Supporting Information for

Ir-Catalyzed Intermolecular Asymmetric Allylic Dearomatization Reaction of Indoles

Xiao Zhang, Long Han, and Shu-Li You*

State Key Laboratory of Organometallic Chemistry,
Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences
345 Lingling Lu, Shanghai 200032, China

E-mail: slyou@sioc.ac.cn

Table of Contents

General methods	S2-3
Experimental details and characterization data	S3-14
Copies of NMR spectra and HPLC chromatographs	S14-65

General methods. Unless stated otherwise, all reactions were carried out in flame-dried glassware under a dry argon atmosphere. All solvents were freshly distilled according to standard methods prior to use.

 1 H and 13 C NMR spectra were recorded on a Varian instrument (300 MHz and 75 MHz, 400 MHz and 100 MHz, respectively) and internally referenced to tetramethylsilane signal or residual protio solvent signals. 19 F NMR spectra were recorded on Varian instrument (282 MHz and 376 MHz, respectively) and referenced relative to CFCl₃. Data for 1 H NMR are recorded as follows: chemical shift (δ, ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet or unresolved, br = broad singlet, coupling constant(s) in Hz, integration). Data for 13 C NMR are reported in terms of chemical shift (δ, ppm).

General procedure for iridium-catalyzed intermolecular asymmetric allylic dearomatization reaction of indoles:

A flame-dried Schlenk tube was cooled to room temperature and filled with argon. To this flask were added $[Ir(COD)Cl]_2$ (4.0 mg, 0.006 mmol, 3 mol%), (S_a)-1a (7.6 mg, 0.015 mmol, 7.5 mol%), indole derivative 2 (0.20 mmol, 100 mol%), allylic alcohol (0.60 mmol, 300 mol%), Fe(OTf)₂ (70.8 mg, 0.20 mmol, 100 mol%), ether (2 mL). The reaction mixture was stirred at room temperature. After the reaction was complete (monitored by TLC), the mixture was quenched with water, and extracted with ether. The combined organic layers were washed with brine, dried over Na₂SO₄, and filtered. The solvent was removed under reduced pressure, and the residue was

purified by silica gel column chromatography (PE/EA = 10/1) to afford the desired product **4**. The characterization data of the products are summarized below.

4aa^[1]. Yellow oil, 97% yield, 94% ee [Daicel Chiralpak AD-H (0.46 cm x 25 cm), *n*-hexane/2-propanol = 100/1, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 11.42 min, t (minor) = 14.76 min]; [α]_D¹⁹ = +107.5 (c = 1.0, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ 2.12-2.25 (m, 2H), 2.62 (dd, J = 8.4, 13.8 Hz, 1H), 2.79 (dd, J = 6.0, 13.8 Hz, 1H), 3.48-3.57 (m, 1H), 3.96-4.01 (m, 1H), 4.07 (d, J = 5.4 Hz, 2H), 5.36 (s, 1H), 6.03-6.21 (m, 2H), 6.42-6.57 (m, 3H), 6.69 (t, J = 7.5 Hz, 1H), 7.09 (t, J = 6.9 Hz, 2H), 7.21-7.27 (m, 10H).

4ab. Yellow oil, 92% yield, 95% ee [Daicel Chiralpak AD-H (0.46 cm x 25 cm), n-hexane/2-propanol = 100/1, v = 1.0 mL·min⁻¹, λ = 254 nm, t (major) = 18.93 min, t (minor) = 39.01 min]; [α]_D²⁰ = +97.4 (c = 1.0, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ 2.15-2.19 (m, 2H), 2.58 (dd, J = 9.0, 13.8 Hz, 1H), 2.80 (dd, J = 5.1, 13.8 Hz, 1H), 3.48-3.56 (m, 1H), 3.95-4.05 (m, 3H), 5.33 (s, 1H), 5.96-6.15 (m, 2H), 6.33-6.45 (m, 3H), 6.70 (t, J = 7.5 Hz, 1H), 6.98 (d, J = 8.4 Hz, 2H), 7.06-7.12 (m, 4H), 7.32-7.36 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 40.3, 41.8, 46.3, 56.4, 66.9, 100.9, 105.3, 117.5, 120.9, 121.0, 123.2, 126.5, 126.9, 127.6, 127.7, 128.3, 130.3, 131.5, 131.6,

131.7, 132.0, 135.6, 136.0, 150.1. IR (thin film): v_{max} (cm⁻¹) = 2963, 1261, 1091, 1019, 865, 799, 689, 664; HRMS (ESI) calcd for $C_{28}H_{26}Br_2NO$ [M+H]⁺: 550.0376. Found: 550.0356.

4ac. Yellow oil, 77% yield, 94% ee [Daicel Chiralpak AD-H (0.46 cm x 25 cm), n-hexane/2-propanol = 100/1, $v = 1.0 \text{ mL} \cdot \text{min}^{-1}$, $\lambda = 254 \text{ nm}$, t (major) = 10.20 min, t (minor) = 16.05 min]; [α]_D²¹ = +109.9 (c = 1.0, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ 2.09-2.20 (m, 2H), 2.30 (s, 3H), 2.32 (s, 3H), 2.59 (dd, J = 9.0, 13.8 Hz, 1H), 2.75 (dd, J = 6.0, 13.8 Hz, 1H), 3.47-3.56 (m, 1H), 3.97 (t, J = 7.2 Hz, 1H), 4.05 (d, J = 5.7 Hz, 2H), 5.35 (s, 1H), 5.97-6.15 (m, 2H), 6.37-6.53 (m, 3H), 6.67 (t, J = 7.5 Hz, 1H), 7.01-7.17 (m, 10H). ¹³C NMR (100 MHz, CDCl₃) δ 21.1, 40.0, 41.8, 46.6, 56.4, 66.9, 101.2, 105.4, 117.3, 123.3, 124.7, 124.9, 126.0, 126.2, 128.2, 129.1, 129.2, 131.5, 132.5, 132.8, 134.0, 134.5, 136.8, 137.0, 150.2. IR (thin film): v_{max} (cm⁻¹) = 2963, 1260, 1088, 1018, 865, 797, 702, 664; HRMS (ESI) calcd for C₃₀H₃₂NO [M+H]⁺: 422.2484. Found: 422.2470.

4ad. Yellow oil, 93% yield, 91% ee [Daicel Chiralpak AD-H (0.46 cm x 25 cm), n-hexane/2-propanol = 100/1, $v = 1.0 \text{ mL} \cdot \text{min}^{-1}$, $\lambda = 220 \text{ nm}$, t (major) = 7.11 min, t (minor) = 9.20 min]; $[\alpha]_D^{23} = +68.1$ (c = 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ

0.88-0.90 (m, 12H), 1.78-1.89 (m, 2H), 2.11-2.23 (m, 2H), 2.42-2.45 (m, 4H), 2.61 (dd, J = 8.4, 14.0 Hz, 1H), 2.73-2.78 (m, 1H), 3.49-3.55 (m, 1H), 3.95-3.99 (m, 1H), 4.06 (d, J = 7.2 Hz, 2H), 5.36 (s, 1H), 6.02-6.18 (m, 2H), 6.40-6.45 (m, 2H), 6.53 (d, J = 16.0 Hz, 1H), 6.66-6.70 (m, 1H), 7.00-7.10 (m, 6H), 7.15-7.20 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 22.34, 22.36, 30.2, 40.0, 41.8, 45.1, 46.6, 56.4, 66.9, 101.2, 105.4, 117.3, 123.3, 124.8, 124.9, 125.9, 126.1, 128.2, 129.2, 129.3, 131.6, 132.6, 132.9, 134.3, 134.8, 140.8, 140.9, 150.2. IR (thin film): v_{max} (cm⁻¹) = 3048, 2961, 2921, 2867, 1606, 1510, 1490, 1463, 1260, 1158, 1017, 966, 943, 798, 740, 687; HRMS (ESI) calcd for $C_{36}H_{44}NO$ [M+H]⁺: 506.3417. Found: 506.3407.

4ae. Yellow oil, 94% yield, 95% ee [Daicel Chiralpak AD-H (0.46 cm x 25 cm), *n*-hexane/2-propanol = 100/1, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 13.30 min, t (minor) = 23.91 min]; [α]_D¹⁹ = +67.8 (c = 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 2.16-2.20 (m, 2H), 2.62 (dd, J = 8.8, 14.0 Hz, 1H), 2.78 (dd, J = 6.4, 14.0 Hz, 1H), 3.49-3.55 (m, 1H), 3.97-4.01 (m, 1H), 4.05-4.07 (m, 2H), 5.32 (s, 1H), 6.04-6.11 (m, 1H), 6.15-6.22 (m, 1H), 6.34-6.48 (m, 3H), 6.71 (t, J = 7.6 Hz, 1H), 7.02-7.05 (m, 1H), 7.08-7.16 (m, 7H), 7.227-7.230 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 40.0, 41.6, 46.4, 56.4, 67.0, 101.1, 105.4, 117.6, 123.3, 124.2, 124.4, 126.0, 126.2, 127.18, 127.24, 127.4, 127.5, 128.4, 129.6, 129.7, 130.2, 131.8, 132.1, 134.3, 134.4, 138.6, 139.0, 150.1. IR (thin film): v_{max} (cm⁻¹) = 3025, 2965, 2922, 2867, 1681, 1593, 1564, 1488, 1425, 1358, 1261, 1077, 1042, 1011, 961, 875, 773, 740, 683, 635; HRMS (ESI) calcd for $C_{28}H_{26}Cl_2NO$ [M+H]⁺: 462.1386. Found: 462.1374.

4af. Yellow oil, 71% yield, 93% ee [Daicel Chiralpak AD-H (0.46 cm x 25 cm), n-hexane/2-propanol = 100/1, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 9.95 min, t (minor) = 10.85 min]; [α]_D¹⁸ = +109.6 (c = 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 2.13-2.20 (m, 2H), 2.22 (s, 3H), 2.25 (s, 3H), 2.64 (dd, J = 8.4, 14.0 Hz, 1H), 2.76-2.82 (m, 1H), 3.51-3.57 (m, 1H), 3.97-4.01 (m, 1H), 4.08-4.10 (m, 2H), 5.39 (s, 1H), 5.90-5.98 (m, 1H), 6.01-6.08 (m, 1H), 6.45 (d, J = 7.6 Hz, 1H), 6.60 (d, J = 15.6 Hz, 1H), 6.68 (t, J = 7.2 Hz, 1H), 6.78 (d, J = 16.0 Hz, 1H), 7.03-7.10 (m, 8H), 7.25-7.29 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 19.7, 40.1, 42.1, 47.0, 56.4, 66.9, 101.4, 105.4, 117.3, 123.4, 125.67, 125.7, 126.0, 127.06, 127.1, 127.2, 127.3, 128.2, 129.8, 130.06, 130.09, 131.2, 132.4, 135.0, 135.2, 136.0, 136.5, 150.1. IR (thin film): v_{max} (cm⁻¹) = 2963, 1412, 1261, 1092, 1020, 866, 799, 702, 689, 667; HRMS (ESI) calcd for C₃₀H₃₂NO [M+H]⁺: 422.2478. Found: 422.2469.

4ag. Yellow oil, 86% yield, 89% ee [Daicel Chiralpak AD-H (0.46 cm x 25 cm), n-hexane/2-propanol = 100/1, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 19.80 min, t (minor) = 30.59 min]; [α]_D¹⁷ = +81.8 (c = 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 2.18-2.30 (m, 2H), 2.72-2.77 (m, 1H), 2.88-2.94 (m, 1H), 3.56-3.63 (m, 1H), 4.01-4.05 (m, 1H), 4.18-4.19 (m, 2H), 5.51 (s, 1H), 6.04-6.11 (m, 1H), 6.14-6.21 (m,

1H), 6.53 (d, J = 7.6 Hz, 1H), 6.71-6.75 (m, 1H), 7.08-7.16 (m, 3H), 7.19-7.27 (m, 3H), 7.31-7.44 (m, 6H), 7.64 (d, J = 8.0 Hz, 1H), 7.68 (d, J = 8.0 Hz, 1H), 7.75-7.79 (m, 2H), 7.88-7.90 (m, 1H), 7.96-7.98 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 40.3, 42.2, 47.0, 56.6, 66.9, 101.5, 105.5, 117.5, 123.5, 123.7, 123.9, 125.46, 125.50, 125.6, 125.8, 125.9, 127.5, 127.6, 128.31, 128.33, 128.9, 129.1, 129.3, 130.6, 130.96, 131.0, 132.4, 133.41, 133.44, 134.6, 135.1, 150.3. IR (thin film): v_{max} (cm⁻¹) = 2963, 1412, 1261, 1091, 1019, 865, 798, 702, 663; HRMS (ESI) calcd for $C_{36}H_{32}NO$ [M+H]⁺: 494.2478. Found: 494.2467.

4ah^[1]. Yellow oil, 82% yield, 85% ee [Phenomenex Lu X 5u Cellulose-4 (0.46 cm x 25 cm), *n*-hexane/2-propanol = 50/1, v = 0.51 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 7.58 min, t (minor) = 8.75 min]; [α]_D²⁰ = +102.8 (c = 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 1.63 (d, J = 6.4 Hz, 3H), 1.68 (d, J = 8.0 Hz, 3H), 2.02-2.14 (m, 2H), 2.38 (dd, J = 8.0, 13.6 Hz, 1H), 2.51 (dd, J = 6.0, 13.6 Hz, 1H), 3.43-3.49 (m, 1H), 3.83-3.84 (m, 2H), 3.90-3.95 (m, 1H), 5.23 (s, 1H), 5.26-5.34 (m, 1H), 5.42-5.54 (m, 2H), 5.62-5.70 (m, 1H), 6.36 (d, J = 8.0 Hz, 1H), 6.63-6.67 (m, 1H), 7.01-7.08 (m, 2H).

4ba. Yellow oil, 93% yield, 96% ee [Daicel Chiralpak AD-H (0.46 cm x 25 cm), n-hexane/2-propanol = 100/1, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 10.70 min, t (minor) = 12.59 min]; $[\alpha]_D^{23} = +70.7$ (c = 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 2.06-2.14 (m, 1H), 2.58-2.63 (m, 2H), 3.28-3.33 (m, 1H), 3.51-3.57 (m, 1H), 3.97-4.06 (m, 3H), 5.40 (s, 1H), 5.86-5.94 (m, 1H), 6.04-6.10 (m, 1H), 6.27 (d, J =

8.0 Hz, 1H), 6.44 (d, J = 13.6 Hz, 1H), 6.48 (d, J = 10.5 Hz, 1H), 6.62 (d, J = 8.8 Hz, 1H), 6.99 (t, J = 8.0 Hz, 1H), 7.09-7.12 (m, 2H), 7.16-7.23 (m, 8H). ¹³C NMR (100 MHz, CDCl₃) δ 37.8, 39.2, 46.4, 57.4, 66.9, 100.7, 103.7, 118.2, 125.0, 126.0, 126.1, 126.3, 127.1, 127.31, 127.34, 128.4, 128.5, 129.8, 130.2, 131.8, 132.8, 136.5, 137.2, 152.0. IR (thin film): ν_{max} (cm⁻¹) = 2963, 1598, 1261, 1091, 1019, 965, 867, 799, 733, 692; HRMS (ESI) calcd for $C_{28}H_{27}\text{CINO}$ [M+H]⁺: 428.1776. Found: 428.1765.

4ca. Yellow oil, 83% yield, 94% ee [Daicel Chiralpak AD-H (0.46 cm x 25 cm), n-hexane/2-propanol = 100/1, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 15.00 min, t (minor) = 19.06 min]; [α]_D²³ = +27.5 (c = 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 2.09-2.21 (m, 2H), 2.59 (dd, J = 8.8, 13.6 Hz, 1H), 2.78 (dd, J = 6.0, 14.0 Hz, 1H), 3.48-3.54 (m, 1H), 3.96-4.08 (m, 3H), 5.35 (s, 1H), 5.97-6.14 (m, 2H), 6.28 (d, J = 8.4 Hz, 1H), 6.44 (d, J = 15.6 Hz, 1H), 6.50 (d, J = 15.6 Hz, 1H), 7.15-7.26 (m, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 40.1, 41.5, 46.5, 56.5, 66.9, 101.0, 106.7, 108.8, 125.1, 125.3, 126.1, 126.2, 126.28, 126.29, 127.4, 128.4, 128.5, 130.9, 131.9, 133.4, 134.8, 136.5, 137.0, 149.3. IR (thin film): v_{max} (cm⁻¹) = 2963, 1412, 1260, 1090, 1019, 865, 798, 702, 664; HRMS (ESI) calcd for $C_{28}H_{27}BrNO$ [M+H]⁺: 472.1271. Found: 472.1258.

4da. Yellow oil, 93% yield, 95% ee [Daicel Chiralpak AD-H (0.46 cm x 25 cm), n-hexane/2-propanol = 100/1, v = 1.0 mL·min⁻¹, λ = 254 nm, t (major) = 28.16 min, t (minor) = 36.10 min]; $[\alpha]_D^{18}$ = +58.9 (c = 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ

2.12-2.23 (m, 2H), 2.61 (dd, J = 8.4, 13.6 Hz, 1H), 2.77 (dd, J = 6.4, 14.8 Hz, 1H), 3.51-3.57 (m, 1H), 3.73 (s, 3H), 3.96-4.04 (m, 3H), 5.34 (s, 1H), 6.04-6.12 (m, 1H), 6.15-6.22 (m, 1H), 6.35 (d, J = 8.4 Hz, 1H), 6.44 (d, J = 15.6 Hz, 1H), 6.54 (d, J = 16.0 Hz, 1H), 6.64-6.66 (m, 1H), 6.74 (d, J = 2.4 Hz, 1H), 7.18-7.27 (m, 10H). ¹³C NMR (100 MHz, CDCl₃) δ 39.9, 41.6, 47.4, 56.0, 56.6, 67.0, 101.8, 105.8, 111.0, 112.4, 125.9, 126.1, 126.3, 127.2, 127.3, 128.4, 128.5, 128.7, 131.6, 133.1, 134.0, 136.8, 137.2, 144.6, 152.5. IR (thin film): v_{max} (cm⁻¹) = 2963, 1412, 1260, 1090, 1019, 865, 798, 688; HRMS (ESI) calcd for $C_{29}H_{30}NO_2$ [M+H]⁺: 424.2271. Found: 424.2262.

4ea. Yellow oil, 91% yield, 91% ee [Daicel Chiralpak AD-H (0.46 cm x 25 cm), n-hexane/2-propanol = 100/1, $v = 1.0 \text{ mL} \cdot \text{min}^{-1}$, $\lambda = 254 \text{ nm}$, t (major) = 13.46 min, t (minor) = 16.36 min]; [α]_D²³ = +96.9 (c = 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 2.09-2.21 (m, 2H), 2.59 (dd, J = 8.8, 14.0 Hz, 1H), 2.75-2.80 (m, 1H), 3.49-3.56 (m, 1H), 3.97-4.09 (m, 3H), 5.37 (s, 1H), 6.00-6.15 (m, 3H), 6.32-6.36 (m, 1H), 6.44 (d, J = 16.0 Hz, 1H), 6.52 (d, J = 16.0 Hz, 1H), 6.95-6.98 (m, 1H), 7.18-7.27 (m, 10H). ¹³C NMR (100 MHz, CDCl₃) δ 40.3, 41.9, 46.4, 55.9, 67.0, 93.4 (J = 27.0 Hz), 101.6, 103.1 (J = 22.9 Hz), 123.7 (J = 10.6 Hz), 125.1, 125.7, 126.1, 126.3, 127.3, 127.4, 127.7, 128.5, 128.6, 132.0, 133.2, 136.6, 137.1, 151.7 (J = 12.2 Hz), 164.0 (J = 241.7 Hz). IR (thin film): v_{max} (cm⁻¹) = 2963, 1413, 1261, 1091, 1019, 865, 798, 688, 664; HRMS (ESI) calcd for $C_{28}H_{27}\text{FNO}$ [M+H]⁺: 412.2071. Found: 412.2065.

4fa. Yellow oil, 90% yield, 83% ee [Daicel Chiralpak AD-H (0.46 cm x 25 cm), *n*-hexane/2-propanol = 100/1, $v = 1.0 \text{ mL} \cdot \text{min}^{-1}$, $\lambda = 254 \text{ nm}$, t (major) = 13.86 min, t (minor) = 14.75 min]; [α]_D²³ = +88.3 (c = 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 2.08-2.12 (m, 1H), 2.16-2.23 (m, 1H), 2.38 (s, 3H), 2.58-2.64 (m, 1H), 2.72-2.77 (m, 1H), 3.52-3.58 (m, 1H), 3.92-3.96 (m, 1H), 4.14-4.20 (m, 1H), 4.27-4.33 (m, 1H), 5.26 (s, 1H), 6.05-6.12 (m, 1H), 6.19-6.26 (m, 1H), 6.41 (d, J = 16.0 Hz, 1H), 6.52 (d, J = 17.6 Hz, 1H), 6.72 (t, J = 7.2 Hz, 1H), 6.89 (d, J = 7.2 Hz, 1H), 6.96 (d, J = 7.2 Hz, 1H), 7.15-7.26 (m, 10H). ¹³C NMR (100 MHz, CDCl₃) δ 19.1, 40.1, 42.3, 50.3, 56.0, 66.4, 103.0, 118.5, 119.2, 121.3, 126.0, 126.1, 126.3, 127.2, 127.29, 127.32, 128.4, 128.5, 131.4, 131.5, 133.2, 134.1, 136.8, 137.2, 148.5 IR (thin film): v_{max} (cm⁻¹) = 2963, 2869, 1594, 1494, 1469, 1422, 1358, 1327, 1294, 1260, 1222, 1088, 1019, 964, 866, 798, 739, 692; HRMS (ESI) calcd for C₂₉H₃₀NO₂ [M+H]⁺: 408.2322. Found: 408.2312.

4ci. Yellow oil, 90% yield, 98% ee [Daicel Chiralpak AD-H (0.46 cm x 25 cm), n-hexane/2-propanol = 100/1, v = 1.0 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 13.82 min, t (minor) = 27.51 min]; [α]_D²² = +21.8 (c = 1.0, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ 2.10-2.25 (m, 2H), 2.65 (dd, J = 9.0, 14.1 Hz, 1H), 2.83 (dd, J = 5.7, 13.5 Hz, 1H), 3.50-3.58 (m, 1H), 4.01 (t, J = 7.5 Hz, 1H), 4.07 (d, J = 5.4 Hz, 2H), 5.39 (s, 1H), 5.91-6.12 (m, 2H), 6.31 (d, J = 7.8 Hz, 1H), 6.82 (d, J = 15.6 Hz, 1H), 6.92 (d, J = 15.6 Hz, 1H), 7.08-7.19 (m, 6H), 7.25-7.30 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 40.0, 41.6, 46.8, 56.4, 66.9, 101.3, 106.8, 108.9, 126.2, 126.7, 126.8, 128.2, 128.3, 128.4, 129.47, 129.51, 129.9, 131.0, 132.6, 132.8, 134.7, 134.8, 135.2, 149.1. IR (thin film): v_{max} (cm⁻¹) = 2963, 1261, 1092, 1020, 865, 799, 685; HRMS (ESI) calcd for

C₂₈H₂₅BrCl₂NO [M+H]⁺: 540.0491. Found: 540.0465.

4ga. Yellow oil, 87% yield, 90% ee [Daicel Chiralpak AD-H (0.46 cm x 25 cm), n-hexane/2-propanol = 80/20, v = 0.5 mL·min⁻¹, λ = 254 nm, t (major) = 10.99 min, t (minor) = 12.55 min]; [α]_D¹⁷ = +218.3 (c = 1.0, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ 2.03-2.14 (m, 2H), 2.53-2.61 (m, 1H), 2.66-2.72 (m, 1H), 3.08-3.17 (m, 1H), 3.66-4.34 (m, 6H), 5.38 and 5.54 (s, 1H), 5.95-6.19 (m, 2H), 6.39-6.58 (m, 3H), 6.67-6.71 (m, 1H), 7.04-7.12 (m, 2H), 7.22-7.23 (m, 10H). ¹³C NMR (100 MHz, CDCl₃) δ 37.2, 37.4, 42.4, 42.6, 45.4, 45.6, 48.2, 52.4, 56.2, 57.4, 60.4, 83.9, 84.4, 106.4, 117.3, 117.6, 122.8, 125.3, 125.4, 126.05, 126.10, 126.2, 126.9, 127.1, 127.2, 128.4, 128.5, 131.2, 131.9, 132.2, 133.4, 136.7, 137.0, 137.1, 149.99, 155.05, 156.0. IR (thin film): v_{max} (cm⁻¹) = 2963, 1261, 1091, 1020, 865, 798, 701, 663; HRMS (ESI) calcd for C₃₀H₃₁N₂O₂ [M+H]⁺: 451.2380. Found: 451.2371.

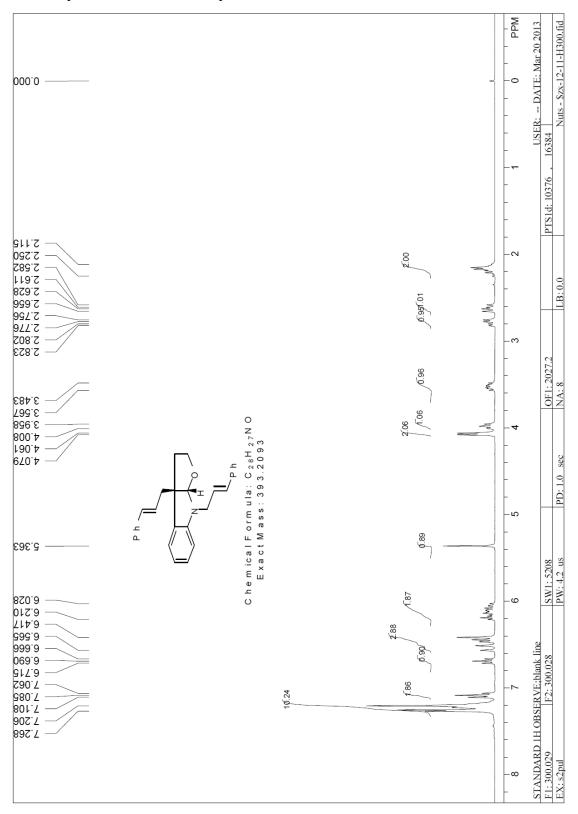
4ha. Yellow oil, 92% yield, 88% ee [Daicel Chiralpak AD-H (0.46 cm x 25 cm), n-hexane/2-propanol = 80/20, v = 0.5 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 10.78 min, t (minor) = 12.25 min]; $[\alpha]_D^{25} = +140.9$ (c = 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 2.06-2.10 (m, 2H), 2.54 (dd, J = 8.8, 14.0 Hz, 1H), 2.65-2.70 (m, 1H), 3.08-3.15 (m, 1H), 3.66 and 3.71 (s, 3H), 3.78-4.29 (m, 3H), 5.40 and 5.56 (s, 1H), 5.95-6.13 (m, 2H), 6.34 (d, J = 8.0 Hz, 1H), 6.42 (d, J = 16.0 Hz, 1H), 6.50-6.54 (m, 1H), 7.00-7.04 (m, 2H), 7.20-7.23 (m, 10H). ¹³C NMR (100 MHz, CDCl₃) δ 37.2, 37.4, 42.2, 42.4, 45.3, 45.5, 48.2, 52.5, 56.2, 57.5, 83.9, 84.4, 107.1, 121.8, 122.1, 123.0, 124.6, 124.8,

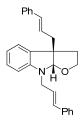
125.4, 126.1, 126.2, 127.2, 127.3, 128.3, 128.4, 128.5, 131.5, 133.8, 134.1, 136.5, 136.8, 136.9, 148.6, 154.9, 155.9. IR (thin film): v_{max} (cm⁻¹) = 2953, 1736, 1698, 1600, 1489, 1446, 1382, 1318, 1240, 1211, 1152, 1098, 1045, 1029, 965, 936, 877, 802, 766, 736, 693; HRMS (ESI) calcd for $C_{30}H_{30}CIN_2O_2$ [M+H]⁺: 485.1990. Found: 485.1981.

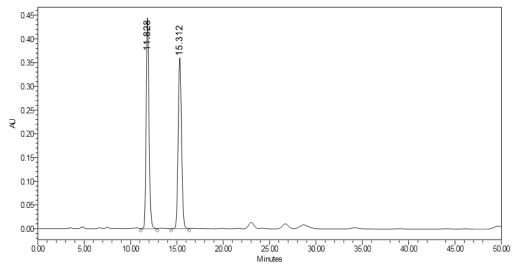
4ia. Yellow oil, 97% yield, 86% ee [Daicel Chiralpak AD-H (0.46 cm x 25 cm), *n*-hexane/2-propanol = 80/20, v = 0.5 mL·min⁻¹, $\lambda = 254$ nm, t (major) = 11.23 min, t (minor) = 13.00 min]; [α]_D²⁶ = +147.9 (c = 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 2.07-2.09 (m, 2H), 2.50-2.56 (m, 1H), 2.62-2.67 (m, 1H), 3.08-3.15 (m, 1H), 3.65 and 3.70 (s, 3H), 3.75-4.29 (m, 3H), 5.38 and 5.55 (s, 1H), 5.99-6.16 (m, 2H), 6.34-6.56 (m, 3H), 6.75-6.79 (m, 2H), 7.19-7.22 (m, 10H). ¹³C NMR (100 MHz, CDCl₃) δ 36.9, 37.3, 42.0, 42.2, 45.3, 45.4, 48.7, 52.3, 56.2, 57.4, 84.4, 84.9, 106.5, 106.6, 110.2, 110.5, 114.2, 114.4, 124.6, 124.7, 125.8, 126.0, 126.2, 127.1, 127.2, 128.3, 128.4, 131.4, 133.6, 136.6, 136.9, 146.1, 154.9, 155.1, 155.9, 157.4. IR (thin film): v_{max} (cm⁻¹) = 2953, 1736, 1697, 1600, 1492, 1445, 1381, 1264, 1241, 1204, 1138, 1104, 1072, 1045, 964, 907, 867, 802, 767, 734, 693; HRMS (ESI) calcd for $C_{30}H_{31}FN_2O_2$ [M+H]⁺: 469.2286. Found: 469.2272.

Synthesis of (-)-debromoflustramine B

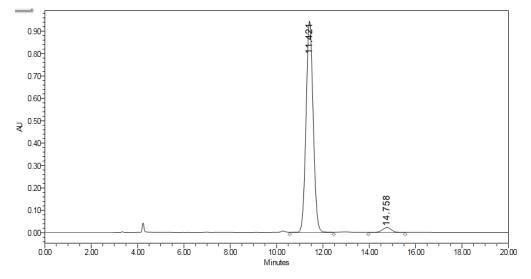
A 25 mL flame-dried Schlenk tube was cooled to room temperature and filled with argon. To this flask was added **4ga** (58.5 mg, 0.13 mmol). The vessel was placed S12

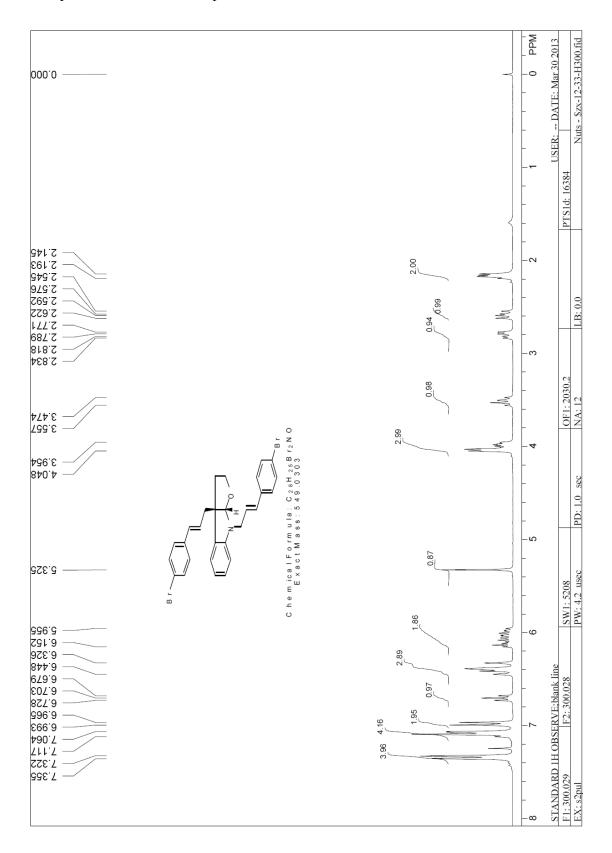

under vacuum and the atmosphere exchanged with argon three times before the addition of CH₂Cl₂ (5 mL) and 2-methyl-2-butene (91.0 mg, 1.30 mmol). Then the mixture was heated to reflux after Grubbs II (11.1 mg, 0.013 mmol) was added. After the reaction was almost complete (monitored by TLC), the reaction mixture was quenched with water, extracted with ether. The combined organic layers were washed with brine, dried over Na₂SO₄, and filtered. The solvent was removed under reduced pressure, and the residue was purified by silica sel column chromatography (PE/EA = 15/1) to afford the desired product $\mathbf{5ga}^{[2]}$ as a colorless liquid (41.9 mg, 90% yield). Analytical data for $\mathbf{5ga}$: [α]_D²⁸ = +281.6 (c = 1.0, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ 1.55 (s, 3H), 1.68-1.76 (m, 9H), 2.03 (s, 2H), 2.38 (d, J = 7.2 Hz, 2H), 3.02-3.11 (m, 1H), 3.70-4.22 (m, 6H), 5.05-5.34 (m, 3H), 6.36-6.39 (m, 1H), 6.45 (t, J = 7.2 Hz, 1H), 6.98 (d, J = 7.5 Hz, 1H), 7.07 (t, J = 6.9 Hz, 1H).


A flame-dried 25mL round bottom flask was cooled to room temperature and filled with argon. To this flask was added 5ga (35.4 mg, 0.1 mmol), the atmosphere exchanged with argon three times before the addition of toluene (5 mL) and the slow addition of Red-Al (0.5 mmol, 70 wt% in toluene, 0.14 mL)^[3]. After the reaction was complete (monitored by TLC), the reaction mixture was quenched with water, extracted with ether. The combined organic layers were washed with brine, dried over Na₂SO₄, and filtered. The solvent was removed under reduced pressure, and the residue was purified by silica sel column chromatography (PE/EA = 1/2) to afford the desired product (-)-debromoflustramine B as a colorless liquid (29.0 mg, 98% yield). Analytical data for (-)-debromoflustramine B: $[\alpha]_D^{25} = +85.68$ (c = 1.0, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ 1.58 (s, 3H), 1.65 (s, 3H), 1.70 (s, 3H), 1.71 (s, 3H), 1.89-1.95 (m, 1H), 2.03-2.12 (m, 1H), 2.43 (d, J = 7.2 Hz, 2H), 2.50 (s, 3H), 2.54-2.61 (m, 1H), 2.67-2.74 (m, 1H), 3.80 (dd, J = 6.9, 15.9 Hz, 1H), 3.94 (dd, J =5.7, 15.9 Hz, 1H), 4.30 (s, 1H), 4.96 (t, J = 6.9 Hz, 1H), 5.17 (t, J = 6.0 Hz, 1H), 6.42 (d, J = 7.5 Hz, 1H), 6.66 (t, J = 7.5 Hz, 1H), 6.98 (d, J = 7.2 Hz, 1H), 7.05 (t, J = 7.8 Hz)Hz, 1H).

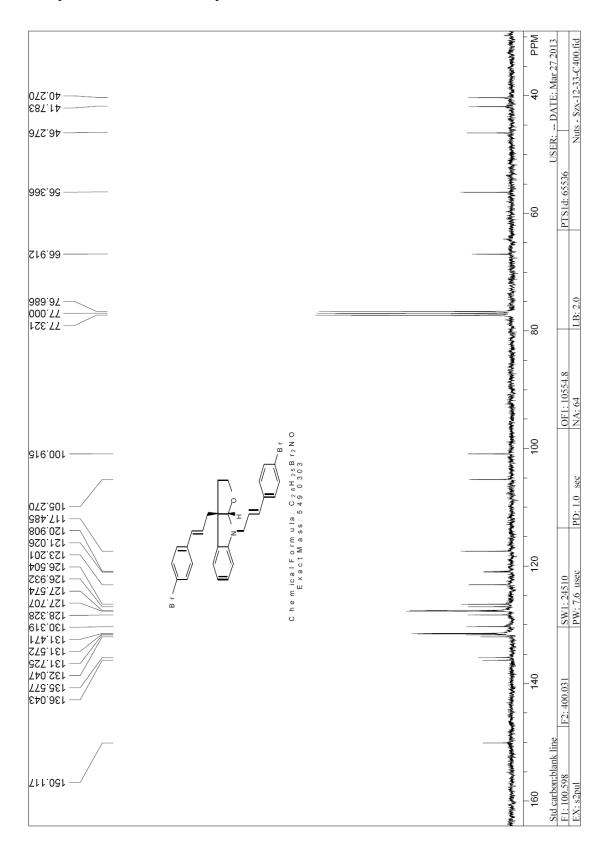

References

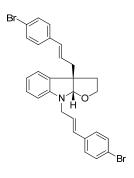
- [1] X. Zhang, Z.-P. Yang, C. Liu and S.-L. You, *Chem. Sci.*, 2013, **4**, 3239.
- [2] (a) A. V. Dix, C. M. Meseck, A. J. Lowe and M. O. Mitchell, *Bioorg. Med. Chem. Lett.*, 2006, **16**, 2522; (b) A. W. Schammel, B. W. Boal, L. Zu, T. Mesganaw and N. K. Garg, *Tetrahedron*, 2010, **66**, 4687.
- [3] (a) G. H. Tan, X. Zhu and A. Ganesan, *Org. Lett.*, 2003, **5**, 1801; (b) T. Newhouse and P. S. Baran, *J. Am. Chem. Soc.*, 2008, **130**, 10886; (c) Z. Zhang and J. C. Antilla, *Angew. Chem. Int. Ed.*, 2012, **51**, 11778.

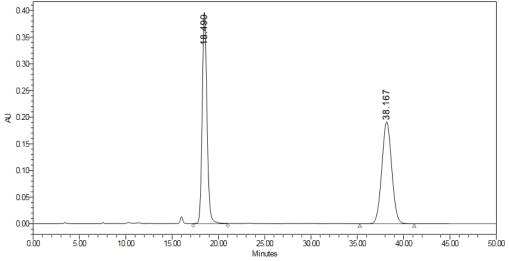

Compound 4aa's ¹H NMR Spectra

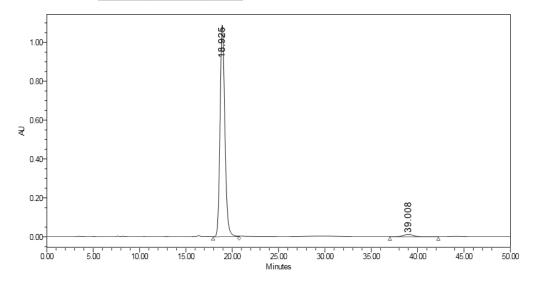


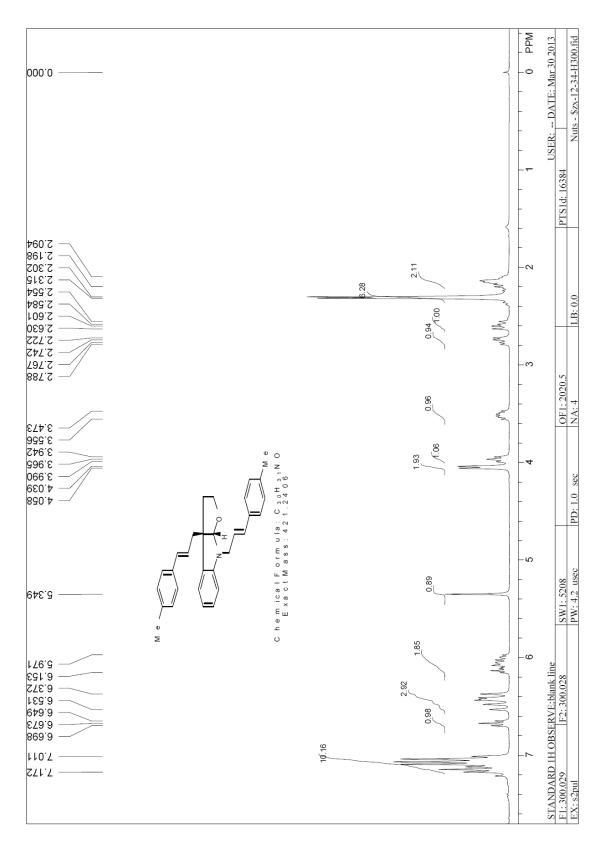
	RT (min)	Area (µV*sec)	% Area
1	11.828	9452089	50.74
2	15.312	9178118	49.26



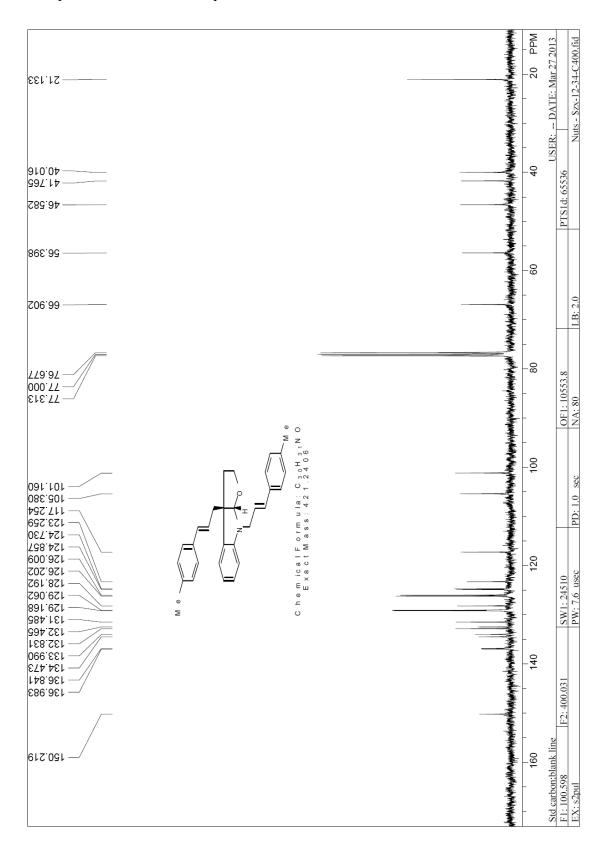

	RT (min)	Area (μV*sec)	% Area
1	11.421	20145695	97.14
2	14.758	593923	2.86

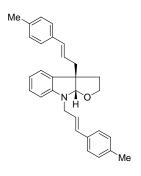

Compound **4ab**'s ¹H NMR Spectra

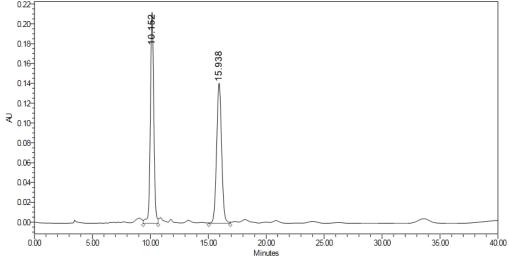

Compound **4ab**'s ¹³C NMR Spectra

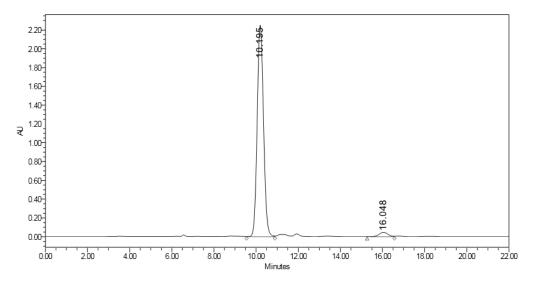


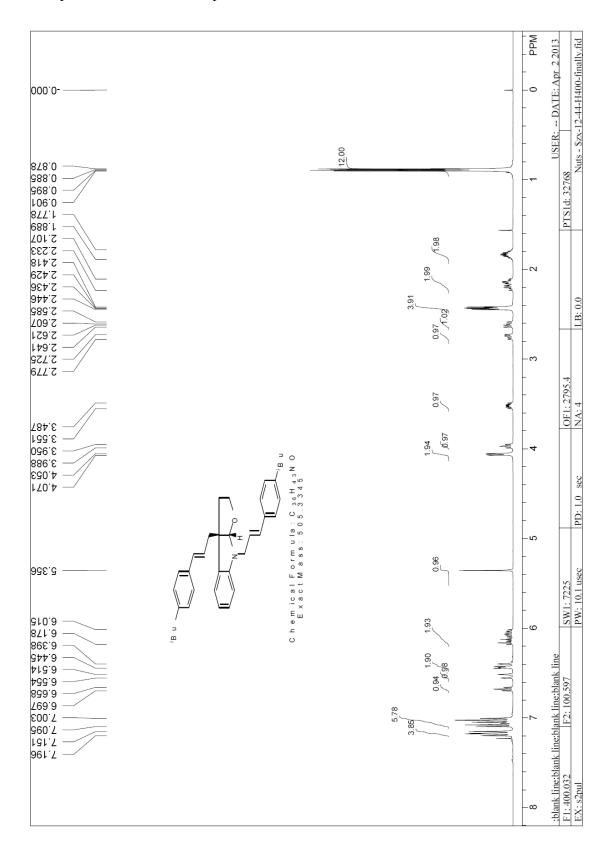
	RT (min)	Area (μV*sec)	% Area
1	18.490	14321186	50.09
2	38.167	14270843	49.91



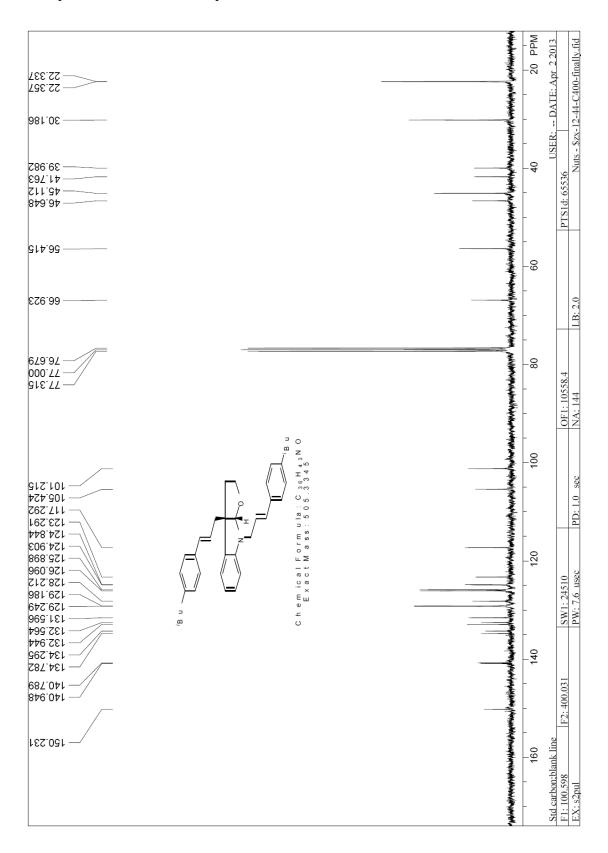

	RT (min)	Area (µV*sec)	% Area
1	18.925	39389524	97.70
2	39.008	926642	2.30

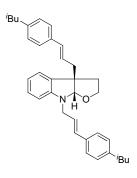

Compound **4ac**'s ¹H NMR Spectra

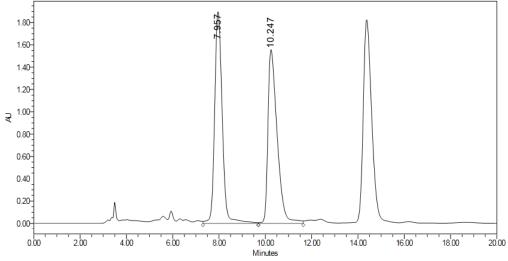

Compound **4ac**'s ¹³C NMR Spectra

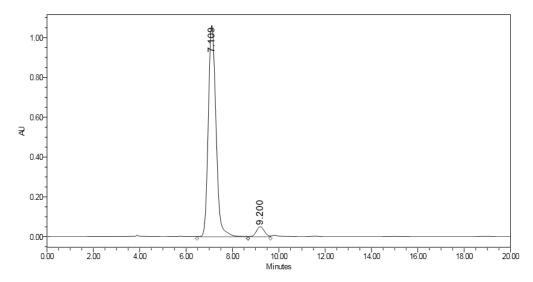


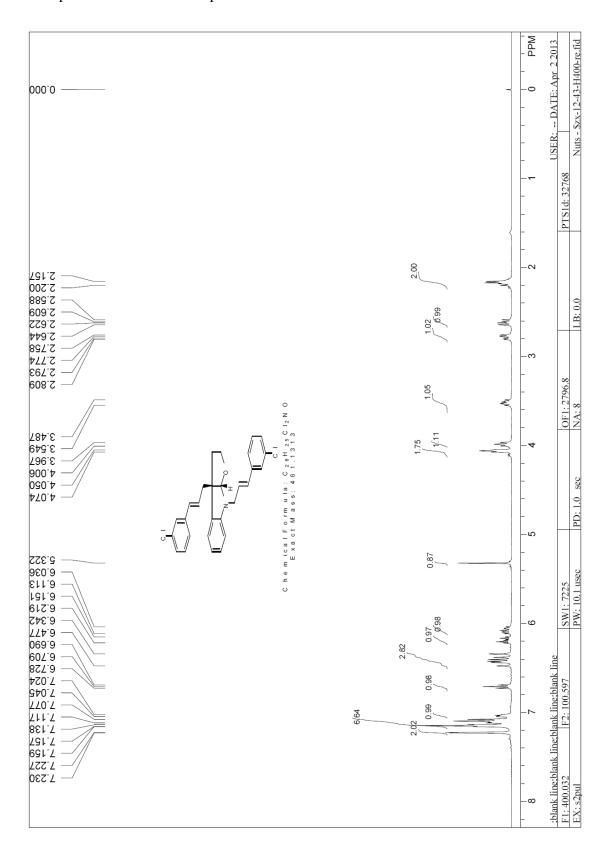
	RT (min)	Area (µV*sec)	% Area
1	10.152	4345712	50.65
2	15.938	4234976	49.35



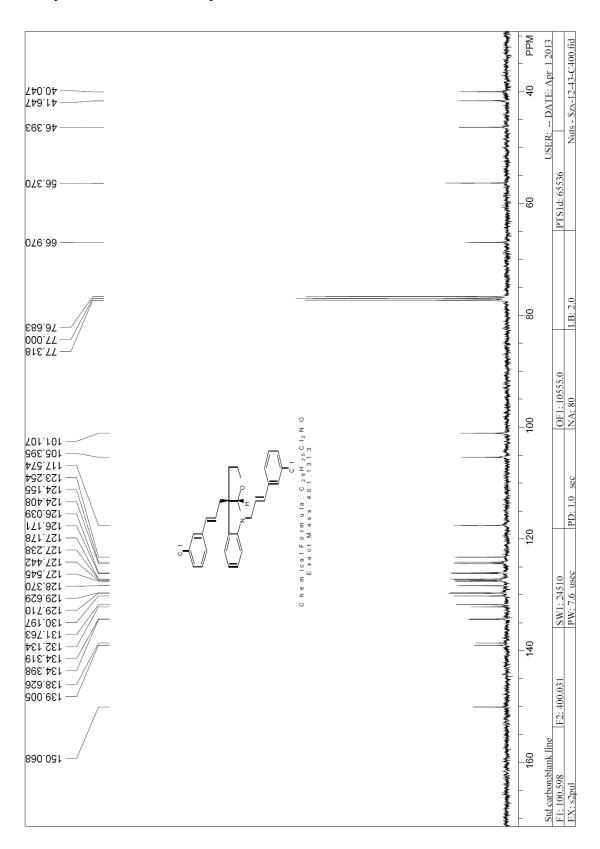

	RT (min)	Area (μV*sec)	% Area
1	10.195	46959161	97.16
2	16.048	1372722	2.84

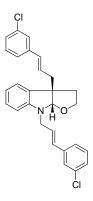

Compound 4ad's ¹H NMR Spectra

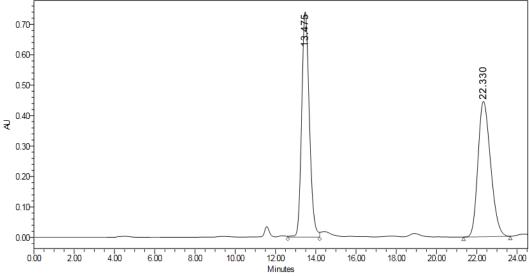

Compound **4ad**'s ¹³C NMR Spectra

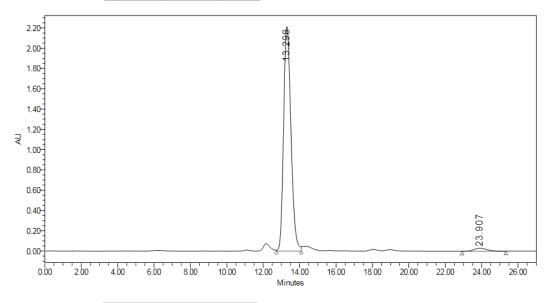


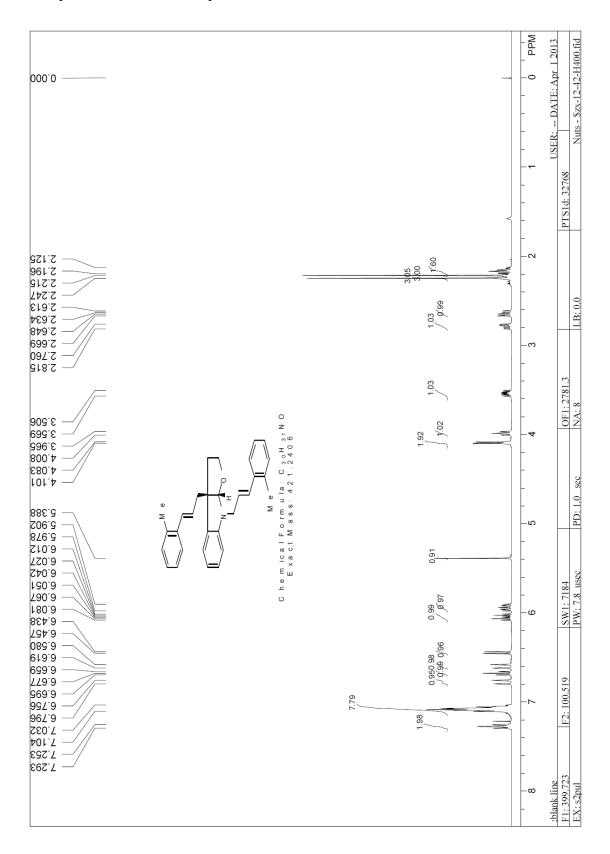
	RT (min)	Area (μV*sec)	% Area
1	7.957	43107495	50.09
2	10.247	42949687	49.91



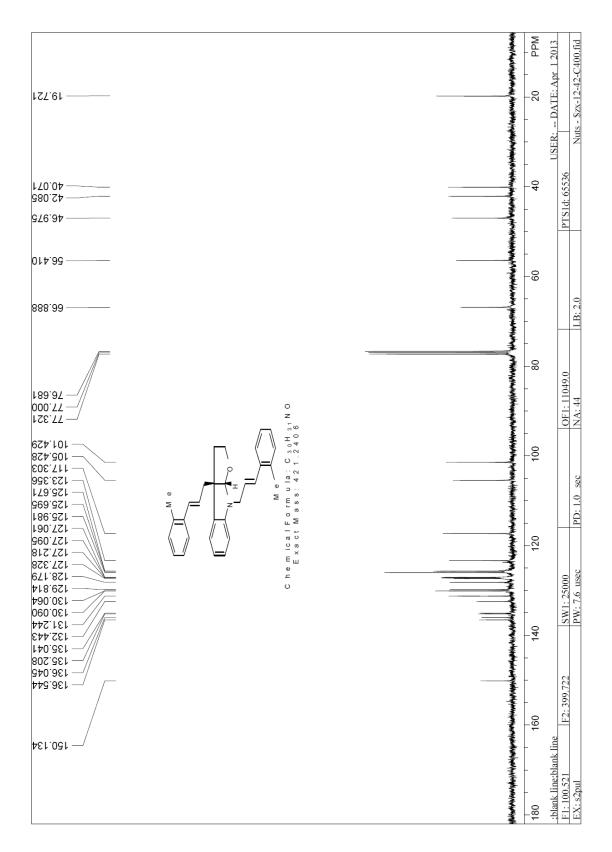

	RT (min)	Area (μV*sec)	% Area
1	7.109	24547497	95.27
2	9.200	1217438	4.73

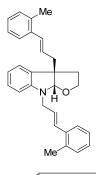

Compound **4ae**'s ¹H NMR Spectra

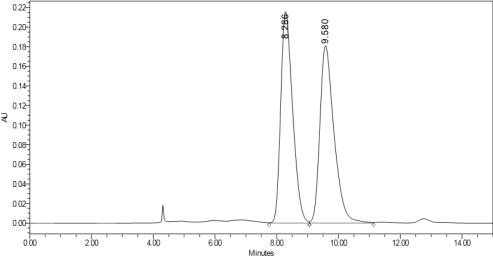

Compound **4ae**'s ¹³C NMR Spectra

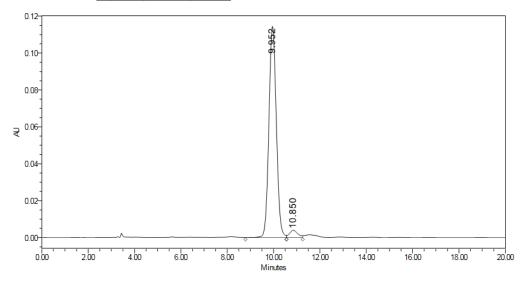


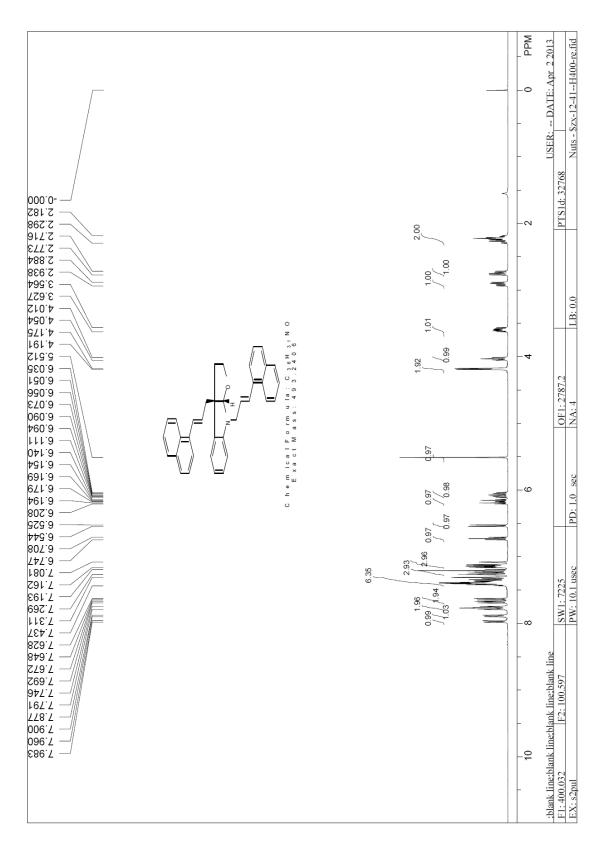
	RT (min)	Area (μV*sec)	% Area
1	13.475	19651125	50.36
2	22.330	19371859	49.64



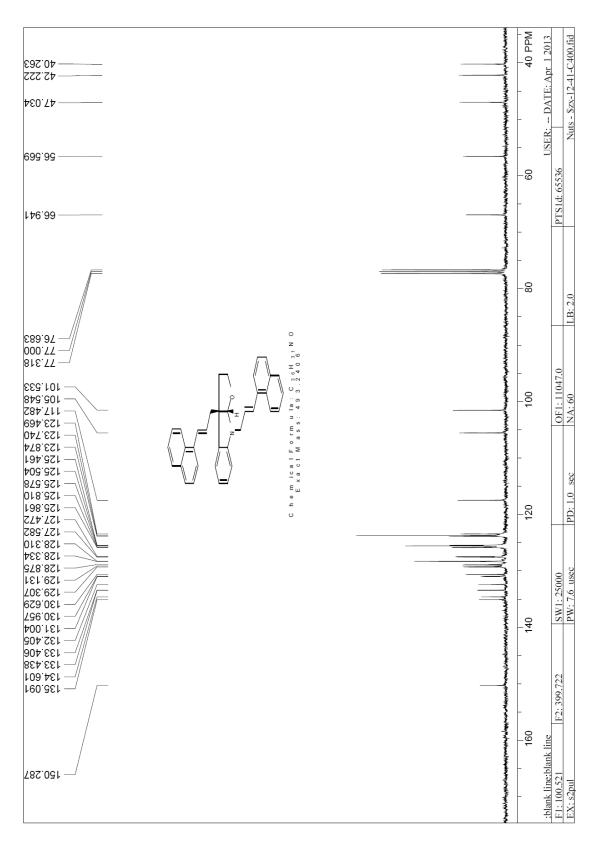

	RT (min)	Area (μV*sec)	% Area
1	13.298	62400850	97.67
2	23.907	1488451	2.33

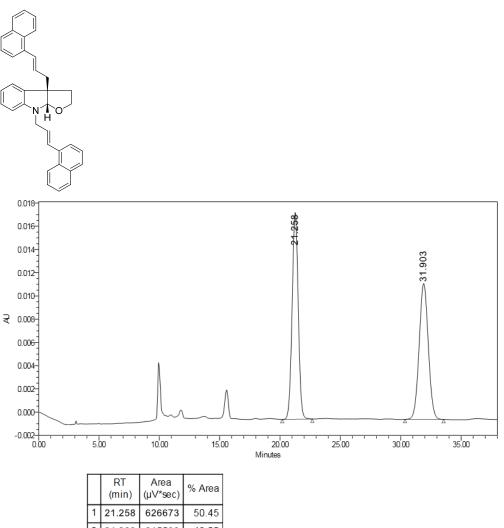

Compound **4af**'s ¹H NMR Spectra


Compound **4af**'s ¹³C NMR Spectra

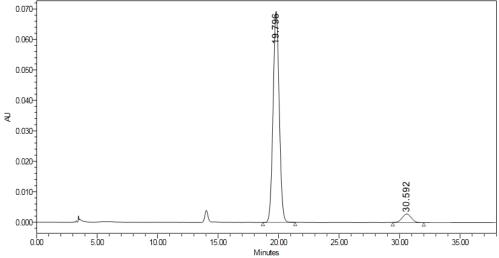


	RT (min)	Area (µV*sec)	% Area
1	8.286	5766018	50.04
2	9.580	5756505	49.96

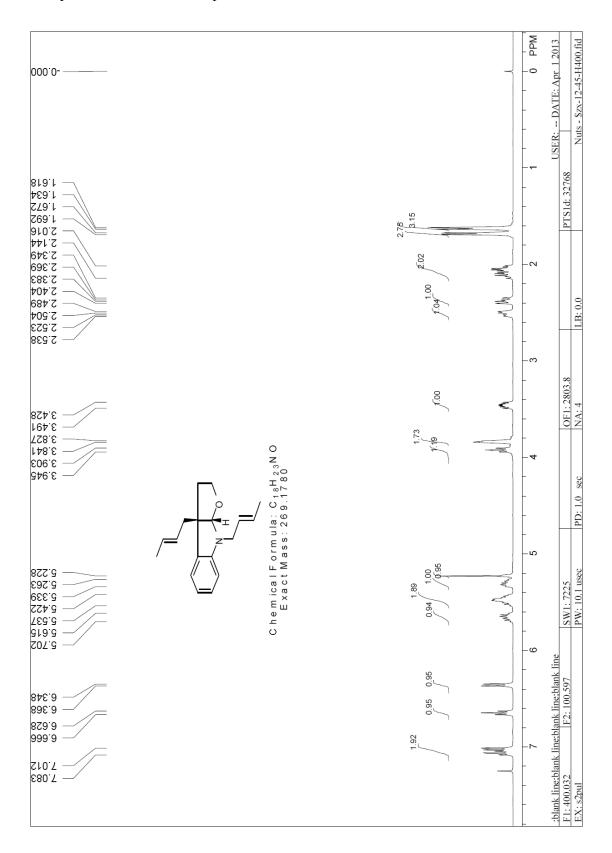


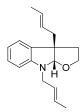

		RT (min)	Area (µV*sec)	% Area
	1	9.952	2543446	96.23
	2	10.850	99716	3.77

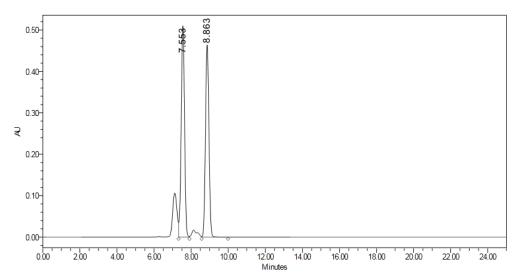
Compound **4ag**'s ¹H NMR Spectra



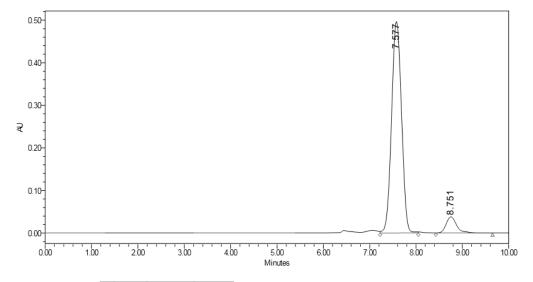
Compound **4ag**'s ¹³C NMR Spectra

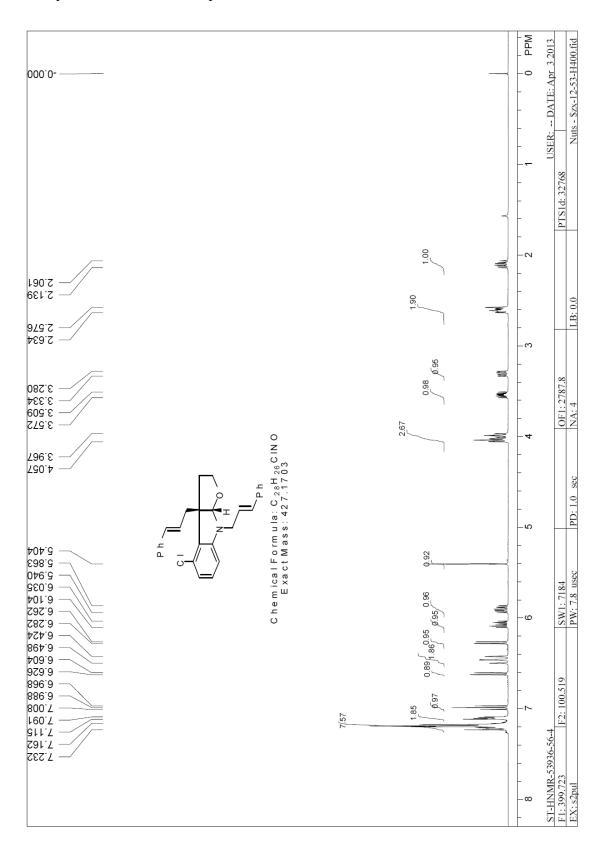



	RT (min)	Area (µV*sec)	% Area
1	21.258	626673	50.45
2	31.903	615500	49.55

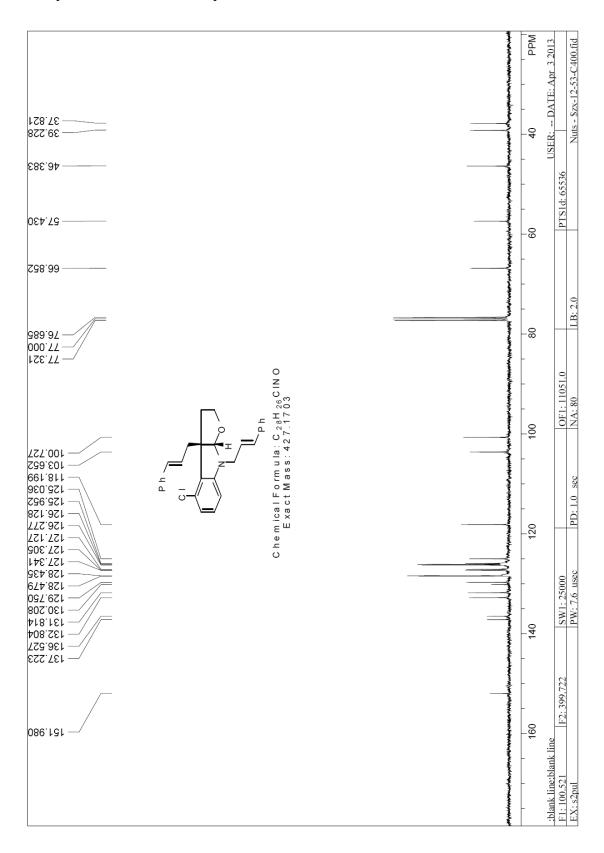


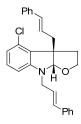
	RT (min)	Area (µV*sec)	% Area
1	19.796	2454157	94.24
2	30.592	149891	5.76

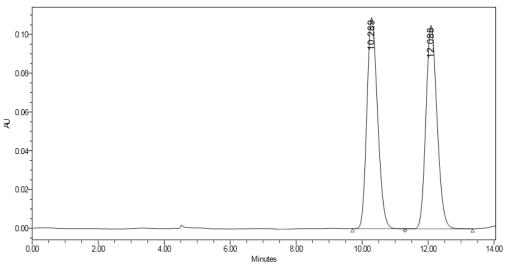

Compound 4ah's ¹H NMR Spectra

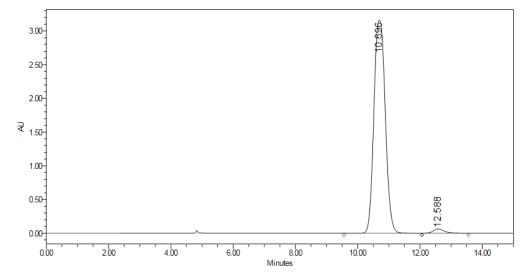


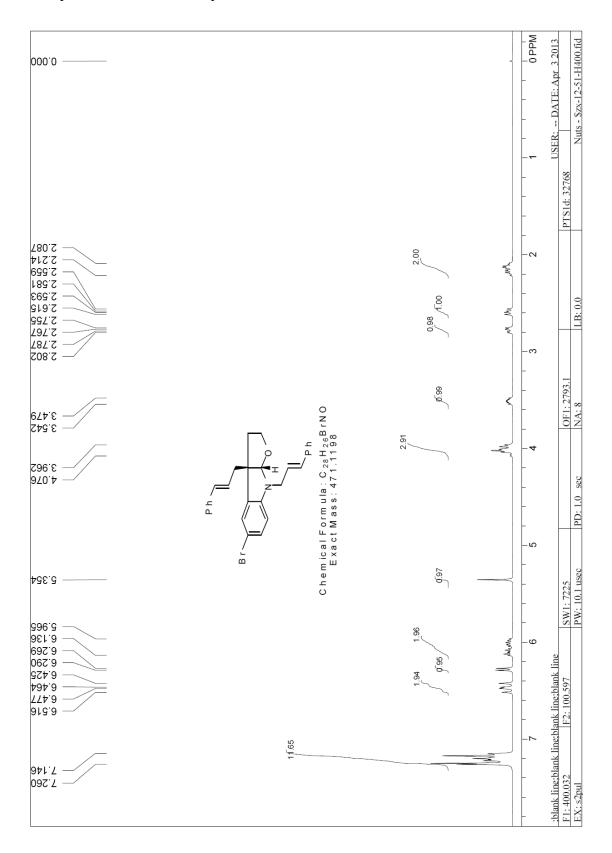
		RT (min)	Area (µV*sec)	% Area
	1	7.553	6404908	51.49
	2	8.863	6034737	48.51



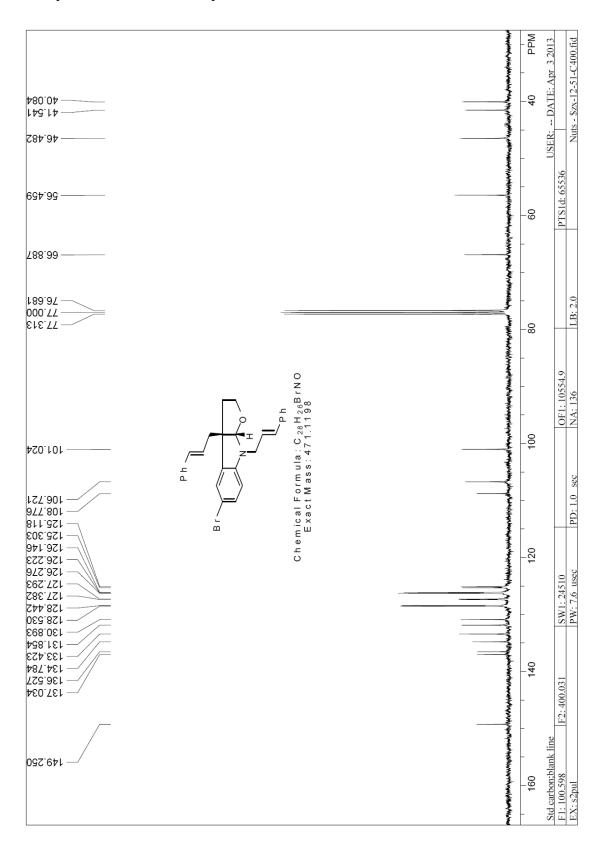

		RT (min)	Area (µV*sec)	% Area
	1	7.577	7400943	92.58
	2	8.751	592818	7.42

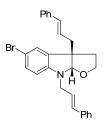

Compound **4ba**'s ¹H NMR Spectra

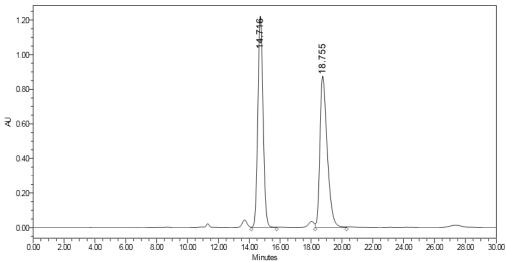

Compound **4ba**'s ¹³C NMR Spectra

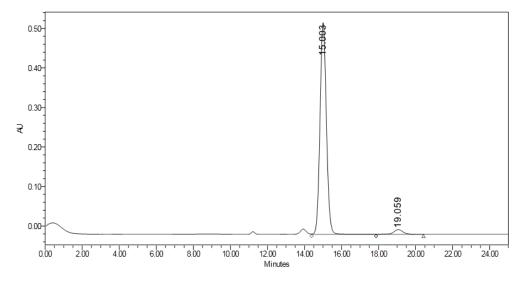


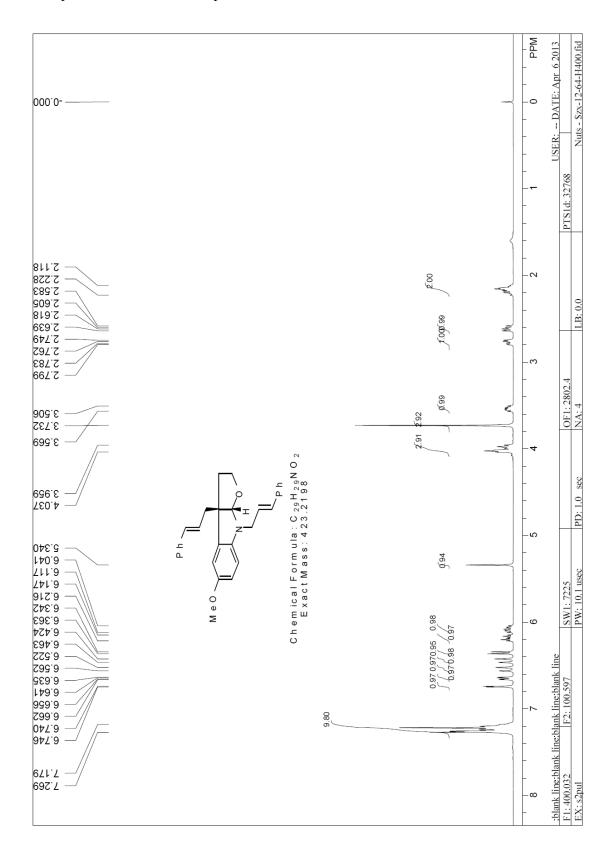
	RT (min)	Area (µV*sec)	% Area
1	10.289	2452908	49.90
2	12.088	2462418	50.10



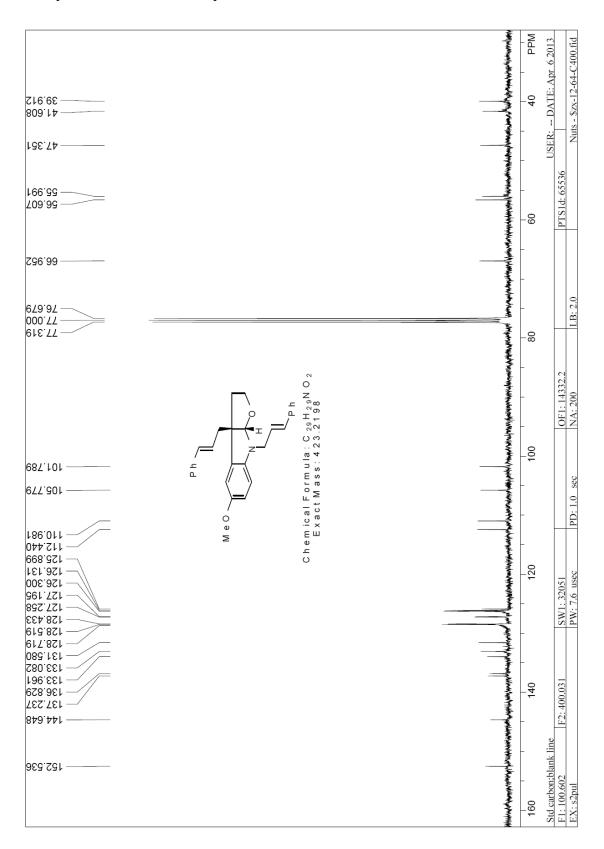

	RT (min)	Area (µV*sec)	% Area
1	10.696	79959773	98.17
2	12.588	1494184	1.83

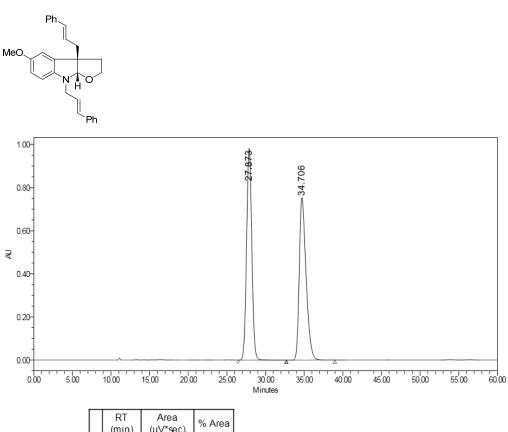

Compound **4ca**'s ¹H NMR Spectra


Compound **4ca**'s ¹³C NMR Spectra

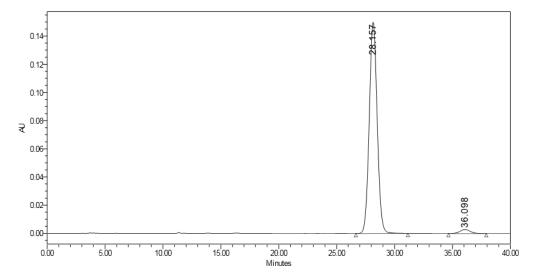


	RT (min)	Area (µV*sec)	% Area
1	14.716	28861592	50.05
2	18.755	28809458	49.95

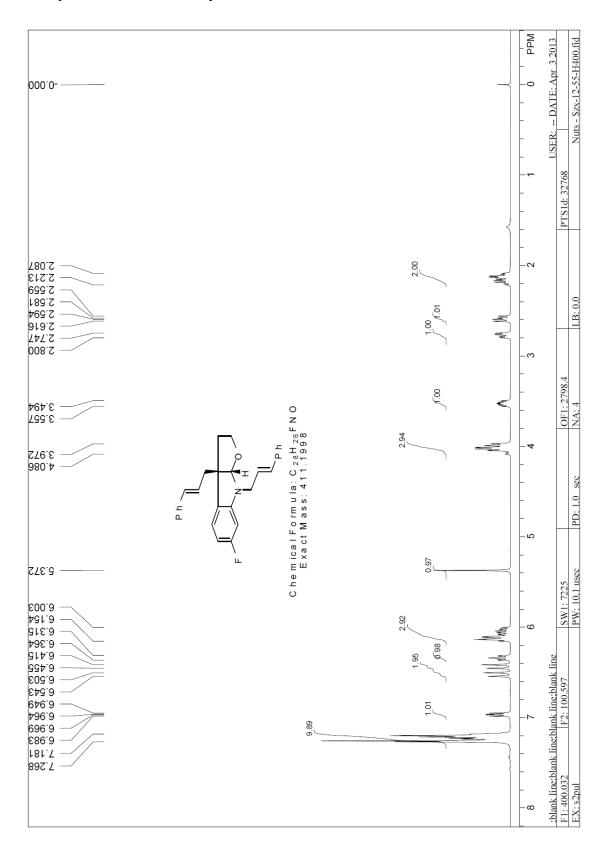



	RT (min)	Area (µV*sec)	% Area
1	15.003	12787952	96.88
2	19.059	411504	3.12

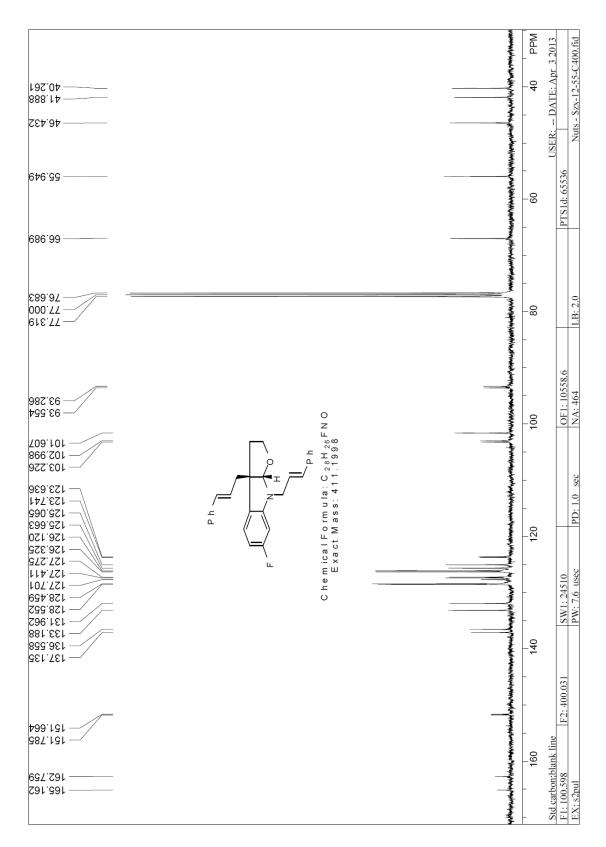
Compound 4da's ¹H NMR Spectra

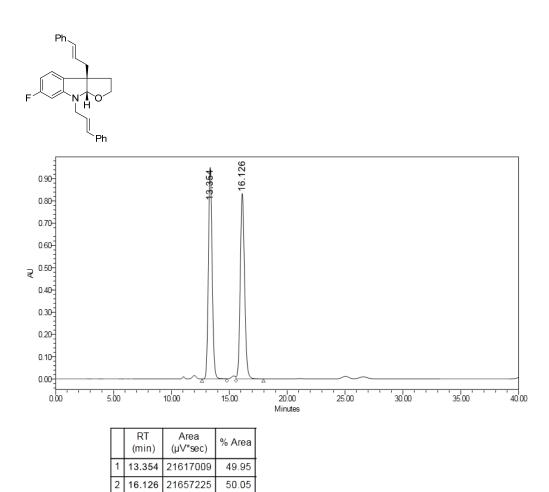


Compound **4da**'s ¹³C NMR Spectra



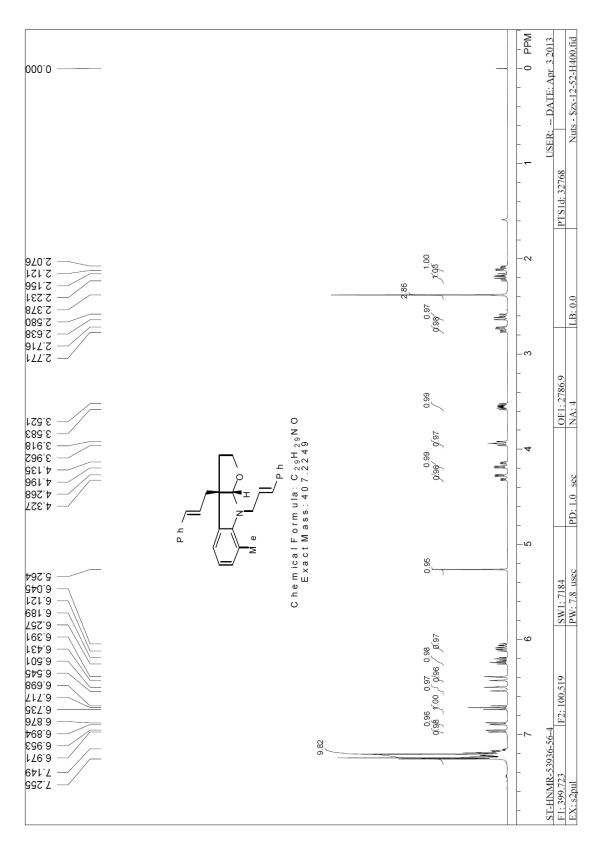
	RT (min)	Area (μV*sec)	% Area
1	27.873	46168421	50.00
2	34.706	46176519	50.00

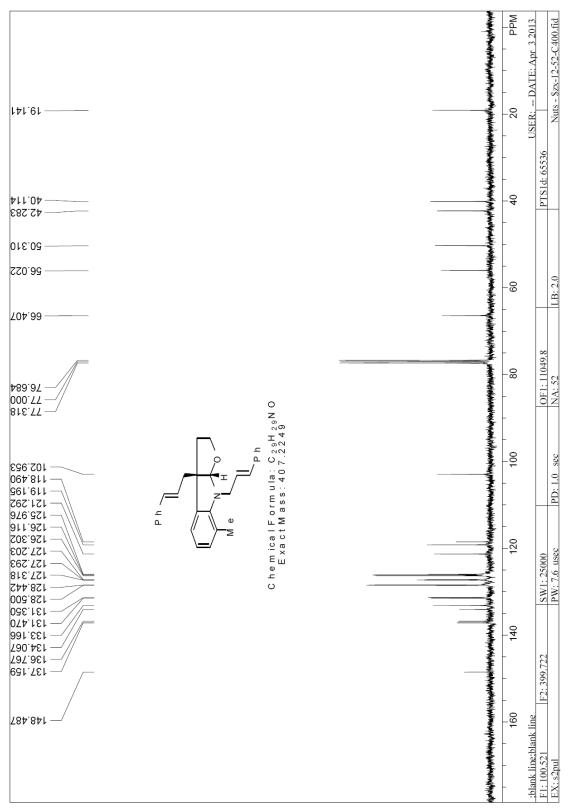


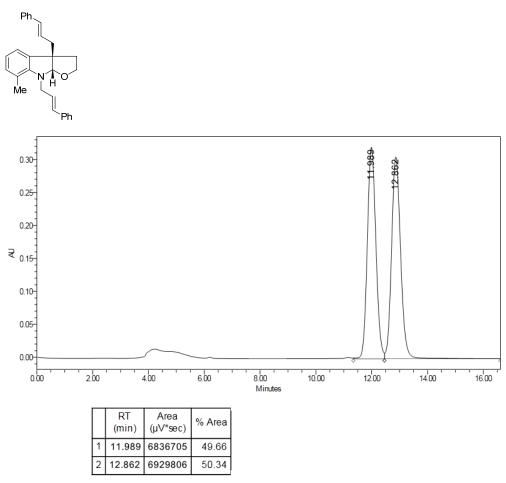

	RT (min)	Area (µV*sec)	% Area
1	28.157	7119307	97.64
2	36.098	172449	2.36

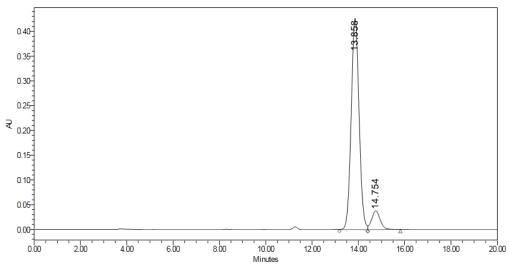
Compound **4ea**'s ¹H NMR Spectra

Compound **4ea**'s ¹³C NMR Spectra

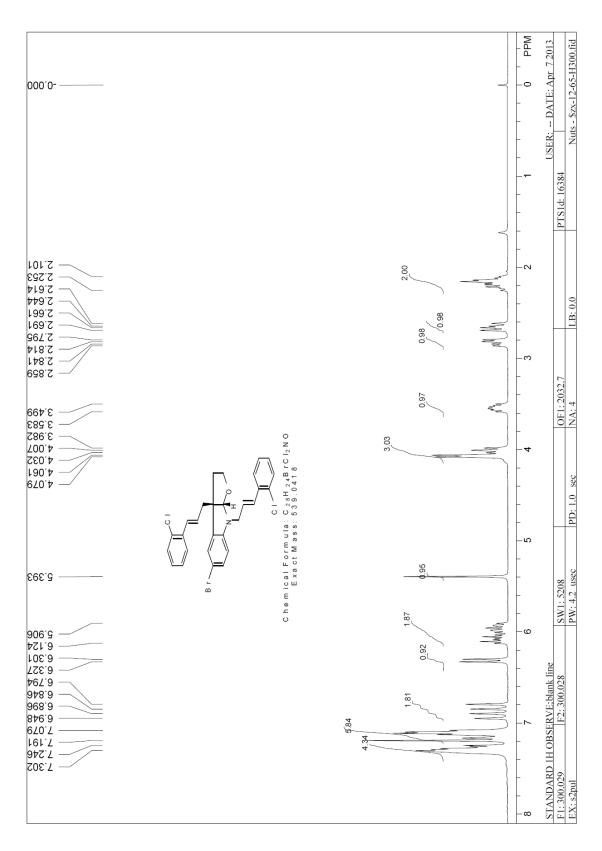


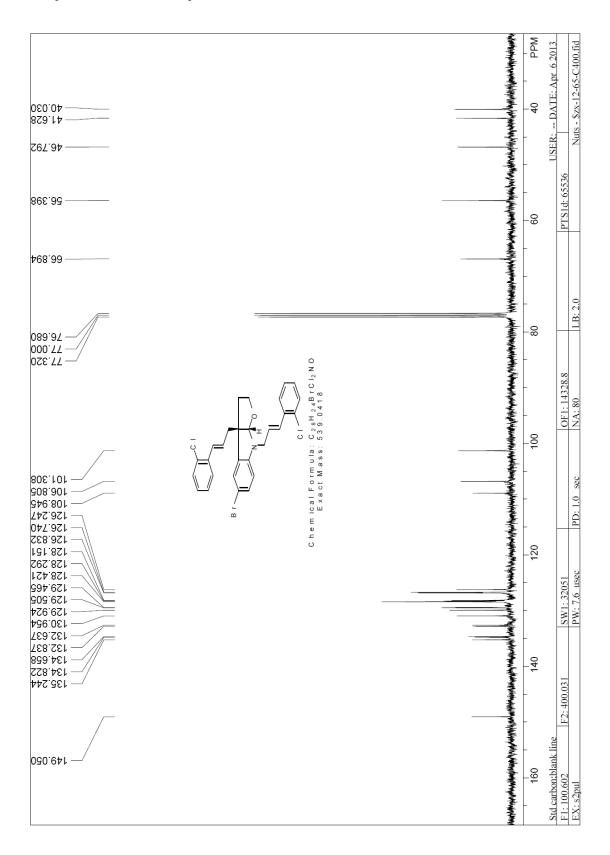

	0.70			7 2 2						
	0.60			5						
	0.50									
₹	0.40									
	0.30									
	0.20									
	0.10				16.360					
	0.00				\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.					
	0.	00	5.00	10.00	15.00	20.00 Minutes	25.00	30.00	35.00	40.00

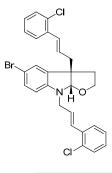

	RT (min)	Area (µV*sec)	% Area
1	13.455	15901995	95.57
2	16.360	736464	4.43

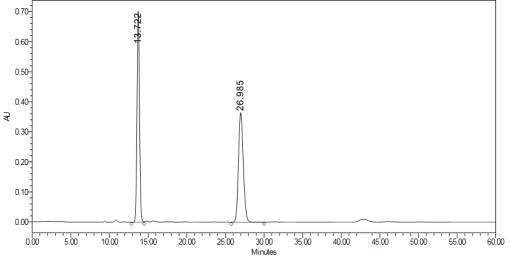

Compound 4fa's ¹H NMR Spectra

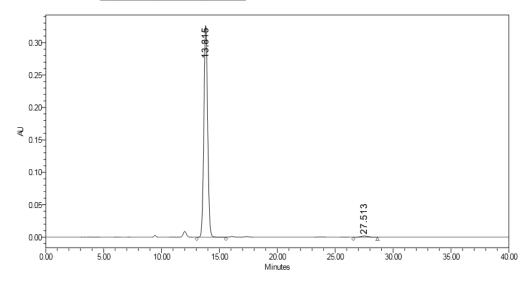
Compound **4fa**'s ¹³C NMR Spectra





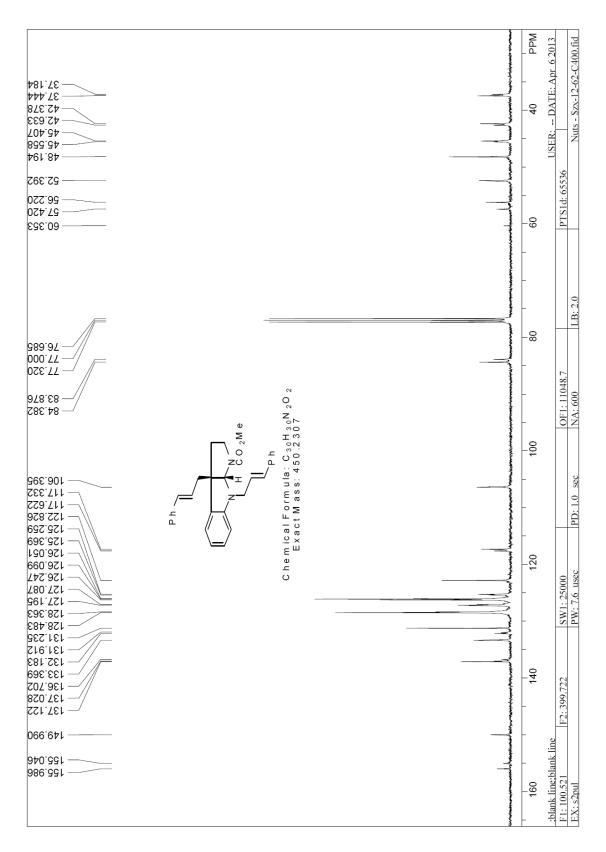

	RT (min)	Area (µV*sec)	% Area
1	13.858	10071358	91.39
2	14.754	948998	8.61

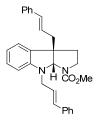

Compound **4ci**'s ¹H NMR Spectra

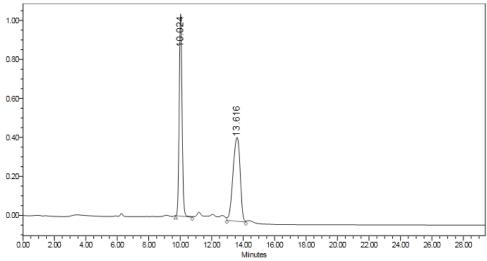

Compound 4ci's ¹³C NMR Spectra

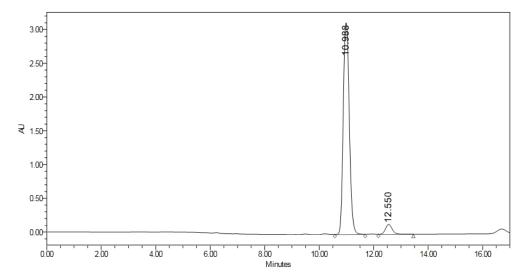


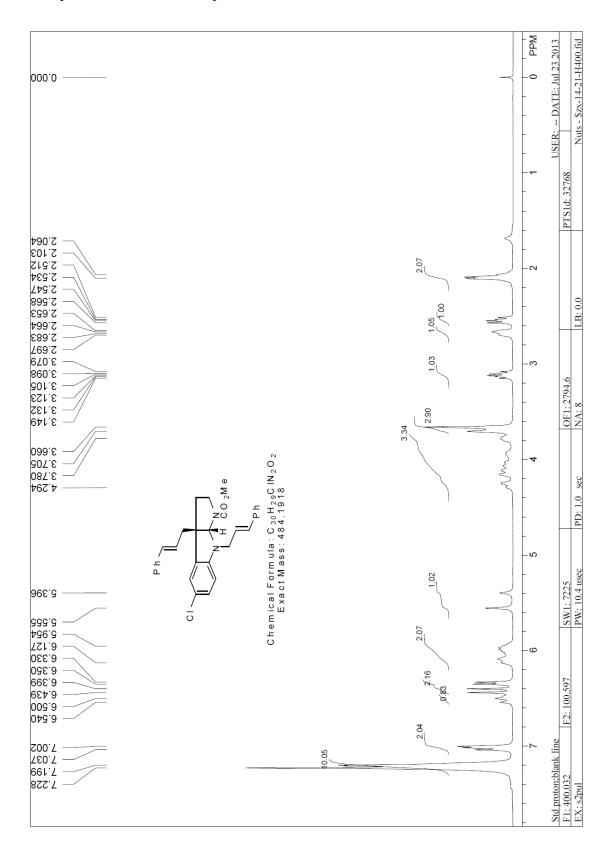
	RT (min)	Area (μV*sec)	% Area
1	13.722	15849786	49.96
2	26.985	15874520	50.04



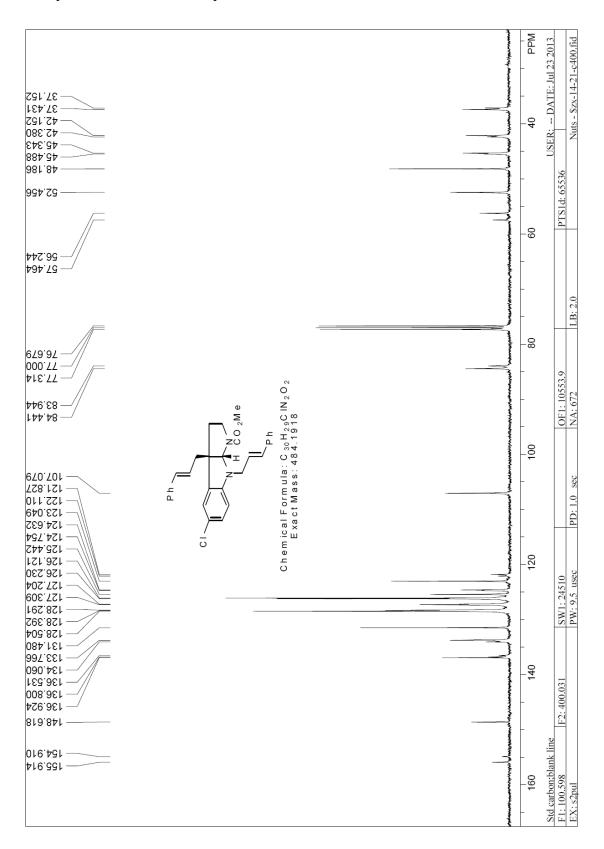

	RT (min)	Area (µV*sec)	% Area
1	13.815	7392553	98.97
2	27.513	77083	1.03

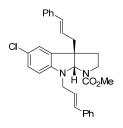

Compound **4ga**'s ¹H NMR Spectra

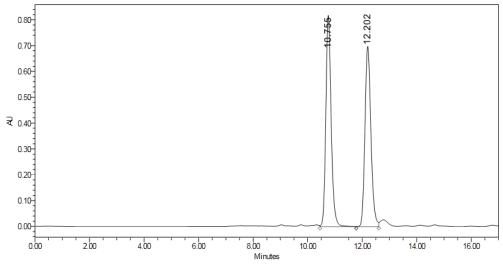

Compound **4ga**'s ¹³C NMR Spectra

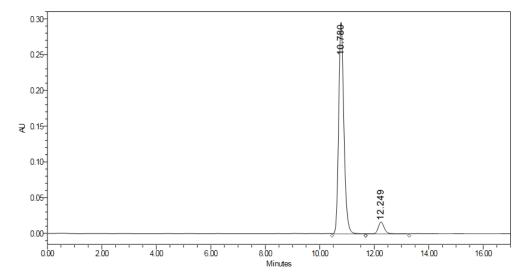


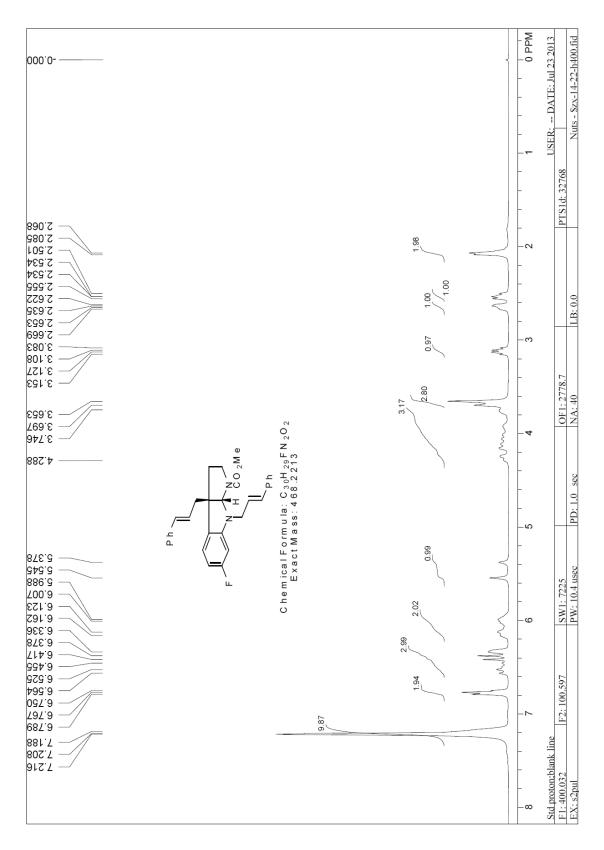
	RT (min)	Area (μV*sec)	% Area
1	10.024	13097253	49.17
2	13.616	13541732	50.83



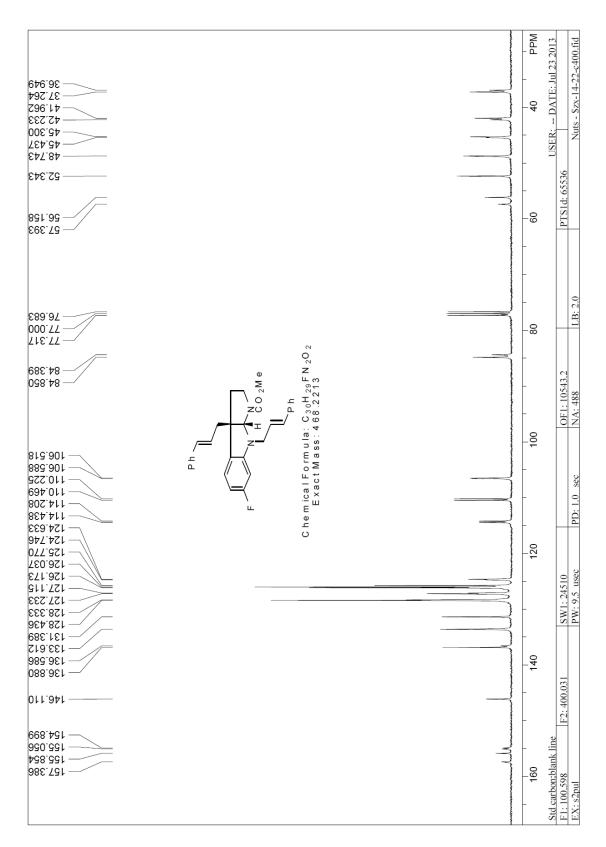

		RT (min)	Area (μV*sec)	% Area
	1	10.988	48464867	95.04
	2	12.550	2530103	4.96

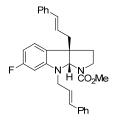

Compound 4ha's ¹H NMR Spectra

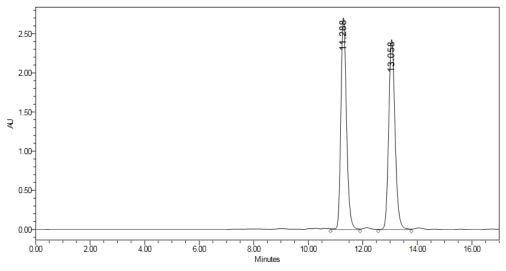

Compound **4ha**'s ¹³C NMR Spectra

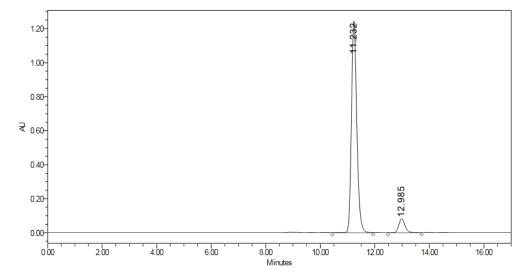


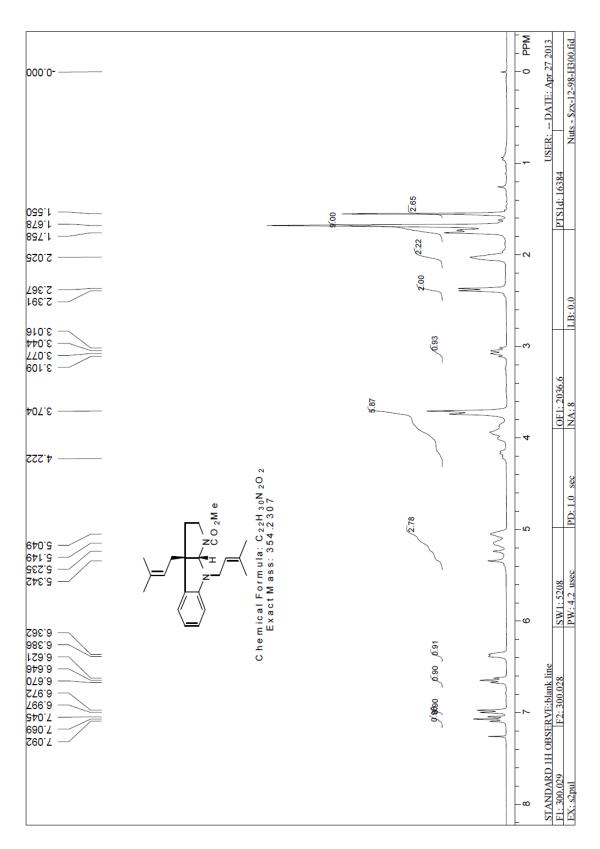
		RT (min)	Area (μV*sec)	% Area
	1	10.755	11041804	51.05
	2	12.202	10586031	48.95



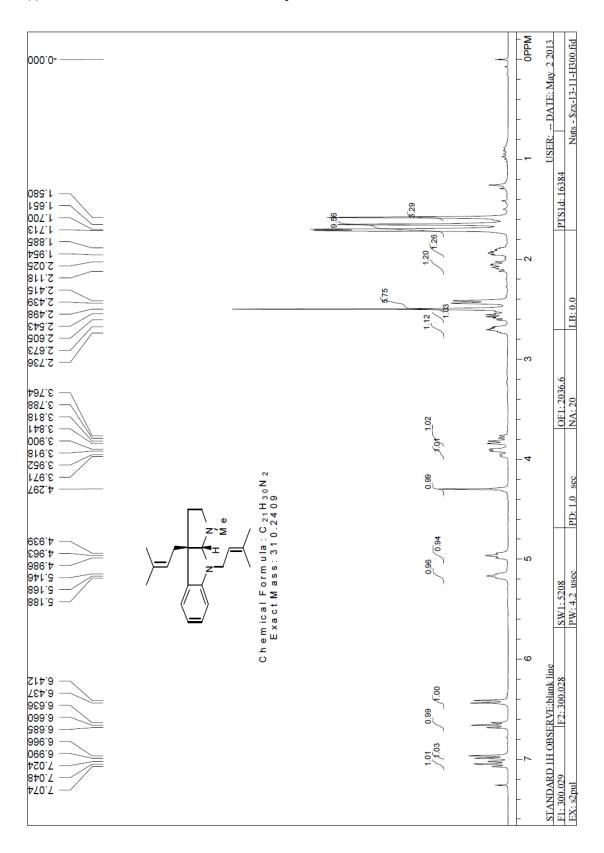

		RT (min)	Area (µV*sec)	% Area
	1	10.780	3946302	93.86
	2	12.249	258241	6.14


Compound 4ia's ¹H NMR Spectra


Compound 4ia's ¹³C NMR Spectra



		RT (min)	Area (µV*sec)	% Area
	1	11.288	38665031	49.61
	2	13.058	39268850	50.39



		RT (min)	Area (µV*sec)	% Area
	1	11.232	17075103	92.85
	2	12.985	1314498	7.15

Compound **5ga**'s ¹H NMR Spectra

(-)-debromoflustramine ${f B}$'s $^1{f H}$ NMR Spectra

