Electronic Supplementary Information (ESI) for

A Kinetically Blocked 1,14:11,12-Dibenzopentacene: A Persistent Triplet Diradical of Non-Kekul é Polycyclic Benzenoid Hydrocarbons

Yuan Li,^{*a*} Kuo-Wei Huang,^{*b*} Zhe Sun,^{*a*} Richard D. Webster,^{*c*} Zebing Zeng,^{*a*} Wangdong Zeng,^{*a*} Chunyan Chi,^{*a*} Ko Furukawa,^{*,d} Jishan Wu^{*,a,e}

^aDepartment of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore; Fax: (+65) 6779 1691; E-mail: <u>chmwuj@nus.edu.sg</u>

^bKing Abdullah University of Science and Technology (KAUST), Division of Physical Science and Engineering and KAUST Catalysis Center, Thuwal 23955-6900, Kingdom of Saudi Arabia

^cDivision of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore

^dCenter for Instrumental Analysis, Institute for Research Promotion, Niigata University, 8050 ikarashi 2-no-cho, nishi-ku, Niigata 950-8050, Japan; E-mail: <u>kou-f@chem.sc.niigata-u.ac.jp</u>

^eInstitute of Materials Research and Engineering, A*STAR, 3 Research Link, Singapore, 117602

Table of Contents

1.	<i>IT-T</i> curve of the monoradical generated by the oxidation of 9 by <i>p</i> -chloranilS2
2.	Absorption spectrum of dianion 9 ² ······S2
3.	Concentration dependent <i>IT-T</i> curves for DP-Mes S3
4.	DFT calculation details ·····S4
5.	Mass spectrum of the DP-Mes solution at room temperature ······S13
6.	ReferencesS13
7.	Appendix: NMR spectra and HR mass spectra of new compounds

1. *IT-T* curve of the monoradical generated by the oxidation of 9 by *p*-chloranil

The ESR signal intensity *I* was estimated by using the pulsed-ESR technique. Fig. S1 shows the temperature dependence of *IT* values at 4-40 K, where *T* denotes the temperature. *I* is proportional to the magnetic susceptibility χ . Namely, *IT* means χT value. It was found that the *IT* value decrease as the temperature is lowered. This behavior indicates an intermolecular antiferromgnetic spin coupling *via* dimerization process at low temperature. The exchange interaction $J/k_{\rm B}$ was estimated to be -12.0 ± 0.8 K based on the singlet-triplet model.

Fig. S1. Temperature dependence of *IT* value for the oxidation product of **9** with *p*-chloranil in toluene. The blue line denotes the calculated *IT* value based on singlet-triplet model using BB equation.

2. Absorption spectrum of dianion 9²⁻

Fig. S2. Absorption spectrum of 9^{2-} after treatment of 9 with lithium diisopropylamide (LDA) in 2-methyl tetrahydrofuran (2-Me-THF) at -78 °C for 30 min.

3. Concentration dependent *IT-T* curves for DP-Mes

The concentration dependent ESR measurements were done by a dilution method. The *in situ* generated triplet diradical solution at -78 °C starting from 8 mM of precursor **9** (denoted as "1 conc.") was carefully diluted by 1/2 (denoted as "1/2 conc.") and 1/3 (denoted as "1/3 conc.") by adding chilled anhydrous 2-Me-THF (-78 °C) in an ESR tube under nitrogen protection. Then the solutions with different concentrations were subjected to VT ESR measurements at low temperature. Upon the dilution, there was no obvious change of the ESR spectrum, indicating that there was no significant decomposition of the triplet diradical during the operation. The temperature dependent *IT* values were shown in Fig. S3. The comparison of the absolute signal intensity is difficult, because the measurements error includes amount of sample and signal-to-noise ratio. Therefore, we compared the normalized signal intensity at 70 K on each concentrations.

Fig. S3. Temperature dependence of observed *IT* value for the **DP-Mes** at different concentrations. The *in situ* generated diradicals solution was carefully diluted by 1/2 (1/2 conc.) and 1/3 (1/3 conc.) of the original concentration (1 conc.) in an ESR tube at -78 °C.

4. DFT calculations details

Density functional theory calculations for **DP-Mes** were employed with Gaussian 09 package,¹ utilizing the UCAM-B3LYP level of theory with Pople basis set 6-31G* in the gas phase.

Triplet diradical:

Mulliken atomic spin densities:

1	С	-0.260895
2	С	0.560394
3	С	-0.206457
4	С	-0.279394
5	С	0.176896
6	С	0.322586
7	С	0.420333
8	Η	0.009869
9	С	-0.279394
10	Η	-0.016644
11	С	0.560395
12	С	0.322587
13	С	-0.250168
14	С	-0.260895
15	С	0.176896
16	С	-0.206458
17	С	0.365324
18	Η	-0.015706
19	С	-0.170391

20	С	0.342589
21	Η	-0.015583
22	С	-0.209480
23	Η	0.007935
24	С	0.365325
25	Н	-0.015706
26	С	-0.170392
27	С	-0.209480
28	H	0.007935
29	C	0 342589
30	н	-0.015583
31	C	0.257502
32	C	-0.160659
32	ч	0.006454
37	C	0.000+5+
25	C	0.228303
26	C	0.237303
30 27		-0.100000
31	П	0.000454
38	C	0.228566
39 40	C	-0.021735
40	H	0.012762
41	H	0.0048//
42	H	0.002783
43	C	-0.021735
44	Н	0.004877
45	H	0.002783
46	Н	0.012762
47	C	-0.050731
48	С	0.002571
49	С	0.015097
50	С	0.015018
51	С	-0.002130
52	С	-0.002131
53	Η	0.000750
54	Η	0.000768
55	С	-0.050731
56	С	0.002572
57	С	0.015018
58	С	0.015098
59	С	-0.002132
60	С	-0.002130
61	Η	0.000768
62	Η	0.000750
63	С	-0.000185
64	Η	0.000127
65	Н	0.000024
66	Н	0.000033
67	С	-0.000398
68	Н	0.000418
69	Н	0.000158

70	Н	0.000009
71	С	0.000003
72	Η	0.000075
73	Η	0.000200
74	Η	0.000394
75	С	-0.000185
76	Η	0.000024
77	Η	0.000034
78	Η	0.000127
79	С	0.000003
80	Η	0.000200
81	Η	0.000394
82	Η	0.000075
83	С	-0.000398
84	Η	0.000009
85	Η	0.000418
86	Η	0.000158
87	Н	-0.010135
88	Η	-0.010135

Sum of Mulliken	atomic spin	densities =	2.000
Sum of Muniken	atomic spin	densities –	2.000

 $000 < S^{**2} = 2.2853$

Sum of electronic and zero-point Energies=	-1851.448711
Sum of electronic and thermal Energies=	-1851.407519
Sum of electronic and thermal Enthalpies=	-1851.406575
Sum of electronic and thermal Free Energies=	-1851.524191

С	3.67781300	-0.45873800	-0.14162800
С	2.45131000	0.25056500	-0.11445000
С	2.49098000	-2.59399300	0.39412600
С	1.23242500	-0.46373200	0.02442600
С	3.69861800	-1.87170100	0.13178100
С	1.22693700	-1.89157000	0.16430700
С	-0.00000100	0.20580000	0.00002900
Н	0.00005500	-3.61524000	0.00001600
С	-1.23240700	-0.46376800	-0.02438000
Н	-0.00001700	1.28859200	0.00003400
С	-2.45131600	0.25049300	0.11448100
С	-1.22687600	-1.89160500	-0.16427200
С	0.00004000	-2.54383600	0.00001800
С	-3.67780000	-0.45884400	0.14162600
С	-3.69855900	-1.87180800	-0.13178600
С	-2.49089400	-2.59406400	-0.39410800
С	4.89264000	0.20774300	-0.39692600
Н	4.86732200	1.27273500	-0.59645700
С	4.95988300	-2.52805600	0.17953200
С	6.15037900	-1.81502000	-0.10871900
Н	7.09511300	-2.34999800	-0.08313400
С	6.10972300	-0.46826700	-0.39572700

Н	7.02593600	0.07408000	-0.60775600
С	-4.89265100	0.20760100	0.39689900
Н	-4.86736700	1.27259300	0.59643500
С	-4.95980300	-2.52819900	-0.17956400
С	-6.10971500	-0.46844300	0.39567300
Н	-7.02594800	0.07387700	0.60768200
С	-6.15032500	-1.81519700	0.10866300
Н	-7.09504400	-2.35020300	0.08305800
С	2.59392200	-3.91820600	0.87639600
С	3.85596600	-4.53497000	0.91803000
Н	3.91285900	-5.56061100	1.27198700
С	5.00532500	-3.88698700	0.54622600
С	-2.59378800	-3.91827400	-0.87639000
С	-3.85581400	-4.53507800	-0.91804900
Н	-3.91267000	-5.56071700	-1.27201400
С	-5.00519800	-3.88713100	-0.54625900
С	-1.45344700	-4.73132600	-1.44165300
Н	-0.91881300	-5.30637700	-0.67638700
Н	-0.71999500	-4.11262900	-1.96312600
Н	-1.84764100	-5.45775700	-2.15764200
С	1.45361300	-4.73130000	1.44166300
Н	0.72014800	-4.11263100	1.96315100
Н	1.84783900	-5.45772700	2.15763800
Н	0.91898700	-5.30635800	0.67639700
С	-2.43131800	1.73500600	0.27922600
C	-2.36543300	4.52981600	0.57506100
С	-2.30491100	2.30413700	1.55620800
С	-2.53139400	2.56432800	-0.84873400
C	-2.49777600	3.94628900	-0.68119600
C	-2.27739200	3.69087600	1.68177300
Н	-2.57446300	4.58373100	-1.55897100
Н	-2.18080200	4.12657000	2.67351100
С	2.43126600	1.73507800	-0.27919000
C	2.36528000	4.52988500	-0.57503200
C	2.53135600	2.56439400	0.84874700
C	2.30479500	2.30421000	-1.55618800
C	2.27722300	3.69092700	-1.68175600
C	2.49769200	3.94637300	0.68120200
Н	2.18058600	4.12661700	-2.67349500
Н	2.57438800	4.58381800	1.55897000
C	2.28858700	6.02660200	-0.72909300
H	1.25054400	6.37557200	-0.66949400
H	2.68487700	6.35094600	-1.69562900
Н	2.85003900	6.53932200	0.05722000
C	2.66886400	1.97361300	2.22873100
H	2,73549000	2.75963500	2.98529500
H	3,56367900	1.34805500	2.30903600
H	1.81239100	1.33770600	2.47616900
C	2.19924700	1.43269900	-2.78171300
Ĥ	3.06767700	0.77349600	-2.88065100

Н	2.12968500	2.03997900	-3.68782600
Н	1.31463600	0.78888800	-2.73669400
С	-2.28881400	6.02654800	0.72902200
Н	-2.68155300	6.35057900	1.69710100
Н	-2.85349000	6.53913400	-0.05507800
Н	-1.25116500	6.37598800	0.66545100
С	-2.19934300	1.43264800	2.78174600
Н	-2.13003300	2.03994300	3.68786900
Н	-1.31457900	0.78903500	2.73684600
Н	-3.06763700	0.77325200	2.88056800
С	-2.66885400	1.97352100	-2.22871100
Н	-1.81243600	1.33750900	-2.47606100
Н	-2.73533500	2.75952800	-2.98530300
Н	-3.56373500	1.34806100	-2.30906600
Н	-5.96375100	-4.39671200	-0.57868500
Н	5.96389300	-4.39654000	0.57863100

Singlet diradical

Mulliken atomic spin densities:

		1
1	С	-0.235569
2	С	0.525514
3	С	-0.122084
4	С	-0.087157
5	С	0.117220
6	С	0.020143
7	С	0.000018
8	Η	0.000000

9	С	0.087148
10	Η	-0.000001
11	С	-0.525487
12	С	-0.020157
13	С	0.000002
14	С	0.235562
15	С	-0.117223
16	С	0.122098
17	Ċ	0.398109
18	H	-0.017222
19	C	-0.152916
20	C	0.152710
20	с ц	0.017445
21		-0.017443
22		-0.218340
23	П	0.008093
24	C	-0.398114
25	H	0.017222
26	С	0.152929
27	С	0.218354
28	Η	-0.008094
29	С	-0.382025
30	Η	0.017445
31	С	0.192768
32	С	-0.125812
33	Н	0.005083
34	С	0.174595
35	С	-0.192793
36	C	0.125829
37	H	-0.005083
38	C	-0 174619
30	C	0.016029
<i>1</i> 0	ч	-0.010022
40 //1	и П	-0.007575
41	н Ц	-0.003332
42	П	-0.002030
43	C II	-0.016026
44	H	0.003531
45	H	0.002031
46	H	0.009592
47	С	0.047775
48	С	-0.002308
49	С	-0.014673
50	С	-0.014378
51	С	0.002095
52	С	0.002079
53	Η	-0.000745
54	Η	-0.000764
55	С	-0.047779
56	С	0.002308
57	С	0.014380
58	Ċ	0.014675

59	С	-0.002080
60	С	-0.002096
61	Н	0.000764
62	Н	0.000745
63	С	-0.000165
64	Н	0.000114
65	Η	0.000024
66	Η	0.000025
67	С	-0.000455
68	Η	0.000422
69	Η	0.000034
70	Η	0.000117
71	С	-0.000607
72	Η	0.000072
73	Η	0.000191
74	Η	0.000221
75	С	0.000165
76	Η	-0.000114
77	Η	-0.000024
78	Η	-0.000025
79	С	0.000607
80	Η	-0.000191
81	Η	-0.000221
82	Η	-0.000072
83	С	0.000455
84	Η	-0.000117
85	Η	-0.000422
86	Η	-0.000034
87	Η	0.007640
88	Η	-0.007639

Sum of Mulliken atomic spin densities = 0.0000

0.00000 <\$**2>= 1.11527

Sum of electronic and zero-point Energies=	-1851.440236
Sum of electronic and thermal Energies=	-1851.399061
Sum of electronic and thermal Enthalpies=	-1851.398116
Sum of electronic and thermal Free Energies=	-1851.514791

С	3.67313500	-0.45292100	-0.14151900
С	2.45822700	0.25064200	-0.10353200
С	2.49663600	-2.59852300	0.37878400
С	1.22680700	-0.47430200	0.03048700
С	3.69787900	-1.87338200	0.11796000
С	1.22528900	-1.89338500	0.16042100
С	-0.00000500	0.19364300	-0.00002700
Н	-0.00012900	-3.61844400	-0.00003600
С	-1.22686400	-0.47421300	-0.03052800
Н	0.00003700	1.27653400	-0.00002600
С	-2.45822900	0.25082500	0.10349600
С	-1.22545200	-1.89330100	-0.16045800

С	-0.00010500	-2.54726400	-0.00002400
С	-3.67318900	-0.45264200	0.14148800
С	-3.69804500	-1.87310300	-0.11798200
С	-2.49685800	-2.59834600	-0.37879800
С	4.89433700	0.21888400	-0.39278000
Н	4.86674300	1.28560500	-0.58194000
С	4.96165300	-2.52592200	0.15832100
С	6.15232300	-1.80665300	-0.12637900
Н	7.09766700	-2.34060200	-0.10778400
С	6.10920200	-0.45557700	-0.40000800
Н	7.02499700	0.08910200	-0.60805900
С	-4.89433700	0.21926200	0.39274900
Н	-4.86665700	1.28598200	0.58190100
С	-4.96186900	-2.52554000	-0.15832900
С	-6.10925700	-0.45510000	0.39998500
Н	-7.02500600	0.08965300	0.60803500
С	-6.15248300	-1.80617700	0.12636600
Н	-7.09786800	-2.34005400	0.10777700
С	2.60268600	-3.92560500	0.85082600
С	3.86468900	-4.53905600	0.88451900
Н	3.92583500	-5.56676800	1.23164100
С	5.01202800	-3.88462000	0.51378800
С	-2.60301700	-3.92543000	-0.85080300
С	-3.86507300	-4.53878100	-0.88448500
Н	-3.92629500	-5.56649700	-1.23158100
С	-5.01235700	-3.88424400	-0.51377200
С	-1.46633000	-4.74573700	-1.41378400
Н	-0.92770700	-5.31250000	-0.64529700
Н	-0.73588300	-4.13414900	-1.94757400
Н	-1.86574500	-5.47991800	-2.11881600
С	1.46592900	-4.74579700	1.41383800
Н	0.73549600	-4.13412400	1.94754500
Н	1.86528200	-5.47993600	2.11895100
Н	0.92731000	-5.31260400	0.64538100
С	-2.42732700	1.73564100	0.25806700
С	-2.33471800	4.53170800	0.53393300
С	-2.30168500	2.31288200	1.53172400
С	-2.51233500	2.55760300	-0.87634800
С	-2.46582100	3.94046400	-0.71870800
C	-2.26098500	3.70001200	1.64729700
Н	-2.53116100	4.57216400	-1.60152000
Н	-2.16495300	4.14199400	2.63632300
С	2.42744900	1.73546400	-0.25807700
С	2.33513900	4.53154500	-0.53389300
С	2.51252000	2.55739500	0.87635500
С	2.30189200	2.31274200	-1.53172700
С	2.26134400	3.69987700	-1.64727600
С	2.46615200	3.94026400	0.71873900
Н	2.16539200	4.14188700	-2.63629700
Н	2.53153700	4.57194200	1.60156300

С	2.24474700	6.02846500	-0.67821700
Н	1.20142900	6.36485100	-0.64319800
Н	2.66193100	6.36521500	-1.63168900
Н	2.77970500	6.54127600	0.12623500
С	2.64941700	1.95731700	2.25236700
Н	2.69079100	2.73761700	3.01663400
Н	3.55735200	1.35137800	2.33611100
Н	1.80515000	1.29995800	2.48537200
С	2.21292400	1.44889400	-2.76393400
Н	3.09938800	0.81595000	-2.87431500
Н	2.11991000	2.06151700	-3.66433400
Н	1.34757800	0.77946900	-2.71855900
С	-2.24416100	6.02861600	0.67827900
Н	-1.20081400	6.36489700	0.64316500
Н	-2.66122300	6.36538800	1.63179600
Н	-2.77914700	6.54149700	-0.12611200
С	-2.21277900	1.44900400	2.76391400
Н	-2.11957000	2.06160000	3.66431300
Н	-1.34757200	0.77940500	2.71846200
Н	-3.09936200	0.81623700	2.87436400
С	-2.64930400	1.95756300	-2.25237000
Н	-1.80503100	1.30023600	-2.48544400
Н	-2.69074300	2.73788500	-3.01661100
Н	-3.55722500	1.35160000	-2.33607800
Н	-5.97226300	-4.39165700	-0.54044300
Н	5.97189100	-4.39211500	0.54047200

5. Mass spectrum of DP-Mes solution at room temperature

Fig. S4. MALDI-TOF mass spectrum of the products when the solution of **DP-Mes** was briefly warmed up to room temperature.

6. References

 Gaussian 09; Revision A.2; Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.;

Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar,

S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.;

Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.

E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R.

L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J.

J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.;

Cioslowski, J.; Fox, D. J.; Gaussian, Inc., Wallingford CT, 2009.

7. Appendix: NMR spectra and HR mass spectra of new compounds

Fig. S5. ¹H NMR spectrum of 3 (300MHz, CDCl₃, rt)

Fig. S6. ¹³C NMR spectrum of **3** (125MHz, CDCl₃, rt)

Fig. S13. ¹H NMR spectrum of **8** (500MHz, CDCl₃, rt)

/				20204	1.22	
			Mass	(ppm)	equiv.	
474.1832	5418415.0	100.00	474.1831	0.12	20.0	C32 H26 O4

Fig. S17. HR-MS (EI) of compound 3

m/z= 410.00-410.39

m/z	Intensity	Relative	Theo.	Delta	RDB	Composition
			Mass	(ppm)	equiv.	
410.1308	1812168.0	100.00	410.1307	0.40	22.0	C30 H18 O2

Fig. S18. HR-MS (EI) of compound 4

31/07/2013 09:29:31 AM Iy-02

A:\31JAN13_EIHR\0131wu-ly02-c1-AV EIHR

T: + c Full ms [400.18-434.98]

m/z= 418.06-418.35

m/z	Intensity	Relative	Theo.	Delta	RDB	Composition
			Mass	(ppm)	equiv.	
418.1924	576821.0	100.00	418.1933	-2.07	18.0	Сзо Н26 О2

Fig. S19. HR-MS (EI) of compound 6

31/01/2013 04:46:50 PM ly-03

A:\31JAN13_EIHR\0131wu-ly03-c1-AV EIHR

T: + c Full ms [400.14-434.98] m/z= 413.97-414.33

m/z	Intensity	Relative	Theo.	Delta	RDB	Composition
			Mass	(ppm)	equiv.	
414.1611	3035843.0	100.00	414.1620	-2.19	20.0	C 30 H 22 O 2

Fig. S20. HR-MS (EI) of compound 7

m/z	Intensity	Relative	Theo.	Delta	RDB	Composition
			Mass	(ppm)	equiv.	
654.3495	1988868.0	100.00	654.3498	-0.36	26.0	C48 H46 O2

Fig. S21. HR-MS (EI) of compound 8

m/z	Intensity	Relative	Theo.	Delta	RDB	Composition
			Mass	(ppm)	equiv.	
618.3274	7759725.0	100.00	618.3287	-1.99	28.0	C 48 H 42

Fig. S22. HR-MS (EI) of compound 9