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Experimental Details 
Materials.  
The synthesis of cyclometalated Ir(III) complexes were performed according to the method 

reported previously.1 The preparation of PDTE, PhDTE, MDTE, and CDTE was reported 
earlier.2 Commercially available chemicals were used without further purification unless 
otherwise stated. All glassware and magnetic stirring bars were thoroughly dried in a convection 
oven. CH2Cl2 and THF were purified by filtering over anhydrous alumina columns prior to use. 
Reactions were monitored using thin layer chromatography (TLC). Commercial TLC plates 
(silica gel 60 F254, Merck Co.) were developed and the spots were visualized under UV 
illumination at 254 or 365 nm. Silica gel column chromatography was performed using silica gel 
60 (particle size 0.063–0.200 mm, Merck Co.). 1H, 13C, and 19F NMR spectra referenced to 
deuterated solvents were collected with a Bruker Ultrashield 400 plus NMR spectrometer. High-

resolution mass spectra were recorded using a JEOL JMS−600W mass spectrometer. Elemental 
analysis was performed using an EA1110 or EA1112 (CE Instrument, Italy) for C, H, N, and S. 
Fresh Cu(ClO4)2 stock solutions were prepared in CH3CN (spectrophotometric grade, Aldrich) 
using Cu(ClO4)2·6H2O before experiments. Closed and open forms of DTE were prepared by 
photoirradiation of 1.0 mM DTE solutions (CH3CN, spectrophotometric grade) by using a hand-
held UV lamp (4W, VL-4.LC, VILBER LOURMAT) for 3 h and a Xenon light source (300 W, 
MAX-302, Asahi Spectra, Co.) equipped with a 500 nm cut-on filter (MJL Crystek Inc., 
500FH90-50) for 1 h, respectively.  

 

 

Scheme S1. Synthesis of ADTE. 

 
3,5-Dibromo-2-methylthiophene (1). N-Bromosuccinimide (NBS) (72.5 g, 407 mmol) was 

slowly added to a stirred glacial acetic acid (200 mL) containing 2-methylthiophene (20.0 g, 204 
mmol) at room temperature. After 1 h, the solution was neutralized with aqueous NaOH. The 
crude product was recovered by extraction with CH2Cl2 (100 mL, three times), dried over 
anhydrous MgSO4, and concentrated under reduced pressure. The desired product was isolated 
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by silica gel column chromatography with hexane to give transparent oil (46 g, 88%). 1H NMR 

(400 MHz, CDCl3) δ 2.33 (s, 3H), 7.26 (s, 1H). 13C NMR (100 MHz, CDCl3) δ 15.0, 108.6, 
108.9, 132.1, 136.2. HRMS (EI, positive) calcd for C5H4Br2S, 253.8400; found, 253.8400. 

2. Tetrakis(triphenylphosphine)palladium(0) (0.49 g, 0.42 mmol) and 4-
(dimethylamino)phenylboronic acid (5.0 g, 30 mmol) was added to a stirred THF solution (120 
mL) of 1 (6.5 g, 25 mmol). 2 N aqueous Na2CO3 (60 mL) was delivered to the reaction mixture, 

which was heated at 80 °C under an argon atmosphere. After 10 h, the solution was cooled down 
to room temperature and poured onto water. The organic layer was extracted with CH2Cl2 (100 
mL, three times), dried over anhydrous MgSO4, and concentrated. Silica gel column purification 
was performed with CH2Cl2:CH3OH (49:1, v/v), affording beige solid (6.5 g, 87%). 1H NMR 
(400 MHz, CDCl3) δ 2.39 (s, 3H), 2.98 (s, 6H), 6.70 (d, J = 8.9 Hz, 2H), 6.93 (s, 1H), 7.38 (d, J 
= 8.9 Hz, 2H). 13C NMR (100 MHz, CDCl3) δ: 14.7, 15.3, 40.4, 65.9, 76.7, 77.0, 77.33, 112.5, 
123.2, 126.3. 

ADTE. 2.5 M n-BuLi in hexane (11.8 mL, 30 mmol, Aldrich) was slowly added to a stirred 

anhydrous THF solution (150 mL) of 2 (7.6 g, 30 mmol) at −78 °C under an argon atmosphere. 
The solution was stirred at −78 °C for additional 0.5 h, and 2.0 mL of liquefied 
octafluorocyclopentene was injected to the solution using a gas-tight syringe. The reaction 
mixture was warmed to room temperature, and stirred overnight under an argon atmosphere. The 
solution was poured onto water, and the organic layer was recovered with CH2Cl2 (100 mL, 
three times), dried over anhydrous MgSO4, and concentrated through vacuum. Silica gel column 
purification with CH2Cl2:CH3OH (49:1, v/v) and subsequent reprecipitation in hexane afforded 

a greenish solid (0.36 g, 9.1%). 1H NMR (400 MHz, CDCl3) δ1.92 (s, 6 H), 2.97 (s, 6 H), 2.98 
(s, 6 H), 6.71 (d, J = 8.9 Hz, 4 H), 7.10 (s, 2 H), 7.41 (d, J = 8.8 Hz, 4 H). 13C NMR (100 MHz, 
CDCl3) δ 14.5, 30.9, 40.8, 112.5, 120.0, 121.9, 125.7, 126.6, 139.2, 142.9, 150.2, 206.9. 19F 

NMR (376 MHz, CDCl3) δ −131.87 (q, J = 5.6 Hz, 4F), −109.94 (t, J = 5.6 Hz, 2F). LRMS 
(FAB, positive, m-NBA) calcd for C31H28F6N2S2, 606; found 606. Anal. Calcd for 
C31H28F6N2S: C, 61.37; H, 4.65; N, 4.62; S, 10.57. Found: C, 61.38; H, 4.66; N, 4.64; S, 10.13. 

Steady-state UV−vis absorption measurements. UV−vis absorption spectra were collected 
on a Varian Cary 50 spectrophotometer at 298 K. 10 µM or 50 µM CH3CN solutions of DTEc 
and the Ir(III) complex were used for the measurements unless otherwise mentioned.  

Stopped-flow UV−vis absorption measurements. Kinetic measurements were performed on 
a Unisoku RSP-601 stopped-flow spectrometer equipped with a MOS-type highly sensitive 
photodiode array using a 10 mm quartz cuvette at 263 K, 273 K, and 283 K. Acetonitrile 

solutions of 50 µM DTEc and 200 µM Cu(ClO4)2 were prepared before the measurements. The 
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electrochemical generation of the radical cation of DTEc compounds was initiated by a single-

mixing technique, and the spectral changes in the region between 500−800 nm were acquired for 
the indicated periods at 100 ms interval. Spectra at wavelength > 800 nm could not be acquired 
due to the instrumental limit. The decay of the absorption band at 790 nm (PDTE), 791 nm 
(PhDTE), and 750 nm (MDTE, CDTE, and ADTE) after the induction periods were selected and 
fitted with a single exponential decay model. 

Photoluminescence lifetime measurements. Ar-saturated 50 µM solutions in CH3CN were 
used for determination of the phosphorescence lifetimes of the Ir(III) complexes. 
Phosphorescence decay traces were acquired based on time-correlated single-photon-counting 
(TCSPC) techniques using a FluoTime 200 instrument (PicoQuant, Germany). A 377 nm diode 
laser (PicoQuant, Germany) was used as the excitation source. The phosphorescence signals 
were obtained using an automated motorized monochromator. Phosphorescence decay profiles 
were analyzed (OriginPro 8.0, OriginLab) using a single exponential decay model.  

Determination of photoluminescence quantum yields (PLQYs). Phosphorescence spectra 
were obtained using a Quanta Master 40 scanning spectrofluorimeter at room temperature. 10 

µM solutions in CH3CN were thoroughly degassed through the repeated vacuum−freeze−thaw 
cycles prior to performing the measurements. The solutions were excited at the following 
wavelengths: 393 nm (IrdCF3), 359 nm (Irdfppy), 362 nm (Irfppy), 412 nm (Irpbt), 377 nm 
(Irppy), 434 nm (Irbtp), and 377 nm (IrOMe) throughout the phosphorescence measurements. 

The phosphorescence quantum yields (Φ) were determined relatively according to following 
standard equation: Φ = Φref × (I/Iref) × (Aref/A) × (n/nref)2, where A, I, and n are the absorbance at 
the excitation wavelength, integrated photoluminescence intensity, and the refractive index of 
the solvent, respectively. Fluorescein in an aqueous 0.1 N NaOH solution was used as the 
external reference (Φref = 0.79). The refractive index of the 0.1 N NaOH solution was assumed 
to be identical to the value for pure water.  

Nanosecond laser flash photolysis. An Ar-saturated CH3CN sample solution in a 1 cm × 1 

cm quartz cell was excited by a Nd:YAG laser (Continuum, SLII-10; 4−6 ns fwhm) at 426 nm 
with 5 mJ/pulse. Time courses of the transient absorption were measured by an InGaAs-PIN 
photodiode (Hamamatsu 2949) as a detector. The output from the photodiodes and a 
photomultiplier tube was recorded with a digitized oscilloscope (Tektronix, TDS3032; 300 
MHz). All experiments were performed at 298 K. 

Determination of quantum yields for cycloreversion (P(e)CQYC→O). The quantum yields 
for cycloreversion were determined by the standard ferrioxalate actinometry. A 0.0060 M 

K3[Fe(C2O4)3] solution served as the chemical actinometer. 500 µL of the K3[Fe(C2O4)3] 
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solution was transferred to a 1 cm × 1 mm quartz cell, and the solution was photoirradiated with 
a monochromatized beam at 410 nm or 420 nm for 20 s. Then same amount of 1 % 1,10-
phenanthroline in sodium acetate buffer solution (4.09 g CH3COONa dissolved in 18 mL of 0.5 
M H2SO4 and 32 mL of distilled water) were added and stored under dark for 1h. The 
absorbance change at 510 nm was recorded. Inserting the value to eq 1 returned the light 

intensity value of 8.3 × 10−10 einstein s−1 and 6.7 × 10−10 einstein s−1 at 410 nm and 420 nm, 
respectively:  

 

Light intensity (I0, einstein s−1) = (∆Abs(510 nm) ×V)/(Φ×11050 M−1 cm−1×∆t)    (1). 
 

In eq 1, ∆Abs(510 nm), V, Φ, and ∆t are the absorbance change at 510 nm, volume (L), the 
quantum yield (1.1) of the ferrioxalate actinometer at 410 nm or 420 nm,3 and photoirradiation 
time (s), respectively. A CH3CN solution containing 1.0 mM closed form of DTE and 0.20 mM 
photoredox catalyst was photoirradiated under the identical condition for 37 s. Change in the 
absorbance at the peak wavelength of the closed form of DTE was recorded, which was inserted 
to eq 2: 

 

Quantum yield (Φ) = (∆Abs(peak)×V)/(I0×(1−10−Aλ)×ε(peak)×∆t)               (2). 
                                                                           

In eq2, ∆A is the decrease in the absorbance of the peak wavelength of the closed form of DTE 
during the photoirradiation period, ∆t, V is the volume of the photoirradiated solution (L), 
ε(peak) is the molar absorption coefficient of the closed form of DTE (M−1 cm−1) at the peak 
wavelength, I0 are the light intensity obtained by eq 1 (einstein s−1), Aλ is the absorbance at the 
photoirradiation wavelength (mean value during the photoirradiation period), and ∆t is the 
photoirradiation time (s). 

Electrochemical Characterization. Cyclic voltammetry and differential pulse voltammetry 
experiments were carried out using a CHI630 B instrument (CH Instruments, Inc.) using a three-
electrode cell assembly. A Pt wire and a Pt microdisc were used as the counter and the working 
electrodes, respectively. A Ag/AgNO3 couple was used as a pseudo reference electrode. 
Measurements were carried out in Ar-saturated CH3CN (3 mL) using 0.10 M tetra-n-
butylammonium hexafluorophosphate (Bu4NPF6) as the supporting electrolyte at scan rates of 
100 mV/s (cyclic voltammetry) and 4.0 mV/s (differential pulse voltammetry). The 
concentration of the Ir(III) complex and DTE compounds was 1.0 mM. A ferrocenium/ferrocene 
reference was employed as the external reference. 
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DFT/TD-DFT calculations. Quantum chemical calculations based on density functional 
theory (DFT) were carried out using a Gaussian 09 program.4 Geometry optimization and single 

point calculations for DTEc and DTEc•+ compounds were performed using unrestricted Becke’s 
three parameter uB3LYP exchange-correlation functional5−7 and the 6-311+G(d,p) basis set. 
Frequency calculations were subsequently performed to assess stability of the convergence. For 
TD-DFT calculations, the unrestricted uB3LYP functional and the identical basis sets used for 
the geometry optimization were applied to the optimized geometry. The polarizable continuum 

model (C−PCM) with a parameter set for acetonitrile was applied to account for solvation effects. 
Twenty lowest singlet states were calculated and analyzed. Simulation of the UV-vis absorption 
spectra were performed by employing a GaussSum program.8 An N,N-trans structure was 
employed as the starting geometry of IrOMe. Ground state geometry optimization and single 
point calculations were performed using Becke’s three-parameter B3LYP exchange-correlation 

functional, the “double-ξ” quality LANL2DZ basis set for the Ir atom, and the 6−31+G(d,p) 
basis set for all other atoms. A pseudo potential (LANL2DZ) was applied to replace the inner 
core electrons of the Ir atom, leaving the outer core [(5s)2(5p)6] electrons and the (5d)6 valence 

electrons. The polarizable continuum model (C−PCM), parameterized for acetonitrile solvent, 
was applied during the geometry optimization step. Frequency calculations were subsequently 

performed to assess the stability of the convergence. For TD−DFT calculations, the unrestricted 
B3LYP functional and basis sets identical to those used for the geometry optimization were 

applied. C−PCM, parameterized for acetonitrile solvent, was applied to account for solvation 
effects. The twenty lowest triplet and singlet states were calculated and analyzed. AOMix 
program was employed to estimate the MLCT character.9,10 
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Figure S1. Differential pulse voltammograms of the Ir(III) complexes. Conditions: scan rate, 

0.4 mV/s; 1.0 mM Ir complex in an Ar-saturated CH3CN containing 0.10 M Bu4NPF6 supporting 

electrolyte; a Pt wire counter electrode and a Pt microdisc working electrode; a Ag/AgNO3 

couple for the pseudo reference electrode. 

 

Figure S2. Cyclic voltammograms (CV, blue) and differential pulse voltammograms (DPV, 

black) of ADTEo (a) and ADTEc (b). Conditions: scan rate, 100 mV/s and 0.4 mV/s for CV and 

DPV, respectively; 1.0 mM Ir complex in an Ar-saturated CH3CN containing 0.10 M Bu4NPF6 

supporting electrolyte; a Pt wire counter electrode and a Pt microdisc working electrode; a 

Ag/AgNO3 couple for the pseudo reference electrode. 
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Figure S3. UV−vis absorption spectra of the Ir(III) complexes (100 µM, CH3CN).  

 

 

Figure S4. UV−vis absorption spectra of the DTEc compounds (100 µM, CH3CN).  
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Figure S5. 1H NMR spectra (400 MHz, CD3CN) showing the photoelectrocatalytic 

cycloreversion of 2.0 mM PhDTEc by 420 nm photoirradiation of 0.20 mM IrOMe. 

 
Figure S6. Photoelectrocatalytic cycloreversion quantum yields (PeCQYC→O) for 1.0 mM 

PhDTEc in the presence of various concentrations (0.010−3.0 equiv) of IrOMe (Ar-saturated 

CH3CN solution). PeCQYC→O determination was performed in triplicate. 
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Figure S7. Plots of the photoelectrocatalytic cycloreversion quantum yields (PeCQYC→O) as a 

function of the inverse of the phosphorescence lifetimes (1/τobs) of the photoredox catalysts. 

 

 

Figure S8. Determination of the rate constants for photoinduced electron transfer (kPeT) from 

DTEc compounds to Irpbt (Ar-saturated CH3CN): a, PDTEc; b, MDTEc; c, CDTEc; d, ADTEc: 

Left panels, phosphorescence decay traces of 50 µM Irpbt in the presence of various 

concentrations (0−100 µM) of DTEc compounds after 377 nm nanosecond pulsed 

photoexcitation (λobs = 525 nm); right panels, plot of the electron transfer rate as a function of the 

DTEc concentration. The electron transfer rate was calculated by the relationship, electron 

transfer rate = 1/τ − 1/τ0, where 1/τ and 1/τ0 are the phosphorescence lifetimes of Irpbt in the 

presence and absence of the DTEc compounds, respectively.  
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Figure S9. Determination of the rate constants for photoinduced electron transfer (kPeT) from 

PDTEc to various Ir(III) complexes (Ar-saturated CH3CN): a, Irdfppy (λobs = 510 nm); b, IrdCF3 

(λobs = 499 nm); c, Irfppy (λobs = 545 nm); d, Irpbt (λobs = 525 nm); e, Irppy (λobs = 582 nm); f, 

Irbtp (λobs = 600 nm): Left panels, phosphorescence decay traces of 50 µM Ir(III) complex in the 

presence of various concentrations (0−100 µM) of PDTEc after 377 nm nanosecond pulsed 

photoexcitation; right panels, plot of the electron transfer rate as a function of the PDTEc 

concentration. The electron transfer rate was calculated by the relationship, electron transfer 

rate = 1/τ − 1/τ0, where 1/τ and 1/τ0 are the phosphorescence lifetimes of Ir(III) complexes in the 

presence and absence of the PDTEc, respectively.  
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Figure S10. Laser flash photolysis of 500 µM PDTEc of Ar-saturated CH3CN solutions after 

426 nm nanosecond pulsed photoexcitation of 100 µM Ir(III) complexes: a, Irdfppy; b, Irfppy; c, 

Irppy; d, Irbtp. Transient absorption spectra (left) and decay traces at 810 nm (right).  
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Figure S11. Laser flash photolysis of 500 µM PhDTEc of Ar-saturated CH3CN solutions after 

426 nm nanosecond pulsed photoexcitation of 100 µM Ir(III) complexes: a, IrdCF3; b, Irpbt; c, 

Irbtp. Transient absorption spectra (left) and decay traces at 810 nm (right).  
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Figure S12. Laser flash photolysis of 500 µM MDTEc of Ar-saturated CH3CN solutions after 

440 nm nanosecond pulsed photoexcitation of 100 µM Ir(III) complexes: a, Irdfppy; b, IrdCF3; c, 

Irfppy; d, Irpbt; e, Irbtp; f, IrOMe. Transient absorption spectra (left) and decay traces at 810 nm 

(right).  
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Figure S13. Laser flash photolysis of 500 µM CDTEc of Ar-saturated CH3CN solutions after 

440 nm nanosecond pulsed photoexcitation of 100 µM Ir(III) complexes: a, Irdfppy; b, IrdCF3; c, 

Irfppy; d, Irpbt; e, Irppy; f, Irbtp. Transient absorption spectra (left) and decay traces at 810 nm 

(right).  
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Figure S14. Laser flash photolysis of 500 µM ADTEc of Ar-saturated CH3CN solutions after 

426 nm nanosecond pulsed photoexcitation of 100 µM Ir(III) complexes: a, Irdfppy; b, IrdCF3; c, 

Irfppy; d, Irppy; e, Irbtp; f, IrOMe. Transient absorption spectra (left) and decay traces at 1000 

nm (right).  
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Figure S15. Plots of PeCQYC→O values vs −∆GBeT for photoelectrocatalytic cycloreversion of 

DTEc compounds by the Ir(III) complexes (1, IrOMe; 2, Irppy; 3, Irfppy; 4, Irpbt; 5, Irdfppy; 6, 

Irbtp; 7, IrdCF3) vs −∆GBeT.  

 

 

Figure S16. Plots of log kBeT vs −∆GBeT for photoelectrocatalytic cycloreversion of DTEc 

compounds by the Ir(III) complexes. Solid lines are fits to eq 1 shown in the main text. 

 

Electronic Supplementary Material (ESI) for Chemical Science
This journal is © The Royal Society of Chemistry 2014



 S19 

 

Figure S17. Determination of the rate constants for ring opening reaction (ko) of PhDTEc•+ at 

−10 °C (a) and 0 °C (b): left, stopped flow UV−vis absorption spectra (single mixing) of 50 µM 

PhDTEc after mixing with 4 equiv Cu(ClO4)2; right, decay traces of the 781 nm absorption band 

of PhDTEc•+. 
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Figure S18. Determination of the rate constants for ring opening reaction (ko) of PDTEc•+ at 

−10 °C (a), 0 °C (b), and 10 °C (c): left, stopped flow UV−vis absorption spectra (single mixing) 

of 50 µM PDTEc after mixing with 4 equiv Cu(ClO4)2; right, decay traces of the 791 nm 

absorption band of PDTEc•+. 
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Figure S19. Determination of the rate constants for ring opening reaction (ko) of MDTEc•+ at 

−10 °C (a), 0 °C (b), and 10 °C (c): left, stopped flow UV−vis absorption spectra (single mixing) 

of 50 µM MDTEc after mixing with 4 equiv Cu(ClO4)2; right, decay traces of the 750 nm 

absorption band of MDTEc•+. 
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Figure S20. Determination of the rate constants for ring opening reaction (ko) of CDTEc•+ at 

−10 °C (a), 0 °C (b), and 10 °C (c): left, stopped flow UV−vis absorption spectra (single mixing) 

of 50 µM CDTEc after mixing with 4 equiv Cu(ClO4)2; right, decay traces of the 750 nm 

absorption band of CDTEc•+. 
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Figure S21. Determination of the rate constants for ring opening reaction (ko) of ADTEc•+ at 

−10 °C (a), 0 °C (b), and 10 °C (c): left, stopped flow UV−vis absorption spectra (single mixing) 

of 50 µM ADTEc after mixing with 4 equiv Cu(ClO4)2; right, decay traces of the 750 nm 

absorption band of ADTEc•+. 
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Figure S22. Delayed photoluminescence emission of Irfppy by back electron transfer Ar-

saturated CH3CN solutions at 298 K. (a) Prompt photoluminescence spectra of 100 µM Irfppy in 

the absence (blue) and presence of 100 µM PDTEc (red) or 100 µM ADTEc (green) under the 

photoexcitation at 410 nm. Slit width = 0.75 mm × 0.75 mm. (b) Delayed photoluminescence 

spectra of 100 µM Irfppy in the absence (blue) and presence of 100 µM PDTEc (red) or ADTEc 

(sky blue) ca 10 s after exposure to the 410 nm photoirradiation (integration rate = 0.02 s/nm; 

baseline-corrected). Slit width = 5 mm × 5 mm. Slit width at the excitation compartment was kept 

identical throughout the measurements. 
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Figure S23. 1H NMR (CDCl3, 400 MHz) spectrum of 1. 

 
Figure S24. 1H NMR (CDCl3, 400 MHz) spectrum of 2. 
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Figure S25. 1H NMR (CDCl3, 400 MHz) spectrum of ADTE. 

 

Figure S26. 13C NMR (CDCl3, 100 MHz) spectrum of ADTE. 
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Figure S27. 19F NMR (CDCl3, 376 MHz) spectrum of ADTE. 

 

Table S1. The Rate Constants for Photoinduced Electron Transfer (kPeT, M−1 s−1) from DTEc 

Compounds to the Ir Complexes 

 PDTEc PhDTEc MDTEc CDTEc ADTEc 

Irpbt 4.25 × 109 5.61 × 109 6.27 × 109 8.12 × 109 9.33 × 109 
 

 Irdfppy IrdCF3 Irfppy Irpbt Irppy Irbtp IrOMe 

PDTEc 8.92 × 109 6.72 × 109 5.89 × 109 4.25 × 109 5.18 × 109 2.97 × 109 N.D.a 
aNot determined due to low phosphorescence intensity. 
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