Highly sensitive and selective detection of the pyrophosphate anion biomarker under physiological conditions

Guzmán Sánchez,^a David Curiel,^a Witold Tatkiewicz,^b Imma Ratera,^b Alberto Tárraga,^a Jaume Veciana,^{*b} and Pedro Molina^{*a}

ELECTRONIC SUPPLEMENTARY INFORMATION

NRM spectra	2
XPS data	3
TOF-SIMS data	4
PM-IRRAS data	4
SEM and AFM data	5
SPR titration of 1-decanothiol SAM	6
SPR titration of 1·SAM in NaCl 0.1 M	6
SPR titration of $1 \cdot SAM$ in 20 mM HEPES saline buffer at pH = 7.4	7
Selectivity of 1 · SAM towards anions with three negative charges	8
Selectivity of 1 · SAM towards other phosphate anions	9
Regeneration test of $1 \cdot SAM$ in 20 mM HEPES saline buffer at pH = 7.4	9
Synthesis of compound 1	10

NMR spectra of 1

Characterization of the monolayers

XPS data:

Figure S2. Deconvolution of the XPS peaks for each element detected.

Element/orbital	Bond type	Calculated bond energy (eV)	Found bond energy (eV)	Peak area
Sulphur 2p	Bound thiol	162.1	161.93	2628.782
	Bound thiol ^[a]	162.1	163.11	1419.567
	Unbound thiol	164.7	164.21	627.583
Carbon 1s	С-С, С=С, С-Н	284.6	284.32	14431.39
	y C-S			
	C-O	286.1	285.03	14606.93
	C=O	287.5	288.40	3054.977
Oxygen 1s	O=C	531.6	531.54	3256.887
	O-C	533.2	532.85	4811.747
Nitrogen 1s	N-C	399.5	399.53	1837.226
-	$N^+-H^{[b]}$	400.2	400.14	1881.968

 Table S1. Parameters rendered by the XPS analysis.

^[a] Although a bound thiol should exhibit only one band at 162.1 eV, the appearance of two different bands is not uncommon. ^[b] The protonation of NH groups is not infrequent during the XPS measurements.

Figure S3. Partial TOF-SIMS spectrum with lateral resolution (positive ionization mode) for a gold substrate functionalized with 1 by means of μ CP techniques.

PM-IRRAS data:

Figure S4. PM-IRRAS spectrum. The most relevant bands are shown as insets.

Figure S5. SEM and AFM images of printed **1**·**SAM**. a) SEM image of **1**·SAM; b) zoom in the border area of the SEM image, b) AFM image of **1**·**SAM** and c) AFM profile of both regions found.

Surface Plasmon Resonance (SPR) titrations

1-Decanothiol SAM:

Figure S6. SPR sensogram of 1-decanothiol SAM upon addition of different aliquots of $HP_2O_2^{3-}$ anion. An arrow denotes the injection of each concentration of guest.

1.SAM in aqueous NaCl 0.1 M:

Figure S7. Normalized sensogram obtained upon addition of different concentrations of the HP₂O₇³⁻ anion to **1·SAM** in aqueous NaCl 0.1 M. (a) baseline, (b) 10^{-10} M, (c) 10^{-9} M, (d) 10^{-8} M, (e) 10^{-7} M, (f) 10^{-6} M, (g) 10^{-5} M, and (h) 10^{-4} M. Inset: SPR response of a sensing chip functionalized with **1·SAM** upon injection of different concentrations of HP₂O₇³⁻ anion; (I) denotes the injection of a 0.2 M NaCl aqueous

solution as a reference, (II) indicates the washing step with buffer solution (aqueous NaCl 0.1 M in this case) and (III) corresponds to the injection of $HP_2O_7^{3-}$ solutions of different concentrations

Figure S8. Plots of apparent rate constants, k_{s} , vs [HP₂O₇³⁻] at low concentrations (a) and at high concentrations (b).

Figure S9. Regeneration tests on $1 \cdot SAM$ with 10^{-9} M solutions of HP₂O₇³⁻.

<u>1</u>·SAM in 20 mM HEPES-saline buffer at pH = 7.4:

Figure S10. (a) Normalized SPR sensogram obtained upon addition of different concentrations of hydrogenpyrophosphate anion to $1 \cdot \text{SAM}$ in 20 mM HEPES-saline buffer (pH = 7.4). (a) baseline, (b) [HP₂O₇³⁻] = 10^{-10} M, (c) [HP₂O₇³⁻] = 10^{-8} M, (d) [HP₂O₇³⁻] = 10^{-7} M, (e) [HP₂O₇³⁻] = 10^{-6} M, (f) [HP₂O₇³⁻] = 10^{-5} M and (g) [HP₂O₇³⁻] = 10^{-4} M. Plots of apparent rate constants, k_{s} , vs [HP₂O₇³⁻] at low concentrations (b) and at high concentrations (c).

Figure S11. Selectivity of **1**•**SAM** towards trivalent anions. The concentration used was 10⁻⁹M for HPPi and 10⁻⁷M for the rest of the anions (100-fold excess)

The interfering effects of trivalent citrate and trimesate anions, were tested in 100-fold excess. Surprisingly, the selectivity of the monolayer increased in such physiological media (see Figure S11). Since this environment is more competitive, we can assume that the affinity of **1**·SAM is severely reduced. Nevertheless, while the signal towards hydrogen pyrophosphate is still good, the response showed for the possible competing anions decreased abruptly.

Figure S12. Selectivity of $1 \cdot \text{SAM}$ in 20 mM HEPES towards several phosphate anions. The concentration used for all anions were 10^{-7} M.

Figure S13. Regeneration tests of $1 \cdot \text{SAM}$ in 20 mM HEPES saline buffer using $[\text{HP}_2\text{O}_7^{3-}] = 10^{-9} \text{ M}.$

