, 300 K, cyc-C<sub>6</sub>D<sub>12</sub>).



**Figure S6**. <sup>13</sup>C NMR spectrum of **4** (up), **5** (middle) and reaction crude from KTMP·TMPMgBu (down) *in situ* mixture (100.62 MHz, 300K, *cyc*-C<sub>6</sub>D<sub>12</sub>).



**Figure S7**. <sup>1</sup>H NMR spectrum of  $6 \cdot C_7 H_8$  (400.13 MHz, 300 K,  $d_8$ -THF).



**Figure S8**. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of  $6 \cdot C_7 H_8$  (100.62 MHz, 300K,  $d_8$ -THF).







**Figure S10**. <sup>1</sup>H, <sup>13</sup>C-HSQC NMR spectrum of 6·C<sub>7</sub>H<sub>8</sub> (400.13 MHz, 300 K, *d*<sub>8</sub>-THF).







Figure S12. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of 7 (100.62 MHz, 300K, *cyc*-C<sub>6</sub>D<sub>12</sub>).







Figure S14. <sup>1</sup>H, <sup>13</sup>C-HSQC NMR spectrum of 7 (400.13 MHz, 300 K, *cyc*-C<sub>6</sub>D<sub>12</sub>).



**Figure S15**. <sup>1</sup>H NMR spectrum of 7 (up) and reaction crude from NaTMP·TMPMgBu *in situ* mixture (middle) and reaction crude from 7·NaTMP (down) *in situ* mixture (400.13 MHz, 300 K, *cyc*-C<sub>6</sub>D<sub>12</sub>).



**Figure S16**. <sup>1</sup>H NMR spectrum of **8** (400.13 MHz, 300 K, *cyc*-C<sub>6</sub>D<sub>12</sub>).



**Figure S17**. <sup>13</sup>C{<sup>1</sup>H, DEPT135} NMR spectrum of **8** (100.62 MHz, 300K, *cyc*-C<sub>6</sub>D<sub>12</sub>).



**Figure S18**. <sup>1</sup>H, <sup>1</sup>H-COSY NMR spectrum of **8** (400.13 MHz, 300 K, *cyc*-C<sub>6</sub>D<sub>12</sub>).



Figure S19. <sup>1</sup>H, <sup>13</sup>C-HSQC NMR spectrum of 8 (400.13 MHz, 300 K, *cyc*-C<sub>6</sub>D<sub>12</sub>).



Figure S20. <sup>1</sup>H NMR spectrum of 9 (400.13 MHz, 300 K, CDCl<sub>3</sub>).



Figure S21.  ${}^{13}C{}^{1}H$  NMR spectrum of 9 (100.62 MHz, 300K, CDCl<sub>3</sub>).



Figure S22. <sup>1</sup>H, <sup>1</sup>H-COSY NMR spectrum of 9 (400.13 MHz, 300 K, CDCl<sub>3</sub>).



Figure S23. <sup>1</sup>H, <sup>13</sup>C-HSQC NMR spectrum of 9 (400.13 MHz, 300 K, CDCl<sub>3</sub>).



Figure S24. <sup>1</sup>H NMR spectrum of 10 (400.13 MHz, 300 K, CDCl<sub>3</sub>).



Figure S25. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of 10 (100.62 MHz, 300K, CDCl<sub>3</sub>).



**Figure S26**. <sup>1</sup>H, <sup>1</sup>H-COSY NMR spectrum of **10** (400.13 MHz, 300 K, CDCl<sub>3</sub>).



Figure S27. <sup>1</sup>H, <sup>13</sup>C-HSQC NMR spectrum of **10** (400.13 MHz, 300 K, CDCl<sub>3</sub>).



|           |                        |      | D1       | D2       | D3       | FW          | LOGFW       | LOGD         | Dav      |
|-----------|------------------------|------|----------|----------|----------|-------------|-------------|--------------|----------|
| Standards | Tetraphenylnaphthalene | TPhN | 6.19E-10 | 6.34E-10 | 6.04E-10 | 432.55      | 2.636036316 | -9.208309351 | 6.19E-10 |
|           | Phenylnaphthalene      | PhN  | 8.65E-10 | 9.20E-10 | 9.06E-10 | 204.27      | 2.310204589 | -9.0473044   | 8.97E-10 |
|           | TMS                    | TMS  | 1.40E-09 |          |          | 88.22       | 1.945567053 | -8.854182286 | 1.40E-09 |
|           |                        |      |          |          |          |             |             |              |          |
|           |                        |      |          |          |          |             |             |              |          |
|           |                        |      |          |          |          |             |             |              |          |
| Sample    | [KMgTMP2Bu]6           | 5    | 2.55E-10 | 2.52E-10 | 2.48E-10 | 2478.742653 | 3.39423144  | -9.599519575 | 2.51E-10 |

|       |                           |           | fw(g/mol)      |         |
|-------|---------------------------|-----------|----------------|---------|
| entry | Possible species          | fw(g/mol) | predicted (1H) | error % |
| 1     | [KMgTMP2Bu]6 ( <b>5</b> ) | 2406.06   | 2478.74        | -3.02   |



**Figure S28**. DOSY NMR spectrum of a 1:1 mixture of KTMP and <sup>*n*</sup>BuMgTMP (400.13 MHz, 300 K, *cyc*-C<sub>6</sub>D<sub>12</sub>) and calibration data.

# Electronic Energies, Selected Bond Distances/Angles, and XYZ Files for Optimized Structures



**Figure S28**. Optimized Geometries and Energies (a.u.) for  $[K(\mu-TMP)_2Mg(^nBu)]$  (Model 1-3) and  $[K(\mu-TMP)(\mu-^nBu)MgTMP]$  (Model 4-6). Hydrogen atoms omitted for clarity.

| Bond Distances and Angles | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 |
|---------------------------|---------|---------|---------|---------|---------|---------|
| K-N <sub>1</sub>          | 2.834   | 2.814   | 2.807   | 2.746   | 2.764   | 2.759   |
| K-C                       |         |         |         | 2.878   | 2.865   | 2.868   |
| K-N <sub>2</sub>          | 2.780   | 2.820   | 2.820   |         |         |         |
| Mg-N <sub>1</sub>         | 2.123   | 2.167   | 2.155   | 2.148   | 2.146   | 2.146   |
| Mg-C                      | 2.152   | 2.152   | 2.151   | 2.240   | 2.231   | 2.231   |
| Mg-N <sub>2</sub>         | 2.177   | 2.164   | 2.157   | 2.030   | 2.022   | 2.024   |
| N-K-C                     | 79.7    |         |         | 80.0    | 80.3    | 79.4    |
| N-K-N                     |         | 80.8    | 80.2    |         |         |         |
| K-N <sub>1</sub> -Mg      | 82.7    | 82.2    | 82.9    | 84.6    | 85.1    | 86.0    |
| K-C-Mg                    |         |         |         | 79.9    | 81.2    | 81.9    |
| K-N <sub>2</sub> -Mg      | 83.1    | 82.1    | 82.5    |         |         |         |
| C-Mg-N <sub>1</sub>       | 118.2   | 120.9   | 120.4   | 111.0   | 112.0   | 110.5   |
| $N_1$ -Mg- $N_2$          | 113.7   | 114.9   | 114.4   | 131.1   | 132.2   | 131.3   |
| C-Mg-N <sub>2</sub>       | 127.8   | 123.9   | 125.1   | 116.9   | 115.6   | 118.2   |
|                           |         |         |         |         |         |         |

Table S2. Principal Bond Lengths (Å) and Angles (°) for Models 1-6.





Model 7 E = -3549.983362Model 8 E = -3549.9934285Model 7 E = -3549.9934285



**Figure S29.** Optimized Geometries and Energies (a.u.) for  $[K(\mu-TMP)_2Mg(^nBu)]_2$  (Model 7-9). Hydrogen atoms omitted for clarity.

| Bond Distances and Angles                      | Model 7 | Model 8 | Model 9 |
|------------------------------------------------|---------|---------|---------|
| K-N <sub>1</sub>                               | 2.863   | 2.849   | 2.807   |
| $K-C_1$                                        |         |         | 3.001   |
| $K-N_2$                                        | 3.239   | 2.840   | 2.899   |
| K <sub>1</sub> -N <sub>3</sub>                 |         |         | 3.272   |
| $K_{1}C_{2}$                                   |         |         | 3.702   |
| K <sub>2</sub> -C <sub>2</sub>                 |         |         | 2.917   |
| K <sub>2</sub> -N <sub>4</sub>                 |         |         | 2.796   |
| Mg <sub>2</sub> -N <sub>3</sub>                |         |         | 2.072   |
| Mg <sub>2</sub> -N <sub>4</sub>                |         |         | 2.120   |
| $Mg_2-C_2$                                     |         |         | 2.227   |
| Mg-N <sub>1</sub>                              | 2.143   | 2.116   | 2.039   |
| Mg-C <sub>1</sub>                              | 2.173   | 2.156   | 2.218   |
| Mg-N <sub>2</sub>                              | 2.174   | 2.204   | 2.137   |
| $N_2$ - $K_1$ - $C_1$                          |         |         | 75.8    |
| N-K-N                                          | 151.0   | 79.5    | 80.2    |
| K-N <sub>1</sub> -Mg                           | 104.1   | 83.3    | 82.9    |
| $K_1-N_2-Mg_1$                                 |         |         | 86.3    |
| $K_1$ - $C_1$ - $Mg_1$                         |         |         | 82.4    |
| K-N <sub>2</sub> -Mg                           | 124.6   | 82.1    | 82.5    |
| $K_1-N_3-Mg_2$                                 |         |         | 95.0    |
| N <sub>4</sub> -K <sub>2</sub> -C <sub>2</sub> |         |         | 95.8    |
| C-Mg-N <sub>1</sub>                            | 115.3   | 114.7   | 120.4   |
| $N_2$ - $Mg_1$ - $C_1$                         |         |         | 112.7   |
| N <sub>1</sub> -Mg-N <sub>2</sub>              | 122.2   | 123.6   | 114.4   |
| $K_2$ - $N_4$ - $Mg_2$                         |         |         | 88.8    |
| $K_2$ - $C_2$ - $Mg_2$                         |         |         | 64.9    |
| $N_4$ - $Mg_2$ - $C_2$                         |         |         | 106.3   |
| C-Mg-N <sub>2</sub>                            | 122.5   | 121.5   | 125.1   |

Table S3. Principal Bond Lengths (Å) and Angles (°) for Models 7-9.





**Model 11** E = -7100.0557033



## **Model 12** E = -10650.083603

**Figure S30**. Optimized Geometry and Energy (a.u.) for  $[K(\mu-TMP)_2Mg(^nBu)]_3$  (Model 10),  $[K(\mu-TMP)_2Mg(^nBu)]_4$  (Model 11) and  $[K(\mu-TMP)_2Mg(^nBu)]_6$  (Model 12). Hydrogen atoms omitted for clarity.

| Bond Distances and Angles | Model 10 | Model 11 | Model 12 |
|---------------------------|----------|----------|----------|
| K1-N1                     | 3.057    | 3.096    | 3.126    |
| K1-N2                     | 2.948    |          |          |
| K3-N4                     |          | 3.077    | 3.145    |
| K1-N8                     |          | 3.094    |          |
| K3-N5                     |          | 3.098    | 3.131    |
| K5-N8                     |          |          | 3.162    |
| K1-N12                    |          |          | 3.120    |
| K5-N9                     |          |          | 3.117    |
| K1C1                      | 3.191    | 3.384    | 3.390    |
| K1C3                      | 3.507    |          |          |
| K3C2                      |          | 3.281    | 3.359    |
| K1C4                      |          | 3.285    |          |
| K3C3                      |          | 3.421    |          |
| K1C6                      |          |          | 3.267    |
| K3C3                      |          |          | 3.291    |
| K5C5                      |          |          | 3.275    |
| Mg1-N2                    | 2.109    | 2.103    | 2.099    |
| Mg1-N3                    | 2.046    |          |          |
| Mg1-N1                    |          | 2.107    | 2.102    |
| Mg3-N5                    |          | 2.107    |          |
| Mg3-N6                    |          | 2.101    | 2.098    |
| Mg5-N9                    |          |          | 2.099    |
| Mg5-N10                   |          |          | 2.099    |
| Mg1-C1                    | 2.238    | 2.209    | 2.215    |
| Mg3-C3                    |          | 2.209    | 2.214    |
| Mg5-C5                    |          |          | 2.216    |
| K2-C1                     | 3.182    |          |          |
| K2-C2                     | 3.191    |          |          |
| K2-C3                     | 3.374    |          |          |
| Mg2-N4                    | 2.035    |          |          |
| Mg2-N5                    | 2.112    |          |          |
| Mg2-C2                    | 2.232    |          |          |

**Table S4.** Principal Bond Lengths (Å) and Angles (°) for Models 10-12.

| K3-N5   | 2.947 |       |       |
|---------|-------|-------|-------|
| K3-N6   | 3.120 |       |       |
| K2-N2   |       | 3.088 | 3.145 |
| K4-N6   |       | 3.082 | 3.155 |
| K2-N3   |       | 3.096 | 3.131 |
| K4-N7   |       | 3.107 | 3.119 |
| K6-N10  |       |       | 3.181 |
| K6-N11  |       |       | 3.116 |
| K3C2    | 3.287 |       |       |
| K3C3    | 3.455 |       |       |
| K2C1    |       | 3.304 | 3.380 |
| K4C3    |       | 3.265 | 3.380 |
| K2C2    |       | 3.419 | 3.295 |
| K4C4    |       | 3.451 | 3.327 |
| K6C5    |       |       | 3.402 |
| K6C6    |       |       | 3.266 |
| Mg3-N6  | 2.096 |       |       |
| Mg3-N1  | 2.100 |       |       |
| Mg2-N3  |       | 2.102 | 2.101 |
| Mg4-N7  |       | 2.107 | 2.100 |
| Mg2-N4  |       | 2.106 | 2.098 |
| Mg4-N8  |       | 2.102 | 2.099 |
| Mg6-N11 |       |       | 2.099 |
| Mg6-N12 |       |       | 2.099 |
| Mg3-C3  | 2.225 |       |       |
| Mg2-C2  |       | 2.208 | 2.216 |
| Mg4-C4  |       | 2.209 | 2.216 |
| Mg6-C6  |       |       | 2.215 |

**Table S5.** Relatives Energies of Association (kcal·mol<sup>-1</sup>) for  $[K(\mu-TMP)_2Mg(^nBu)]_2$ ,  $[K(\mu-TMP)_2Mg(^nBu)]_3$ ,  $[K(\mu-TMP)_2Mg(^nBu)]_4$  and  $[K(\mu-TMP)_2Mg(^nBu)]_6$ .

|                 | [K(TMP) <sub>2</sub> Mg( <sup>n</sup> Bu)]n | ΔΕ     |
|-----------------|---------------------------------------------|--------|
| Dimerisation    | n = 2                                       | -4.57  |
| Trimerisation   | n = 3                                       | -10.42 |
| Tetramerisation | n = 4                                       | -13.83 |
| Hexamerisation  | n = 6                                       | -13.83 |

**XYZ** Files for Optimized Structures



**Model 1** E = -1774.9918934 a.u.

| Center | Atomic | Atomic | Coordinates (Angstroms) |           |           |  |  |
|--------|--------|--------|-------------------------|-----------|-----------|--|--|
| Number | Number | Туре   | Х                       | Y         | Z         |  |  |
| 1      | 6      | 0      | 1.746025                | -0.967494 | -2.482079 |  |  |
| 2      | 6      | 0      | 3.753573                | -1.692376 | -1.218111 |  |  |
| 3      | 6      | 0      | -1.898605               | -0.720845 | -2.410396 |  |  |
| 4      | 6      | 0      | 3.155488                | 0.744966  | -1.390771 |  |  |
| 5      | 6      | 0      | 2.572595                | -0.689256 | -1.211713 |  |  |
| 6      | 6      | 0      | 4.558731                | -1.643834 | 0.077844  |  |  |
| 7      | 6      | 0      | -3.901751               | 0.269303  | -1.348498 |  |  |
| 8      | 6      | 0      | -2.765204               | -0.768467 | -1.138057 |  |  |
| 9      | 6      | 0      | -3.427568               | -2.185529 | -1.119283 |  |  |
| 10     | 6      | 0      | 3.612469                | -1.930143 | 1.239203  |  |  |
| 11     | 6      | 0      | -4.735549               | 0.477958  | -0.087728 |  |  |
| 12     | 6      | 0      | 2.359569                | -1.006671 | 1.288967  |  |  |
| 13     | 6      | 0      | 2.751020                | 0.356196  | 1.931359  |  |  |
| 14     | 6      | 0      | -3.803468               | 0.924002  | 1.033914  |  |  |

| 15 | 6 | 0 | -2.609119 | -0.043253 | 1.282615  |
|----|---|---|-----------|-----------|-----------|
| 16 | 6 | 0 | 1.408261  | -1.696224 | 2.298859  |
| 17 | 6 | 0 | -1.627336 | 0.758704  | 2.165393  |
| 18 | 6 | 0 | -3.100643 | -1.241310 | 2.146840  |
| 19 | 1 | 0 | 2.369721  | -0.891638 | -3.380732 |
| 20 | 1 | 0 | 4.395820  | -1.493999 | -2.086576 |
| 21 | 1 | 0 | 1.316012  | -1.979011 | -2.465805 |
| 22 | 1 | 0 | 3.662141  | 0.837297  | -2.360888 |
| 23 | 1 | 0 | 0.928992  | -0.246632 | -2.607315 |
| 24 | 1 | 0 | -2.499253 | -0.921889 | -3.305728 |
| 25 | 1 | 0 | 3.353150  | -2.711271 | -1.344799 |
| 26 | 1 | 0 | -1.442392 | 0.268669  | -2.536888 |
| 27 | 1 | 0 | -1.094385 | -1.469035 | -2.398081 |
| 28 | 1 | 0 | 2.359990  | 1.493680  | -1.352569 |
| 29 | 1 | 0 | 5.369455  | -2.384024 | 0.059462  |
| 30 | 1 | 0 | 3.889114  | 1.001266  | -0.623142 |
| 31 | 1 | 0 | -4.534840 | -0.039842 | -2.191784 |
| 32 | 1 | 0 | -3.442742 | 1.227991  | -1.626995 |
| 33 | 1 | 0 | 5.039585  | -0.664978 | 0.197231  |
| 34 | 1 | 0 | -4.029203 | -2.350654 | -2.022566 |
| 35 | 1 | 0 | -2.677820 | -2.991799 | -1.103434 |
| 36 | 1 | 0 | 3.267532  | -2.970976 | 1.132122  |
| 37 | 1 | 0 | -5.509288 | 1.237148  | -0.260926 |
| 38 | 1 | 0 | -4.080989 | -2.337149 | -0.258321 |
| 39 | 1 | 0 | 3.474616  | 0.904528  | 1.326004  |
| 40 | 1 | 0 | 4.139298  | -1.876106 | 2.201407  |
| 41 | 1 | 0 | -5.268183 | -0.443461 | 0.185488  |
| 42 | 1 | 0 | -3.394702 | 1.906566  | 0.761270  |
| 43 | 1 | 0 | 1.298032  | -2.770015 | 2.082702  |
| 44                                                                                                                                                                     | 1                                                                   | 0                                                                       | 1.868663                                                                                                                                                     | 0.999721                                                                                                                                                  | 2.039671                                                                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 45                                                                                                                                                                     | 1                                                                   | 0                                                                       | -1.266794                                                                                                                                                    | 1.653253                                                                                                                                                  | 1.641043                                                                                                                                                        |
| 46                                                                                                                                                                     | 1                                                                   | 0                                                                       | 0.415974                                                                                                                                                     | -1.237080                                                                                                                                                 | 2.313408                                                                                                                                                        |
| 47                                                                                                                                                                     | 1                                                                   | 0                                                                       | 3.188019                                                                                                                                                     | 0.221828                                                                                                                                                  | 2.930217                                                                                                                                                        |
| 48                                                                                                                                                                     | 1                                                                   | 0                                                                       | -4.358368                                                                                                                                                    | 1.063354                                                                                                                                                  | 1.971933                                                                                                                                                        |
| 49                                                                                                                                                                     | 1                                                                   | 0                                                                       | -0.766168                                                                                                                                                    | 0.161438                                                                                                                                                  | 2.484263                                                                                                                                                        |
| 50                                                                                                                                                                     | 1                                                                   | 0                                                                       | -3.890804                                                                                                                                                    | -1.817592                                                                                                                                                 | 1.657675                                                                                                                                                        |
| 51                                                                                                                                                                     | 1                                                                   | 0                                                                       | 1.804812                                                                                                                                                     | -1.635947                                                                                                                                                 | 3.318789                                                                                                                                                        |
| 52                                                                                                                                                                     | 1                                                                   | 0                                                                       | -2.267274                                                                                                                                                    | -1.926173                                                                                                                                                 | 2.358697                                                                                                                                                        |
| 53                                                                                                                                                                     | 1                                                                   | 0                                                                       | -2.118711                                                                                                                                                    | 1.105153                                                                                                                                                  | 3.082389                                                                                                                                                        |
| 54                                                                                                                                                                     | 1                                                                   | 0                                                                       | -3.497074                                                                                                                                                    | -0.903217                                                                                                                                                 | 3.113662                                                                                                                                                        |
| 55                                                                                                                                                                     | 12                                                                  | 0                                                                       | -0.025769                                                                                                                                                    | 0.485335                                                                                                                                                  | -0.209715                                                                                                                                                       |
| 56                                                                                                                                                                     | 7                                                                   | 0                                                                       | 1.671645                                                                                                                                                     | -0.865093                                                                                                                                                 | -0.028538                                                                                                                                                       |
| 57                                                                                                                                                                     | 7                                                                   | 0                                                                       | -1.905321                                                                                                                                                    | -0.470646                                                                                                                                                 | 0.037995                                                                                                                                                        |
|                                                                                                                                                                        |                                                                     |                                                                         |                                                                                                                                                              |                                                                                                                                                           |                                                                                                                                                                 |
| 58                                                                                                                                                                     | 19                                                                  | 0                                                                       | -0.311362                                                                                                                                                    | -2.813829                                                                                                                                                 | -0.000184                                                                                                                                                       |
| 58<br>59                                                                                                                                                               | 19<br>6                                                             | 0<br>0                                                                  | -0.311362<br>-0.008678                                                                                                                                       | -2.813829<br>2.551391                                                                                                                                     | -0.000184<br>-0.810474                                                                                                                                          |
| 58<br>59<br>60                                                                                                                                                         | 19<br>6<br>6                                                        | 0<br>0<br>0                                                             | -0.311362<br>-0.008678<br>0.747973                                                                                                                           | -2.813829<br>2.551391<br>3.594336                                                                                                                         | -0.000184<br>-0.810474<br>0.034109                                                                                                                              |
| 58<br>59<br>60<br>61                                                                                                                                                   | 19<br>6<br>6<br>1                                                   | 0<br>0<br>0<br>0                                                        | -0.311362<br>-0.008678<br>0.747973<br>-1.071738                                                                                                              | -2.813829<br>2.551391<br>3.594336<br>2.853231                                                                                                             | -0.000184<br>-0.810474<br>0.034109<br>-0.851988                                                                                                                 |
| 58<br>59<br>60<br>61<br>62                                                                                                                                             | 19<br>6<br>6<br>1<br>1                                              | 0<br>0<br>0<br>0<br>0                                                   | -0.311362<br>-0.008678<br>0.747973<br>-1.071738<br>0.339764                                                                                                  | -2.813829<br>2.551391<br>3.594336<br>2.853231<br>2.646047                                                                                                 | -0.000184<br>-0.810474<br>0.034109<br>-0.851988<br>-1.856042                                                                                                    |
| <ul> <li>58</li> <li>59</li> <li>60</li> <li>61</li> <li>62</li> <li>63</li> </ul>                                                                                     | 19<br>6<br>1<br>1<br>6                                              | 0<br>0<br>0<br>0<br>0                                                   | -0.311362<br>-0.008678<br>0.747973<br>-1.071738<br>0.339764<br>0.638869                                                                                      | -2.813829<br>2.551391<br>3.594336<br>2.853231<br>2.646047<br>5.045755                                                                                     | -0.000184<br>-0.810474<br>0.034109<br>-0.851988<br>-1.856042<br>-0.468006                                                                                       |
| <ul> <li>58</li> <li>59</li> <li>60</li> <li>61</li> <li>62</li> <li>63</li> <li>64</li> </ul>                                                                         | 19<br>6<br>1<br>1<br>6<br>1                                         | 0<br>0<br>0<br>0<br>0<br>0<br>0                                         | -0.311362<br>-0.008678<br>0.747973<br>-1.071738<br>0.339764<br>0.638869<br>0.390094                                                                          | -2.813829<br>2.551391<br>3.594336<br>2.853231<br>2.646047<br>5.045755<br>3.570934                                                                         | -0.000184<br>-0.810474<br>0.034109<br>-0.851988<br>-1.856042<br>-0.468006<br>1.078091                                                                           |
| <ul> <li>58</li> <li>59</li> <li>60</li> <li>61</li> <li>62</li> <li>63</li> <li>64</li> <li>65</li> </ul>                                                             | 19<br>6<br>1<br>1<br>6<br>1<br>1                                    | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                    | -0.311362<br>-0.008678<br>0.747973<br>-1.071738<br>0.339764<br>0.638869<br>0.390094<br>1.817807                                                              | -2.813829<br>2.551391<br>3.594336<br>2.853231<br>2.646047<br>5.045755<br>3.570934<br>3.335069                                                             | -0.000184<br>-0.810474<br>0.034109<br>-0.851988<br>-1.856042<br>-0.468006<br>1.078091<br>0.091822                                                               |
| <ul> <li>58</li> <li>59</li> <li>60</li> <li>61</li> <li>62</li> <li>63</li> <li>64</li> <li>65</li> <li>66</li> </ul>                                                 | 19<br>6<br>1<br>1<br>6<br>1<br>1<br>6                               | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                               | -0.311362<br>-0.008678<br>0.747973<br>-1.071738<br>0.339764<br>0.638869<br>0.390094<br>1.817807<br>1.404089                                                  | -2.813829<br>2.551391<br>3.594336<br>2.853231<br>2.646047<br>5.045755<br>3.570934<br>3.335069<br>6.059890                                                 | -0.000184<br>-0.810474<br>0.034109<br>-0.851988<br>-1.856042<br>-0.468006<br>1.078091<br>0.091822<br>0.390353                                                   |
| <ul> <li>58</li> <li>59</li> <li>60</li> <li>61</li> <li>62</li> <li>63</li> <li>64</li> <li>65</li> <li>66</li> <li>67</li> </ul>                                     | 19<br>6<br>1<br>1<br>6<br>1<br>1<br>6<br>1                          | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                          | -0.311362<br>-0.008678<br>0.747973<br>-1.071738<br>0.339764<br>0.638869<br>0.390094<br>1.817807<br>1.404089<br>1.005816                                      | -2.813829<br>2.551391<br>3.594336<br>2.853231<br>2.646047<br>5.045755<br>3.570934<br>3.335069<br>6.059890<br>5.089974                                     | -0.000184<br>-0.810474<br>0.034109<br>-0.851988<br>-1.856042<br>-0.468006<br>1.078091<br>0.091822<br>0.390353<br>-1.504041                                      |
| <ul> <li>58</li> <li>59</li> <li>60</li> <li>61</li> <li>62</li> <li>63</li> <li>64</li> <li>65</li> <li>66</li> <li>67</li> <li>68</li> </ul>                         | 19<br>6<br>1<br>1<br>6<br>1<br>1<br>6<br>1<br>1                     | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                | -0.311362<br>-0.008678<br>0.747973<br>-1.071738<br>0.339764<br>0.638869<br>0.390094<br>1.817807<br>1.404089<br>1.005816<br>-0.423254                         | -2.813829<br>2.551391<br>3.594336<br>2.853231<br>2.646047<br>5.045755<br>3.570934<br>3.335069<br>6.059890<br>5.089974<br>5.328127                         | -0.000184<br>-0.810474<br>0.034109<br>-0.851988<br>-1.856042<br>-0.468006<br>1.078091<br>0.091822<br>0.390353<br>-1.504041<br>-0.512653                         |
| <ol> <li>58</li> <li>59</li> <li>60</li> <li>61</li> <li>62</li> <li>63</li> <li>64</li> <li>65</li> <li>66</li> <li>67</li> <li>68</li> <li>69</li> </ol>             | 19<br>6<br>1<br>1<br>6<br>1<br>1<br>6<br>1<br>1<br>1<br>1           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0           | -0.311362<br>-0.008678<br>0.747973<br>-1.071738<br>0.339764<br>0.638869<br>0.390094<br>1.817807<br>1.404089<br>1.005816<br>-0.423254<br>1.304686             | -2.813829<br>2.551391<br>3.594336<br>2.853231<br>2.646047<br>5.045755<br>3.570934<br>3.335069<br>6.059890<br>5.089974<br>5.328127<br>7.081197             | -0.000184<br>-0.810474<br>0.034109<br>-0.851988<br>-1.856042<br>-0.468006<br>1.078091<br>0.091822<br>0.390353<br>-1.504041<br>-0.512653<br>0.002152             |
| <ol> <li>58</li> <li>59</li> <li>60</li> <li>61</li> <li>62</li> <li>63</li> <li>64</li> <li>65</li> <li>66</li> <li>67</li> <li>68</li> <li>69</li> <li>70</li> </ol> | 19<br>6<br>1<br>1<br>6<br>1<br>1<br>6<br>1<br>1<br>1<br>1<br>1<br>1 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | -0.311362<br>-0.008678<br>0.747973<br>-1.071738<br>0.339764<br>0.638869<br>0.390094<br>1.817807<br>1.404089<br>1.005816<br>-0.423254<br>1.304686<br>1.036282 | -2.813829<br>2.551391<br>3.594336<br>2.853231<br>2.646047<br>5.045755<br>3.570934<br>3.335069<br>6.059890<br>5.089974<br>5.328127<br>7.081197<br>6.061288 | -0.000184<br>-0.810474<br>0.034109<br>-0.851988<br>-1.856042<br>-0.468006<br>1.078091<br>0.091822<br>0.390353<br>-1.504041<br>-0.512653<br>0.002152<br>1.424722 |



**Model 2** E = -1774.9897475 a.u.

| Center | Atomic | Atomic | Coord     | Coordinates (Angstroms) |           |  |
|--------|--------|--------|-----------|-------------------------|-----------|--|
| Number | Number | Туре   | Х         | Y                       | Ζ         |  |
|        |        |        |           |                         |           |  |
| 1      | 6      | 0      | 1.345651  | -1.225941               | -2.402090 |  |
| 2      | 6      | 0      | 3.203624  | -2.387407               | -1.246051 |  |
| 3      | 6      | 0      | -1.766240 | 0.151527                | 2.428471  |  |
| 4      | 6      | 0      | 3.248939  | 0.116270                | -1.613246 |  |
| 5      | 6      | 0      | 2.342540  | -1.096979               | -1.237789 |  |
| 6      | 6      | 0      | 4.120036  | -2.489911               | -0.028258 |  |
| 7      | 6      | 0      | -4.019707 | -0.350560               | 1.530198  |  |
| 8      | 6      | 0      | -2.680480 | 0.364659                | 1.211242  |  |
| 9      | 6      | 0      | -2.931513 | 1.903582                | 1.162311  |  |
| 10     | 6      | 0      | 3.288584  | -2.351196               | 1.245215  |  |
| 11     | 6      | 0      | -4.965176 | -0.386884               | 0.331701  |  |
| 12     | 6      | 0      | 2.394517  | -1.078700               | 1.271038  |  |
| 13     | 6      | 0      | 3.281102  | 0.161523                | 1.597886  |  |
| 14     | 6      | 0      | -4.243666 | -1.011056               | -0.860010 |  |
| 15     | 6      | 0      | -2.886462 | -0.330398               | -1.193717 |  |

| 16 | 6 | 0 | 1.480947  | -1.235109 | 2.502002  |
|----|---|---|-----------|-----------|-----------|
| 17 | 6 | 0 | -2.215923 | -1.235760 | -2.246345 |
| 18 | 6 | 0 | -3.155172 | 1.012900  | -1.938510 |
| 19 | 1 | 0 | 1.870263  | -1.406146 | -3.347537 |
| 20 | 1 | 0 | 3.788154  | -2.438831 | -2.175072 |
| 21 | 1 | 0 | 0.647872  | -2.059117 | -2.252996 |
| 22 | 1 | 0 | 3.569435  | 0.045710  | -2.661204 |
| 23 | 1 | 0 | 0.766219  | -0.303250 | -2.544834 |
| 24 | 1 | 0 | -2.252631 | 0.493039  | 3.349556  |
| 25 | 1 | 0 | 2.526493  | -3.257916 | -1.251520 |
| 26 | 1 | 0 | -1.506785 | -0.905157 | 2.567595  |
| 27 | 1 | 0 | -0.835365 | 0.728197  | 2.339752  |
| 28 | 1 | 0 | 2.700849  | 1.054773  | -1.488440 |
| 29 | 1 | 0 | 4.657445  | -3.447518 | -0.030411 |
| 30 | 1 | 0 | 4.156417  | 0.177069  | -1.010619 |
| 31 | 1 | 0 | -4.503123 | 0.133020  | 2.390359  |
| 32 | 1 | 0 | -3.797530 | -1.386700 | 1.834840  |
| 33 | 1 | 0 | 4.890300  | -1.709363 | -0.066694 |
| 34 | 1 | 0 | -3.203929 | 2.280827  | 2.157023  |
| 35 | 1 | 0 | -2.028478 | 2.428225  | 0.834839  |
| 36 | 1 | 0 | 2.632984  | -3.234919 | 1.327318  |
| 37 | 1 | 0 | -5.870214 | -0.960215 | 0.572701  |
| 38 | 1 | 0 | -3.738695 | 2.187025  | 0.485167  |
| 39 | 1 | 0 | 4.130928  | 0.270942  | 0.923095  |
| 40 | 1 | 0 | 3.936744  | -2.364045 | 2.132310  |
| 41 | 1 | 0 | -5.304626 | 0.626838  | 0.084060  |
| 42 | 1 | 0 | -4.048397 | -2.071340 | -0.626972 |
| 43 | 1 | 0 | 0.826512  | -2.116621 | 2.435799  |
| 44 | 1 | 0 | 2.689635  | 1.080948  | 1.532013  |

| 45 | 1  | 0 | -2.029888 | -2.252282 | -1.867929 |
|----|----|---|-----------|-----------|-----------|
| 46 | 1  | 0 | 0.856113  | -0.354256 | 2.661935  |
| 47 | 1  | 0 | 3.688418  | 0.092300  | 2.615397  |
| 48 | 1  | 0 | -4.887985 | -1.002397 | -1.750133 |
| 49 | 1  | 0 | -1.271844 | -0.820868 | -2.605867 |
| 50 | 1  | 0 | -3.821804 | 1.678528  | -1.388308 |
| 51 | 1  | 0 | 2.082500  | -1.372985 | 3.407681  |
| 52 | 1  | 0 | -2.215884 | 1.551900  | -2.101629 |
| 53 | 1  | 0 | -2.868181 | -1.353772 | -3.119182 |
| 54 | 1  | 0 | -3.619786 | 0.831281  | -2.916812 |
| 55 | 12 | 0 | 0.015136  | 0.534808  | -0.205491 |
| 56 | 7  | 0 | 1.567876  | -0.953106 | 0.034380  |
| 57 | 7  | 0 | -2.006957 | -0.215214 | 0.008467  |
| 58 | 19 | 0 | -0.655671 | -2.660497 | 0.340915  |
| 59 | 6  | 0 | 0.382033  | 2.564370  | -0.819209 |
| 60 | 6  | 0 | 1.306852  | 3.461126  | 0.026391  |
| 61 | 1  | 0 | -0.588724 | 3.078377  | -0.926412 |
| 62 | 1  | 0 | 0.787240  | 2.539001  | -1.849050 |
| 63 | 6  | 0 | 1.513108  | 4.885336  | -0.520851 |
| 64 | 1  | 0 | 0.915675  | 3.547553  | 1.054553  |
| 65 | 1  | 0 | 2.298868  | 2.992746  | 0.132285  |
| 66 | 6  | 0 | 2.431856  | 5.755529  | 0.344940  |
| 67 | 1  | 0 | 1.922927  | 4.817572  | -1.539367 |
| 68 | 1  | 0 | 0.532470  | 5.372743  | -0.622517 |
| 69 | 1  | 0 | 2.559757  | 6.760080  | -0.077041 |
| 70 | 1  | 0 | 2.027691  | 5.871192  | 1.359058  |
| 71 | 1  | 0 | 3.428949  | 5.306266  | 0.439871  |



**Model 3** E = -1774.9918603 a.u.

| Center | Atomic | Atomic | c Coordinates (Angstroms) |           |           |  |
|--------|--------|--------|---------------------------|-----------|-----------|--|
| Number | Number | Туре   | Х                         | Y         | Ζ         |  |
|        |        |        |                           |           |           |  |
| 1      | 6      | 0      | 1.304050                  | -0.784728 | 2.415911  |  |
| 2      | 6      | 0      | 3.522529                  | -0.710269 | 1.328591  |  |
| 3      | 6      | 0      | -1.973856                 | -0.479110 | -2.366438 |  |
| 4      | 6      | 0      | 2.291367                  | -2.891372 | 1.609921  |  |
| 5      | 6      | 0      | 2.120442                  | -1.377635 | 1.257105  |  |
| 6      | 6      | 0      | 4.397183                  | -1.051503 | 0.124846  |  |
| 7      | 6      | 0      | -3.692733                 | 1.063835  | -1.493970 |  |
| 8      | 6      | 0      | -2.899539                 | -0.231851 | -1.164440 |  |
| 9      | 6      | 0      | -3.904076                 | -1.428939 | -1.164904 |  |
| 10     | 6      | 0      | 3.650186                  | -0.672785 | -1.151499 |  |
| 11     | 6      | 0      | -4.521751                 | 1.563969  | -0.313391 |  |
| 12     | 6      | 0      | 2.234931                  | -1.306232 | -1.254747 |  |
| 13     | 6      | 0      | 2.380748                  | -2.798924 | -1.681046 |  |
| 14     | 6      | 0      | -3.604533                 | 1.745184  | 0.893544  |  |

| 15 | 6 | 0 | -2.786410 | 0.471421  | 1.246545  |
|----|---|---|-----------|-----------|-----------|
| 16 | 6 | 0 | 1.550439  | -0.611106 | -2.447067 |
| 17 | 6 | 0 | -1.755644 | 0.914663  | 2.302432  |
| 18 | 6 | 0 | -3.713814 | -0.539703 | 1.986514  |
| 19 | 1 | 0 | 1.815932  | -0.930214 | 3.374508  |
| 20 | 1 | 0 | 4.021445  | -0.994198 | 2.265848  |
| 21 | 1 | 0 | 1.154194  | 0.294130  | 2.291702  |
| 22 | 1 | 0 | 2.705976  | -3.009911 | 2.619443  |
| 23 | 1 | 0 | 0.318999  | -1.261304 | 2.509988  |
| 24 | 1 | 0 | -2.547741 | -0.544834 | -3.298303 |
| 25 | 1 | 0 | 3.378967  | 0.378510  | 1.358937  |
| 26 | 1 | 0 | -1.252098 | 0.336346  | -2.490939 |
| 27 | 1 | 0 | -1.416814 | -1.422030 | -2.275256 |
| 28 | 1 | 0 | 1.325351  | -3.420154 | 1.605689  |
| 29 | 1 | 0 | 5.350007  | -0.509356 | 0.181101  |
| 30 | 1 | 0 | 2.951669  | -3.425038 | 0.925643  |
| 31 | 1 | 0 | -4.329179 | 0.897155  | -2.374569 |
| 32 | 1 | 0 | -2.967272 | 1.843025  | -1.765750 |
| 33 | 1 | 0 | 4.655228  | -2.119645 | 0.123280  |
| 34 | 1 | 0 | -4.368910 | -1.546090 | -2.152514 |
| 35 | 1 | 0 | -3.397884 | -2.380411 | -0.938984 |
| 36 | 1 | 0 | 3.532477  | 0.419111  | -1.171105 |
| 37 | 1 | 0 | -5.007445 | 2.515244  | -0.566879 |
| 38 | 1 | 0 | -4.711307 | -1.317545 | -0.440350 |
| 39 | 1 | 0 | 3.004825  | -3.386984 | -1.005073 |
| 40 | 1 | 0 | 4.238117  | -0.944227 | -2.039451 |
| 41 | 1 | 0 | -5.334154 | 0.860114  | -0.084925 |
| 42 | 1 | 0 | -2.892273 | 2.550719  | 0.668107  |
| 43 | 1 | 0 | 1.366786  | 0.451750  | -2.243714 |

| 44                                                                                                                                                                     | 1                                                                   | 0                                                                  | 1.393588                                                                                                                                                   | -3.281654                                                                                                                                                 | -1.729518                                                                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 45                                                                                                                                                                     | 1                                                                   | 0                                                                  | -1.020259                                                                                                                                                  | 1.614357                                                                                                                                                  | 1.883566                                                                                                                                                         |
| 46                                                                                                                                                                     | 1                                                                   | 0                                                                  | 0.605390                                                                                                                                                   | -1.094393                                                                                                                                                 | -2.709371                                                                                                                                                        |
| 47                                                                                                                                                                     | 1                                                                   | 0                                                                  | 2.828397                                                                                                                                                   | -2.877541                                                                                                                                                 | -2.680567                                                                                                                                                        |
| 48                                                                                                                                                                     | 1                                                                   | 0                                                                  | -4.180213                                                                                                                                                  | 2.067123                                                                                                                                                  | 1.772618                                                                                                                                                         |
| 49                                                                                                                                                                     | 1                                                                   | 0                                                                  | -1.230612                                                                                                                                                  | 0.061171                                                                                                                                                  | 2.739597                                                                                                                                                         |
| 50                                                                                                                                                                     | 1                                                                   | 0                                                                  | -4.607293                                                                                                                                                  | -0.811484                                                                                                                                                 | 1.420813                                                                                                                                                         |
| 51                                                                                                                                                                     | 1                                                                   | 0                                                                  | 2.189664                                                                                                                                                   | -0.657468                                                                                                                                                 | -3.336784                                                                                                                                                        |
| 52                                                                                                                                                                     | 1                                                                   | 0                                                                  | -3.165648                                                                                                                                                  | -1.466631                                                                                                                                                 | 2.209133                                                                                                                                                         |
| 53                                                                                                                                                                     | 1                                                                   | 0                                                                  | -2.253145                                                                                                                                                  | 1.440075                                                                                                                                                  | 3.126244                                                                                                                                                         |
| 54                                                                                                                                                                     | 1                                                                   | 0                                                                  | -4.055181                                                                                                                                                  | -0.126014                                                                                                                                                 | 2.944613                                                                                                                                                         |
| 55                                                                                                                                                                     | 12                                                                  | 0                                                                  | -0.016786                                                                                                                                                  | 0.507667                                                                                                                                                  | -0.124813                                                                                                                                                        |
| 56                                                                                                                                                                     | 7                                                                   | 0                                                                  | 1.410672                                                                                                                                                   | -1.105658                                                                                                                                                 | -0.024167                                                                                                                                                        |
| 57                                                                                                                                                                     | 7                                                                   | 0                                                                  | -2.072386                                                                                                                                                  | -0.108529                                                                                                                                                 | 0.069057                                                                                                                                                         |
|                                                                                                                                                                        |                                                                     |                                                                    |                                                                                                                                                            |                                                                                                                                                           |                                                                                                                                                                  |
| 58                                                                                                                                                                     | 19                                                                  | 0                                                                  | -0.923223                                                                                                                                                  | -2.662299                                                                                                                                                 | 0.267371                                                                                                                                                         |
| 58<br>59                                                                                                                                                               | 19<br>6                                                             | 0<br>0                                                             | -0.923223<br>0.473875                                                                                                                                      | -2.662299<br>2.573335                                                                                                                                     | 0.267371<br>-0.469111                                                                                                                                            |
| 58<br>59<br>60                                                                                                                                                         | 19<br>6<br>6                                                        | 0<br>0<br>0                                                        | -0.923223<br>0.473875<br>1.836265                                                                                                                          | -2.662299<br>2.573335<br>3.118086                                                                                                                         | 0.267371<br>-0.469111<br>-0.003462                                                                                                                               |
| 58<br>59<br>60<br>61                                                                                                                                                   | 19<br>6<br>6<br>1                                                   | 0<br>0<br>0<br>0                                                   | -0.923223<br>0.473875<br>1.836265<br>-0.320197                                                                                                             | -2.662299<br>2.573335<br>3.118086<br>3.199459                                                                                                             | 0.267371<br>-0.469111<br>-0.003462<br>-0.022528                                                                                                                  |
| <ul><li>58</li><li>59</li><li>60</li><li>61</li><li>62</li></ul>                                                                                                       | 19<br>6<br>6<br>1<br>1                                              | 0<br>0<br>0<br>0                                                   | -0.923223<br>0.473875<br>1.836265<br>-0.320197<br>0.383297                                                                                                 | -2.662299<br>2.573335<br>3.118086<br>3.199459<br>2.768912                                                                                                 | 0.267371<br>-0.469111<br>-0.003462<br>-0.022528<br>-1.555167                                                                                                     |
| <ul> <li>58</li> <li>59</li> <li>60</li> <li>61</li> <li>62</li> <li>63</li> </ul>                                                                                     | 19<br>6<br>1<br>1<br>6                                              | 0<br>0<br>0<br>0<br>0                                              | -0.923223<br>0.473875<br>1.836265<br>-0.320197<br>0.383297<br>2.100153                                                                                     | -2.662299<br>2.573335<br>3.118086<br>3.199459<br>2.768912<br>4.598421                                                                                     | 0.267371<br>-0.469111<br>-0.003462<br>-0.022528<br>-1.555167<br>-0.334596                                                                                        |
| <ul> <li>58</li> <li>59</li> <li>60</li> <li>61</li> <li>62</li> <li>63</li> <li>64</li> </ul>                                                                         | 19<br>6<br>1<br>1<br>6<br>1                                         | 0<br>0<br>0<br>0<br>0<br>0                                         | -0.923223<br>0.473875<br>1.836265<br>-0.320197<br>0.383297<br>2.100153<br>1.943118                                                                         | -2.662299<br>2.573335<br>3.118086<br>3.199459<br>2.768912<br>4.598421<br>2.991254                                                                         | 0.267371<br>-0.469111<br>-0.003462<br>-0.022528<br>-1.555167<br>-0.334596<br>1.087502                                                                            |
| <ul> <li>58</li> <li>59</li> <li>60</li> <li>61</li> <li>62</li> <li>63</li> <li>64</li> <li>65</li> </ul>                                                             | 19<br>6<br>1<br>1<br>6<br>1<br>1                                    | 0<br>0<br>0<br>0<br>0<br>0<br>0                                    | -0.923223<br>0.473875<br>1.836265<br>-0.320197<br>0.383297<br>2.100153<br>1.943118<br>2.653151                                                             | -2.662299<br>2.573335<br>3.118086<br>3.199459<br>2.768912<br>4.598421<br>2.991254<br>2.521449                                                             | 0.267371<br>-0.469111<br>-0.003462<br>-0.022528<br>-1.555167<br>-0.334596<br>1.087502<br>-0.442226                                                               |
| <ol> <li>58</li> <li>59</li> <li>60</li> <li>61</li> <li>62</li> <li>63</li> <li>64</li> <li>65</li> <li>66</li> </ol>                                                 | 19<br>6<br>1<br>1<br>6<br>1<br>1<br>6                               | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                          | -0.923223<br>0.473875<br>1.836265<br>-0.320197<br>0.383297<br>2.100153<br>1.943118<br>2.653151<br>3.463101                                                 | -2.662299<br>2.573335<br>3.118086<br>3.199459<br>2.768912<br>4.598421<br>2.991254<br>2.521449<br>5.109379                                                 | 0.267371<br>-0.469111<br>-0.003462<br>-0.022528<br>-1.555167<br>-0.334596<br>1.087502<br>-0.442226<br>0.147274                                                   |
| <ul> <li>58</li> <li>59</li> <li>60</li> <li>61</li> <li>62</li> <li>63</li> <li>64</li> <li>65</li> <li>66</li> <li>67</li> </ul>                                     | 19<br>6<br>1<br>1<br>6<br>1<br>1<br>6<br>1                          | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                     | -0.923223<br>0.473875<br>1.836265<br>-0.320197<br>0.383297<br>2.100153<br>1.943118<br>2.653151<br>3.463101<br>2.018182                                     | -2.662299<br>2.573335<br>3.118086<br>3.199459<br>2.768912<br>4.598421<br>2.991254<br>2.521449<br>5.109379<br>4.738467                                     | 0.267371<br>-0.469111<br>-0.003462<br>-0.022528<br>-1.555167<br>-0.334596<br>1.087502<br>-0.442226<br>0.147274<br>-1.422605                                      |
| <ol> <li>58</li> <li>59</li> <li>60</li> <li>61</li> <li>62</li> <li>63</li> <li>64</li> <li>65</li> <li>66</li> <li>67</li> <li>68</li> </ol>                         | 19<br>6<br>1<br>1<br>6<br>1<br>1<br>6<br>1<br>1<br>1                | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                | -0.923223<br>0.473875<br>1.836265<br>-0.320197<br>0.383297<br>2.100153<br>1.943118<br>2.653151<br>3.463101<br>2.018182<br>1.300306                         | -2.662299<br>2.573335<br>3.118086<br>3.199459<br>2.768912<br>4.598421<br>2.991254<br>2.521449<br>5.109379<br>4.738467<br>5.209774                         | 0.267371<br>-0.469111<br>-0.003462<br>-0.022528<br>-1.555167<br>-0.334596<br>1.087502<br>-0.442226<br>0.147274<br>-1.422605<br>0.108465                          |
| <ol> <li>58</li> <li>59</li> <li>60</li> <li>61</li> <li>62</li> <li>63</li> <li>64</li> <li>65</li> <li>66</li> <li>67</li> <li>68</li> <li>69</li> </ol>             | 19<br>6<br>1<br>1<br>6<br>1<br>1<br>6<br>1<br>1<br>1<br>1<br>1      | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | -0.923223<br>0.473875<br>1.836265<br>-0.320197<br>0.383297<br>2.100153<br>1.943118<br>2.653151<br>3.463101<br>2.018182<br>1.300306<br>3.615778             | -2.662299<br>2.573335<br>3.118086<br>3.199459<br>2.768912<br>4.598421<br>2.991254<br>2.521449<br>5.109379<br>4.738467<br>5.209774<br>6.166360             | 0.267371<br>-0.469111<br>-0.003462<br>-0.022528<br>-1.555167<br>-0.334596<br>1.087502<br>-0.442226<br>0.147274<br>-1.422605<br>0.108465<br>-0.103945             |
| <ol> <li>58</li> <li>59</li> <li>60</li> <li>61</li> <li>62</li> <li>63</li> <li>64</li> <li>65</li> <li>66</li> <li>67</li> <li>68</li> <li>69</li> <li>70</li> </ol> | 19<br>6<br>1<br>1<br>6<br>1<br>1<br>6<br>1<br>1<br>1<br>1<br>1<br>1 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | -0.923223<br>0.473875<br>1.836265<br>-0.320197<br>0.383297<br>2.100153<br>1.943118<br>2.653151<br>3.463101<br>2.018182<br>1.300306<br>3.615778<br>3.560427 | -2.662299<br>2.573335<br>3.118086<br>3.199459<br>2.768912<br>4.598421<br>2.991254<br>2.521449<br>5.109379<br>4.738467<br>5.209774<br>6.166360<br>5.009992 | 0.267371<br>-0.469111<br>-0.003462<br>-0.022528<br>-1.555167<br>-0.334596<br>1.087502<br>-0.442226<br>0.147274<br>-1.422605<br>0.108465<br>-0.103945<br>1.236267 |



**Model 4** E = -1774.9891223 a.u.

| Center Atomic Atomic Coordinates (Angstro |        |      |           |           | oms)      |
|-------------------------------------------|--------|------|-----------|-----------|-----------|
| Number                                    | Number | Туре | Х         | Y         | Ζ         |
| 1                                         | 6      | 0    | -1.733742 | -0.356740 | -2.370427 |
| 2                                         | 6      | 0    | -3.962232 | 0.472483  | -1.648278 |
| 3                                         | 6      | 0    | 2.089221  | -0.027598 | -2.059954 |
| 4                                         | 6      | 0    | -3.266142 | -1.937820 | -1.251245 |
| 5                                         | 6      | 0    | -2.783043 | -0.455998 | -1.247007 |
| 6                                         | 6      | 0    | -4.949814 | 0.704388  | -0.503215 |
| 7                                         | 6      | 0    | 1.906077  | -2.511157 | -1.867272 |
| 8                                         | 6      | 0    | 2.329311  | -1.220280 | -1.111623 |
| 9                                         | 6      | 0    | 3.878054  | -1.264606 | -0.906929 |
| 10                                        | 6      | 0    | -4.196366 | 1.219361  | 0.725097  |
| 11                                        | 6      | 0    | 1.857851  | -3.744479 | -0.962283 |
| 12                                        | 6      | 0    | -3.027187 | 0.286453  | 1.144406  |
| 13                                        | 6      | 0    | -3.615172 | -0.962497 | 1.870159  |
| 14                                        | 6      | 0    | 0.969799  | -3.465614 | 0.253212  |

| 15 | 6 | 0 | 1.402910  | -2.190457 | 1.024544  |
|----|---|---|-----------|-----------|-----------|
| 16 | 6 | 0 | -2.212607 | 1.049420  | 2.210671  |
| 17 | 6 | 0 | 0.303776  | -1.877059 | 2.054983  |
| 18 | 6 | 0 | 2.674832  | -2.527674 | 1.865151  |
| 19 | 1 | 0 | -2.159400 | -0.610848 | -3.348693 |
| 20 | 1 | 0 | -4.478929 | 0.063127  | -2.528382 |
| 21 | 1 | 0 | -1.335802 | 0.665909  | -2.443112 |
| 22 | 1 | 0 | -3.529530 | -2.267115 | -2.265988 |
| 23 | 1 | 0 | -0.906405 | -1.056766 | -2.192790 |
| 24 | 1 | 0 | 2.641470  | -0.158589 | -2.998209 |
| 25 | 1 | 0 | -3.543751 | 1.444935  | -1.946542 |
| 26 | 1 | 0 | 1.032171  | 0.073453  | -2.328939 |
| 27 | 1 | 0 | 2.417056  | 0.920811  | -1.618136 |
| 28 | 1 | 0 | -2.468372 | -2.588275 | -0.875146 |
| 29 | 1 | 0 | -5.719987 | 1.426153  | -0.807417 |
| 30 | 1 | 0 | -4.146615 | -2.098886 | -0.625015 |
| 31 | 1 | 0 | 2.577363  | -2.684617 | -2.720117 |
| 32 | 1 | 0 | 0.903525  | -2.348623 | -2.284562 |
| 33 | 1 | 0 | -5.483808 | -0.225228 | -0.263898 |
| 34 | 1 | 0 | 4.394223  | -1.278920 | -1.875210 |
| 35 | 1 | 0 | 4.240297  | -0.369655 | -0.376870 |
| 36 | 1 | 0 | -3.775590 | 2.206631  | 0.485554  |
| 37 | 1 | 0 | 1.470441  | -4.605302 | -1.522405 |
| 38 | 1 | 0 | 4.221014  | -2.136453 | -0.348409 |
| 39 | 1 | 0 | -4.344145 | -1.503325 | 1.262999  |
| 40 | 1 | 0 | -4.886244 | 1.360957  | 1.569564  |
| 41 | 1 | 0 | 2.870880  | -4.025123 | -0.641810 |
| 42 | 1 | 0 | -0.062759 | -3.317276 | -0.091069 |
| 43 | 1 | 0 | -1.811775 | 1.984439  | 1.808271  |

| 44 | 1      | 0 | -2.817190 | -1.666559 | 2.129069  |
|----|--------|---|-----------|-----------|-----------|
| 45 | 1      | 0 | -0.654878 | -1.682825 | 1.561966  |
| 46 | 1      | 0 | -1.377997 | 0.441180  | 2.586655  |
| 47 | 1      | 0 | -4.123784 | -0.671344 | 2.799557  |
| 48 | 1      | 0 | 0.958679  | -4.332592 | 0.928663  |
| 49 | 1      | 0 | 0.565555  | -0.996876 | 2.664640  |
| 50 | 1      | 0 | 3.512702  | -2.896132 | 1.271230  |
| 51 | 1      | 0 | -2.838010 | 1.296863  | 3.077394  |
| 52 | 1      | 0 | 3.027178  | -1.645604 | 2.423171  |
| 53 | 1      | 0 | 0.157250  | -2.711631 | 2.751097  |
| 54 | 1      | 0 | 2.446692  | -3.298565 | 2.612111  |
| 55 | 12     | 0 | -0.141740 | 0.328208  | 0.047364  |
| 56 | 7      | 0 | -2.139599 | -0.027742 | 0.007878  |
| 57 | 7      | 0 | 1.535387  | -1.010790 | 0.129034  |
| 58 | 19     | 0 | 2.768986  | 1.029947  | 1.490297  |
| 59 | 1      | 0 | 1.262402  | 3.163386  | -1.477183 |
| 60 | 6      | 0 | 1.487977  | 3.286641  | -0.407023 |
| 61 | 6      | 0 | 0.499064  | 2.441103  | 0.422305  |
| 62 | 6      | 0 | 1.509146  | 4.793967  | -0.089798 |
| 63 | 1      | 0 | 2.537530  | 2.928586  | -0.318601 |
| 64 | 1      | 0 | 0.648522  | 2.693337  | 1.497561  |
| 65 | 1      | 0 | -0.497742 | 2.869359  | 0.226868  |
| 66 | 6      | 0 | 2.490177  | 5.598416  | -0.950111 |
| 67 | 1      | 0 | 0.492650  | 5.189994  | -0.218384 |
| 68 | 1      | 0 | 1.751708  | 4.933115  | 0.975390  |
| 69 |        | 0 | 2.476324  | 6.663918  | -0.692604 |
|    | 1      | U |           |           |           |
| 70 | 1<br>1 | 0 | 3.520841  | 5.240580  | -0.821060 |



**Model 5** E = -1774.990077 a.u.

| Center | Atomic | Atomic | Coord     | inates (Angstr | oms)      |
|--------|--------|--------|-----------|----------------|-----------|
| Number | Number | Туре   | Х         | Y              | Ζ         |
|        |        |        |           |                |           |
| 1      | 1      | 0      | 2.430201  | 5.742250       | 0.785193  |
| 2      | 1      | 0      | 1.244519  | 6.962208       | 0.295768  |
| 3      | 1      | 0      | 0.892546  | 5.877118       | 1.649382  |
| 4      | 6      | 0      | 1.355966  | 5.932982       | 0.656514  |
| 5      | 6      | 0      | 0.721814  | 4.922102       | -0.305681 |
| 6      | 1      | 0      | 1.176712  | 5.025864       | -1.303399 |
| 7      | 1      | 0      | 2.716064  | 0.307906       | 3.009526  |
| 8      | 1      | 0      | 1.928003  | 3.267117       | 0.329671  |
| 9      | 1      | 0      | -0.343652 | 5.154635       | -0.437818 |
| 10     | 1      | 0      | 0.402292  | 3.373460       | 1.157285  |
| 11     | 6      | 0      | 0.847024  | 3.457289       | 0.153505  |
| 12     | 1      | 0      | 2.837331  | 1.124135       | 1.457605  |
| 13     | 6      | 0      | 2.259387  | 0.374362       | 2.015368  |
| 14     | 1      | 0      | 1.248474  | 0.776435       | 2.151175  |
| 15     | 1      | 0      | 4.184371  | -1.612661      | 2.151010  |

| 16 | 1  | 0 | 1.980744  | -1.864258 | 3.331692  |
|----|----|---|-----------|-----------|-----------|
| 17 | 1  | 0 | 4.304786  | -0.616843 | 0.705519  |
| 18 | 6  | 0 | 3.734136  | -1.445538 | 1.163033  |
| 19 | 1  | 0 | -1.802551 | 1.398958  | 2.105763  |
| 20 | 1  | 0 | -2.230231 | 0.223744  | 3.367025  |
| 21 | 6  | 0 | 2.250837  | -1.005511 | 1.320415  |
| 22 | 6  | 0 | 1.559736  | -1.978144 | 2.324007  |
| 23 | 1  | 0 | -0.835039 | -0.083551 | 2.346428  |
| 24 | 1  | 0 | 0.573374  | 2.583977  | -1.811124 |
| 25 | 6  | 0 | 0.207004  | 2.402893  | -0.774305 |
| 26 | 19 | 0 | 2.811390  | 1.289859  | -1.205070 |
| 27 | 6  | 0 | -1.854630 | 0.328755  | 2.341612  |
| 28 | 1  | 0 | 0.486458  | -1.776788 | 2.380552  |
| 29 | 1  | 0 | 4.958503  | -2.914901 | 0.135105  |
| 30 | 1  | 0 | -0.857525 | 2.674710  | -0.856759 |
| 31 | 1  | 0 | 1.678199  | -3.026736 | 2.045894  |
| 32 | 6  | 0 | 3.894710  | -2.686722 | 0.282989  |
| 33 | 1  | 0 | 3.464737  | -3.562327 | 0.784773  |
| 34 | 7  | 0 | 1.576954  | -0.867641 | 0.002659  |
| 35 | 12 | 0 | -0.216380 | 0.298763  | -0.164728 |
| 36 | 1  | 0 | -4.079774 | 1.295773  | 1.469404  |
| 37 | 1  | 0 | -3.075300 | -2.001914 | 2.822399  |
| 38 | 1  | 0 | 3.758873  | -1.679013 | -1.611824 |
| 39 | 6  | 0 | -2.749925 | -0.408636 | 1.323603  |
| 40 | 1  | 0 | -4.603287 | -0.087388 | 2.435334  |
| 41 | 6  | 0 | 3.205929  | -2.464069 | -1.064310 |
| 42 | 6  | 0 | -4.171885 | 0.199973  | 1.466034  |
| 43 | 7  | 0 | -2.172308 | -0.190435 | -0.013449 |
| 44 | 6  | 0 | -2.790901 | -1.901651 | 1.765415  |

| 45 | 1 | 0 | -1.804667 | -2.359873 | 1.631754  |
|----|---|---|-----------|-----------|-----------|
| 46 | 6 | 0 | 1.723072  | -2.020695 | -0.923736 |
| 47 | 1 | 0 | 1.220405  | -3.805597 | 0.299346  |
| 48 | 1 | 0 | 3.270320  | -3.368380 | -1.684675 |
| 49 | 1 | 0 | 1.835040  | -0.728076 | -2.716177 |
| 50 | 1 | 0 | -2.295025 | 1.390364  | -2.188406 |
| 51 | 6 | 0 | 0.850497  | -3.262344 | -0.572217 |
| 52 | 1 | 0 | -3.505458 | -2.487983 | 1.181541  |
| 53 | 1 | 0 | -0.176220 | -2.948653 | -0.359833 |
| 54 | 6 | 0 | 1.254950  | -1.578568 | -2.327039 |
| 55 | 1 | 0 | -4.359406 | 1.294661  | -1.029822 |
| 56 | 6 | 0 | -5.100144 | -0.198410 | 0.318961  |
| 57 | 1 | 0 | -6.075205 | 0.295460  | 0.428691  |
| 58 | 1 | 0 | 0.196259  | -1.296023 | -2.330525 |
| 59 | 6 | 0 | -3.032686 | -0.409149 | -1.188792 |
| 60 | 6 | 0 | -2.403883 | 0.320902  | -2.394506 |
| 61 | 6 | 0 | -4.450319 | 0.199088  | -1.006389 |
| 62 | 1 | 0 | -1.411608 | -0.082947 | -2.641745 |
| 63 | 1 | 0 | 0.827082  | -3.974822 | -1.407493 |
| 64 | 1 | 0 | -5.301211 | -1.278076 | 0.342098  |
| 65 | 1 | 0 | 1.366904  | -2.391388 | -3.053761 |
| 66 | 1 | 0 | -2.180231 | -2.358515 | -1.710675 |
| 67 | 1 | 0 | -3.020216 | 0.203349  | -3.294569 |
| 68 | 6 | 0 | -3.171953 | -1.905380 | -1.599207 |
| 69 | 1 | 0 | -3.716344 | -2.493378 | -0.855652 |
| 70 | 1 | 0 | -5.088521 | -0.086931 | -1.854452 |
| 71 | 1 | 0 | -3.705500 | -2.012221 | -2.554286 |



**Model 6** E = -1774.9902278 a.u.

| Center | Atomic | Atomic | Coordinates (Angstroms) |           |           |  |
|--------|--------|--------|-------------------------|-----------|-----------|--|
| Number | Number | Туре   | Х                       | Y         | Ζ         |  |
|        |        |        |                         |           |           |  |
| 1      | 6      | 0      | -0.032025               | 6.149270  | 0.165802  |  |
| 2      | 6      | 0      | -0.041723               | 4.946823  | -0.784852 |  |
| 3      | 6      | 0      | 0.072733                | 3.585508  | -0.073153 |  |
| 4      | 19     | 0      | 2.752170                | 1.854884  | -0.151851 |  |
| 5      | 6      | 0      | 1.483143                | -0.099937 | 2.405029  |  |
| 6      | 6      | 0      | -2.400289               | 1.193444  | 1.703443  |  |
| 7      | 6      | 0      | 0.053764                | 2.341177  | -0.987480 |  |
| 8      | 6      | 0      | 3.528502                | -1.302781 | 1.648211  |  |
| 9      | 6      | 0      | 1.999445                | -1.159928 | 1.407630  |  |
| 10     | 6      | 0      | -2.922853               | -0.129957 | 1.108843  |  |
| 11     | 12     | 0      | -0.208308               | 0.238366  | -0.290520 |  |
| 12     | 6      | 0      | -2.865204               | -1.186709 | 2.252068  |  |
| 13     | 7      | 0      | 1.700287                | -0.688851 | 0.030840  |  |
| 14     | 6      | 0      | -4.408707               | 0.122863  | 0.730038  |  |
| 15     | 6      | 0      | 4.230234                | -2.125445 | 0.565983  |  |

| 16 | 6 | 0 | 1.292711  | -2.485039 | 1.820437  |
|----|---|---|-----------|-----------|-----------|
| 17 | 7 | 0 | -2.092255 | -0.465421 | -0.060015 |
| 18 | 6 | 0 | 3.903336  | -1.561087 | -0.818003 |
| 19 | 6 | 0 | 2.374104  | -1.424859 | -1.069381 |
| 20 | 6 | 0 | 2.202400  | -0.623103 | -2.380206 |
| 21 | 6 | 0 | -4.993348 | -0.983178 | -0.147299 |
| 22 | 6 | 0 | -2.630473 | -1.419834 | -1.044192 |
| 23 | 6 | 0 | -4.119213 | -1.143620 | -1.390341 |
| 24 | 6 | 0 | 1.804321  | -2.845407 | -1.365969 |
| 25 | 6 | 0 | -1.835854 | -1.235875 | -2.353796 |
| 26 | 6 | 0 | -2.473779 | -2.914311 | -0.634065 |
| 27 | 1 | 0 | -0.118718 | 7.097425  | -0.377597 |
| 28 | 1 | 0 | 0.896660  | 6.188000  | 0.751650  |
| 29 | 1 | 0 | -0.865360 | 6.096595  | 0.877321  |
| 30 | 1 | 0 | -0.966677 | 4.950606  | -1.377513 |
| 31 | 1 | 0 | 0.779805  | 5.043853  | -1.512233 |
| 32 | 1 | 0 | -0.744791 | 3.509382  | 0.657602  |
| 33 | 1 | 0 | 0.985736  | 3.633644  | 0.562234  |
| 34 | 1 | 0 | -0.903077 | 2.384191  | -1.535718 |
| 35 | 1 | 0 | 0.797833  | 2.497293  | -1.801145 |
| 36 | 1 | 0 | 0.230445  | -2.436395 | 1.561820  |
| 37 | 1 | 0 | 1.375198  | -2.652823 | 2.902603  |
| 38 | 1 | 0 | 1.715493  | -3.363295 | 1.329042  |
| 39 | 1 | 0 | 2.182580  | -3.228734 | -2.322901 |
| 40 | 1 | 0 | 0.712885  | -2.818396 | -1.417666 |
| 41 | 1 | 0 | 2.074986  | -3.576050 | -0.601694 |
| 42 | 1 | 0 | 2.656239  | -1.155190 | -3.223981 |
| 43 | 1 | 0 | 1.148353  | -0.458743 | -2.631560 |
| 44 | 1 | 0 | 2.685750  | 0.363516  | -2.340226 |

| 45 | 1 | 0 | -2.739459 | -3.589467 | -1.459723 |
|----|---|---|-----------|-----------|-----------|
| 46 | 1 | 0 | -3.105711 | -3.180550 | 0.217398  |
| 47 | 1 | 0 | -1.435857 | -3.116651 | -0.347475 |
| 48 | 1 | 0 | -1.912063 | -0.200852 | -2.709359 |
| 49 | 1 | 0 | -0.774703 | -1.485274 | -2.212475 |
| 50 | 1 | 0 | -2.201459 | -1.897316 | -3.149061 |
| 51 | 1 | 0 | -1.823094 | -1.394880 | 2.520874  |
| 52 | 1 | 0 | -3.323926 | -2.137190 | 1.966547  |
| 53 | 1 | 0 | -3.384808 | -0.832204 | 3.153485  |
| 54 | 1 | 0 | -6.024058 | -0.735690 | -0.435617 |
| 55 | 1 | 0 | -5.051779 | -1.928334 | 0.409339  |
| 56 | 1 | 0 | -4.465512 | 1.068987  | 0.172618  |
| 57 | 1 | 0 | -5.007669 | 0.253671  | 1.642384  |
| 58 | 1 | 0 | -4.171283 | -0.210766 | -1.970426 |
| 59 | 1 | 0 | -4.503884 | -1.944342 | -2.037841 |
| 60 | 1 | 0 | 4.371771  | -0.563369 | -0.907431 |
| 61 | 1 | 0 | 4.360812  | -2.177817 | -1.603656 |
| 62 | 1 | 0 | 5.315804  | -2.126503 | 0.730790  |
| 63 | 1 | 0 | 3.914900  | -3.174235 | 0.628495  |
| 64 | 1 | 0 | 3.979918  | -0.293587 | 1.667122  |
| 65 | 1 | 0 | 3.715330  | -1.733762 | 2.641265  |
| 66 | 1 | 0 | 1.932887  | 0.890930  | 2.241947  |
| 67 | 1 | 0 | 1.716036  | -0.384259 | 3.437678  |
| 68 | 1 | 0 | 0.394052  | 0.011262  | 2.347490  |
| 69 | 1 | 0 | -1.357956 | 1.103446  | 2.043355  |
| 70 | 1 | 0 | -2.987976 | 1.499401  | 2.578095  |
| 71 | 1 | 0 | -2.448765 | 1.993094  | 0.957307  |



**Model 7** E = -3549.983362 a.u.

| Center | Atomic | Atomic | Coordinates (Angstroms) |           |           |  |
|--------|--------|--------|-------------------------|-----------|-----------|--|
| Number | Number | Туре   | Х                       | Y         | Ζ         |  |
|        |        |        |                         |           |           |  |
| 1      | 1      | 0      | -2.524035               | -4.980385 | -0.354463 |  |
| 2      | 1      | 0      | -2.401338               | -5.080196 | 1.403200  |  |
| 3      | 1      | 0      | -0.096442               | -4.956882 | -0.382056 |  |
| 4      | 6      | 0      | -2.477324               | -4.384019 | 0.566453  |  |
| 5      | 1      | 0      | -0.104355               | -5.554785 | 2.027104  |  |
| 6      | 1      | 0      | -3.438388               | -3.865122 | 0.671790  |  |
| 7      | 1      | 0      | -7.005525               | -0.049018 | -0.026953 |  |
| 8      | 1      | 0      | -1.511889               | -3.237971 | -1.664101 |  |
| 9      | 1      | 0      | 1.538786                | -5.214341 | 1.518966  |  |
| 10     | 1      | 0      | -5.521032               | -0.637067 | -1.726027 |  |
| 11     | 6      | 0      | 0.030877                | -4.165622 | 0.368890  |  |
| 12     | 6      | 0      | 0.556181                | -4.751818 | 1.678781  |  |
| 13     | 1      | 0      | -1.743646               | -4.838802 | 3.282232  |  |
| 14     | 1      | 0      | -6.129403               | -0.861729 | 1.284867  |  |
| 15     | 1      | 0      | -2.411959               | -2.005468 | -0.777770 |  |
| 16     | 1      | 0      | -4.583190               | -1.629250 | -0.611733 |  |
| 17     | 6      | 0      | -1.295607               | -3.370726 | 0.519662  |  |
| 18     | 6      | 0      | -6.221088               | 0.076158  | 0.731177  |  |

| 19 | 6  | 0 | -1.479496 | -2.577129 | -0.789590 |
|----|----|---|-----------|-----------|-----------|
| 20 | 1  | 0 | 0.799645  | -3.493936 | -0.042899 |
| 21 | 1  | 0 | -2.621204 | -3.425808 | 3.867190  |
| 22 | 1  | 0 | -5.955677 | 1.811281  | -1.257861 |
| 23 | 6  | 0 | -4.667457 | -0.621231 | -1.038648 |
| 24 | 1  | 0 | -6.571894 | 0.836419  | 1.430331  |
| 25 | 6  | 0 | -1.627722 | -3.858783 | 3.749481  |
| 26 | 1  | 0 | -3.773557 | -0.437674 | -1.651184 |
| 27 | 1  | 0 | -0.643251 | -1.880007 | -0.944769 |
| 28 | 1  | 0 | 0.967064  | -4.077532 | 3.701323  |
| 29 | 6  | 0 | -4.866019 | 0.445707  | 0.057039  |
| 30 | 6  | 0 | 0.644892  | -3.654701 | 2.740706  |
| 31 | 1  | 0 | -1.208899 | -4.030239 | 4.750165  |
| 32 | 6  | 0 | -5.031631 | 1.812580  | -0.663836 |
| 33 | 7  | 0 | -1.265546 | -2.391067 | 1.642833  |
| 34 | 6  | 0 | -0.702645 | -2.906140 | 2.932419  |
| 35 | 1  | 0 | -4.207772 | 1.940167  | -1.389451 |
| 36 | 1  | 0 | -5.914341 | 2.980878  | 0.931694  |
| 37 | 1  | 0 | 1.441762  | -2.944955 | 2.457855  |
| 38 | 1  | 0 | -5.594001 | 1.780226  | 2.834596  |
| 39 | 6  | 0 | -5.017295 | 2.999934  | 0.300640  |
| 40 | 1  | 0 | -5.058427 | 3.944588  | -0.257127 |
| 41 | 7  | 0 | -3.670676 | 0.440284  | 0.952528  |
| 42 | 12 | 0 | -3.180237 | -1.403029 | 1.928962  |
| 43 | 1  | 0 | -4.554913 | 0.581456  | 3.596945  |
| 44 | 6  | 0 | -4.561732 | 1.562351  | 3.113236  |
| 45 | 6  | 0 | -0.449657 | -1.692973 | 3.849355  |
| 46 | 1  | 0 | 0.049592  | -1.994925 | 4.777777  |
| 47 | 1  | 0 | -1.391138 | -1.208365 | 4.137633  |

| 48 | 6  | 0 | -3.582075 | 1.592522  | 1.899274  |
|----|----|---|-----------|-----------|-----------|
| 49 | 1  | 0 | -4.323172 | -2.204851 | 4.310359  |
| 50 | 6  | 0 | -3.759120 | 2.951903  | 1.169464  |
| 51 | 1  | 0 | 0.174630  | -0.928865 | 3.364894  |
| 52 | 1  | 0 | -4.268062 | 2.313380  | 3.858514  |
| 53 | 6  | 0 | -4.704221 | -2.174667 | 3.271958  |
| 54 | 1  | 0 | -5.503253 | -1.416150 | 3.308837  |
| 55 | 1  | 0 | -3.765971 | 3.770852  | 1.901847  |
| 56 | 1  | 0 | -2.884522 | 3.131865  | 0.523857  |
| 57 | 1  | 0 | -2.007365 | 0.678142  | 3.132562  |
| 58 | 6  | 0 | -2.173254 | 1.577529  | 2.526190  |
| 59 | 1  | 0 | -1.379229 | 1.613605  | 1.770644  |
| 60 | 1  | 0 | -4.612443 | -4.333636 | 2.943404  |
| 61 | 6  | 0 | -5.369007 | -3.533551 | 2.976534  |
| 62 | 1  | 0 | -2.024330 | 2.438052  | 3.188742  |
| 63 | 1  | 0 | -5.819890 | -3.521783 | 1.968939  |
| 64 | 1  | 0 | -6.021959 | -3.988849 | 4.985431  |
| 65 | 1  | 0 | -7.236577 | -3.180586 | 4.009285  |
| 66 | 6  | 0 | -6.459634 | -3.958165 | 3.976720  |
| 67 | 6  | 0 | -7.101978 | -5.312745 | 3.655167  |
| 68 | 1  | 0 | -6.352969 | -6.115321 | 3.650102  |
| 69 | 1  | 0 | -7.575697 | -5.301628 | 2.664941  |
| 70 | 1  | 0 | -7.872256 | -5.583223 | 4.387833  |
| 71 | 19 | 0 | -1.484759 | 0.878922  | -0.844117 |
| 72 | 1  | 0 | 2.524035  | 4.980385  | 0.354463  |
| 73 | 1  | 0 | 2.401338  | 5.080196  | -1.403200 |
| 74 | 1  | 0 | 0.096442  | 4.956882  | 0.382056  |
| 75 | 6  | 0 | 2.477324  | 4.384019  | -0.566453 |
| 76 | 1  | 0 | 0.104355  | 5.554785  | -2.027104 |

| 77  | 1 | 0 | 3.438388  | 3.865122  | -0.671790 |
|-----|---|---|-----------|-----------|-----------|
| 78  | 1 | 0 | 7.005525  | 0.049018  | 0.026953  |
| 79  | 1 | 0 | 1.511889  | 3.237971  | 1.664101  |
| 80  | 1 | 0 | -1.538786 | 5.214341  | -1.518966 |
| 81  | 1 | 0 | 5.521032  | 0.637067  | 1.726027  |
| 82  | 6 | 0 | -0.030877 | 4.165622  | -0.368890 |
| 83  | 6 | 0 | -0.556181 | 4.751818  | -1.678781 |
| 84  | 1 | 0 | 1.743646  | 4.838802  | -3.282232 |
| 85  | 1 | 0 | 6.129403  | 0.861729  | -1.284867 |
| 86  | 1 | 0 | 2.411959  | 2.005468  | 0.777770  |
| 87  | 1 | 0 | 4.583190  | 1.629250  | 0.611733  |
| 88  | 6 | 0 | 1.295607  | 3.370726  | -0.519662 |
| 89  | 6 | 0 | 6.221088  | -0.076158 | -0.731177 |
| 90  | 6 | 0 | 1.479496  | 2.577129  | 0.789590  |
| 91  | 1 | 0 | -0.799645 | 3.493936  | 0.042899  |
| 92  | 1 | 0 | 2.621204  | 3.425808  | -3.867190 |
| 93  | 1 | 0 | 5.955677  | -1.811281 | 1.257861  |
| 94  | 6 | 0 | 4.667457  | 0.621231  | 1.038648  |
| 95  | 1 | 0 | 6.571894  | -0.836419 | -1.430331 |
| 96  | 6 | 0 | 1.627722  | 3.858783  | -3.749481 |
| 97  | 1 | 0 | 3.773557  | 0.437674  | 1.651184  |
| 98  | 1 | 0 | 0.643251  | 1.880007  | 0.944769  |
| 99  | 1 | 0 | -0.967064 | 4.077532  | -3.701323 |
| 100 | 6 | 0 | 4.866019  | -0.445707 | -0.057039 |
| 101 | 6 | 0 | -0.644892 | 3.654701  | -2.740706 |
| 102 | 1 | 0 | 1.208899  | 4.030239  | -4.750165 |
| 103 | 6 | 0 | 5.031631  | -1.812580 | 0.663836  |
| 104 | 7 | 0 | 1.265546  | 2.391067  | -1.642833 |
| 105 | 6 | 0 | 0.702645  | 2.906140  | -2.932419 |

| 106 | 1  | 0 | 4.207772  | -1.940167 | 1.389451  |
|-----|----|---|-----------|-----------|-----------|
| 107 | 1  | 0 | 5.914341  | -2.980878 | -0.931694 |
| 108 | 1  | 0 | -1.441762 | 2.944955  | -2.457855 |
| 109 | 1  | 0 | 5.594001  | -1.780226 | -2.834596 |
| 110 | 6  | 0 | 5.017295  | -2.999934 | -0.300640 |
| 111 | 1  | 0 | 5.058427  | -3.944588 | 0.257127  |
| 112 | 7  | 0 | 3.670676  | -0.440284 | -0.952528 |
| 113 | 12 | 0 | 3.180237  | 1.403029  | -1.928962 |
| 114 | 1  | 0 | 4.554913  | -0.581456 | -3.596945 |
| 115 | 6  | 0 | 4.561732  | -1.562351 | -3.113236 |
| 116 | 6  | 0 | 0.449657  | 1.692973  | -3.849355 |
| 117 | 1  | 0 | -0.049592 | 1.994925  | -4.777777 |
| 118 | 1  | 0 | 1.391138  | 1.208365  | -4.137633 |
| 119 | 6  | 0 | 3.582075  | -1.592522 | -1.899274 |
| 120 | 1  | 0 | 4.323172  | 2.204851  | -4.310359 |
| 121 | 6  | 0 | 3.759120  | -2.951903 | -1.169464 |
| 122 | 1  | 0 | -0.174630 | 0.928865  | -3.364894 |
| 123 | 1  | 0 | 4.268062  | -2.313380 | -3.858514 |
| 124 | 6  | 0 | 4.704221  | 2.174667  | -3.271958 |
| 125 | 1  | 0 | 5.503253  | 1.416150  | -3.308837 |
| 126 | 1  | 0 | 3.765971  | -3.770852 | -1.901847 |
| 127 | 1  | 0 | 2.884522  | -3.131865 | -0.523857 |
| 128 | 1  | 0 | 2.007365  | -0.678142 | -3.132562 |
| 129 | 6  | 0 | 2.173254  | -1.577529 | -2.526190 |
| 130 | 1  | 0 | 1.379229  | -1.613605 | -1.770644 |
| 131 | 1  | 0 | 4.612443  | 4.333636  | -2.943404 |
| 132 | 6  | 0 | 5.369007  | 3.533551  | -2.976534 |
| 133 | 1  | 0 | 2.024330  | -2.438052 | -3.188742 |
| 134 | 1  | 0 | 5.819890  | 3.521783  | -1.968939 |

| 135 | 1  | 0 | 6.021959 | 3.988849  | -4.985431 |
|-----|----|---|----------|-----------|-----------|
| 136 | 1  | 0 | 7.236577 | 3.180586  | -4.009285 |
| 137 | 6  | 0 | 6.459634 | 3.958165  | -3.976720 |
| 138 | 6  | 0 | 7.101978 | 5.312745  | -3.655167 |
| 139 | 1  | 0 | 6.352969 | 6.115321  | -3.650102 |
| 140 | 1  | 0 | 7.575697 | 5.301628  | -2.664941 |
| 141 | 1  | 0 | 7.872256 | 5.583223  | -4.387833 |
| 142 | 19 | 0 | 1.484759 | -0.878922 | 0.844117  |



**Model 8** E = -3549.9934285 a.u.

| Center | nter Atomic Atomic Coordinates (Angstro |      |           |           |           |
|--------|-----------------------------------------|------|-----------|-----------|-----------|
| Number | Number                                  | Туре | Х         | Y         | Z         |
|        |                                         |      |           |           |           |
| 1      | 6                                       | 0    | -2.804163 | 1.638234  | -1.949577 |
| 2      | 6                                       | 0    | -1.054017 | 2.729152  | -0.573996 |
| 3      | 6                                       | 0    | -5.011555 | -1.222651 | -2.257595 |
| 4      | 6                                       | 0    | -3.412587 | 3.586251  | -0.552937 |
| 5      | 6                                       | 0    | -2.543658 | 2.291047  | -0.579923 |
| 6      | 6                                       | 0    | -0.618062 | 3.251279  | 0.793467  |
| 7      | 6                                       | 0    | -6.884120 | -2.561042 | -1.342656 |
| 8      | 6                                       | 0    | -5.390663 | -2.194103 | -1.125174 |
| 9      | 6                                       | 0    | -4.553050 | -3.490892 | -1.374926 |
| 10     | 6                                       | 0    | -0.871967 | 2.167258  | 1.836462  |
| 11     | 6                                       | 0    | -7.456051 | -3.370379 | -0.181943 |
| 12     | 6                                       | 0    | -2.331858 | 1.616878  | 1.841720  |
| 13     | 6                                       | 0    | -3.243431 | 2.602308  | 2.630335  |
| 14     | 6                                       | 0    | -7.277504 | -2.565748 | 1.102230  |
| 15     | 6                                       | 0    | -5.809793 | -2.124037 | 1.369545  |
| 16     | 6                                       | 0    | -2.254471 | 0.330267  | 2.696497  |
| 17     | 6                                       | 0    | -5.908831 | -1.057918 | 2.481891  |
| 18     | 6                                       | 0    | -5.023515 | -3.318670 | 1.986093  |
| 19     | 1                                       | 0    | -2.540638 | 2.319440  | -2.767425 |

| 20 | 1 | 0 | -0.886003 | 3.483309  | -1.354865 |
|----|---|---|-----------|-----------|-----------|
| 21 | 1 | 0 | -2.208794 | 0.723834  | -2.075301 |
| 22 | 1 | 0 | -3.248620 | 4.175939  | -1.464777 |
| 23 | 1 | 0 | -3.861596 | 1.383941  | -2.083730 |
| 24 | 1 | 0 | -5.201181 | -1.668569 | -3.241402 |
| 25 | 1 | 0 | -0.448076 | 1.845168  | -0.844156 |
| 26 | 1 | 0 | -5.602416 | -0.299576 | -2.199167 |
| 27 | 1 | 0 | -3.947247 | -0.953223 | -2.234434 |
| 28 | 1 | 0 | -4.474724 | 3.340901  | -0.496031 |
| 29 | 1 | 0 | 0.442567  | 3.553758  | 0.794385  |
| 30 | 1 | 0 | -3.180842 | 4.237593  | 0.292265  |
| 31 | 1 | 0 | -6.997041 | -3.102684 | -2.291943 |
| 32 | 1 | 0 | -7.457416 | -1.628653 | -1.435685 |
| 33 | 1 | 0 | -1.169309 | 4.165021  | 1.043228  |
| 34 | 1 | 0 | -4.771395 | -3.910849 | -2.365265 |
| 35 | 1 | 0 | -3.470528 | -3.293811 | -1.362358 |
| 36 | 1 | 0 | -0.199679 | 1.317499  | 1.622527  |
| 37 | 1 | 0 | -8.519930 | -3.581329 | -0.350202 |
| 38 | 1 | 0 | -4.748670 | -4.272800 | -0.639171 |
| 39 | 1 | 0 | -3.309785 | 3.582297  | 2.155086  |
| 40 | 1 | 0 | -0.609805 | 2.521263  | 2.842314  |
| 41 | 1 | 0 | -6.959516 | -4.347673 | -0.106795 |
| 42 | 1 | 0 | -7.895148 | -1.661176 | 1.022147  |
| 43 | 1 | 0 | -1.446051 | -0.334739 | 2.359112  |
| 44 | 1 | 0 | -4.264802 | 2.208055  | 2.693968  |
| 45 | 1 | 0 | -6.467892 | -0.177014 | 2.141133  |
| 46 | 1 | 0 | -3.194281 | -0.226296 | 2.682017  |
| 47 | 1 | 0 | -2.880110 | 2.754151  | 3.655558  |
| 48 | 1 | 0 | -7.650656 | -3.127035 | 1.969954  |

| 49 | 1  | 0 | -4.924655  | -0.739654 | 2.840968  |
|----|----|---|------------|-----------|-----------|
| 50 | 1  | 0 | -4.983729  | -4.188572 | 1.325641  |
| 51 | 1  | 0 | -2.036649  | 0.565537  | 3.744589  |
| 52 | 1  | 0 | -3.988872  | -3.020867 | 2.210025  |
| 53 | 1  | 0 | -6.442830  | -1.452838 | 3.354205  |
| 54 | 1  | 0 | -5.475524  | -3.649340 | 2.930778  |
| 55 | 12 | 0 | -4.919970  | 0.576382  | 0.279389  |
| 56 | 7  | 0 | -2.840860  | 1.280043  | 0.480374  |
| 57 | 7  | 0 | -5.134805  | -1.526358 | 0.180524  |
| 58 | 19 | 0 | -2.287086  | -1.481679 | 0.119130  |
| 59 | 6  | 0 | -6.556748  | 1.957297  | 0.031062  |
| 60 | 6  | 0 | -8.002321  | 1.441455  | 0.157736  |
| 61 | 1  | 0 | -6.463488  | 2.434911  | -0.962751 |
| 62 | 1  | 0 | -6.428410  | 2.795361  | 0.740631  |
| 63 | 6  | 0 | -9.094013  | 2.505089  | -0.058934 |
| 64 | 1  | 0 | -8.177219  | 0.622179  | -0.559017 |
| 65 | 1  | 0 | -8.164151  | 0.992408  | 1.152117  |
| 66 | 6  | 0 | -10.522623 | 1.964695  | 0.075281  |
| 67 | 1  | 0 | -8.941120  | 3.322915  | 0.660464  |
| 68 | 1  | 0 | -8.961681  | 2.952155  | -1.055181 |
| 69 | 1  | 0 | -11.272410 | 2.749176  | -0.085255 |
| 70 | 1  | 0 | -10.715213 | 1.167704  | -0.654568 |
| 71 | 1  | 0 | -10.694095 | 1.541784  | 1.073705  |
| 72 | 6  | 0 | 2.804163   | -1.638234 | 1.949577  |
| 73 | 6  | 0 | 1.054017   | -2.729152 | 0.573996  |
| 74 | 6  | 0 | 5.011555   | 1.222651  | 2.257595  |
| 75 | 6  | 0 | 3.412587   | -3.586251 | 0.552937  |
| 76 | 6  | 0 | 2.543658   | -2.291047 | 0.579923  |
| 77 | 6  | 0 | 0.618062   | -3.251279 | -0.793467 |

| 78  | 6 | 0 | 6.884120  | 2.561042  | 1.342656  |
|-----|---|---|-----------|-----------|-----------|
| 79  | 6 | 0 | 5.390663  | 2.194103  | 1.125174  |
| 80  | 6 | 0 | 4.553050  | 3.490892  | 1.374926  |
| 81  | 6 | 0 | 0.871967  | -2.167258 | -1.836462 |
| 82  | 6 | 0 | 7.456051  | 3.370379  | 0.181943  |
| 83  | 6 | 0 | 2.331858  | -1.616878 | -1.841720 |
| 84  | 6 | 0 | 3.243431  | -2.602308 | -2.630335 |
| 85  | 6 | 0 | 7.277504  | 2.565748  | -1.102230 |
| 86  | 6 | 0 | 5.809793  | 2.124037  | -1.369545 |
| 87  | 6 | 0 | 2.254471  | -0.330267 | -2.696497 |
| 88  | 6 | 0 | 5.908831  | 1.057918  | -2.481891 |
| 89  | 6 | 0 | 5.023515  | 3.318670  | -1.986093 |
| 90  | 1 | 0 | 2.540638  | -2.319440 | 2.767425  |
| 91  | 1 | 0 | 0.886003  | -3.483309 | 1.354865  |
| 92  | 1 | 0 | 2.208794  | -0.723834 | 2.075301  |
| 93  | 1 | 0 | 3.248620  | -4.175939 | 1.464777  |
| 94  | 1 | 0 | 3.861596  | -1.383941 | 2.083730  |
| 95  | 1 | 0 | 5.201181  | 1.668569  | 3.241402  |
| 96  | 1 | 0 | 0.448076  | -1.845168 | 0.844156  |
| 97  | 1 | 0 | 5.602416  | 0.299576  | 2.199167  |
| 98  | 1 | 0 | 3.947247  | 0.953223  | 2.234434  |
| 99  | 1 | 0 | 4.474724  | -3.340901 | 0.496031  |
| 100 | 1 | 0 | -0.442567 | -3.553758 | -0.794385 |
| 101 | 1 | 0 | 3.180842  | -4.237593 | -0.292265 |
| 102 | 1 | 0 | 6.997041  | 3.102684  | 2.291943  |
| 103 | 1 | 0 | 7.457416  | 1.628653  | 1.435685  |
| 104 | 1 | 0 | 1.169309  | -4.165021 | -1.043228 |
| 105 | 1 | 0 | 4.771395  | 3.910849  | 2.365265  |
| 106 | 1 | 0 | 3.470528  | 3.293811  | 1.362358  |

| 107 | 1  | 0 | 0.199679 | -1.317499 | -1.622527 |
|-----|----|---|----------|-----------|-----------|
| 108 | 1  | 0 | 8.519930 | 3.581329  | 0.350202  |
| 109 | 1  | 0 | 4.748670 | 4.272800  | 0.639171  |
| 110 | 1  | 0 | 3.309785 | -3.582297 | -2.155086 |
| 111 | 1  | 0 | 0.609805 | -2.521263 | -2.842314 |
| 112 | 1  | 0 | 6.959516 | 4.347673  | 0.106795  |
| 113 | 1  | 0 | 7.895148 | 1.661176  | -1.022147 |
| 114 | 1  | 0 | 1.446051 | 0.334739  | -2.359112 |
| 115 | 1  | 0 | 4.264802 | -2.208055 | -2.693968 |
| 116 | 1  | 0 | 6.467892 | 0.177014  | -2.141133 |
| 117 | 1  | 0 | 3.194281 | 0.226296  | -2.682017 |
| 118 | 1  | 0 | 2.880110 | -2.754151 | -3.655558 |
| 119 | 1  | 0 | 7.650656 | 3.127035  | -1.969954 |
| 120 | 1  | 0 | 4.924655 | 0.739654  | -2.840968 |
| 121 | 1  | 0 | 4.983729 | 4.188572  | -1.325641 |
| 122 | 1  | 0 | 2.036649 | -0.565537 | -3.744589 |
| 123 | 1  | 0 | 3.988872 | 3.020867  | -2.210025 |
| 124 | 1  | 0 | 6.442830 | 1.452838  | -3.354205 |
| 125 | 1  | 0 | 5.475524 | 3.649340  | -2.930778 |
| 126 | 12 | 0 | 4.919970 | -0.576382 | -0.279389 |
| 127 | 7  | 0 | 2.840860 | -1.280043 | -0.480374 |
| 128 | 7  | 0 | 5.134805 | 1.526358  | -0.180524 |
| 129 | 19 | 0 | 2.287086 | 1.481679  | -0.119130 |
| 130 | 6  | 0 | 6.556748 | -1.957297 | -0.031062 |
| 131 | 6  | 0 | 8.002321 | -1.441455 | -0.157736 |
| 132 | 1  | 0 | 6.463488 | -2.434911 | 0.962751  |
| 133 | 1  | 0 | 6.428410 | -2.795361 | -0.740631 |
| 134 | 6  | 0 | 9.094013 | -2.505089 | 0.058934  |
| 135 | 1  | 0 | 8.177219 | -0.622179 | 0.559017  |

| 136 | 1 | 0 | 8.164151  | -0.992408 | -1.152117 |
|-----|---|---|-----------|-----------|-----------|
| 137 | 6 | 0 | 10.522623 | -1.964695 | -0.075281 |
| 138 | 1 | 0 | 8.941120  | -3.322915 | -0.660464 |
| 139 | 1 | 0 | 8.961681  | -2.952155 | 1.055181  |
| 140 | 1 | 0 | 11.272410 | -2.749176 | 0.085255  |
| 141 | 1 | 0 | 10.715213 | -1.167704 | 0.654568  |
| 142 | 1 | 0 | 10.694095 | -1.541784 | -1.073705 |
|     |   |   |           |           |           |



Model 9

E = -3549.9983491 a.u.

| Center | Atomic | Atomic | Coordinates (Angstroms) |           |          |  |
|--------|--------|--------|-------------------------|-----------|----------|--|
| Number | Number | Туре   | Х                       | Y         | Ζ        |  |
|        |        |        |                         |           |          |  |
| 1      | 1      | 0      | -4.189345               | 2.007893  | 3.873289 |  |
| 2      | 1      | 0      | -4.971980               | 2.854692  | 2.543573 |  |
| 3      | 1      | 0      | -2.226583               | 3.416998  | 3.229606 |  |
| 4      | 6      | 0      | -4.399605               | 1.960146  | 2.796137 |  |
| 5      | 1      | 0      | 0.992199                | -0.040844 | 5.613898 |  |
| 6      | 1      | 0      | 0.629158                | -1.706976 | 6.087025 |  |
| 7      | 1      | 0      | -3.817705               | 4.605918  | 1.730934 |  |
| 8      | 1      | 0      | -5.047524               | 1.098494  | 2.615479 |  |
| 9      | 1      | 0      | -7.845898               | -0.939641 | 2.303258 |  |
| 10     | 1      | 0      | 2.309435                | -1.194574 | 5.862578 |  |
| 11     | 6      | 0      | 1.288870                | -1.086852 | 5.469856 |  |
| 12     | 1      | 0      | -2.163986               | 0.902031  | 3.734523 |  |
| 13     | 1      | 0      | -2.191239               | 5.197471  | 1.444929 |  |
| 14     | 1      | 0      | -5.892832               | -2.253752 | 2.966217 |  |
| 15     | 6      | 0      | -2.270141               | 3.150284  | 2.164049 |  |
| 16     | 6      | 0      | -2.833794               | 4.312515  | 1.343583 |  |
| 17     | 1      | 0      | -5.519725               | 3.408908  | 0.725147 |  |

| 18 | 1 | 0 | -6.915707 | 0.292461  | 1.421798  |
|----|---|---|-----------|-----------|-----------|
| 19 | 1 | 0 | -2.757490 | -0.269711 | 2.554941  |
| 20 | 1 | 0 | -4.862862 | -1.003635 | 2.287944  |
| 21 | 6 | 0 | -3.078443 | 1.835097  | 1.977185  |
| 22 | 6 | 0 | -7.401854 | -0.684668 | 1.330284  |
| 23 | 6 | 0 | -2.271748 | 0.707657  | 2.660645  |
| 24 | 1 | 0 | -1.227684 | 2.975055  | 1.848443  |
| 25 | 1 | 0 | -5.839227 | 1.958253  | -0.230141 |
| 26 | 1 | 0 | -7.753726 | -3.298478 | 1.561274  |
| 27 | 6 | 0 | -5.379046 | -1.943660 | 2.047500  |
| 28 | 1 | 0 | -8.224887 | -0.574453 | 0.618817  |
| 29 | 6 | 0 | -5.267296 | 2.890836  | -0.202630 |
| 30 | 6 | 0 | 1.212464  | -1.480341 | 3.990474  |
| 31 | 1 | 0 | 0.178813  | -1.383944 | 3.633366  |
| 32 | 1 | 0 | 2.260342  | 3.652775  | 1.930629  |
| 33 | 1 | 0 | -4.628134 | -2.703724 | 1.800525  |
| 34 | 1 | 0 | -1.256448 | 0.614451  | 2.254067  |
| 35 | 1 | 0 | -3.404097 | 4.712279  | -0.715005 |
| 36 | 6 | 0 | -6.365608 | -1.756339 | 0.875510  |
| 37 | 1 | 0 | 1.886196  | 0.415455  | 3.219920  |
| 38 | 6 | 0 | -2.947554 | 3.904326  | -0.126030 |
| 39 | 1 | 0 | 1.461242  | -2.549534 | 3.879662  |
| 40 | 1 | 0 | -5.610539 | 3.529104  | -1.028396 |
| 41 | 6 | 0 | -7.097383 | -3.115202 | 0.698328  |
| 42 | 7 | 0 | -3.245648 | 1.492744  | 0.542580  |
| 43 | 6 | 0 | -3.744664 | 2.586286  | -0.330510 |
| 44 | 1 | 0 | 3.161039  | -0.723940 | 3.479876  |
| 45 | 1 | 0 | -6.343612 | -3.916020 | 0.693940  |
| 46 | 6 | 0 | 2.128767  | -0.646494 | 3.075218  |

| 47 | 1  | 0 | 1.349232 2.197044 1.500959    |
|----|----|---|-------------------------------|
| 48 | 6  | 0 | 2.301844 2.719556 1.356894    |
| 49 | 1  | 0 | -8.712887 -2.470042 -0.603938 |
| 50 | 1  | 0 | 3.086542 2.100786 1.814561    |
| 51 | 1  | 0 | -1.930291 3.767764 -0.529700  |
| 52 | 1  | 0 | 1.595781 4.945567 -0.152119   |
| 53 | 1  | 0 | -8.057341 -0.371347 -1.419093 |
| 54 | 1  | 0 | 3.956971 4.581961 0.545668    |
| 55 | 1  | 0 | 0.499501 3.586815 -0.320257   |
| 56 | 6  | 0 | -7.884989 -3.192211 -0.608840 |
| 57 | 1  | 0 | -8.345968 -4.183476 -0.719758 |
| 58 | 7  | 0 | -5.581027 -1.373364 -0.310128 |
| 59 | 12 | 0 | -3.759092 -0.499360 -0.03709  |
| 60 | 6  | 0 | 1.482984 3.967194 -0.638557   |
| 61 | 1  | 0 | 5.607976 -0.087887 2.509151   |
| 62 | 1  | 0 | 6.875411 1.083208 2.149141    |
| 63 | 1  | 0 | -6.661853 0.559898 -1.961996  |
| 64 | 6  | 0 | 2.586006 2.997452 -0.133064   |
| 65 | 6  | 0 | -7.164907 -0.409436 -2.049706 |
| 66 | 6  | 0 | 3.950716 3.748880 -0.169669   |
| 67 | 1  | 0 | 5.264269 1.317147 1.485173    |
| 68 | 6  | 0 | -3.531636 2.160062 -1.798867  |
| 69 | 1  | 0 | 1.033748 -0.721460 1.253486   |
| 70 | 6  | 0 | 2.060894 -0.975391 1.564660   |
| 71 | 19 | 0 | -0.553488 0.849009 -0.317362  |
| 72 | 1  | 0 | -3.838681 2.954628 -2.489567  |
| 73 | 6  | 0 | 6.018582 0.554083 1.716874    |
| 74 | 1  | 0 | -4.127351 1.275686 -2.054098  |
| 75 | 6  | 0 | -6.193233 -1.555329 -1.636424 |

| 76  | 1  | 0 | 4.770066  | 3.072178  | 0.095607  |
|-----|----|---|-----------|-----------|-----------|
| 77  | 1  | 0 | -1.163189 | -1.671879 | 0.419341  |
| 78  | 1  | 0 | 0.630094  | 4.748952  | -2.472855 |
| 79  | 1  | 0 | 2.035422  | -2.080403 | 1.444368  |
| 80  | 6  | 0 | -6.935405 | -2.914637 | -1.773034 |
| 81  | 1  | 0 | -2.478119 | 1.934786  | -2.016850 |
| 82  | 1  | 0 | 4.180364  | 4.168318  | -1.150995 |
| 83  | 1  | 0 | -7.504048 | -0.523747 | -3.089285 |
| 84  | 19 | 0 | 4.459423  | -2.535987 | 2.131354  |
| 85  | 6  | 0 | 1.477932  | 4.125820  | -2.160417 |
| 86  | 6  | 0 | -1.979691 | -1.791248 | -0.324274 |
| 87  | 1  | 0 | -2.471625 | -2.724006 | 0.006749  |
| 88  | 1  | 0 | -7.472822 | -2.948970 | -2.731475 |
| 89  | 1  | 0 | -6.183325 | -3.716437 | -1.800576 |
| 90  | 1  | 0 | 2.380646  | 4.656785  | -2.488641 |
| 91  | 7  | 0 | 2.558536  | 1.702342  | -0.859565 |
| 92  | 12 | 0 | 3.365893  | 0.036019  | 0.069561  |
| 93  | 1  | 0 | 7.243982  | -1.760443 | 1.798248  |
| 94  | 1  | 0 | -4.498693 | -0.636657 | -2.698681 |
| 95  | 1  | 0 | 7.775989  | 1.439492  | -0.005116 |
| 96  | 1  | 0 | 0.412148  | 2.313637  | -2.623724 |
| 97  | 6  | 0 | -5.064751 | -1.579024 | -2.687139 |
| 98  | 6  | 0 | 6.431379  | -0.240528 | 0.458392  |
| 99  | 1  | 0 | 8.460573  | -0.666834 | 1.162280  |
| 100 | 1  | 0 | -4.364998 | -2.393750 | -2.475703 |
| 101 | 6  | 0 | 1.401496  | 2.753625  | -2.832325 |
| 102 | 6  | 0 | 7.557889  | -1.225920 | 0.882071  |
| 103 | 7  | 0 | 5.233192  | -0.961093 | -0.045767 |
| 104 | 1  | 0 | -0.811600 | -1.225631 | -2.112200 |

| 105 | 6 | 0 | 7.034307  | 0.812353  | -0.516850 |
|-----|---|---|-----------|-----------|-----------|
| 106 | 1 | 0 | 6.245795  | 1.465398  | -0.902260 |
| 107 | 6 | 0 | -1.344269 | -2.104680 | -1.693302 |
| 108 | 6 | 0 | 2.504049  | 1.775946  | -2.340686 |
| 109 | 1 | 0 | -5.463269 | -1.716946 | -3.700430 |
| 110 | 1 | 0 | 4.113073  | 3.208711  | -2.888871 |
| 111 | 1 | 0 | 1.456940  | 2.856775  | -3.924460 |
| 112 | 1 | 0 | -2.136611 | -2.308183 | -2.428083 |
| 113 | 1 | 0 | 0.461590  | -3.087308 | -1.009188 |
| 114 | 1 | 0 | 1.198456  | 0.006168  | -2.446866 |
| 115 | 1 | 0 | 3.883458  | -3.351377 | -0.314459 |
| 116 | 6 | 0 | 3.845649  | 2.159807  | -3.032827 |
| 117 | 1 | 0 | -0.873790 | -4.178349 | -1.338342 |
| 118 | 1 | 0 | 7.536316  | 0.358898  | -1.373281 |
| 119 | 6 | 0 | -0.356206 | -3.286846 | -1.719835 |
| 120 | 1 | 0 | 4.664483  | 1.552712  | -2.634606 |
| 121 | 6 | 0 | 2.141126  | 0.374543  | -2.869415 |
| 122 | 1 | 0 | 6.249237  | -3.608770 | 0.198749  |
| 123 | 6 | 0 | 7.882238  | -2.260214 | -0.198286 |
| 124 | 1 | 0 | 8.621149  | -2.981757 | 0.173519  |
| 125 | 1 | 0 | 2.923271  | -0.358247 | -2.632698 |
| 126 | 6 | 0 | 5.477021  | -2.007371 | -1.073591 |
| 127 | 6 | 0 | 4.187490  | -2.842432 | -1.239439 |
| 128 | 6 | 0 | 6.608178  | -2.983964 | -0.640664 |
| 129 | 1 | 0 | 3.336587  | -2.231209 | -1.563865 |
| 130 | 1 | 0 | 3.791051  | 1.988753  | -4.116243 |
| 131 | 1 | 0 | 8.349447  | -1.767042 | -1.059311 |
| 132 | 1 | 0 | 2.033196  | 0.373834  | -3.960396 |
| 133 | 1 | 0 | 5.103412  | -0.710214 | -2.804923 |

| 134 | 1 | 0 | 4.321100  | -3.624247 | -1.995205 |
|-----|---|---|-----------|-----------|-----------|
| 135 | 6 | 0 | 0.226183  | -3.584793 | -3.106807 |
| 136 | 1 | 0 | 0.774347  | -2.719783 | -3.503787 |
| 137 | 6 | 0 | 5.817292  | -1.479367 | -2.499068 |
| 138 | 1 | 0 | 6.815331  | -1.042663 | -2.563130 |
| 139 | 1 | 0 | 6.828882  | -3.687153 | -1.454493 |
| 140 | 1 | 0 | -0.568380 | -3.824572 | -3.824359 |
| 141 | 1 | 0 | 0.919416  | -4.435019 | -3.085189 |
| 142 | 1 | 0 | 5.775854  | -2.291951 | -3.235814 |



## **Model 10** E = -5325.0254799 a.u.

| Center | Atomic | Atomic | Coordi    | nates (Angstro | oms)      |
|--------|--------|--------|-----------|----------------|-----------|
| Number | Number | Туре   | Х         | Y              | Ζ         |
|        |        |        |           |                |           |
| 1      | 1      | 0      | 4.365043  | 5.039280       | -3.350216 |
| 2      | 1      | 0      | -5.513925 | 2.394857       | -4.088123 |
| 3      | 1      | 0      | 5.972935  | 5.062791       | -2.623380 |
| 4      | 1      | 0      | 3.672279  | 6.513445       | -1.509997 |
| 5      | 1      | 0      | -5.364050 | -0.102310      | -4.376662 |
| 6      | 1      | 0      | -7.002233 | 1.979606       | -3.247250 |
| 7      | 6      | 0      | 5.019634  | 4.528826       | -2.629784 |
| 8      | 6      | 0      | -5.935243 | 2.158450       | -3.101791 |
| 9      | 1      | 0      | 6.115945  | 6.736197       | -0.996398 |
| 10     | 1      | 0      | 5.215828  | 3.518389       | -3.004627 |
| 11     | 1      | 0      | -7.657688 | -0.210865      | -3.429015 |
| 12     | 1      | 0      | -5.828461 | 3.041599       | -2.464749 |
| 13     | 1      | 0      | -0.140569 | 0.618941       | -4.414648 |
| 14     | 1      | 0      | 0.781106  | 2.059165       | -3.949327 |

| 15 | 1 | 0 | -3.420518 | 1.386860  | -3.666147 |
|----|---|---|-----------|-----------|-----------|
| 16 | 1 | 0 | 6.814377  | 0.675665  | -3.933914 |
| 17 | 1 | 0 | 1.599213  | 0.498311  | -4.111062 |
| 18 | 1 | 0 | -2.828742 | 5.956036  | -1.928927 |
| 19 | 1 | 0 | 2.379905  | 4.401326  | -2.135905 |
| 20 | 6 | 0 | 0.674035  | 0.982511  | -3.776580 |
| 21 | 1 | 0 | -7.025362 | -1.837160 | -3.604711 |
| 22 | 1 | 0 | -1.274962 | 4.773031  | -0.462232 |
| 23 | 1 | 0 | 5.163244  | 7.578587  | 0.213922  |
| 24 | 1 | 0 | 4.514370  | 0.144032  | -3.917442 |
| 25 | 6 | 0 | 4.125546  | 5.912812  | -0.708785 |
| 26 | 6 | 0 | -5.496410 | -0.325128 | -3.308904 |
| 27 | 6 | 0 | 5.394935  | 6.580928  | -0.182520 |
| 28 | 6 | 0 | -6.891301 | -0.898990 | -3.050530 |
| 29 | 1 | 0 | -8.258563 | 1.327099  | -1.869047 |
| 30 | 1 | 0 | 7.515266  | 4.914790  | -1.298530 |
| 31 | 1 | 0 | 6.859211  | 1.680688  | -2.471057 |
| 32 | 1 | 0 | 3.036270  | 2.803614  | -1.776666 |
| 33 | 1 | 0 | -3.852391 | 4.523851  | -2.167081 |
| 34 | 1 | 0 | 4.313263  | 1.322772  | -2.626657 |
| 35 | 6 | 0 | -5.200138 | 0.943151  | -2.462499 |
| 36 | 6 | 0 | 4.370980  | 4.463146  | -1.214376 |
| 37 | 6 | 0 | 6.924520  | 0.653045  | -2.841388 |
| 38 | 6 | 0 | -3.694740 | 1.248447  | -2.613664 |
| 39 | 6 | 0 | 2.972588  | 3.836135  | -1.405262 |
| 40 | 1 | 0 | 3.394593  | 5.871854  | 0.112629  |
| 41 | 1 | 0 | -4.749525 | -1.099473 | -3.064206 |
| 42 | 6 | 0 | -3.682899 | 5.394729  | -1.524475 |
| 43 | 1 | 0 | 7.796137  | 3.245465  | -0.800919 |
| 44 | 1 | 0 | -3.422274 | 2.177722  | -2.095981 |
|----|---|---|-----------|-----------|-----------|
| 45 | 1 | 0 | 6.188782  | -1.758634 | -3.698492 |
| 46 | 6 | 0 | 4.492003  | 0.259894  | -2.827275 |
| 47 | 1 | 0 | 7.930753  | 0.286415  | -2.630697 |
| 48 | 1 | 0 | -2.164824 | 3.253826  | -0.671562 |
| 49 | 6 | 0 | -2.094310 | 4.164719  | -0.057008 |
| 50 | 1 | 0 | -2.487350 | 6.882659  | 0.300708  |
| 51 | 6 | 0 | 7.586677  | 4.254823  | -0.429979 |
| 52 | 1 | 0 | -4.563192 | 6.036678  | -1.608858 |
| 53 | 1 | 0 | -3.064838 | 0.439375  | -2.219788 |
| 54 | 6 | 0 | -8.013801 | 1.096783  | -0.830652 |
| 55 | 1 | 0 | -2.420368 | -3.966994 | -3.693111 |
| 56 | 1 | 0 | -1.860230 | 3.888744  | 0.979236  |
| 57 | 1 | 0 | 3.622392  | -0.304557 | -2.463488 |
| 58 | 1 | 0 | -7.808669 | 2.044964  | -0.325764 |
| 59 | 6 | 0 | 0.391825  | 0.672618  | -2.301999 |
| 60 | 1 | 0 | 2.431103  | 3.827430  | -0.451594 |
| 61 | 1 | 0 | -8.914047 | 0.659705  | -0.378427 |
| 62 | 1 | 0 | 6.923033  | 6.147237  | 1.305249  |
| 63 | 6 | 0 | 5.811753  | -0.219826 | -2.189231 |
| 64 | 6 | 0 | 5.999547  | 5.700865  | 0.910659  |
| 65 | 6 | 0 | -7.090099 | -1.135995 | -1.551632 |
| 66 | 1 | 0 | -8.108518 | -1.496804 | -1.352105 |
| 67 | 1 | 0 | -0.523313 | -1.229613 | -2.682115 |
| 68 | 1 | 0 | 8.451773  | 4.587644  | 0.160410  |
| 69 | 6 | 0 | 6.013630  | -1.700394 | -2.615334 |
| 70 | 6 | 0 | -3.430813 | 4.942830  | -0.055638 |
| 71 | 1 | 0 | -0.534806 | 1.190819  | -2.004014 |
| 72 | 1 | 0 | 1.204963  | 1.089931  | -1.686100 |

| 73  | 7  | 0 | 5.118875  | 3.643947  | -0.246972 |
|-----|----|---|-----------|-----------|-----------|
| 74  | 7  | 0 | -5.475843 | 0.719953  | -1.019511 |
| 75  | 1  | 0 | 1.167710  | -1.336147 | -2.297171 |
| 76  | 1  | 0 | -2.467613 | -2.643256 | -2.524097 |
| 77  | 6  | 0 | -3.175910 | 6.202508  | 0.821345  |
| 78  | 6  | 0 | 6.283077  | 4.254227  | 0.422493  |
| 79  | 6  | 0 | -6.800214 | 0.128484  | -0.694761 |
| 80  | 1  | 0 | 5.076310  | -2.254279 | -2.430281 |
| 81  | 6  | 0 | 0.234322  | -0.829460 | -1.993318 |
| 82  | 6  | 0 | -2.111615 | -3.667946 | -2.684728 |
| 83  | 1  | 0 | 8.111652  | -1.967284 | -2.145453 |
| 84  | 1  | 0 | -4.470100 | -5.133257 | -2.744852 |
| 85  | 1  | 0 | -6.413588 | -1.947372 | -1.233757 |
| 86  | 1  | 0 | 5.286373  | 5.649909  | 1.746588  |
| 87  | 1  | 0 | -1.013857 | -3.636674 | -2.684659 |
| 88  | 1  | 0 | -4.952722 | 7.352023  | 0.326742  |
| 89  | 1  | 0 | -2.672995 | 5.884450  | 1.747066  |
| 90  | 1  | 0 | 8.671688  | -0.199733 | -0.866885 |
| 91  | 1  | 0 | -4.583150 | -3.644584 | -1.825351 |
| 92  | 6  | 0 | 7.144330  | -2.394199 | -1.852822 |
| 93  | 1  | 0 | 7.188783  | -3.457505 | -2.123307 |
| 94  | 7  | 0 | 5.685570  | -0.087319 | -0.714917 |
| 95  | 1  | 0 | -2.299324 | -6.251703 | -3.089534 |
| 96  | 12 | 0 | 4.787179  | 1.659545  | 0.061033  |
| 97  | 6  | 0 | -4.463468 | 6.925277  | 1.212632  |
| 98  | 12 | 0 | -4.502091 | 2.021030  | 0.324208  |
| 99  | 6  | 0 | -4.203024 | -4.678524 | -1.781390 |
| 100 | 7  | 0 | -4.468440 | 4.059348  | 0.493653  |
| 101 | 1  | 0 | -6.408754 | 5.887565  | -0.674425 |

| 102 | 1  | 0 | -4.236632 7.771831 1.873968   |
|-----|----|---|-------------------------------|
| 103 | 1  | 0 | -6.952303 4.210092 -0.683173  |
| 104 | 1  | 0 | 8.035716 1.011912 0.239470    |
| 105 | 6  | 0 | -2.656667 -4.647494 -1.625891 |
| 106 | 1  | 0 | 2.376323 -3.724737 -1.900854  |
| 107 | 6  | 0 | 8.137267 -0.064667 0.075324   |
| 108 | 19 | 0 | -3.621450 -1.433504 -0.234892 |
| 109 | 1  | 0 | -1.018746 -6.089518 -1.876368 |
| 110 | 1  | 0 | 2.461321 -5.418710 -2.404248  |
| 111 | 6  | 0 | 6.582407 3.418631 1.684950    |
| 112 | 6  | 0 | -6.787058 -0.316483 0.783086  |
| 113 | 6  | 0 | -2.101508 -6.046099 -2.029189 |
| 114 | 6  | 0 | -6.745831 5.067512 -0.034489  |
| 115 | 6  | 0 | -0.135279 -1.210341 -0.544864 |
| 116 | 1  | 0 | 7.432263 3.823408 2.248164    |
| 117 | 1  | 0 | 0.906293 -4.711430 -1.990791  |
| 118 | 1  | 0 | -1.049834 -0.644930 -0.275101 |
| 119 | 1  | 0 | 6.854736 2.384176 1.427101    |
| 120 | 1  | 0 | -7.752339 -0.749932 1.069677  |
| 121 | 1  | 0 | -6.597132 0.522114 1.464393   |
| 122 | 6  | 0 | 6.741182 -0.759295 0.088067   |
| 123 | 6  | 0 | 1.969312 -4.726495 -1.711098  |
| 124 | 1  | 0 | -2.307587 0.326129 1.397109   |
| 125 | 1  | 0 | -5.993819 -5.331313 -0.744278 |
| 126 | 1  | 0 | 2.540946 2.286370 1.194747    |
| 127 | 6  | 0 | -5.689419 4.683833 1.041916   |
| 128 | 1  | 0 | 0.633697 -0.807624 0.145584   |
| 129 | 6  | 0 | 6.935963 -2.239250 -0.344381  |
| 130 | 1  | 0 | 5.710199 3.397887 2.349391    |

| 131 | 1  | 0 | -6.025074 | -1.080121 | 0.983773  |
|-----|----|---|-----------|-----------|-----------|
| 132 | 1  | 0 | 8.780188  | -0.469779 | 0.868081  |
| 133 | 19 | 0 | 3.262864  | -1.649268 | -0.102157 |
| 134 | 6  | 0 | -4.904385 | -5.409439 | -0.634753 |
| 135 | 1  | 0 | -2.583978 | 1.901289  | 2.146988  |
| 136 | 19 | 0 | -0.127846 | 1.801949  | 0.975934  |
| 137 | 6  | 0 | -5.387558 | 5.931330  | 1.914360  |
| 138 | 6  | 0 | -3.109716 | 1.009057  | 1.754110  |
| 139 | 6  | 0 | 2.999753  | 1.290344  | 1.345842  |
| 140 | 1  | 0 | 2.242196  | 0.550645  | 1.009121  |
| 141 | 1  | 0 | -7.692315 | 5.383660  | 0.425512  |
| 142 | 1  | 0 | -2.545160 | -6.862340 | -1.456527 |
| 143 | 1  | 0 | 7.777834  | -2.682445 | 0.205427  |
| 144 | 7  | 0 | -2.242942 | -4.161158 | -0.282842 |
| 145 | 1  | 0 | 6.044314  | -2.818123 | -0.050849 |
| 146 | 1  | 0 | -4.672241 | -6.481094 | -0.672880 |
| 147 | 1  | 0 | -4.897474 | 5.598154  | 2.840982  |
| 148 | 12 | 0 | -0.313651 | -3.369366 | -0.037509 |
| 149 | 1  | 0 | -6.330109 | 6.413934  | 2.207330  |
| 150 | 1  | 0 | -4.858753 | -3.798261 | 0.792978  |
| 151 | 1  | 0 | 4.184740  | -4.355703 | -0.382323 |
| 152 | 1  | 0 | 6.189542  | 0.246635  | 1.970775  |
| 153 | 1  | 0 | -6.667537 | 2.750822  | 1.418664  |
| 154 | 6  | 0 | 6.295479  | -0.767852 | 1.565873  |
| 155 | 6  | 0 | -4.463638 | -4.825069 | 0.708786  |
| 156 | 6  | 0 | -6.355510 | 3.649031  | 1.972776  |
| 157 | 6  | 0 | 2.165057  | -5.163255 | -0.243473 |
| 158 | 1  | 0 | 5.334204  | -1.277304 | 1.708940  |
| 159 | 1  | 0 | 4.114727  | -6.097945 | -0.563593 |

| 160 | 1 | 0 | 1.934508  | -7.235497 | -0.951071 |
|-----|---|---|-----------|-----------|-----------|
| 161 | 6 | 0 | 3.694542  | -5.261332 | 0.010936  |
| 162 | 6 | 0 | -3.770848 | 0.328899  | 2.971837  |
| 163 | 6 | 0 | -2.918811 | -4.795353 | 0.879058  |
| 164 | 1 | 0 | -5.666404 | 3.349497  | 2.771577  |
| 165 | 1 | 0 | 3.966327  | 1.829107  | 3.210583  |
| 166 | 7 | 0 | 1.523390  | -4.137435 | 0.618290  |
| 167 | 1 | 0 | -4.301276 | -0.588713 | 2.662405  |
| 168 | 6 | 0 | 3.226243  | 1.095389  | 2.856323  |
| 169 | 1 | 0 | 7.031231  | -1.285591 | 2.192628  |
| 170 | 1 | 0 | 0.468639  | -6.554403 | -0.221758 |
| 171 | 1 | 0 | -7.267189 | 4.045514  | 2.436171  |
| 172 | 6 | 0 | 1.559117  | -6.594169 | -0.142502 |
| 173 | 1 | 0 | -2.791922 | -6.981754 | 0.502790  |
| 174 | 1 | 0 | -2.037427 | -0.705949 | 3.753970  |
| 175 | 1 | 0 | -4.917145 | -5.385110 | 1.537728  |
| 176 | 1 | 0 | -2.945411 | -2.902000 | 2.015379  |
| 177 | 1 | 0 | -4.561688 | 0.983171  | 3.370688  |
| 178 | 1 | 0 | 3.684995  | 0.111854  | 3.047627  |
| 179 | 1 | 0 | 1.531802  | 2.213650  | 3.607575  |
| 180 | 1 | 0 | -2.320450 | 0.874545  | 4.475206  |
| 181 | 1 | 0 | 1.834812  | -1.989580 | 2.263962  |
| 182 | 6 | 0 | -2.828478 | -0.039408 | 4.132419  |
| 183 | 6 | 0 | -2.440781 | -6.238125 | 1.221188  |
| 184 | 6 | 0 | -2.613573 | -3.942354 | 2.127667  |
| 185 | 1 | 0 | 1.230562  | 0.474355  | 3.438549  |
| 186 | 6 | 0 | 1.981650  | 1.217097  | 3.758355  |
| 187 | 1 | 0 | -1.348423 | -6.285453 | 1.236609  |
| 188 | 1 | 0 | 3.863580  | -3.329732 | 2.039081  |

| 189 | 1 | 0 | 1.802755  | -7.092263 | 0.798163 |
|-----|---|---|-----------|-----------|----------|
| 190 | 6 | 0 | 1.853976  | -4.188279 | 2.065060 |
| 191 | 6 | 0 | 4.046461  | -5.404547 | 1.493524 |
| 192 | 1 | 0 | 0.280202  | -2.752606 | 2.617753 |
| 193 | 1 | 0 | -3.111980 | -4.344634 | 3.017290 |
| 194 | 6 | 0 | 1.367829  | -2.874336 | 2.713315 |
| 195 | 1 | 0 | 5.135465  | -5.378676 | 1.628107 |
| 196 | 1 | 0 | -1.539873 | -3.926756 | 2.351431 |
| 197 | 1 | 0 | -2.808834 | -6.548545 | 2.208103 |
| 198 | 6 | 0 | 3.387177  | -4.287318 | 2.306266 |
| 199 | 1 | 0 | 3.719136  | -6.383502 | 1.865754 |
| 200 | 1 | 0 | 0.097352  | -5.357035 | 2.681250 |
| 201 | 6 | 0 | -3.534452 | -0.706737 | 5.318462 |
| 202 | 1 | 0 | 1.595775  | -2.853993 | 3.785351 |
| 203 | 6 | 0 | 2.264905  | 1.022850  | 5.252492 |
| 204 | 1 | 0 | -4.021765 | -1.642064 | 5.014377 |
| 205 | 1 | 0 | 2.988789  | 1.763576  | 5.612667 |
| 206 | 6 | 0 | 1.173959  | -5.335727 | 2.869827 |
| 207 | 1 | 0 | 3.587126  | -4.424895 | 3.377512 |
| 208 | 1 | 0 | -2.832070 | -0.945466 | 6.125485 |
| 209 | 1 | 0 | -4.309731 | -0.051667 | 5.734570 |
| 210 | 1 | 0 | 2.685546  | 0.028379  | 5.445771 |
| 211 | 1 | 0 | 1.568721  | -6.321214 | 2.616037 |
| 212 | 1 | 0 | 1.354952  | 1.123464  | 5.855627 |
| 213 | 1 | 0 | 1.323953  | -5.196903 | 3.948702 |



**Model 11** E = -7100.0557033 a.u.

| Center | Atomic | Atomic | Coordi    | inates (Angstro | oms)     |
|--------|--------|--------|-----------|-----------------|----------|
| Number | Number | Туре   | Х         | Y               | Ζ        |
|        |        |        |           |                 |          |
| 1      | 1      | 0      | -3.258295 | 4.277132        | 5.269428 |
| 2      | 1      | 0      | 3.346535  | -4.279077       | 5.281188 |
| 3      | 1      | 0      | -4.290466 | 5.463379        | 4.477765 |
| 4      | 1      | 0      | -1.430156 | 5.750128        | 4.492231 |
| 5      | 1      | 0      | 1.490898  | -5.731277       | 4.546056 |
| 6      | 1      | 0      | 4.359977  | -5.458473       | 4.454835 |
| 7      | 6      | 0      | -3.757304 | 4.523650        | 4.322723 |
| 8      | 1      | 0      | 1.986086  | 2.093590        | 4.700028 |
| 9      | 6      | 0      | 3.821497  | -4.518592       | 4.320410 |
| 10     | 1      | 0      | 1.737948  | 0.340687        | 4.726016 |
| 11     | 1      | 0      | -3.206555 | 7.356707        | 3.850148 |
| 12     | 1      | 0      | -4.506383 | 3.751277        | 4.127428 |

| 13 | 1 | 0 | 3.241673  | -7.347689 | 3.859193 |
|----|---|---|-----------|-----------|----------|
| 14 | 1 | 0 | 4.563907  | -3.743418 | 4.111264 |
| 15 | 1 | 0 | -1.830212 | -2.082619 | 4.659854 |
| 16 | 1 | 0 | -1.615011 | -0.325301 | 4.676682 |
| 17 | 1 | 0 | 1.500868  | -3.185230 | 4.297815 |
| 18 | 1 | 0 | -7.329266 | 2.235162  | 4.004001 |
| 19 | 1 | 0 | 3.318298  | 1.006545  | 4.286808 |
| 20 | 1 | 0 | -3.197424 | -1.021519 | 4.295506 |
| 21 | 6 | 0 | 2.235463  | 1.155681  | 4.187176 |
| 22 | 1 | 0 | 7.411704  | -2.256617 | 3.926331 |
| 23 | 1 | 0 | -1.427916 | 3.205687  | 4.240927 |
| 24 | 6 | 0 | -2.116256 | -1.150004 | 4.156522 |
| 25 | 1 | 0 | 1.677281  | -7.930351 | 3.323616 |
| 26 | 1 | 0 | 5.765791  | -0.575572 | 3.877687 |
| 27 | 1 | 0 | -1.659244 | 7.948718  | 3.276324 |
| 28 | 1 | 0 | -5.674587 | 0.554172  | 3.917103 |
| 29 | 6 | 0 | -1.766703 | 5.787625  | 3.447098 |
| 30 | 6 | 0 | 1.801985  | -5.769840 | 3.493165 |
| 31 | 6 | 0 | -2.397584 | 7.147975  | 3.138862 |
| 32 | 6 | 0 | 2.416664  | -7.133808 | 3.168263 |
| 33 | 1 | 0 | 5.245147  | -6.550194 | 3.056074 |
| 34 | 1 | 0 | -5.225351 | 6.534029  | 3.098525 |
| 35 | 1 | 0 | -6.500309 | 3.486696  | 3.059466 |
| 36 | 1 | 0 | -2.514768 | 2.406907  | 3.107926 |
| 37 | 1 | 0 | 6.532432  | -3.498636 | 3.015349 |
| 38 | 1 | 0 | -4.573777 | 1.722572  | 3.198568 |
| 39 | 6 | 0 | 2.760579  | -4.585848 | 3.180679 |
| 40 | 6 | 0 | -2.725205 | 4.598151  | 3.157074 |
| 41 | 6 | 0 | -7.144485 | 2.606058  | 2.986889 |

| 42 | 6 | 0 | 1.941384  | -3.283546 | 3.298846 |
|----|---|---|-----------|-----------|----------|
| 43 | 6 | 0 | -1.894810 | 3.300944  | 3.253701 |
| 44 | 1 | 0 | -0.854042 | 5.677345  | 2.837947 |
| 45 | 1 | 0 | 0.875239  | -5.653192 | 2.906399 |
| 46 | 6 | 0 | 7.191975  | -2.631835 | 2.917807 |
| 47 | 1 | 0 | -5.957971 | 5.443809  | 1.922138 |
| 48 | 1 | 0 | 2.563277  | -2.393713 | 3.136979 |
| 49 | 1 | 0 | -7.952871 | 0.091841  | 2.862146 |
| 50 | 6 | 0 | -5.311720 | 0.947073  | 2.959977 |
| 51 | 1 | 0 | -8.107269 | 2.933167  | 2.588992 |
| 52 | 1 | 0 | 4.625653  | -1.704644 | 3.158015 |
| 53 | 6 | 0 | 5.382335  | -0.946798 | 2.919919 |
| 54 | 1 | 0 | 8.028664  | -0.125942 | 2.768167 |
| 55 | 6 | 0 | -5.286123 | 6.299860  | 2.033759 |
| 56 | 1 | 0 | 8.136701  | -2.981971 | 2.497097 |
| 57 | 1 | 0 | 1.119151  | -3.233235 | 2.575432 |
| 58 | 6 | 0 | 1.809234  | 1.203178  | 2.715442 |
| 59 | 6 | 0 | 5.282313  | -6.304910 | 1.992668 |
| 60 | 1 | 0 | 0.719193  | 1.329136  | 2.654126 |
| 61 | 1 | 0 | 2.600521  | 6.755425  | 2.448528 |
| 62 | 1 | 0 | -2.671418 | -6.787789 | 2.427044 |
| 63 | 1 | 0 | 4.871661  | -0.107305 | 2.431057 |
| 64 | 1 | 0 | -4.781966 | 0.129333  | 2.454662 |
| 65 | 1 | 0 | 5.954923  | -5.450471 | 1.874410 |
| 66 | 6 | 0 | -1.744082 | -1.189910 | 2.669977 |
| 67 | 1 | 0 | -1.090953 | 3.256268  | 2.509778 |
| 68 | 1 | 0 | 5.733188  | -7.166230 | 1.481523 |
| 69 | 1 | 0 | -3.446555 | 8.121377  | 1.504185 |
| 70 | 6 | 0 | -6.468443 | 1.509796  | 2.109958 |

| 71 | 1 | 0 | 2.317605  | 3.274373  | 2.451316 |
|----|---|---|-----------|-----------|----------|
| 72 | 6 | 0 | -2.939123 | 7.168274  | 1.707456 |
| 73 | 6 | 0 | 2.922438  | -7.156149 | 1.723741 |
| 74 | 1 | 0 | 3.419044  | -8.112051 | 1.507353 |
| 75 | 1 | 0 | 2.019073  | 0.235897  | 2.234336 |
| 76 | 1 | 0 | -2.219165 | -3.272236 | 2.421216 |
| 77 | 1 | 0 | -5.752385 | 7.164304  | 1.541952 |
| 78 | 6 | 0 | -7.487503 | 0.355649  | 1.902590 |
| 79 | 6 | 0 | 6.514498  | -1.529319 | 2.050054 |
| 80 | 1 | 0 | -0.654773 | -1.293102 | 2.567257 |
| 81 | 1 | 0 | -1.991727 | -0.227482 | 2.197326 |
| 82 | 7 | 0 | -3.305481 | 4.679366  | 1.792602 |
| 83 | 7 | 0 | 3.306920  | -4.669356 | 1.802514 |
| 84 | 1 | 0 | -3.518465 | -2.207011 | 1.986013 |
| 85 | 1 | 0 | -1.568489 | -5.533119 | 1.851652 |
| 86 | 6 | 0 | 7.543692  | -0.389251 | 1.818206 |
| 87 | 6 | 0 | -3.897433 | 5.984148  | 1.404006 |
| 88 | 6 | 0 | 3.880417  | -5.977440 | 1.398114 |
| 89 | 1 | 0 | 3.575543  | 2.184121  | 1.959390 |
| 90 | 1 | 0 | -6.945336 | -0.548277 | 1.575258 |
| 91 | 6 | 0 | 2.478810  | 2.330940  | 1.907787 |
| 92 | 1 | 0 | 1.524435  | 5.496584  | 1.829018 |
| 93 | 6 | 0 | -2.421941 | -2.330485 | 1.887654 |
| 94 | 6 | 0 | 2.425336  | 6.079250  | 1.603315 |
| 95 | 6 | 0 | -2.468757 | -6.103896 | 1.594298 |
| 96 | 1 | 0 | -9.218373 | 1.477796  | 1.238973 |
| 97 | 1 | 0 | -1.456418 | -8.661093 | 1.204624 |
| 98 | 1 | 0 | 2.054134  | -7.109754 | 1.046337 |
| 99 | 1 | 0 | 3.268368  | 5.376684  | 1.577191 |

| 100 | 1  | 0 | -2.088235 | 7.126109  | 1.008235  |
|-----|----|---|-----------|-----------|-----------|
| 101 | 1  | 0 | 1.433992  | 8.644463  | 1.226553  |
| 102 | 1  | 0 | -3.303487 | -5.391987 | 1.554971  |
| 103 | 1  | 0 | 9.245517  | -1.540423 | 1.125017  |
| 104 | 1  | 0 | 7.007326  | 0.518286  | 1.492167  |
| 105 | 1  | 0 | -8.400329 | 3.575564  | 0.737829  |
| 106 | 1  | 0 | -0.292740 | -7.378073 | 0.923109  |
| 107 | 1  | 0 | 3.863355  | 8.198828  | 1.055254  |
| 108 | 1  | 0 | 0.267342  | 7.371941  | 0.909515  |
| 109 | 6  | 0 | -8.558200 | 0.686930  | 0.860883  |
| 110 | 1  | 0 | -9.200631 | -0.185668 | 0.684301  |
| 111 | 7  | 0 | -5.898417 | 1.983696  | 0.823712  |
| 112 | 1  | 0 | -3.881737 | -8.231528 | 0.999486  |
| 113 | 12 | 0 | -4.033370 | 2.964256  | 0.820925  |
| 114 | 6  | 0 | 8.590616  | -0.739504 | 0.758916  |
| 115 | 12 | 0 | 4.035278  | -2.956748 | 0.823809  |
| 116 | 6  | 0 | -1.153972 | -7.898383 | 0.474122  |
| 117 | 7  | 0 | 5.912550  | -2.001306 | 0.777551  |
| 118 | 1  | 0 | 8.385884  | -3.625826 | 0.644225  |
| 119 | 6  | 0 | 1.139090  | 7.892617  | 0.481789  |
| 120 | 1  | 0 | 9.242871  | 0.122834  | 0.568560  |
| 121 | 1  | 0 | 6.958568  | -4.477562 | 0.059738  |
| 122 | 1  | 0 | 5.725946  | 3.134231  | 0.690043  |
| 123 | 1  | 0 | 6.890447  | 4.457218  | 0.538542  |
| 124 | 1  | 0 | -6.992754 | 4.446523  | 0.133834  |
| 125 | 6  | 0 | -2.307630 | -6.877122 | 0.269723  |
| 126 | 6  | 0 | 2.289608  | 6.866740  | 0.284718  |
| 127 | 1  | 0 | -5.774493 | -3.184145 | 0.665959  |
| 128 | 6  | 0 | -7.673698 | 3.615995  | -0.075940 |

| 129 | 19 | 0 | 0.617649  | -4.651047 | 0.284135  |
|-----|----|---|-----------|-----------|-----------|
| 130 | 1  | 0 | -4.464863 | -6.991131 | -0.123575 |
| 131 | 6  | 0 | 3.624433  | 7.655738  | 0.130999  |
| 132 | 1  | 0 | 5.168367  | 4.800556  | 0.451838  |
| 133 | 1  | 0 | -6.919075 | -4.519972 | 0.483580  |
| 134 | 6  | 0 | -4.122990 | 5.960860  | -0.122800 |
| 135 | 1  | 0 | 0.905563  | 2.578937  | 0.488215  |
| 136 | 6  | 0 | 2.007529  | 2.486992  | 0.444321  |
| 137 | 6  | 0 | 4.068293  | -5.950714 | -0.133677 |
| 138 | 6  | 0 | -3.634852 | -7.672405 | 0.086994  |
| 139 | 6  | 0 | 7.646683  | -3.655221 | -0.158590 |
| 140 | 6  | 0 | -2.013075 | -2.470369 | 0.404331  |
| 141 | 19 | 0 | -0.670217 | 4.649959  | 0.195522  |
| 142 | 1  | 0 | -4.524542 | 6.916043  | -0.481477 |
| 143 | 1  | 0 | -5.191345 | -4.839683 | 0.414640  |
| 144 | 6  | 0 | 5.936728  | 4.071619  | 0.159115  |
| 145 | 1  | 0 | -0.908120 | -2.529079 | 0.389174  |
| 146 | 1  | 0 | -4.848987 | 5.189212  | -0.413555 |
| 147 | 1  | 0 | 4.456241  | -6.906288 | -0.505967 |
| 148 | 1  | 0 | 4.790475  | -5.181229 | -0.439371 |
| 149 | 6  | 0 | -6.878261 | 2.287722  | -0.251855 |
| 150 | 1  | 0 | 4.452556  | 6.972065  | -0.079610 |
| 151 | 6  | 0 | -5.965647 | -4.117893 | 0.120887  |
| 152 | 1  | 0 | 1.491251  | -2.162914 | 0.109928  |
| 153 | 1  | 0 | 0.173743  | -9.200333 | -0.643933 |
| 154 | 1  | 0 | -1.507283 | 2.116906  | 0.039497  |
| 155 | 6  | 0 | 6.866055  | -2.316379 | -0.318568 |
| 156 | 1  | 0 | -0.159677 | 9.217563  | -0.643816 |
| 157 | 1  | 0 | 2.103425  | 1.505502  | -0.060490 |

| 158 | 1  | 0 | -2.158850 -1.490233 -0.091150 |
|-----|----|---|-------------------------------|
| 159 | 6  | 0 | -7.900000 1.133041 -0.446465  |
| 160 | 1  | 0 | -3.193183 5.767820 -0.673792  |
| 161 | 1  | 0 | 3.125934 -5.750807 -0.660208  |
| 162 | 1  | 0 | 3.596021 8.392496 -0.674096   |
| 163 | 1  | 0 | -8.229606 3.859740 -0.991246  |
| 164 | 19 | 0 | -4.680237 -0.665473 -0.223952 |
| 165 | 6  | 0 | -0.697550 -8.558432 -0.828626 |
| 166 | 1  | 0 | 2.496267 -0.889521 -0.379831  |
| 167 | 19 | 0 | 4.613729 0.613085 -0.253746   |
| 168 | 6  | 0 | 7.898206 -1.174822 -0.534047  |
| 169 | 6  | 0 | 2.462947 -1.995378 -0.394265  |
| 170 | 6  | 0 | 0.710193 8.571492 -0.820644   |
| 171 | 6  | 0 | -2.494919 2.021433 -0.453782  |
| 172 | 1  | 0 | -2.592769 0.919409 -0.485664  |
| 173 | 1  | 0 | 8.185727 -3.903906 -1.082617  |
| 174 | 1  | 0 | -3.590864 -8.396131 -0.729125 |
| 175 | 1  | 0 | -8.664099 1.430737 -1.177478  |
| 176 | 7  | 0 | -1.997028 -5.900021 -0.806110 |
| 177 | 1  | 0 | -7.380913 0.268839 -0.891199  |
| 178 | 1  | 0 | -1.485114 -9.219316 -1.212402 |
| 179 | 1  | 0 | 1.509027 9.230942 -1.182936   |
| 180 | 7  | 0 | 1.990276 5.902702 -0.806477   |
| 181 | 12 | 0 | 2.960097 4.031749 -0.815278   |
| 182 | 1  | 0 | 7.379628 -0.302744 -0.963478  |
| 183 | 12 | 0 | -2.967861 -4.030870 -0.832153 |
| 184 | 1  | 0 | 8.641335 -1.481428 -1.282843  |
| 185 | 1  | 0 | 7.099871 2.046775 -0.994665   |
| 186 | 1  | 0 | 0.541175 -6.943533 -1.532290  |

| 187 | 1 | 0 | -7.138997 | -2.092943 | -1.022678 |
|-----|---|---|-----------|-----------|-----------|
| 188 | 1 | 0 | -5.409095 | 3.287642  | -1.551350 |
| 189 | 1 | 0 | 7.173427  | 5.722646  | -1.454421 |
| 190 | 1 | 0 | 5.344939  | -3.281838 | -1.586415 |
| 191 | 1 | 0 | -0.527819 | 6.974758  | -1.562020 |
| 192 | 6 | 0 | -6.107705 | 2.441269  | -1.578722 |
| 193 | 6 | 0 | 5.979159  | 3.873381  | -1.370920 |
| 194 | 1 | 0 | 8.113593  | 3.405315  | -1.451055 |
| 195 | 6 | 0 | -0.357759 | -7.488379 | -1.868208 |
| 196 | 6 | 0 | 6.068154  | -2.457131 | -1.630433 |
| 197 | 6 | 0 | -5.991322 | -3.901788 | -1.407223 |
| 198 | 1 | 0 | -5.522260 | 1.546593  | -1.821645 |
| 199 | 6 | 0 | 0.380841  | 7.515662  | -1.877927 |
| 200 | 6 | 0 | 7.158850  | 2.910526  | -1.676660 |
| 201 | 1 | 0 | -8.130045 | -3.457818 | -1.508523 |
| 202 | 1 | 0 | -7.164334 | -5.762393 | -1.530279 |
| 203 | 6 | 0 | -7.178644 | -2.948927 | -1.715987 |
| 204 | 6 | 0 | 2.317058  | -2.408041 | -1.876284 |
| 205 | 7 | 0 | 4.674607  | 3.299861  | -1.786628 |
| 206 | 6 | 0 | -1.511565 | -6.471956 | -2.087267 |
| 207 | 1 | 0 | 5.508252  | -1.545573 | -1.871149 |
| 208 | 1 | 0 | -2.211325 | 3.576355  | -1.987021 |
| 209 | 7 | 0 | -4.688428 | -3.308368 | -1.799973 |
| 210 | 6 | 0 | 6.315832  | 5.270767  | -1.970961 |
| 211 | 1 | 0 | 5.462043  | 5.946398  | -1.864812 |
| 212 | 1 | 0 | 2.201977  | -3.505626 | -1.969594 |
| 213 | 6 | 0 | -2.352319 | 2.479279  | -1.922795 |
| 214 | 6 | 0 | 1.530755  | 6.492631  | -2.088832 |
| 215 | 1 | 0 | -6.794663 | 2.622167  | -2.413969 |

| 216 | 1 | 0 | -5.444564 | -5.962717 | -1.916820 |
|-----|---|---|-----------|-----------|-----------|
| 217 | 1 | 0 | 6.735461  | -2.663067 | -2.475734 |
| 218 | 6 | 0 | -6.303963 | -5.295240 | -2.028302 |
| 219 | 1 | 0 | 2.968906  | 8.128293  | -2.533896 |
| 220 | 1 | 0 | -2.928306 | -8.113824 | -2.576092 |
| 221 | 1 | 0 | 0.208810  | -1.994601 | -2.175631 |
| 222 | 1 | 0 | -0.084188 | -7.954170 | -2.824834 |
| 223 | 1 | 0 | -0.134917 | -4.780396 | -2.420688 |
| 224 | 1 | 0 | 3.253311  | -2.198184 | -2.416334 |
| 225 | 1 | 0 | 0.126422  | 7.993600  | -2.833864 |
| 226 | 1 | 0 | -3.299002 | 2.308666  | -2.457924 |
| 227 | 1 | 0 | -0.257252 | 2.027142  | -2.258201 |
| 228 | 1 | 0 | 1.262484  | -0.650087 | -2.553025 |
| 229 | 1 | 0 | 0.133720  | 4.828624  | -2.471996 |
| 230 | 1 | 0 | -3.270745 | -1.095682 | -2.530710 |
| 231 | 6 | 0 | 1.166897  | -1.740409 | -2.653246 |
| 232 | 1 | 0 | 3.245504  | 1.109622  | -2.564401 |
| 233 | 6 | 0 | -2.599763 | -7.150717 | -2.972115 |
| 234 | 6 | 0 | 2.638725  | 7.173219  | -2.947476 |
| 235 | 6 | 0 | -0.943518 | -5.315814 | -2.934626 |
| 236 | 1 | 0 | -1.346335 | 0.717997  | -2.659667 |
| 237 | 1 | 0 | 6.570780  | 5.226666  | -3.031805 |
| 238 | 6 | 0 | -1.226402 | 1.808009  | -2.731669 |
| 239 | 1 | 0 | 3.515760  | 6.524330  | -3.021617 |
| 240 | 1 | 0 | -3.481037 | -6.508192 | -3.052019 |
| 241 | 6 | 0 | 0.967822  | 5.350552  | -2.958298 |
| 242 | 1 | 0 | -5.695255 | -0.866659 | -2.860042 |
| 243 | 1 | 0 | 5.665353  | 0.861160  | -2.868263 |
| 244 | 6 | 0 | 7.152681  | 2.397421  | -3.118676 |

| 245 | 1 | 0 | -6.543191 | -5.241111 | -3.092316 |
|-----|---|---|-----------|-----------|-----------|
| 246 | 1 | 0 | 7.948693  | 1.654777  | -3.260558 |
| 247 | 1 | 0 | 1.737541  | 4.604125  | -3.189098 |
| 248 | 6 | 0 | 4.605426  | 2.747108  | -3.162713 |
| 249 | 6 | 0 | -4.609854 | -2.736312 | -3.168230 |
| 250 | 6 | 0 | -7.160923 | -2.416672 | -3.150939 |
| 251 | 1 | 0 | -2.419188 | -2.519004 | -3.125969 |
| 252 | 1 | 0 | -0.537121 | -5.680552 | -3.885352 |
| 253 | 6 | 0 | -3.315472 | -1.902417 | -3.271573 |
| 254 | 1 | 0 | -7.964196 | -1.681912 | -3.292866 |
| 255 | 1 | 0 | -1.719457 | -4.582428 | -3.186838 |
| 256 | 6 | 0 | 3.303512  | 1.928563  | -3.290933 |
| 257 | 6 | 0 | 5.791123  | 1.785034  | -3.457328 |
| 258 | 1 | 0 | 2.412406  | 2.551666  | -3.141198 |
| 259 | 1 | 0 | -2.220732 | -7.335750 | -3.986178 |
| 260 | 6 | 0 | -5.802668 | -1.783441 | -3.463698 |
| 261 | 1 | 0 | 2.277473  | 7.374373  | -3.964935 |
| 262 | 1 | 0 | 7.377777  | 3.218434  | -3.810864 |
| 263 | 1 | 0 | 0.596415  | 5.726048  | -3.919145 |
| 264 | 1 | 0 | -7.367270 | -3.230830 | -3.856902 |
| 265 | 1 | 0 | -3.755626 | -4.519364 | -4.127600 |
| 266 | 1 | 0 | 3.780436  | 4.550604  | -4.109764 |
| 267 | 6 | 0 | 1.122685  | -2.115131 | -4.139067 |
| 268 | 1 | 0 | -3.224585 | -1.439296 | -4.260986 |
| 269 | 1 | 0 | 3.215316  | 1.483141  | -4.288690 |
| 270 | 6 | 0 | -1.189350 | 2.221816  | -4.207242 |
| 271 | 1 | 0 | 1.001329  | -3.197386 | -4.275845 |
| 272 | 1 | 0 | -1.045905 | 3.304479  | -4.316766 |
| 273 | 6 | 0 | 4.552501  | 3.802242  | -4.308741 |

| 274 | 1 | 0 | 5.496575  | 4.334454  | -4.439271 |
|-----|---|---|-----------|-----------|-----------|
| 275 | 6 | 0 | -4.532456 | -3.775909 | -4.326909 |
| 276 | 1 | 0 | 5.764409  | 1.469922  | -4.509424 |
| 277 | 1 | 0 | -5.766541 | -1.453061 | -4.510802 |
| 278 | 1 | 0 | 0.292079  | -1.620479 | -4.656215 |
| 279 | 1 | 0 | 2.050898  | -1.823252 | -4.647148 |
| 280 | 1 | 0 | -2.128913 | 1.963541  | -4.712601 |
| 281 | 1 | 0 | -5.469629 | -4.315179 | -4.476192 |
| 282 | 1 | 0 | -0.374972 | 1.723659  | -4.746358 |
| 283 | 1 | 0 | -4.290210 | -3.282314 | -5.277524 |
| 284 | 1 | 0 | 4.317665  | 3.323270  | -5.268712 |



**Model 12** E = -10650.083603 a.u.

| Center Atomic Atomic |        |      | Coordinates (Angstroms) |          |          |  |
|----------------------|--------|------|-------------------------|----------|----------|--|
| Number               | Number | Туре | Х                       | Y        | Ζ        |  |
|                      |        |      |                         |          |          |  |
| 1                    | 6      | 0    | -6.298074               | 2.525482 | 5.028745 |  |
| 2                    | 6      | 0    | -6.281963               | 6.465709 | 3.862581 |  |
| 3                    | 6      | 0    | -9.080893               | 3.420651 | 3.540903 |  |
| 4                    | 6      | 0    | -8.521457               | 0.370688 | 4.339472 |  |
| 5                    | 6      | 0    | -7.004653               | 0.268133 | 4.171547 |  |
| 6                    | 6      | 0    | -9.142819               | 0.944976 | 3.065424 |  |
| 7                    | 6      | 0    | -6.354621               | 1.618178 | 3.762712 |  |
| 8                    | 6      | 0    | -8.506718               | 2.294506 | 2.631363 |  |
| 9                    | 6      | 0    | -5.297371               | 6.363679 | 2.659537 |  |
| 10                   | 6      | 0    | -8.219451               | 6.650569 | 1.207998 |  |
| 11                   | 6      | 0    | -4.754161               | 7.786844 | 2.354529 |  |

| 12 | 6  | 0 | -4.113094  | 5.515658  | 3.164704  |
|----|----|---|------------|-----------|-----------|
| 13 | 6  | 0 | -5.761944  | 8.654602  | 1.597889  |
| 14 | 7  | 0 | -7.024588  | 2.216480  | 2.577079  |
| 15 | 6  | 0 | -4.884426  | 1.326524  | 3.397475  |
| 16 | 6  | 0 | -3.699192  | -2.539533 | 3.894538  |
| 17 | 6  | 0 | -9.014325  | 2.604220  | 1.207074  |
| 18 | 7  | 0 | -5.837371  | 5.704564  | 1.443330  |
| 19 | 6  | 0 | -2.483198  | -8.615882 | 3.853776  |
| 20 | 6  | 0 | -0.368665  | 4.578660  | 3.931760  |
| 21 | 6  | 0 | -6.783129  | 6.503728  | 0.623999  |
| 22 | 6  | 0 | -6.233738  | 7.927920  | 0.336509  |
| 23 | 12 | 0 | -5.946134  | 3.609248  | 1.436033  |
| 24 | 6  | 0 | -4.383959  | -7.934589 | 2.344996  |
| 25 | 6  | 0 | 0.958774   | -6.705117 | 5.006270  |
| 26 | 6  | 0 | 5.333150   | 4.246045  | 5.018316  |
| 27 | 6  | 0 | -2.711961  | -6.262557 | 3.134626  |
| 28 | 6  | 0 | -4.654058  | -9.246939 | 1.606611  |
| 29 | 6  | 0 | -8.491555  | -3.142209 | 0.754981  |
| 30 | 6  | 0 | -2.875592  | -7.714721 | 2.644727  |
| 31 | 6  | 0 | 4.558000   | 7.233510  | 4.257627  |
| 32 | 6  | 0 | 3.722502   | 5.959573  | 4.119931  |
| 33 | 6  | 0 | -3.510354  | -2.353514 | 2.384815  |
| 34 | 6  | 0 | -6.954223  | 5.792977  | -0.735153 |
| 35 | 6  | 0 | -10.015673 | -1.466760 | -0.290096 |
| 36 | 6  | 0 | -0.306002  | 4.294085  | 2.426884  |
| 37 | 6  | 0 | -4.700152  | -2.841058 | 1.536083  |
| 38 | 6  | 0 | 4.575657   | 4.718369  | 3.741053  |
| 39 | 19 | 0 | -6.591081  | -0.019435 | 0.408439  |
| 40 | 6  | 0 | 3.596979   | 3.578439  | 3.392711  |

| 41 | 6  | 0 | 1.772138   | -6.298193  | 3.740582  |
|----|----|---|------------|------------|-----------|
| 42 | 6  | 0 | -9.042798  | -2.638447  | -0.595429 |
| 43 | 6  | 0 | 1.546268   | -9.559885  | 3.508262  |
| 44 | 6  | 0 | 1.297955   | -4.875135  | 3.381455  |
| 45 | 6  | 0 | 4.190749   | -1.972010  | 3.963373  |
| 46 | 6  | 0 | -9.879050  | -3.816695  | -1.178222 |
| 47 | 6  | 0 | 3.268695   | -6.200720  | 4.146757  |
| 48 | 6  | 0 | -0.118892  | 5.550520   | 1.554958  |
| 49 | 7  | 0 | -2.040678  | -7.877264  | 1.427910  |
| 50 | 6  | 0 | -3.791313  | -9.321652  | 0.344711  |
| 51 | 6  | 0 | -4.565993  | 2.630515   | 0.007739  |
| 52 | 6  | 0 | 3.928840   | -7.571382  | 4.305972  |
| 53 | 6  | 0 | 7.490712   | 6.194839   | 3.501859  |
| 54 | 6  | 0 | 8.766688   | 2.236064   | 3.875165  |
| 55 | 6  | 0 | 5.371954   | 7.458124   | 2.982297  |
| 56 | 6  | 0 | -1.707522  | -10.420890 | 1.232527  |
| 57 | 6  | 0 | -10.435768 | -0.693627  | -1.542237 |
| 58 | 19 | 0 | -3.297047  | 5.683700   | -0.366556 |
| 59 | 6  | 0 | 6.856642   | 0.819364   | 3.205223  |
| 60 | 6  | 0 | -2.279099  | -9.104201  | 0.626957  |
| 61 | 6  | 0 | -4.585716  | -2.599731  | 0.015909  |
| 62 | 7  | 0 | 1.578831   | -7.170670  | 2.552415  |
| 63 | 7  | 0 | 5.430025   | 4.979481   | 2.552393  |
| 64 | 6  | 0 | -6.714928  | -6.458988  | -1.210561 |
| 65 | 6  | 0 | 6.232382   | 6.228013   | 2.583629  |
| 66 | 6  | 0 | -2.222105  | 9.077907   | -1.234183 |
| 67 | 7  | 0 | -7.893086  | -2.197177  | -1.425921 |
| 68 | 6  | 0 | 2.239564   | -8.499515  | 2.601414  |
| 69 | 12 | 0 | -0.165184  | -6.934578  | 1.403442  |

| 70 | 6  | 0 | 1.578289  | 8.973890  | 0.658712  |
|----|----|---|-----------|-----------|-----------|
| 71 | 6  | 0 | 3.904362  | -1.878473 | 2.460368  |
| 72 | 6  | 0 | 3.728979  | -8.391923 | 3.030240  |
| 73 | 6  | 0 | 8.180098  | 1.416786  | 2.687692  |
| 74 | 6  | 0 | -4.816584 | 2.596881  | -1.514765 |
| 75 | 19 | 0 | -3.241045 | -5.667577 | -0.438014 |
| 76 | 6  | 0 | -9.196367 | -0.236376 | -2.314333 |
| 77 | 12 | 0 | -6.109214 | -3.302299 | -1.431813 |
| 78 | 6  | 0 | 0.036174  | 5.300233  | 0.039727  |
| 79 | 6  | 0 | 9.138919  | 0.231719  | 2.391009  |
| 80 | 6  | 0 | -3.743034 | 8.320480  | -3.058239 |
| 81 | 6  | 0 | -8.224234 | -1.403703 | -2.636435 |
| 82 | 12 | 0 | 6.107148  | 3.333198  | 1.440453  |
| 83 | 6  | 0 | -1.576995 | -8.929018 | -0.735730 |
| 84 | 6  | 0 | 2.216454  | -9.085756 | 1.174123  |
| 85 | 6  | 0 | -2.251244 | 8.457081  | -2.646524 |
| 86 | 19 | 0 | 3.267211  | 5.722900  | 0.369006  |
| 87 | 6  | 0 | 0.008301  | -5.278690 | -0.057152 |
| 88 | 6  | 0 | 6.758786  | 6.481718  | 1.155651  |
| 89 | 6  | 0 | -6.197893 | -6.172821 | -2.635822 |
| 90 | 7  | 0 | 7.873062  | 2.199144  | 1.463644  |
| 91 | 6  | 0 | 4.880996  | -2.683642 | 1.582010  |
| 92 | 6  | 0 | 2.276205  | 9.141778  | -0.707107 |
| 93 | 12 | 0 | 0.186125  | 6.939766  | -1.443470 |
| 94 | 6  | 0 | 1.690189  | 10.446687 | -1.324756 |
| 95 | 6  | 0 | 10.393769 | 0.663189  | 1.628854  |
| 96 | 6  | 0 | -3.791634 | 1.803070  | -2.347241 |
| 97 | 7  | 0 | -5.412167 | -4.914248 | -2.584741 |
| 98 | 7  | 0 | -1.573212 | 7.138455  | -2.571805 |

| 99  | 6  | 0 | -7.461989 | -6.140049 | -3.546055 |
|-----|----|---|-----------|-----------|-----------|
| 100 | 6  | 0 | 3.786564  | 9.377968  | -0.430233 |
| 101 | 6  | 0 | -8.809983 | -2.217010 | -3.828230 |
| 102 | 6  | 0 | 9.881482  | 3.789014  | 1.216100  |
| 103 | 6  | 0 | -5.323219 | -7.382865 | -3.063932 |
| 104 | 6  | 0 | -3.946544 | 7.462382  | -4.308292 |
| 105 | 6  | 0 | -6.916206 | -0.777611 | -3.159308 |
| 106 | 6  | 0 | 4.581861  | 2.627959  | -0.003540 |
| 107 | 6  | 0 | -1.578534 | 9.502375  | -3.585173 |
| 108 | 7  | 0 | 2.049751  | 7.903773  | -1.494921 |
| 109 | 19 | 0 | 3.337176  | -5.684409 | 0.437556  |
| 110 | 6  | 0 | -3.267257 | 6.104971  | -4.118894 |
| 111 | 6  | 0 | 9.037672  | 2.613166  | 0.640237  |
| 112 | 6  | 0 | 4.582975  | -2.687527 | 0.067817  |
| 113 | 6  | 0 | 0.141455  | -5.511413 | -1.577316 |
| 114 | 6  | 0 | -1.767584 | 6.234335  | -3.736183 |
| 115 | 6  | 0 | -4.041828 | 1.847811  | -3.859011 |
| 116 | 6  | 0 | 9.997291  | 1.423856  | 0.361955  |
| 117 | 6  | 0 | -1.268014 | 4.827811  | -3.348675 |
| 118 | 6  | 0 | 6.962500  | -5.875086 | 0.742848  |
| 119 | 6  | 0 | -4.569798 | -4.617550 | -3.773446 |
| 120 | 19 | 0 | 6.553774  | 0.050511  | -0.367776 |
| 121 | 6  | 0 | -3.602179 | -3.473680 | -3.407087 |
| 122 | 6  | 0 | 4.646551  | 9.300641  | -1.693890 |
| 123 | 6  | 0 | -4.523732 | -7.121739 | -4.341458 |
| 124 | 6  | 0 | 4.705378  | 2.855302  | -1.525302 |
| 125 | 6  | 0 | 8.509484  | 3.102946  | -0.724538 |
| 126 | 6  | 0 | -3.704075 | -5.839571 | -4.185997 |
| 127 | 6  | 0 | 0.314309  | -4.244062 | -2.436194 |

| 128 | 6  | 0 | 2.881957  | 7.739663  | -2.713385 |
|-----|----|---|-----------|-----------|-----------|
| 129 | 6  | 0 | -5.343039 | -4.128060 | -5.034769 |
| 130 | 6  | 0 | 4.388669  | 7.979120  | -2.420267 |
| 131 | 6  | 0 | 6.248010  | -7.992116 | -0.364293 |
| 132 | 6  | 0 | 3.511978  | 2.379217  | -2.375463 |
| 133 | 6  | 0 | -0.977275 | 6.622103  | -5.022430 |
| 134 | 6  | 0 | 2.733541  | 6.281691  | -3.190491 |
| 135 | 6  | 0 | 6.788904  | -6.559952 | -0.628862 |
| 136 | 6  | 0 | 2.474934  | 8.625232  | -3.929101 |
| 137 | 12 | 0 | 5.933222  | -3.654455 | -1.397513 |
| 138 | 6  | 0 | 8.983628  | -2.622359 | -1.173964 |
| 139 | 7  | 0 | 5.835571  | -5.750692 | -1.430116 |
| 140 | 6  | 0 | 0.373040  | -4.510545 | -3.944631 |
| 141 | 6  | 0 | 5.780494  | -8.700041 | -1.637453 |
| 142 | 6  | 0 | 8.223477  | -6.687482 | -1.221567 |
| 143 | 6  | 0 | 3.708676  | 2.552728  | -3.885672 |
| 144 | 6  | 0 | 4.759045  | -7.826553 | -2.368075 |
| 145 | 7  | 0 | 6.988330  | -2.238843 | -2.532986 |
| 146 | 6  | 0 | 4.840664  | -1.349108 | -3.327310 |
| 147 | 6  | 0 | 5.289436  | -6.394351 | -2.652512 |
| 148 | 6  | 0 | 4.092098  | -5.549693 | -3.130818 |
| 149 | 6  | 0 | 8.470411  | -2.310716 | -2.595205 |
| 150 | 6  | 0 | 9.100865  | -0.957451 | -3.025818 |
| 151 | 6  | 0 | 6.308214  | -1.633182 | -3.708152 |
| 152 | 6  | 0 | 6.952501  | -0.278718 | -4.111874 |
| 153 | 6  | 0 | 9.045614  | -3.431588 | -3.510387 |
| 154 | 6  | 0 | 8.468381  | -0.376234 | -4.291144 |
| 155 | 6  | 0 | 6.266253  | -6.468172 | -3.863905 |
| 156 | 6  | 0 | 6.241769  | -2.530727 | -4.980245 |

| 157 | 1 | 0 | -4.435982  | 4.514975  | 3.480449  |
|-----|---|---|------------|-----------|-----------|
| 158 | 1 | 0 | -3.338307  | 5.384674  | 2.399476  |
| 159 | 1 | 0 | -3.635241  | 5.977208  | 4.036521  |
| 160 | 1 | 0 | -3.838506  | 7.700262  | 1.744931  |
| 161 | 1 | 0 | -4.447669  | 8.277904  | 3.288295  |
| 162 | 1 | 0 | -6.617612  | 8.889006  | 2.243890  |
| 163 | 1 | 0 | -5.309513  | 9.619141  | 1.332733  |
| 164 | 1 | 0 | -5.382499  | 7.847152  | -0.356265 |
| 165 | 1 | 0 | -6.993036  | 8.523363  | -0.188600 |
| 166 | 1 | 0 | -6.007086  | 5.707913  | -1.281265 |
| 167 | 1 | 0 | -7.654118  | 6.336357  | -1.380937 |
| 168 | 1 | 0 | -7.353928  | 4.776052  | -0.617611 |
| 169 | 1 | 0 | -8.632502  | 5.672772  | 1.470558  |
| 170 | 1 | 0 | -8.892444  | 7.113503  | 0.473934  |
| 171 | 1 | 0 | -8.251834  | 7.269360  | 2.106540  |
| 172 | 1 | 0 | -6.761443  | 5.500360  | 4.046648  |
| 173 | 1 | 0 | -7.072599  | 7.201872  | 3.704992  |
| 174 | 1 | 0 | -5.750393  | 6.760283  | 4.777492  |
| 175 | 1 | 0 | -8.948486  | -0.617068 | 4.557601  |
| 176 | 1 | 0 | -8.765505  | 1.003615  | 5.201820  |
| 177 | 1 | 0 | -9.006894  | 0.210220  | 2.256852  |
| 178 | 1 | 0 | -10.228345 | 1.065151  | 3.185064  |
| 179 | 1 | 0 | -6.539244  | -0.108104 | 5.092868  |
| 180 | 1 | 0 | -6.787920  | -0.482266 | 3.393024  |
| 181 | 1 | 0 | -8.949970  | 3.213721  | 4.604947  |
| 182 | 1 | 0 | -10.158053 | 3.550318  | 3.370297  |
| 183 | 1 | 0 | -8.587799  | 4.372257  | 3.325564  |
| 184 | 1 | 0 | -5.646475  | 2.083103  | 5.794071  |
| 185 | 1 | 0 | -7.275540  | 2.677568  | 5.489812  |

| 186 | 1 | 0 | -5.898061  | 3.512765  | 4.780382  |
|-----|---|---|------------|-----------|-----------|
| 187 | 1 | 0 | -8.627791  | 3.564062  | 0.840512  |
| 188 | 1 | 0 | -10.108008 | 2.675019  | 1.178679  |
| 189 | 1 | 0 | -8.724437  | 1.829561  | 0.485756  |
| 190 | 1 | 0 | -4.795287  | 0.633079  | 2.554077  |
| 191 | 1 | 0 | -4.337924  | 2.239171  | 3.123399  |
| 192 | 1 | 0 | -4.351656  | 0.880217  | 4.244962  |
| 193 | 1 | 0 | -3.541895  | 3.029974  | 0.169487  |
| 194 | 1 | 0 | -4.421932  | 1.585730  | 0.346643  |
| 195 | 1 | 0 | -4.867712  | 3.622241  | -1.921710 |
| 196 | 1 | 0 | -5.821089  | 2.189803  | -1.731386 |
| 197 | 1 | 0 | -2.784208  | 2.186499  | -2.129786 |
| 198 | 1 | 0 | -3.786987  | 0.757492  | -2.003621 |
| 199 | 1 | 0 | -3.292436  | 1.265807  | -4.408150 |
| 200 | 1 | 0 | -4.004659  | 2.877585  | -4.235439 |
| 201 | 1 | 0 | -5.028557  | 1.440920  | -4.111890 |
| 202 | 1 | 0 | -4.401034  | -1.515319 | -0.138536 |
| 203 | 1 | 0 | -3.610877  | -3.010243 | -0.313391 |
| 204 | 1 | 0 | -5.618795  | -2.375922 | 1.935875  |
| 205 | 1 | 0 | -4.851904  | -3.915336 | 1.744585  |
| 206 | 1 | 0 | -3.328206  | -1.291593 | 2.164848  |
| 207 | 1 | 0 | -2.600561  | -2.879532 | 2.057849  |
| 208 | 1 | 0 | -3.859219  | -3.594228 | 4.149376  |
| 209 | 1 | 0 | -2.823721  | -2.191625 | 4.455206  |
| 210 | 1 | 0 | -4.569897  | -1.978486 | 4.255842  |
| 211 | 1 | 0 | 4.571201   | 1.975372  | -4.240732 |
| 212 | 1 | 0 | 3.886626   | 3.603044  | -4.146550 |
| 213 | 1 | 0 | 2.829382   | 2.215592  | -4.446893 |
| 214 | 1 | 0 | 3.314897   | 1.321186  | -2.149617 |

| 215 | 1 | 0 | 2.608134  | 2.919204  | -2.054760 |
|-----|---|---|-----------|-----------|-----------|
| 216 | 1 | 0 | 5.618153  | 2.373153  | -1.918486 |
| 217 | 1 | 0 | 4.876191  | 3.925532  | -1.740670 |
| 218 | 1 | 0 | 4.377387  | 1.548610  | 0.160272  |
| 219 | 1 | 0 | 3.614354  | 3.058969  | 0.320426  |
| 220 | 1 | 0 | -0.549382 | -4.987941 | -4.297898 |
| 221 | 1 | 0 | 0.505102  | -3.582062 | -4.512360 |
| 222 | 1 | 0 | 1.206351  | -5.176793 | -4.199218 |
| 223 | 1 | 0 | 1.228177  | -3.720537 | -2.117374 |
| 224 | 1 | 0 | -0.510845 | -3.550823 | -2.216846 |
| 225 | 1 | 0 | -0.729314 | -6.070616 | -1.964127 |
| 226 | 1 | 0 | 0.988911  | -6.187419 | -1.789852 |
| 227 | 1 | 0 | -0.825936 | -4.562040 | 0.100969  |
| 228 | 1 | 0 | 0.864931  | -4.650878 | 0.257744  |
| 229 | 1 | 0 | -0.513105 | 3.658405  | 4.509716  |
| 230 | 1 | 0 | -1.195659 | 5.256918  | 4.175085  |
| 231 | 1 | 0 | 0.557458  | 5.050361  | 4.283010  |
| 232 | 1 | 0 | 0.515235  | 3.592965  | 2.219138  |
| 233 | 1 | 0 | -1.222082 | 3.772716  | 2.110164  |
| 234 | 1 | 0 | 0.748049  | 6.110811  | 1.947976  |
| 235 | 1 | 0 | -0.967065 | 6.232506  | 1.747759  |
| 236 | 1 | 0 | 0.873559  | 4.583343  | -0.096753 |
| 237 | 1 | 0 | -0.813492 | 4.667366  | -0.283439 |
| 238 | 1 | 0 | 2.879750  | -2.223272 | 2.259701  |
| 239 | 1 | 0 | 3.924959  | -0.824350 | 2.144310  |
| 240 | 1 | 0 | 5.199929  | -1.613209 | 4.199693  |
| 241 | 1 | 0 | 3.480666  | -1.373981 | 4.546424  |
| 242 | 1 | 0 | 4.119527  | -3.008798 | 4.314832  |
| 243 | 1 | 0 | 3.537112  | -3.035619 | -0.069612 |

| 244 | 1 | 0 | 4.480775  | -1.633851  | -0.257260 |
|-----|---|---|-----------|------------|-----------|
| 245 | 1 | 0 | -1.677374 | -6.047068  | 3.432355  |
| 246 | 1 | 0 | -2.994702 | -5.532729  | 2.366431  |
| 247 | 1 | 0 | -3.335285 | -6.066703  | 4.014664  |
| 248 | 1 | 0 | -2.749180 | -9.664440  | 3.706242  |
| 249 | 1 | 0 | -1.405115 | -8.570374  | 4.030796  |
| 250 | 1 | 0 | -2.991782 | -8.283663  | 4.768740  |
| 251 | 1 | 0 | -1.775130 | -11.243791 | 0.508347  |
| 252 | 1 | 0 | -0.654936 | -10.297980 | 1.502717  |
| 253 | 1 | 0 | -2.239542 | -10.739955 | 2.130604  |
| 254 | 1 | 0 | -4.442162 | -10.100242 | 2.262979  |
| 255 | 1 | 0 | -5.717232 | -9.323577  | 1.343663  |
| 256 | 1 | 0 | -4.960467 | -7.891808  | 3.279319  |
| 257 | 1 | 0 | -4.752248 | -7.100435  | 1.723773  |
| 258 | 1 | 0 | -4.136938 | -8.547030  | -0.356233 |
| 259 | 1 | 0 | -3.863199 | -7.972240  | -4.556028 |
| 260 | 1 | 0 | -5.198346 | -7.038189  | -5.202884 |
| 261 | 1 | 0 | -5.951190 | -8.277195  | -3.177099 |
| 262 | 1 | 0 | -4.611682 | -7.613236  | -2.255822 |
| 263 | 1 | 0 | -8.097226 | -7.016797  | -3.361994 |
| 264 | 1 | 0 | -8.056021 | -5.244264  | -3.345489 |
| 265 | 1 | 0 | -7.217367 | -6.142819  | -4.610162 |
| 266 | 1 | 0 | -7.291876 | -7.390531  | -1.171980 |
| 267 | 1 | 0 | -5.896756 | -6.556143  | -0.485536 |
| 268 | 1 | 0 | -7.381010 | -5.661207  | -0.857800 |
| 269 | 1 | 0 | -1.723352 | -9.809388  | -1.372586 |
| 270 | 1 | 0 | -1.956673 | -8.060179  | -1.286697 |
| 271 | 1 | 0 | -0.492430 | -8.794270  | -0.622126 |
| 272 | 1 | 0 | -0.504584 | 9.559164   | -3.387508 |

| 273 | 1 | 0 | -2.005740  | 10.501701 | -3.426841 |
|-----|---|---|------------|-----------|-----------|
| 274 | 1 | 0 | -1.706861  | 9.265971  | -4.643510 |
| 275 | 1 | 0 | 0.077672   | 6.793188  | -4.789931 |
| 276 | 1 | 0 | -1.356271  | 7.527777  | -5.498955 |
| 277 | 1 | 0 | -1.031413  | 5.818500  | -5.768881 |
| 278 | 1 | 0 | -1.408651  | 4.120191  | -4.173573 |
| 279 | 1 | 0 | -0.196921  | 4.824190  | -3.104939 |
| 280 | 1 | 0 | -1.798244  | 4.426414  | -2.477995 |
| 281 | 1 | 0 | 2.983752   | 8.290118  | -4.842836 |
| 282 | 1 | 0 | 2.729710   | 9.677990  | -3.792475 |
| 283 | 1 | 0 | 1.396711   | 8.565897  | -4.101528 |
| 284 | 1 | 0 | 3.036523   | 5.560691  | -2.421632 |
| 285 | 1 | 0 | 1.698666   | 6.049611  | -3.474161 |
| 286 | 1 | 0 | 3.349169   | 6.088520  | -4.076537 |
| 287 | 1 | 0 | -11.067886 | -1.321619 | -2.182593 |
| 288 | 1 | 0 | -11.051534 | 0.171739  | -1.264267 |
| 289 | 1 | 0 | -10.899631 | -1.843766 | 0.242365  |
| 290 | 1 | 0 | -9.524031  | -0.765567 | 0.401219  |
| 291 | 1 | 0 | -8.663006  | 0.515899  | -1.708495 |
| 292 | 1 | 0 | -9.487485  | 0.275566  | -3.241862 |
| 293 | 1 | 0 | -7.805482  | -3.990865 | 0.626736  |
| 294 | 1 | 0 | -7.945180  | -2.360946 | 1.296686  |
| 295 | 1 | 0 | -9.301471  | -3.485679 | 1.409381  |
| 296 | 1 | 0 | -7.096683  | -0.159825 | -4.046738 |
| 297 | 1 | 0 | -6.436066  | -0.135994 | -2.410279 |
| 298 | 1 | 0 | -6.188922  | -1.544315 | -3.457175 |
| 299 | 1 | 0 | -8.195691  | -3.100500 | -4.023142 |
| 300 | 1 | 0 | -8.831778  | -1.609807 | -4.743087 |
| 301 | 1 | 0 | -9.831198  | -2.558777 | -3.648449 |

| 302 | 1 | 0 | -9.228290  | -4.639683  | -1.485826 |
|-----|---|---|------------|------------|-----------|
| 303 | 1 | 0 | -10.470536 | -3.525720  | -2.048317 |
| 304 | 1 | 0 | -10.580829 | -4.204308  | -0.427733 |
| 305 | 1 | 0 | -2.953065  | -3.222302  | -4.253753 |
| 306 | 1 | 0 | -4.135619  | -2.554042  | -3.130807 |
| 307 | 1 | 0 | -2.953531  | -3.736497  | -2.564087 |
| 308 | 1 | 0 | 1.310678   | -7.633867  | 5.458459  |
| 309 | 1 | 0 | 1.023713   | -5.925895  | 5.777322  |
| 310 | 1 | 0 | -0.097396  | -6.843065  | 4.757902  |
| 311 | 1 | 0 | 0.234389   | -4.853024  | 3.108279  |
| 312 | 1 | 0 | 1.422958   | -4.194048  | 4.231046  |
| 313 | 1 | 0 | 1.856345   | -4.450639  | 2.539460  |
| 314 | 1 | 0 | 3.367567   | -5.616054  | 5.071557  |
| 315 | 1 | 0 | 3.816200   | -5.636438  | 3.373315  |
| 316 | 1 | 0 | 3.503675   | -8.098372  | 5.169205  |
| 317 | 1 | 0 | 4.999885   | -7.456209  | 4.518732  |
| 318 | 1 | 0 | 1.950829   | -10.562594 | 3.315586  |
| 319 | 1 | 0 | 1.683695   | -9.361897  | 4.573345  |
| 320 | 1 | 0 | 0.470717   | -9.586850  | 3.313735  |
| 321 | 1 | 0 | 2.930281   | 3.362029   | 4.235353  |
| 322 | 1 | 0 | 2.968256   | 3.824382   | 2.530039  |
| 323 | 1 | 0 | 4.121256   | 2.642958   | 3.154298  |
| 324 | 1 | 0 | 4.625225   | 3.905645   | 5.785772  |
| 325 | 1 | 0 | 5.941960   | 5.031368   | 5.470050  |
| 326 | 1 | 0 | 6.000576   | 3.411480   | 4.784454  |
| 327 | 1 | 0 | 7.413281   | 5.668130   | 0.817558  |
| 328 | 1 | 0 | 7.350007   | 7.403618   | 1.103377  |
| 329 | 1 | 0 | 5.942909   | 6.580136   | 0.427938  |
| 330 | 1 | 0 | 8.070477   | 5.284598   | 3.325806  |

| 331 | 1 | 0 | 7.239206   | 6.226269  | 4.563944  |
|-----|---|---|------------|-----------|-----------|
| 332 | 1 | 0 | 8.142223   | 7.056107  | 3.302348  |
| 333 | 1 | 0 | 5.223830   | 7.158005  | 5.126552  |
| 334 | 1 | 0 | 3.907443   | 8.097145  | 4.449133  |
| 335 | 1 | 0 | 3.165036   | 5.762831  | 5.045951  |
| 336 | 1 | 0 | 4.670617   | 7.681330  | 2.163432  |
| 337 | 1 | 0 | 6.011495   | 8.345720  | 3.082970  |
| 338 | 1 | 0 | 9.800600   | 2.545121  | 3.708615  |
| 339 | 1 | 0 | 8.174411   | 3.140030  | 4.042673  |
| 340 | 1 | 0 | 8.754677   | 1.645439  | 4.801017  |
| 341 | 1 | 0 | 10.607643  | 4.147120  | 0.474206  |
| 342 | 1 | 0 | 9.238084   | 4.630086  | 1.488829  |
| 343 | 1 | 0 | 10.446026  | 3.507851  | 2.106914  |
| 344 | 1 | 0 | 7.968247   | 2.316181  | -1.263148 |
| 345 | 1 | 0 | 9.330582   | 3.432901  | -1.371797 |
| 346 | 1 | 0 | 7.825594   | 3.956317  | -0.618541 |
| 347 | 1 | 0 | 9.501744   | 0.717940  | -0.321948 |
| 348 | 1 | 0 | 10.891173  | 1.780163  | -0.168121 |
| 349 | 1 | 0 | 11.001430  | -0.213607 | 1.369507  |
| 350 | 1 | 0 | 11.026363  | 1.291679  | 2.268326  |
| 351 | 1 | 0 | 9.411728   | -0.272772 | 3.328123  |
| 352 | 1 | 0 | 8.601948   | -0.520089 | 1.787690  |
| 353 | 1 | 0 | 7.020599   | 0.192282  | 4.089117  |
| 354 | 1 | 0 | 6.148819   | 1.602677  | 3.506973  |
| 355 | 1 | 0 | 6.360314   | 0.196089  | 2.451108  |
| 356 | 1 | 0 | 2.705218 - | 10.066460 | 1.136287  |
| 357 | 1 | 0 | 1.189690   | -9.232495 | 0.814677  |
| 358 | 1 | 0 | 4.157882   | -9.396798 | 3.145441  |
| 359 | 1 | 0 | 4.299695   | -7.911041 | 2.220589  |

| 360 | 1 | 0 | 7.071299 | -7.191025 | -3.717689 |
|-----|---|---|----------|-----------|-----------|
| 361 | 1 | 0 | 5.733507 | -6.764815 | -4.777443 |
| 362 | 1 | 0 | 6.727554 | -5.493267 | -4.043641 |
| 363 | 1 | 0 | 3.310214 | -5.471119 | -2.365722 |
| 364 | 1 | 0 | 4.395137 | -4.530024 | -3.403249 |
| 365 | 1 | 0 | 3.628767 | -5.984447 | -4.024075 |
| 366 | 1 | 0 | 4.445970 | -8.301994 | -3.307730 |
| 367 | 1 | 0 | 3.850772 | -7.755993 | -1.746018 |
| 368 | 1 | 0 | 5.339994 | -9.674690 | -1.389782 |
| 369 | 1 | 0 | 6.635431 | -8.911001 | -2.292285 |
| 370 | 1 | 0 | 7.010444 | -8.590731 | 0.152578  |
| 371 | 1 | 0 | 5.393209 | -7.927244 | 0.325801  |
| 372 | 1 | 0 | 8.254530 | -7.284875 | -2.134448 |
| 373 | 1 | 0 | 8.632066 | -5.702256 | -1.462805 |
| 374 | 1 | 0 | 8.901062 | -7.164852 | -0.501075 |
| 375 | 1 | 0 | 7.671354 | -6.424637 | 1.373393  |
| 376 | 1 | 0 | 7.350378 | -4.851657 | 0.644283  |
| 377 | 1 | 0 | 6.017177 | -5.814153 | 1.294857  |
| 378 | 1 | 0 | 4.299159 | -2.266365 | -3.058750 |
| 379 | 1 | 0 | 4.757982 | -0.666462 | -2.474359 |
| 380 | 1 | 0 | 4.299429 | -0.894121 | -4.164777 |
| 381 | 1 | 0 | 2.222345 | 10.766536 | -2.222465 |
| 382 | 1 | 0 | 1.744271 | 11.275346 | -0.606054 |
| 383 | 1 | 0 | 0.640437 | 10.308926 | -1.598936 |
| 384 | 1 | 0 | 5.709553 | 9.390819  | -1.434708 |
| 385 | 1 | 0 | 4.423892 | 10.145855 | -2.357163 |
| 386 | 1 | 0 | 4.142169 | 8.614036  | 0.277609  |
| 387 | 1 | 0 | 3.928725 | 10.344117 | 0.073099  |
| 388 | 1 | 0 | 4.768134 | 7.154337  | -1.793120 |

| 389 | 1 | 0 | 4.962801  | 7.934962  | -3.355969 |
|-----|---|---|-----------|-----------|-----------|
| 390 | 1 | 0 | -3.794560 | 5.556662  | -3.320344 |
| 391 | 1 | 0 | -3.371220 | 5.492563  | -5.024983 |
| 392 | 1 | 0 | -5.018397 | 7.328470  | -4.505446 |
| 393 | 1 | 0 | -3.537495 | 7.970252  | -5.190610 |
| 394 | 1 | 0 | -4.300554 | 7.856590  | -2.229898 |
| 395 | 1 | 0 | -4.184317 | 9.316877  | -3.197568 |
| 396 | 1 | 0 | -2.727672 | 8.442724  | -0.495544 |
| 397 | 1 | 0 | -2.719644 | 10.054797 | -1.215033 |
| 398 | 1 | 0 | -1.193858 | 9.241165  | -0.886626 |
| 399 | 1 | 0 | 5.838584  | -3.517883 | -4.736936 |
| 400 | 1 | 0 | 7.216592  | -2.683341 | -5.446532 |
| 401 | 1 | 0 | 5.588249  | -2.080197 | -5.739239 |
| 402 | 1 | 0 | 8.562331  | -4.387463 | -3.291726 |
| 403 | 1 | 0 | 10.125234 | -3.552799 | -3.349093 |
| 404 | 1 | 0 | 8.903839  | -3.224801 | -4.573143 |
| 405 | 1 | 0 | 10.077602 | -2.691405 | -1.148540 |
| 406 | 1 | 0 | 8.692322  | -1.848559 | -0.452514 |
| 407 | 1 | 0 | 8.600051  | -3.583809 | -0.807903 |
| 408 | 1 | 0 | 8.707583  | -1.003113 | -5.159224 |
| 409 | 1 | 0 | 8.891548  | 0.613885  | -4.506108 |
| 410 | 1 | 0 | 10.185530 | -1.075086 | -3.155110 |
| 411 | 1 | 0 | 8.971056  | -0.229217 | -2.210320 |
| 412 | 1 | 0 | 6.740079  | 0.465393  | -3.326213 |
| 413 | 1 | 0 | 6.479438  | 0.103750  | -5.026697 |
| 414 | 1 | 0 | 2.962301  | 6.121100  | 3.337484  |
| 415 | 1 | 0 | 4.916029  | -3.716532 | 1.971935  |
| 416 | 1 | 0 | 5.903560  | -2.309313 | 1.770895  |
| 417 | 1 | 0 | -2.932038 | -6.006708 | -3.416257 |

| 418 | 1 | 0 | -3.159838 | -5.615925  | -5.113798 |
|-----|---|---|-----------|------------|-----------|
| 419 | 1 | 0 | -5.944132 | -4.912289  | -5.498891 |
| 420 | 1 | 0 | -6.020479 | -3.308410  | -4.778309 |
| 421 | 1 | 0 | -4.646052 | -3.761304  | -5.800120 |
| 422 | 1 | 0 | 0.494641  | 8.829048   | 0.548867  |
| 423 | 1 | 0 | 1.718100  | 9.861966   | 1.286205  |
| 424 | 1 | 0 | 1.966249  | 8.114421   | 1.218303  |
| 425 | 1 | 0 | 2.733618  | -8.439320  | 0.453394  |
| 426 | 1 | 0 | -3.942398 | -10.281209 | -0.168468 |

## References

1. C. Schade, W. Bauer and P. v. R. Schleyer, J. Organomet. Chem., 1985, 295, C25.

2. B. Conway, D. V. Graham, E. Hevia, A. R. Kennedy, J. Klett and R. E. Mulvey, *Chem. Commun.*, 2008, 2638.

- 3. G. M. Sheldrick, *Acta Cryst. A.*, 2008, A64, 112.
- 4. A. Spek, *Acta Crystallographica Section D*, 2009, **65**, 148.
- 5. S. H. Vosko, L. Wilk and M. Nusair, *Can. J. Phys.*, 1980, **58**, 1200.
- 6. C. Lee, W. Yang and R. G. Parr, *Phys. Rev. B*, 1988, **37**, 785.
- 7. A. D. Becke, J. Chem. Phys., 1993, 98, 5648.
- 8. P. J. Stephens, F. J. Devlin, C. F. Chablowski and M. J. Frisch, *J. Phys. Chem.*, 1994, **98**, 11623.
- 9. P. C. Hariharan and J. A. Pople, *Theor. Chim. Acta*, 1973, 28, 213.
- 10. W. J. Hehre, R. Ditchfield and J. A. Pople, J. Chem. Phys., 1972, 56, 2257.
- 11. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J.

Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, in *Gaussian 03, Revision C.02*, Gaussian, Inc., Wallingford, CT, 2004.

12. V. L. Blair, W. Clegg, R. E. Mulvey and L. Russo, *Inorg. Chem.*, 2009, 48, 8863.

13. W. Clegg, S. H. Dale, E. Hevia, L. M. Hogg, G. W. Honeyman, R. E. Mulvey and C. T. O'Hara, *Angew. Chem., Int. Ed.*, 2006, **45**, 6548.

14. H. Yang, Y. Li, M. Jiang, J. Wang and H. Fu, Chem. - Eur. J., 2011, 17, 5652.

15. H.-C. Shen, S. Pal, J.-J. Lian and R.-S. Liu, J. Am. Chem. Soc., 2003, 125, 15762.

16. M. Jean, J. Renault, P. Uriac, M. Capet and P. van de Weghe, Org. Lett., 2007, 9, 3623.

17. L. Di Bari, G. Pescitelli, F. Marchetti and P. Salvadori, J. Am. Chem. Soc., 2000, **122**, 6395.

18. J. Barluenga, M. Trincado, E. Rubio and J. M. González, Angew. Chem., Int. Ed., 2006, 45, 3140.