Supplementary Information

Transient Absorption Studies of the Photo-Claisen and Photo-Fries Rearrangements

Stephanie J. Harris,^a Daniel Murdock,^a Michael P. Grubb,^a Gregory M. Greetham,^b Ian P. Clark,^b Michael Towrie^b and Michael N. R. Ashfold.^{a*}

^a School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK

^b Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0QX, UK

Kinetic Modelling Equations

$$[\text{ExcitedState}](t) = X_1 e^{-k_1 t}$$
(1)

$$[PhO^{\bullet} + R^{\bullet}](t) = \frac{k_1 X_1}{k_2 - k_1 + k_3} \left(e^{-k_1 t} - e^{-(k_2 + k_3)t} \right)$$
(2)

[Recombination Products](t) =
$$\frac{k_2 X_1}{k_2 + k_3} - \frac{k_2 X_1 e^{-k_1 t}}{(k_2 - k_1 + k_3)} + \frac{k_1 k_2 X_1 e^{-(k_2 + k_3)t}}{(k_2 + k_3)(k_2 - k_1 + k_3)}$$
 (3)

$$[PhO_{e} + R_{e}](t) = \frac{k_{3}X_{1}}{k_{2} + k_{3}} - \frac{k_{3}X_{1}e^{-k_{1}t}}{(k_{2} - k_{1} + k_{3})} + \frac{k_{1}k_{3}X_{1}e^{-(k_{2} + k_{3})t}}{(k_{2} + k_{3})(k_{2} - k_{1} + k_{3})}$$
(4)

Observed radical signal =
$$[PhO^{\bullet} + R^{\bullet}](t) + [PhO_e + R_e](t)$$
 (5)

UV/Visible Spectra

Figure S1 – Normalised UV-visible spectra of $PhOC_3H_5$ in cyclohexane solution and in the vapour phase and $PhOC(O)CH_3$ in cyclohexane solution.

Table S1 – Calculated harmonic wavenumber and IR transition strengths of the fundamental vibrations of $PhOC_3H_5$ and associated substituted cyclohexadienones. All calculations were carried out using the Gaussian 09 computer package, structures were optimised and fundamentals calculated at the B3LYP/6-311+g(d,p) level of theory.

PhOC ₃ H ₅		2,4-(Allyl)cyclohexadienone		2,5-(Allyl)cyclohexadienone	
Wavenumber (cm ⁻¹)	Intensity (km/mol)	Wavenumber (cm ⁻¹)	Intensity (km/mol)	Wavenumber (cm ⁻¹)	Intensity (km/mol)
42.4	0.7	32.9	1.9	44.9	1.9
72.6	0.1	57.4	0.8	81.7	1
102.5	0.3	93.6	0.5	86.3	0.2
207.6	0.4	185.8	3	170.7	2
260.6	1	196.9	0.7	260.7	1.3
324.6	7.3	296.3	3.9	287.8	1.9
365.9	0.9	364.1	2.3	386.1	0.7
421	0	433.9	1.5	401	1.3
511.4	2.4	469.4	3.7	460.9	10.5
518.5	7.9	489.6	8.1	475.4	2.7
558.9	6.8	520.1	8.4	522.3	12.9
626	0.4	571.6	3.1	590	1.3
669.4	7.9	629.2	2.5	624.9	10.4
698.3	23.6	716.2	38.2	750.8	4.7
761.7	69.3	743.4	38.2	763.7	0.4
793.9	13.6	779.1	19.1	772.7	4.9
830	0.4	842.9	1.9	812.9	1.8
896.1	7.1	848.6	6.6	878	50.5
929.1	4	947.2	1.7	897.7	5.6
961.4	50.3	954.9	47.8	930.7	24.9
972.3	0.1	967.3	6.1	952.4	39.5
982.6	2.7	974.8	1.2	955.6	7.6
989.3	0.1	999.6	1.4	1009.3	4.3
1008.9	3.1	1009.1	2.4	1020.8	0.5
1027.9	43.9	1020.9	0.6	1025.6	9.2
1034.8	24.8	1030.1	20.1	1038	17.3
1051.9	57.5	1045.4	11.1	1052.3	5.2
1105.2	9.7	1122.7	7.3	1125.9	8.6
1173.2	1.5	1160.6	19.7	1159.9	7.2
1178	5.8	1196.6	12.7	1190.9	12.1
1196.4	30.5	1207.8	4.7	1209.8	0.5
1245.1	235.1	1247.9	20.7	1247.9	2.7
1294.3	53.7	1267.3	2.8	1272.8	26.2
1321	0.6	1310.9	4.8	1324.2	1.1
1338.3	52.7	1329.6	2.1	1349.5	2.4
1357.1	14.2	1356.9	11.3	1372.8	0.7
1386.7	2	1402	6.1	1414.6	19.2
1459.4	15.7	1445.9	6.3	1416.2	0.9
1484.4	0.9	1451.3	6	1454.5	2.8

1502	10.1	1492.2	7.9	1482.8	9.4
1522.4	117.8	1602.3	38.3	1650.8	2.6
1622.8	25	1684.2	29.3	1686	19.5
1640.1	87.7	1697.5	16.8	1702.3	8.5
1701.2	2.5	1719.2	255.5	1723.4	385.6
3016.3	30.3	3005.5	0.6	2953.7	7.3
3095.9	17.4	3022.2	16.1	3010.3	32.3
3127.4	13.2	3091.6	2.9	3060.5	16.9
3151.2	5.8	3123.2	14.8	3124	12.1
3164.2	2.1	3130.8	4.2	3132.7	3
3171.5	11.5	3154.1	2.5	3135.7	13.4
3188	21.4	3160.7	11.4	3142.3	10.5
3195.4	9.4	3181.8	19.3	3181.8	12.8
3205.5	6.3	3190.9	7.1	3183.5	0.9
3213.5	11.8	3211	14	3211.3	12

Table S2 – Calculated harmonic wavenumber and IR transition strengths of the fundamental vibrations of PhOC(O)CH₃ and associated substituted cyclohexadienones. All calculations were carried out using the Gaussian 09 computer package, structures were optimised and fundamentals calculated at the B3LYP/6-311+g(d,p) level of theory.

PhOC(O)CH ₃		2,4-(Acetyl)cycl	ohexadienone	ne 2,5-(Acetyl)cyclohexad	
Wavenumber	Intensity	Wavenumber	Intensity	Wavenumber	Intensity
(cm ⁻¹)	(km/mol)	(cm ⁻¹)	(km/mol)	(cm ⁻¹)	(km/mol)
24.7	1.3	35.3	6.8	34.6	8.7
63.4	1.4	52.3	1.5	55	6.7
91.2	1.9	154	2.3	120.7	0
116.2	3.9	170.8	1.3	171.8	2.2
263.5	2.1	192.8	7.4	183.5	0.9
327.4	1.6	310.7	1.4	326.2	5
394.1	1.6	339.8	2.3	362.3	1.7
419.3	0	453.9	1.7	384.9	1
505.9	11.9	464.6	0.9	454.9	11.1
539.7	10.3	490.8	9.2	508.8	0.9
597.3	3.8	536.2	11.9	563	20.8
629.6	0.1	568.8	13.3	579	2.2
671.3	5.1	592.8	9.4	593.4	2.5
698.4	34.8	651.5	23.7	643.8	37.8
758.4	29.8	747.7	64	769.1	6.6
820.9	21.2	789.1	7	777.6	0.3
837.7	1.2	810.4	10	810.9	2.4
904.3	20.7	868.4	3.7	879.4	75.7
938.7	31.8	948.3	6.8	908.5	32.1
977.5	0.3	977.7	1.1	969.3	6.2
997	0.1	991.8	6.1	986.1	19.7
1016.9	41.4	1003	4.5	1003.7	4.5
1021.9	31.7	1016.6	24.5	1022.6	0.1
1044.3	17.2	1022.4	0.1	1027.3	0.1
1063.8	6.4	1064.2	8	1067.9	2.7
1097	7.7	1155.7	123.4	1153.3	86.8
1180	8.4	1162.5	13.9	1163.5	45
1185	48.4	1192	5.2	1199.8	4.8
1211.3	554.7	1217.6	33.1	1244.1	19
1223.3	97.4	1238.2	26.3	1271.4	25
1329	1.6	1302.5	3.9	1341.5	1.7
1347.3	0.9	1383.7	41.6	1388	36
1400	53.9	1397	11.3	1408.4	13.9
1471.7	15.8	1441.5	5.7	1414.5	9.4
1476.6	10.9	1466.4	14.5	1460.2	15.6
1484.8	1.9	1470.4	22.1	1473.2	13.2
1520.5	53.4	1595.2	50.2	1645.7	2.1
1633.3	18.6	1677.9	47	1678.5	2.2
1637.9	10.4	1715.1	273.7	1721.5	519.8
1819.6	251.5	1790	279.8	1790.6	224.8

Electronic Supplementary Material (ESI) for Chemical Science This journal is O The Royal Society of Chemistry 2014

3051.4	1.7	3025.1	1.1	3020.7	1.3
3111.2	4.2	3033.3	1.8	3036.1	0.7
3157.6	6.8	3097.2	4	3096	3.6
3168.1	0.2	3145.6	8.5	3144.4	9.1
3177.3	8.7	3159.1	7.2	3145	6.6
3188.7	19.2	3171.3	1.8	3156	3
3196.9	6.9	3188.2	10.4	3184.6	8.5
3207.4	2	3193.5	5.7	3186.4	1.1

Table S3 – Comparison of the experimental wavenumbers of features observed in the TVA spectrum of PhOC₃H₅ in cyclohexane with the calculated harmonic wavenumber of the species to which they have been assigned (detailed in table S1). The numbers in brackets are the calculated values after application of a scaling factor of 0.98).

Experimental wavenumber /	Assigned species	Calculated wavenumber / cm ⁻¹
cm ⁻¹		
1415	\mathbf{S}_1	-
1495	S_0	1522 (1492)
1516	\mathbf{S}_1	-
1586	S_0	1622 (1590)
1598	S_0	1640 (1607)
1672	substituted cyclohexadienone	1719 (1685)/1723 (1689)
	(2,4/2,5)	

Table S4 - Comparison of the experimental wavenumbers of features observed in the TVA of $PhOC_3H_5$ in cyclohexane with the calculated harmonic wavenumber of the species to which they have been assigned (detailed in table S2). The numbers in brackets are the calculated values after application of a scaling factor of 0.98).

Experimental wavenumber / cm ⁻¹	Assigned species	Calculated wavenumber / cm ⁻¹
1546	-	-
1557	\mathbf{S}_1	-
1604	\mathbf{S}_{0}	1633 (1600)
1697	substituted cyclohexadienone (2,4/2,5)	1715 (1681)/1722 (1688)
1765	substituted cyclohexadienone $(2,4/2,5)$	1790 (1754)/1791(1755)
1803	\mathbf{S}_1	-
1820	\mathbf{S}_{0}	1820 (1784)
1864	acetyl radical	1864 ^a

^a Literature experimental value; B. M. Giuliano, I. Reva, L. Lapinski, and R. Fausto, J. Chem. Phys., 2012, 136, 024505.