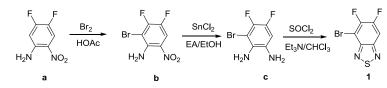
Supporting Information for

Selective Thienylation of Fluorinated Benzothiadiazoles and Benzotriazoles for Organic Photovoltaics

Chun-Yang He,^b Cai-Zhi Wu,^b Yan-Lin Zhu,^a and Xingang Zhang^{*a}

 ^aKey Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
^bCollege of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China

xgzhang@mail.sioc.ac.cn

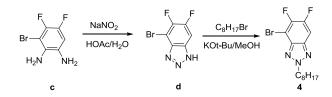

List of Contents

1) Procedure for the preparation of compounds 1 and 4	S03
2) General Procedure for Selective Thienylation of FBT 1 with Thiophenes	S05
3) Data for compounds 3	S05
4) General procedure for the preparation of compounds 6a and 6b	S 13
5) Data for compounds 6	S 13
6) General procedure for the preparation of compounds 7a and 7c-e	S14
7) Data for compounds 7	S14
8) General Procedure for the preparation of compounds 9a-d	S15
9) Data for compounds 9a-d	S15
10) Data for compounds 11, 12 and 14	S18
11) Copies of ¹ H NMR, ¹⁹ F NMR and ¹³ C NMR spectra of 1 , 3 and 4	S22
12) Copies of ¹ H NMR, ¹⁹ F NMR and ¹³ C NMR spectra of 6 , 7 and 9	S48
13) Copies of ¹ H NMR, ¹⁹ F NMR and ¹³ C NMR spectra of 11, 12, and 14	S64

General information: ¹H NMR and ¹³C NMR spectra were recorded on a Agilent AM400 and AM500 spectrometer. ¹⁹F NMR was recorded on a Agilent AM400 spectrometer (CFCl₃ as outside standard and low field is positive). Chemical shifts (δ) are reported in ppm, and coupling constants (*J*) are in Hertz (Hz). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. NMR yield was determined by ¹⁹F NMR using fluorobenzene as an internal standard before working up the reaction.

Materials: All reagents were used as received from commercial sources. All reagents were weighed and handled in air, and refilled with an inert atmosphere of N_2 at room temperature. DMF and DMSO were distilled under reduced pressure from CaH₂. The DMSO was stored with the powder of 4 Å molecular sieves. Toluene and 1,4-Dioxane was distilled from sodium and benzophenone immediately before use.

Procedure for the preparation of compound 1.



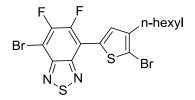
2-Bromo-3,4-difluoro-6-nitroaniline (b).¹ To a solution of 4,5-difluoro-2-nitroaniline (17.4 g, 100 mmol) in acetic acid (100 ml) was added bromine (32 g, 2 equiv) dropwise at 50- 56 °C, and stirred for 2.5 hours. The reaction mixture was poured into ice water (250 mL) and the resulting precipitate was collected by filtration and washed with water sufficiently then dried to give compound **b** (23.3 g, 92% yield) as a yellow solid.

3-Bromo-4,5-difluorobenzene-1,2-diamine (c).² To a solution of **b** (7.6 g, 30 mmol) and $SnCl_2 2H_2O$ (34 g, 150 mmol) were dissolved in 70 mL ethyl acetate and 30 mL absolute ethanol under N₂. Then the mixture was heated at 75 °C with stirring for 3 h. The reaction mixture was then cooled to room temperature, and poured into 200 mL ice water. Aqueous saturated solution of NaHCO₃ was added to adjust the pH to 5. The residue was extracted with ethyl acetate. The combined organic layers were dried over Na₂SO₄, filtered, and concentrated. The residue (5.6 g, 75%)

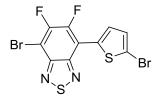
yield) was used for the next step without further purification.

4-Bromo-5,6-difluorobenzo[**c**][**1,2,5**]**thiadiazole** (**1**). To a 500 mL three- necked round bottom flask were added **c** (5.6 g, 25 mmol), CHC1₃ (150 mL) and triethylamine (11.4 mL, 4 equiv). After stirring for 15 min, thionyl chloride (SOCl₂, 7.2 g, 2 equiv) was added dropwise and the mixture was heated to reflux for 5 h. The reaction mixture was then cooled to room temperature, and concentrated. The residue was extracted with CH₂Cl₂, washed with water and brine. The combined organic layers were dried over Na₂SO₄, filtered, and concentrated. The residue was purified with silica gel column chromatography (100% hexane) to give FBT **1** as a white solid (5.1 g, 81% yield). ¹H NMR (300 MHz, CDCl₃) δ 7.30 (apparent t, *J* = 8.1 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -120.5 (dd, *J* = 19.9 Hz, 7.5 Hz, 1F), -125.7 (dd, *J* = 19.7 Hz, 8.8 Hz, 1F).

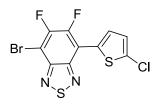
4-Bromo-5,6-difluoro-1H-benzo[d][1,2,3]triazole (d). To a solution of HOAc (2.4 mL, 40 mmol) in 100 mL of H₂O was added compound **c** (4.66 g, 20 mmol). The reaction mixture was heated to 70 $^{\circ}$ C and stirred for 1 h. The reaction mixture was then cooled to room temperature, a solution of NaNO₂ (1.52 g) in 20 mL of H₂O was then added. The resulting reaction mixture was stirred for another 1 h at room temperature. The resulting precipitate was filtered to give compound **d** (3.51 g, 75% yield) without further purification.

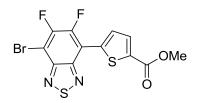


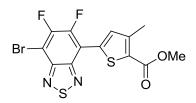
4-Bromo-5,6-difluoro-2-octyl-2H-benzo[d][1,2,3]triazole (4). To a solution of **d** (2.3 g, 10 mmol) in 50 mL of methanol were added *t*BuOK (1.15 g, 1.02 equiv) and $C_8H_{17}Br$ (1.95 g, 1.01 equiv) under N₂. The reaction mixture was then heated to reflux for 24 h. The reaction mixture was cooled to room temperature, and was extracted with ethyl acetate. The combined organic layers were dried over Na₂SO₄, filtered, and concentrated. The product (1.20 g, 35% yield) was purified with silica gel chromatography(Petroleum ether(100%)) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.55 (dd, *J*


= 8.6 Hz, 7.0 Hz, 1H), 4.70 (t, *J* = 7.4 Hz, 2H), 2.10 (m, 2H), 1.40-1.15 (m, 10H), 0.86 (t, *J* = 6.8 Hz, 3H).¹⁹F NMR (376 MHz, CDCl₃) -128.9 (dd, *J* = 19.2 Hz, 6.8 Hz, 1F), -129.7 (dd, *J* = 19.7 Hz, 8.8 Hz, 1F).

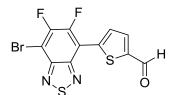
General Procedure for Selective Thienylation of FBT 1 with Thiophenes.


To a 25 mL of sealed tube were added $Pd(TFA)_2$ (2.5 mol %), Ag_2O (93 mg 2.0 equiv) and 4-bromo-5,6-difluorobenzo[c][1,2,5]thiadiazole (1) (50 mg, 1 equiv) under N₂, followed by DMSO (1 mL) with stirring. Thiophene **2** (0.4 mmol, 2 equiv) were then added subsequently. The reaction mixture was stirred at 80 °C (preheated oil bath). After stirring for 6 h, the reaction mixture was cooled to room temperature, filtered and diluted with dichloromethane, washed with brine, dried over Na₂SO₄, filtered and concentrated. The residue was purified with silica gel chromatography to provide pure product.

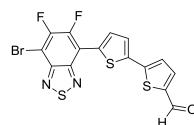

4-Bromo-7-(5-bromo-4-hexylthiophen-2-yl)-5,6-difluorobenzo[**c**][**1**,**2**,**5**]**thiadiazole** (**3a**). The product (80 mg, 81% yield) was purified with silica gel chromatography (Petroleum ether(100%)) as a yellow solid. m.p. 91 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.94 (s, 1H), 2.65 (t, *J* = 7.6 Hz, 2H), 1.66 (m, 2H), 1.45-1.25 (m, 6H) , 0.90 (t, *J* = 7.0 Hz, 3H) .¹⁹F NMR (376 MHz, CDCl₃) δ -120.2 (d, *J* = 18.4 Hz, 1F), -126.7 (d, *J* = 18.4 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃) δ 152.0 (dd, *J* = 255.4 Hz, 19.8 Hz), 149.8(d, *J* = 5.3 Hz), 149.1 (dd, *J* = 261.5 Hz, 19.4 Hz), 147.4 (d, *J* = 8.9 Hz), 142.7, 132.2 (d, *J* = 9.9 Hz), 130.5 (m), 114.9 (d, *J* = 8.1 Hz), 112.6 (d, *J* = 11.5 Hz), 97.1 (d, *J* = 22.3 Hz), 31.6, 29.7, 29.5, 28.9, 22.6, 14.1. MS (EI): *m/z* (%) 496 (M⁺), 366, 345, 252, 41(100). HRMS: Calculated for C₁₆H₁₄N₂F₂S₂Br₂: 493.8933; Found: 493.8930.


4-Bromo-7-(5-bromothiophen-2-yl)-5,6-difluorobenzo[c][1,2,5]thiadiazole (3b). The product (60 mg, 73% yield) was purified with silica gel chromatography (Petroleum ether(100%)) as a yellow solid. m.p. 155 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, *J* = 4.2 Hz, 1H), 7.20 (d, *J* = 4.2 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -120.1 (d, *J* = 19.2 Hz, 1F), -126.6 (d, *J* = 19.2 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃) δ 152.2 (dd, *J* = 255.4 Hz, 20.0 Hz), 149.8(d, *J* = 5.5 Hz), 149.2 (dd, *J* = 261.8 Hz, 19.5 Hz), 147.4 (d, *J* = 8.4 Hz), 134.8 (d, *J* = 8.0 Hz), 130.8 (d, *J* = 10.3 Hz), 129.6 (m), 126.6, 112.4 (d, *J* = 11.9 Hz), 97.4 (d, *J* = 23.5 Hz). MS (EI): *m/z* (%) 414 (M⁺), 312 (M⁺), 310 (M⁺), 40 (100). HRMS: Calculated for C₁₀H₂N₂F₂S₂Br₂: 409.7994; Found: 409.7991.

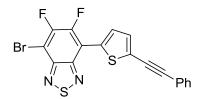
4-Bromo-7-(5-chlorothiophen-2-yl)-5,6-difluorobenzo[c][1,2,5]thiadiazole (3c). The product (54 mg, 74% yield) was purified with silica gel chromatography (Petroleum ether(100%)) as a yellow solid. m.p. 137 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, *J* = 4.0 Hz, 1H), 7.06 (dd, *J* = 4.0 Hz, 1.2 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -120.1 (d, *J* = 19.0 Hz, 1F), -126.8 (d, *J* = 19.0 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃) δ 152.2 (dd, *J* = 255.5 Hz, 20.0 Hz), 149.8 (d, *J* = 5.4 Hz), 149.2 (dd, *J* = 261.7 Hz, 19.4 Hz), 147.4 (d, *J* = 8.5 Hz), 134.8 (d, *J* = 8.0 Hz), 130.8 (d, *J* = 10.3 Hz), 129.6 (m), 126.6, 112.4 (d, *J* = 12.6 Hz), 97.4 (d, *J* = 21.9 Hz). MS (EI): *m/z* (%) 368 (M⁺,100), 366 (M⁺), 332, 252. HRMS: Calculated for C₁₀H₂N₂F₂S₂BrCl: 365.8499; Found: 365.8496.

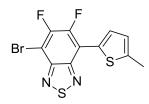


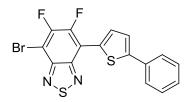
Methyl 5-(7-bromo-5,6-difluorobenzo[c][1,2,5]thiadiazol-4-yl)thiophene-2-carboxylate (3d). The product (59 mg, 76%) was purified with silica gel chromatography (Petroleum ether /Dichloromethane = 50:1) as a yellow solid. m.p. 154 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.21 (d, *J* = 3.6 Hz, 1H), 7.90 (dd, *J* = 4.2 Hz, 1.0 Hz, 1H), 3.95 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -119.9 (d, *J* = 17.7 Hz, 1F), -124.6 (d, *J* = 17.7 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃) δ 162.4, 152.2 (dd, *J* = 256.1 Hz, 19.8 Hz), 150.0 (dd, J = 264.0 Hz, 19.6 Hz), 149.8, 147.5 (d, J = 7.9 Hz), 137.0 (m), 136.0 (d, J = 6.2 Hz), 133.2, 131.4 (d, J = 9.5 Hz), 112.3 (d, J = 10.3 Hz), 98.9 (d, J = 21.6 Hz), 52.4. MS (EI): m/z (%) 392 (M⁺), 390 (M⁺), 361(100). HRMS: Calculated for C₁₂H₅N₂O₂S₂F₂Br: 389.8944; Found: 389.8942.

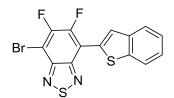


Methyl

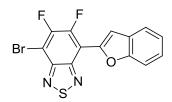

5-(7-bromo-5,6-difluorobenzo[c][1,2,5]thiadiazol-4-yl)-3-methylthiophene-2-carboxylate (3e). The product (68 mg, 84% yield) was purified by silica chromatography (Petroleum ether /Ethyl Acetate = 50:1) as a yellow solid. m.p. 160 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.00 (s, 1H), 3.92 (s, 3H), 2.64 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -120.0 (d, *J* = 18.2 Hz, 1F), -124.7 (d, *J* = 18.2 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃) δ 163.0, 152.2 (dd, *J* = 255.8 Hz, 19.8 Hz), 150.0 (dd, *J* = 264.0 Hz, 19.6 Hz), 149.8, 147.5 (d, *J* = 7.9 Hz), 146.0, 145.1 (d, *J* = 5.0 Hz), 135.1 (d, *J* = 9.2 Hz), 134.2 (m), 129.2 (d, *J* = 6.2 Hz), 98.7 (d, *J* = 20.6 Hz), 52.0, 16.0. MS (EI): *m/z* (%) 406 (M⁺), 404 (M⁺), 375 (100), 346. HRMS: Calculated for C₁₃H₇N₂O₂S₂F₂Br: 403.9100; Found: 403.9104.


5-(7-Bromo-5,6-difluorobenzo[c][1,2,5]thiadiazol-4-yl)thiophene-2-carbaldehyde (**3f**). The product (53 mg, 74% yield) was purified by silica chromatography (Petroleum ether /Ethyl Acetate = 50:1) as a yellow solid. m.p. 165 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.04 (s, 1H), 8.32 (d, *J* = 4.0 Hz, 1H), 7.88 (dd, *J* = 4.0 Hz, 1.2 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -119.8 (d, *J* = 19.2 Hz, 1F), -123.5 (d, *J* = 19.2 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃) δ 183.2, 152.2 (dd, *J* = 256.1 Hz, 19.8 Hz), 150.3 (dd, *J* = 264.9 Hz, 19.3 Hz), 149.8 (d, *J* = 5.1 Hz), 147.4 (d, *J* = 7.8 Hz), 145.4 (d, *J* = 5.5 Hz), 139.6 (m), 135.6, 131.7 (d, *J* = 9.4 Hz), 112.1, 99.8 (d, *J* = 21.5 Hz). MS (EI): *m/z* (%) 362 (M⁺, 100), 360 (M⁺, 100), 332, 289. HRMS: Calculated for C₁₁H₃ON₂BrS₂F₂: 359.8838; Found: 359.8834.

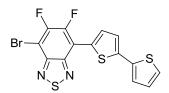

5'-(7-Bromo-5,6-difluorobenzo[**c**][**1,2,5**]**thiadiazol-4-yl**)-[**2,2'-bithiophene**]-**5-carbaldehyde** (**3g**). The product (58 mg, 66% yield) was purified with silica gel chromatography (Petroleum ether /Ethyl Acetate = 50:1) as a yellow solid. m.p. 158 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.90 (s, 1H), 8.21 (d, *J* = 4.0 Hz, 1H), 7.72 (d, *J* = 4.0 Hz, 1H), 7.46 (dd, *J* = 4.0 Hz, 1.2 Hz, 1H), 7.39 (d, *J* = 4.0 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -120.1 (d, *J* = 19.0 Hz, 1F), -125.5 (d, *J* = 19.0 Hz, 1F). MS (EI): *m/z* (%) 444 (M⁺, 100), 442 (M⁺, 100), 369. HRMS: Calculated for C₁₅H₅ON₂BrS₃F₂: 441.8715; Found: 441.8711.


4-Bromo-5,6-difluoro-7-(5-(phenylethynyl)thiophen-2-yl)benzo[c][1,2,5]thiadiazole (**3h**). The product (64 mg, 74% yield) was purified with silica gel chromatography (Petroleum ether(100%)) as a yellow solid. m.p. 166 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, *J* = 4.0 Hz, 1H), 7.60-7.50 (m, 2H), 7.40-7.34 (m, 4H). ¹⁹F NMR (376 MHz, CDCl₃) δ -120.2 (d, *J* = 19.2 Hz, 1F), -126.2 (d, *J* = 19.2 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃) δ 152.4 (dd, *J* = 255.4 Hz, 19.6 Hz), 149.8 (d, *J* = 5.5 Hz), 149.4 (dd, *J* = 262.8 Hz, 19.2 Hz), 147.6 (d, *J* = 8.5 Hz), 132.1, 131.46, 131.41 131.3, 128.8, 128.4, 127.3 (d, *J* = 7.3 Hz), 122.6, 112.7 (d, *J* = 11.6 Hz), 97.5 (d, *J* = 21.5 Hz), 96.1, 82.2. MS (EI): *m/z* (%) 435 (M⁺), 434 (M⁺, 100), 433 (M⁺), 432 (M⁺), 145. HRMS: Calculated for C₁₈H₇N₂F₂S₂Br: 431.9202; Found: 431.9201.

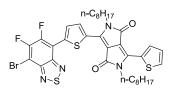
4-Bromo-5,6-difluoro-7-(5-methylthiophen-2-yl)benzo[c][1,2,5]thiadiazole (3i). The product (50 mg, 72% yield) was purified with silica gel chromatography (Petroleum ether(100%)) as a yellow solid. m.p. 155 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, *J* = 4.0 Hz, 1H), 6.89 (dd, *J* = 2.4 Hz, 1.2 Hz 1H), 2.58 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -120.4 (d, *J* = 19.2 Hz, 1F), -127.7 (d, *J* = 19.2 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃) δ 152.3 (dd, *J* = 255.0 Hz, 20.0 Hz), 149.8 (d, *J* = 5.6 Hz), 148.7 (dd, *J* = 260.2 Hz, 19.2 Hz), 147.8 (d, *J* = 8.6 Hz), 144.6 (d, *J* = 6.6 Hz), 131.7 (d, *J* = 8.9 Hz), 128.4 (m), 126.0, 113.6 (d, *J* = 12.4 Hz), 96.2 (d, *J* = 20.5 Hz), 15.3. MS (EI): *m/z* (%) 348 (M⁺, 100), 347 (M⁺), 346 (M⁺). HRMS: Calculated for C₁₁H₅N₂F₂S₂Br: 345.9046; Found: 345.9045.



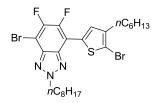
4-Bromo-5,6-difluoro-7-(5-phenylthiophen-2-yl)benzo[c][1,2,5]thiadiazole (3j). The product (69 mg, 84% yield) was purified with silica gel chromatography (Petroleum ether(100%)) as a yellow solid. m.p. 124 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.22 (d, *J* = 4.0 Hz, 1H), 7.70 (d, *J* = 8.0 Hz, 2H), 7.46-7.38 (m, 3H), 7.34 (t, *J* = 7.2 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -121.0 (d, *J* = 17.7 Hz, 1F), -127.4 (d, *J* = 17.7 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃) δ 152.4 (dd, *J* = 255.2 Hz, 20.0 Hz), 149.9 (d, *J* = 5.2 Hz), 149.4 (dd, *J* = 261.3 Hz, 19.0 Hz), 148.2 (d, *J* = 6.6 Hz), 147.7 (d, *J* = 9.0 Hz), 133.6, 132.5 (d, *J* = 9.3 Hz), 130.1, 129.0, 128.3, 126.0, 123.5, 113.3 (d, *J* = 11.5 Hz), 96.7 (d, *J* = 23.3 Hz). MS (EI): *m*/*z* (%) 411 (M⁺), 410 (M⁺), 408 (M⁺), 121, 83 (100). HRMS: Calculated for C₁₆H₇N₂S₂BrF₂: 407.9202; Found: 407.9197.

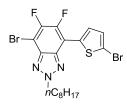


4-(Benzo[b]thiophen-2-yl)-7-bromo-5,6-difluorobenzo[c][1,2,5]thiadiazole (**3k**). The product (66 mg, 86% yield) was purified with silica gel chromatography (Petroleum ether(100%)) as a yellow solid. m.p. 169 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.48 (s, 1H), 7.89 (m, 2H), 7.41 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -120.1 (d, *J* = 18.4 Hz, 1F), -125.3 (d, *J* = 18.4 Hz, 1F). ¹³C NMR (100 MHz,

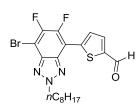

CDCl₃) δ 152.3 (dd, J = 255.6 Hz, 20.0 Hz), 150.1 (dd, J = 262.8 Hz, 19.2 Hz), 149.9 (d, J = 5.3 Hz), 148.0 (d, J = 8.1 Hz), 140.9 (d, J = 5.7 Hz), 139.0, 130.8 (m), 128.5 (d, J = 8.4 Hz), 125.8, 124.8, 124.5, 121.9, 113.4 (d, J = 11.7 Hz), 98.2 (d, J = 19.6 Hz). MS (EI): m/z (%) 385 (M⁺), 384 (M⁺, 100), 383 (M⁺), 382 (M⁺). HRMS: Calculated for C₁₄H₅N₂F₂S₂Br: 381.9041; Found: 381.9042.

4-(Benzofuran-2-yl)-7-bromo-5,6-difluorobenzo[c][1,2,5]thiadiazole (**3l**). The product (39 mg, 53% yield) was purified with silica gel chromatography (Petroleum ether) as a yellow solid. m.p. 168 ^oC. ¹H NMR (400 MHz, CDCl₃) δ 8.00 (s, 1H), 7.71 (d, *J* = 7.2 Hz, 1H), 7.63 (d, *J* = 8.4 Hz, 1H), 7.41 (t, *J* = 7.2 Hz, 1H), 7.31 (t, *J* = 7.6 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -119.9 (d, *J* = 17.7 Hz, 1F), -125.8 (d, *J* = 17.7 Hz, 1F). MS (EI): *m*/*z* (%) 369 (M⁺), 368 (M⁺), 367 (M⁺), 366 (M⁺), 141(100). Anal.Calcd for C₁₄H₅BrF₂N₂OS: C, 45.80; H, 1.37; N, 7.63. Found C, 45.57; H, 1.24; N, 7.80.


4-([2,2'-Bithiophen]-5-yl)-7-bromo-5,6-difluorobenzo[c][1,2,5]thiadiazole (3m). 5 mol % of Pd(TFA)₂ was used. The product (34 mg, 40% yield) as a yellow solid was purified with silica gel chromatography (Petroleum ether (100%)). m.p. 165 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, *J* = 4.0 Hz, 1H), 7.32 (d, *J* = 3.6 Hz, 1H), 7.30 (t, *J* = 5.2 Hz, 2H), 7.08 (dd, *J* = 5.2 Hz, 4.0 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -120.3 (d, *J* = 18.6 Hz, 1F), -126.7 (d, *J* = 18.6 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃) δ 152.2 (dd, *J* = 255.0 Hz, 20.0 Hz), 150.0 (dd, *J* = 261.2 Hz, 19.2 Hz), 149.8, 147.7 (d, *J* = 8.3 Hz), 141.4 (d, *J* = 5.2 Hz), 136.6, 132.3 (d, *J* = 9.7 Hz), 129.6(m), 128.1, 125.5, 124.6, 124.0, 113.1 (d, *J* = 15.8 Hz), 96.8 (d, *J* = 23.4 Hz). MS (EI): *m/z* (%) 416 (M⁺, 100), 415 (M⁺), 414 (M⁺). HRMS: Calculated for C₁₄H₅BrN₂S₃F₂: 413.8766; Found: 413.8763.

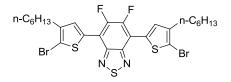

3-(5-(7-Bromo-5,6-difluorobenzo[**c**][**1,2,5**]**thiadiazol-4-yl)thiophen-2-yl)-2,5-dioctyl-6-(thiophen** -**2-yl)pyrrolo**[**3,4-c**]**pyrrole-1,4(2H,5H)-dione (3n).** The reaction was performed on a 0.1 mmol scale and was carried out with **1** (4 equiv), Pd(TFA)₂ (5 mol %), Ag₂O (4 equiv) and 1.5 mL DMSO in a Schlenk tube for 10 h at 80 °C. The product (52 mg, 68% yield) as a black solid was purified with silica gel chromatography (Petroleum ether /Dichloromethane = 20:1). m.p. 145 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.06 (d, *J* = 3.2 Hz, 1H), 8.95 (d, *J* = 3.6 Hz, 1H), 8.39 (d, *J* = 4.4 Hz, 1H), 7.64 (d, *J* = 4.8 Hz, 1H), 7.27 (d, *J* = 4.8 Hz, 1H), 4.14 (t, *J* = 7.8 Hz, 2H), 4.05 (t, *J* = 8.0 Hz, 2H), 1.90-1.60 (m, 4H), 1.50-1.25 (m, 20H), 0.87 (t, *J* = 6.8 Hz, 3H), 0.85 (t, *J* = 6.8 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -120.1 (d, *J* = 18.6 Hz, 1F), -124.0 (d, *J* = 18.6 Hz, 1F). MS (MALDI): *m/z* (%) 777.4 (M⁺), 776.4 (M⁺, 100), 775.4 (M⁺), 774.4 (M⁺), 773.4 (M⁺), 772.4 (M⁺). HRMS: Calculated for C₃₆H₃₉N₄O₂F₂S₃Br: 772.1384; Found: 772.1381.

General procedure for the preparation of compounds 30-3q:

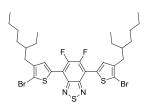

To a 25 mL of sealed tube were added $Pd(OAc)_2$ (5 mol %), Ag_2O (93 mg, 2.0 equiv) under N_2 , followed by DMSO (1 mL) with stirring. HOAc (12 uL, 1 equiv), 4-bromo-5,6-difluoro-2-octyl-2H -benzo[d][1,2,3]triazole (4) (0.2 mmol, 1 equiv) and thiophene (0.4 mmol, 2 equiv) were then added subsequently. The reaction mixture was stirred at 80 °C (preheated oil bath). After stirring for 8 h, the reaction mixture was cooled to room temperature, diluted with ethyl acetate, filtered, washed with brine, dried over Na₂SO₄, and concentrated. The residue was purified with silica gel chromatography to provide pure product

4-Bromo-7-(5-bromo-4-hexylthiophen-2-yl)-5,6-difluoro-2-octyl-2H-benzo[d][1,2,3]triazole (30). The product (76 mg, 64% yield) was purified with silica gel chromatography (Petroleum ether(100%)) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.89 (s, 1H), 4.75 (t, *J* = 7.6 Hz, 2H), 2.64 (t, J = 7.6 Hz, 2H), 2.14 (m, 2H), 1.65 (m, 2H), 1.50-1.20 (m, 16H), 0.90 (t, J = 7.2 Hz, 3H), 0.87 (t, J = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -128.8 (d, J = 18.4 Hz, 1F), -132.4 (d, J = 18.4 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃) δ 149.4 (dd, J = 247.8 Hz, 18.8 Hz), 146.5 (dd, J = 254.2 Hz, 18.2 Hz), 142.4, 139.6 (d, J = 5.5 Hz), 136.5 (d, J = 8.7 Hz), 131.2 (d, J = 7.0 Hz), 131.0 (dd, J = 5.8 Hz, 3.2 Hz), 113.4 (d, J = 9.2 Hz), 110.8 (d, J = 12.8 Hz), 93.9 (d, J = 22.6 Hz), 57.2, 31.7, 31.6, 30.0, 29.7, 29.5, 29.0, 28.9, 28.88, 26.5, 22.6, 22.59, 14.1, 14.0. MS (MALDI): m/z (%) 592.0 (M⁺-H), 590.0 (M⁺-H), 588.0 (M⁺-H). HRMS: Calculated for C₂₄H₃₀N₃F₂SBr₂: 588.0490; Found: 588.0490.

4-Bromo-7-(5-bromothiophen-2-yl)-5,6-difluoro-2-octyl-2H-benzo[d][1,2,3]triazole (**3p**). The product (53 mg, 52% yield) was purified with silica gel chromatography (Petroleum ether(100%)) as yellow solid. m.p. 65 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, *J* = 4.0 Hz, 1H), 7.15 (dd, *J* = 4.0 Hz, 12 Hz, 1H), 4.75 (t, *J* = 7.4 Hz, 2H), 2.14 (m, 2H), 1.50-1.20 (m, 10H), 0.87 (t, *J* = 6.8 Hz, 3H). ¹⁹F NMR (282 MHz, CDCl₃) δ -129.1 (d, *J* = 18.8 Hz, 1F), -132.5 (d, *J* = 18.8 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃) δ 149.3 (dd, *J* = 259.0 Hz, 18.7 Hz), 146.8 (dd, *J* = 265.4 Hz, 18.8 Hz), 139.6 (d, *J* = 5.5 Hz), 136.4 (d, *J* = 8.6 Hz), 133.0 (dd, *J* = 6.0 Hz, 3.2 Hz), 130.6 (d, *J* = 6.8 Hz), 130.2, 116.2 (d, *J* = 9.3 Hz), 110.6 (d, *J* = 12.7 Hz), 94.3 (d, *J* = 22.9 Hz), 57.2, 31.7, 30.0, 29.0, 28.9, 26.5, 22.6, 14.0. MS (MALDI): m/z (%) 508.0(M⁺-H), 507.0 (M⁺-H), 506.0 (M⁺-H), 504.0 (M-H). HRMS: Calculated for C₁₈H₁₈N₃F₂SBr₂: 503.9551; Found: 503.9561.

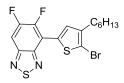


5-(7-Bromo-5,6-difluoro-2-octyl-2H-benzo[d][1,2,3]triazol-4-yl)thiophene-2-carbaldehyde (3q). The product (56 mg, 62% yield) was purified with silica gel chromatography (Petroleum ether/ Ethyl acetate(100:1)) as yellow solid. m.p. 71 °C. ¹H NMR (300 MHz, CDCl₃) δ 10.00 (s, 1H), 8.28 (d, *J* =

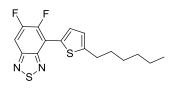

4.2 Hz, 1H), 7.83 (dd, J = 4.0 Hz, 1.6 Hz, 1H), 4.77 (t, J = 7.4 Hz, 2H), 2.15 (m, 2H), 1.45-1.20 (m, 10H), 0.85 (t, J = 6.6 Hz, 3H). ¹⁹F NMR (282 MHz, CDCl₃) δ -128.7 (d, J = 19.7 Hz, 1F), -129.2 (d, J = 19.7 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃) δ 183.1, 149.0 (dd, J = 251.0 Hz, 15.1 Hz), 147.7 (dd, J = 256.9 Hz, 17.5 Hz), 144.5 (d, J = 6.8 Hz), 140.4 (m), 139.6 (d, J = 4.4 Hz), 136.5 (d, J = 8.2 Hz), 135.8, 130.8 (d, J = 7.1 Hz), 110.1 (d, J = 12.6 Hz), 96.8 (d, J = 22.5 Hz), 57.4, 31.6, 30.0, 29.0, 28.9, 26.4, 22.5, 14.0. MS (EI): m/z (%) 457 (M⁺), 455 (M⁺), 376, 208 (100). HRMS: Calculated for C₁₉H₂₀ON₃S₂F₂Br: 455.0479; Found: 455.0475.

General procedure for the preparation of compounds 6a and 6b

To a 25 mL of sealed tube were added $Pd(TFA)_2$ (5 mol %), Ag_2O (186 mg 4.0 equiv) and 5 (0.2 mmol, 1 equiv) under N₂, followed by DMSO (1 mL) with stirring. Thiophene (0.8 mmol, 4 equiv) was then added. The reaction mixture was stirred at 80 °C (preheated oil bath). After stirring for 10 h, the reaction mixture was cooled to room temperature, diluted with dichloromethane, filtered, washed with brine, dried over Na₂SO₄, and concentrated. The residue was purified with silica gel chromatography (Petroleum ether (100%)) to provide pure product

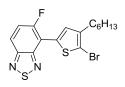

4,7-bis(5-bromo-4-hexylthiophen-2-yl)-5,6-difluorobenzo[c][1,2,5]thiadiazole (**6a**). The product (90 mg, 68%) was purified with silica gel chromatography (Petroleum ether(100%)) as a red solid. 17% of **7a** (14 mg) was also isolated. **6a:** m.p. 101.1 °C. This is known compound.^{3 1}H NMR (400 MHz, CDCl₃) δ 7.94 (s, 2H), 2.65 (t, *J* = 7.6 Hz, 4H), 1.66 (m, 4H), 1.45-1.27 (m, 12H), 0.90 (t, *J* = 6.8 Hz, 6H). ¹⁹F NMR (376 MHz, CDCl₃) δ -118.1 (s, 2F). ¹³C NMR (100 MHz, CDCl₃) δ 149.5 (dd, *J* = 259.1 Hz, 20.3 Hz), 148.1 (t, *J* = 4.1 Hz), 142.5, 131.5 (t, *J* = 4.8 Hz), 131.1, 114.4 (t, *J* = 3.6 Hz), 110.7 (m), 31.6, 29.7, 29.5, 29.0, 22.6, 14.1. MS (MALDI): *m/z* (%) 664.0 (M⁺), 662.0 (M⁺), 660.0 (M⁺). HRMS: Calculated for C₂₆H₂₈Br₂F₂N₂S₃: 659.9749; Found: 659.9751.

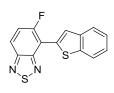
4,4'-(5,5'-(5,6-difluorobenzo[c][1,2,5]thiadiazole-4,7-diyl)bis(3-hexylthiophene-5,2-diyl))bis(N,N -**diphenylaniline) (6b)**. The product (95 mg, 66%) was purified with silica gel chromatography (Petroleum ether (100%)) as a red solid. This is known compound.⁴ 11% of **7b** (10 mg) was also isolated. **6b**: m.p. 83 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.85 (s, 2H), 2.56 (d, *J* = 7.6 Hz, 4H), 1.69 (m, 2H), 1.45-1.25(m, 16H), 0.93(t, *J* = 7.8 Hz, 12H). ¹⁹F NMR (376 MHz, CDCl₃) δ -128.0 (s, 2F). ¹³C NMR (100 MHz, CDCl₃) δ 152.0 (dd, *J* = 258.9 Hz, 20.0 Hz), 148.1 (m), 141.6, 132.1 (t, *J* = 4.7 Hz), 131.0, 115.1 (t, *J* = 3.6 Hz), 110.7 (m), 39.9, 33.7, 32.4, 28.8, 25.7, 23.1, 14.2, 10.8.


General procedure for the preparation of compounds 7a and 7c-e.

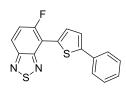
To a 25 mL of sealed tube were added $Pd(TFA)_2$ (2.5 mol %), Ag_2O (2.0 equiv) and 5 (3.0 equiv) under N₂, followed by DMSO with stirring. Thiophene (1 equiv) was then added. The reaction mixture was stirred at 80 °C (preheated oil bath). After stirring for 10 h, the reaction mixture was cooled to room temperature, diluted with dichloromethane, filtered, washed with brine, dried over Na₂SO₄, and concentrated. The residue was purified with silica gel chromatography to provide pure product

4-(5-Bromo-4-hexylthiophen-2-yl)-5,6-difluorobenzo[**c**][**1,2,5**]**thiadiazole** (**7a**). The reaction was performed on a 2 mmol scale in 6 mL DMSO. The product (590 mg, 71%) was purified with silica gel chromatography (Petroleum ether (100%)) as a yellow solid. 22% yield of 6**a** (147 mg) was also isolated. **7a**: m.p. 69 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.94 (s, 1H), 7.60 (dd, *J* = 9.0 Hz, 7.8 Hz, 1H), 2.65 (t, *J* = 7.6 Hz, 2H), 1.66 (m, 2H), 1.45-1.27 (m, 6H), 0.90 (t, *J* = 6.8 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -127.1 (dd, *J* = 17.1 Hz, 8.8 Hz, 1F), -128.7 (dd, *J* = 16.9 Hz, 7.5 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃) δ 152.4 (dd, *J* = 256.2 Hz, 18.8 Hz), 150.4 (d, *J* = 11.6 Hz), 149.1 (dd, *J* = 260.0 Hz, 19.3 Hz), 148.7 (d, *J* = 8.2 Hz), 142.5, 132.0 (d, *J* = 9.9 Hz), 131.0 (m), 114.4 (d, *J* = 8.3 Hz).

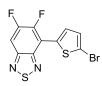

Hz), 113.3 (d, J = 11.2 Hz), 103.6 (d, J = 20.2 Hz), 31.6, 29.7, 29.5, 28.9, 22.6, 14.1. MS (EI): m/z (%) 418 (M⁺), 416 (M⁺), 267(100). HRMS: Calculated for C₁₆H₁₅N₂F₂S₂Br: 415.9828; Found: 415.9832.

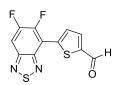

5,6-Difluoro-4-(5-hexylthiophen-2-yl)benzo[c][1,2,5]thiadiazole (7c). The reaction was performed on a 1.0 mmol scale in 2.5 mL of DMSO. The product (161 mg, 48% yield) was purified with silica gel chromatography (Petroleum ether (100%)) as a yellow oil. 4% yield of 6c (10 mg) was also isolated. **7c**: ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, *J* = 2.8 Hz, 1H), 7.49 (apparent t, *J* = 8.2 Hz, 1H), 6.88 (d, *J* = 2.8 Hz, 1H), 2.88 (t, *J* = 7.6 Hz, 2H), 1.75 (m, 2H), 1.50-1.25 (m, 6H) , 0.90 (t, *J* = 7.0 Hz, 3H) . ¹⁹F NMR (376 MHz, CDCl₃) -127.3 (dd, *J* = 17.1 Hz, 8.8 Hz, 1F), -129.7 (dd, *J* = 16.9 Hz, 7.5 Hz, 1F). ¹³C NMR (125 MHz, CDCl₃) δ 152.4 (dd, *J* = 255.6 Hz, 19.0 Hz), 150.4 (d, *J* = 12.6 Hz), 150.1 (d, *J* = 5.3 Hz), 149.0 (d, *J* = 8.5 Hz), 148.5 (dd, *J* = 20.4 Hz), 31.5, 31.4, 30.0, 28.8, 22.5, 14.0. MS (EI): *m/z* (%) 338 (M⁺), 267 (100), 141. HRMS: Calculated for C₁₆H₁₆N₂S₂F₂: 338.0723; Found: 338.0724.

General Procedure for the preparation of compounds 9a-d.


To a 25 mL of sealed tube were added $Pd(OAc)_2$ (5 mol %), AgOAc (133 mg 4.0 equiv), **8** (0.6 mmol, 3 equiv) under N₂, followed by DMSO (2 mL) with stirring. 2-Methylpyridine (30 uL 1.5equiv), and thiophene (0.2 mmol, 1 equiv) were then added. The reaction mixture was stirred at 80 °C (oil bath). After stirring for 9 h, the reaction mixture was cooled to room temperature, diluted with dichloromethane, filtered, washed with brine, dried over Na₂SO₄, and concentrated. The residue was purified with silica gel chromatography (Petroleum ether (100%)) to provide pure product.

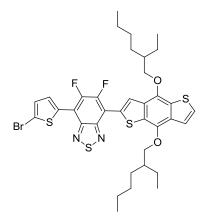
4-(5-Bromo-4-hexylthiophen-2-yl)-5-fluorobenzo[**c**][**1,2,5**]**thiadiazole** (**9a**). The product (34 mg, 42% yield) was purified with silica gel chromatography (Petroleum ether(100%)) as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.96 (s, 1H), 7.85 (dd, J = 9.4 Hz, 5.0 Hz, 1H), 7.51 (dd, J = 11.4 Hz, 9.4 Hz, 1H), 2.65 (t, J = 7.6 Hz, 2H), 1.66 (m, 2H), 1.45-1.30 (m, 6H), 0.90 (t, J = 7.0 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -108.3 (dd, J = 11.5 Hz, 4.7 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃) δ 158.6 (d, J = 254.9 Hz), 152.5 (d, J = 10.4 Hz), 152.3, 142.2, 131.9 (d, J = 5.4 Hz), 131.2 (d, J = 8.9 Hz), 121.9 (d, J = 30.9 Hz), 120.0 (d, J = 10.9 Hz), 113.1 (d, J = 8.5 Hz), 112.2 (d, J = 14.6 Hz), 31.6, 29.8, 29.6, 28.9, 22.6, 14.1. MS (EI): m/z (%) 398 (M⁺), 249 (100). HRMS: Calculated for C₁₆H₁₆N₂FS₂Br: 397.9922; Found: 397.9923.


4-(Benzo[b]thiophen-2-yl)-5-fluorobenzo[c][1,2,5]thiadiazole (**9b**). The product (26 mg, 45% yield) was purified with silica gel chromatography (Petroleum ether(100%)) as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 8.52 (s, 1H), 7.85 (dd, *J* = 9.0 Hz, 4.8 Hz, 1H), 7.92 (m, 2H), 7.59 (dd, *J* = 11.4 Hz, 9.0 Hz, 1H), 7.41 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -107.2 (dd, *J* = 11.6 Hz, 4.5 Hz, 1F). ¹³C NMR (125.7 MHz, CDCl₃) δ 159.5 (d, *J* = 256.1 Hz), 153.1 (d, *J* = 9.9 Hz), 152.4, 140.6 (d, *J* = 6.1 Hz), 139.2, 132.3 (d, *J* = 5.4 Hz), 127.4 (d, *J* = 7.8 Hz), 125.1, 124.5, 124.2, 121.9 (d, *J* = 31.0 Hz), 121.8, 121.0 (d, *J* = 11.1 Hz), 112.8 (d, *J* = 14.8 Hz). MS (EI): *m/z* (%) 286 (M⁺, 100), 109. HRMS: Calculated for C₁₄H₇N₂FS₂: 286.0035; Found: 286.0040.


5-Fluoro-4-(5-phenylthiophen-2-yl)benzo[c][1,2,5]thiadiazole (**9c**). The product (29 mg, 47% yield) was purified with silica gel chromatography (Petroleum ether(100%)) as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 8.25 (d, J = 4.0 Hz, 1H), 7.85 (dd, J = 9.4 Hz, 4.6 Hz, 1H), 7.72 (d, J = 7.2 Hz, 2H), 7.54 (dd, J = 11.2 Hz, 9.2 Hz, 1H), 7.46-7.38 (m, 3H), 7.32 (t, J = 7.4 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -108.3 (dd, J = 11.6 Hz, 4.9 Hz, 1F). ¹³C NMR (125 MHz, CDCl₃) δ

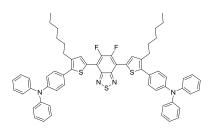
158.6 (d, J = 254.6 Hz), 152.8 (d, J = 10.2 Hz), 152.4, 146.6 (d, J = 6.9 Hz), 140.0, 131.6 (d, J = 5.6 Hz), 131.5 (d, J = 8.4 Hz), 128.9, 125.9, 123.3, 122.0, 121.8, 119.8 (d, J = 11.0 Hz), 112.8 (d, J = 14.9 Hz). MS (EI): m/z (%) 312 (M⁺, 100), 121. HRMS: Calculated for C₁₆H₉N₂FS₂: 312.0191; Found: 312.0190.

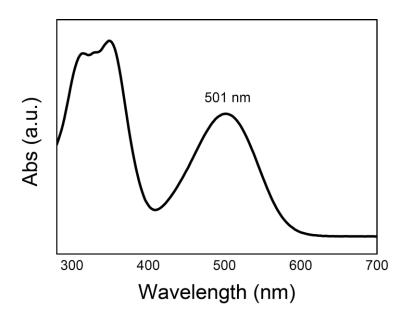
7-Bromo-4-(5-chlorothiophen-2-yl)-5-fluorobenzo[**c**][**1,2,5**]**thiadiazole** (**9d**). The product (30 mg, 43% yield) as a yellow solid was purified with silica gel chromatography (Petroleum ether(100%)). ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, *J* = 4.0 Hz, 1H), 7.80 (d, *J* = 11.2 Hz, 1H), 7.04 (dd, *J* = 4.4 Hz, 1.2 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -107.8 (d, *J* = 10.9 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃) δ 158.1 (d, *J* = 257.1 Hz), 151.6 (d, *J* = 12.1 Hz), 151.0, 133.7 (d, *J* = 8.7 Hz), 130.5 (d, *J* = 5.8 Hz), 130.0 (d, *J* = 9.5 Hz), 126.5, 124.4 (d, *J* = 33.2 Hz), 112.2 (d, *J* = 12.6 Hz), 111.6 (d, *J* = 14.1 Hz). MS (EI): *m*/*z* (%) 398 (M⁺), 249 (100). HRMS: Calculated for C₁₀H₃N₂FS₂BrCl: 347.8594; Found: 347.8596.


4-(5-Bromothiophen-2-yl)-5,6-difluorobenzo[**c**][**1,2,5**]**thiadiazole** (**7d**). The reaction was performed on a 4.0 mmol scale in 4 mL DMSO. The product (916 mg, 69%) was purified with silica gel chromatography (Petroleum ether (100%)) as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, *J* = 4.0 Hz, 1H), 7.64 (dd, *J* = 9.0 Hz, 7.4 Hz, 1H), 7.20 (dd, *J* = 4.2 Hz, 1.0 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -127.1 (dd, *J* = 12.6 Hz, 9.6 Hz, 1F), -128.5 (dd, *J* = 16.2 Hz, 6.8 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃) δ 152.4 (dd, *J* = 256.4 Hz, 18.8 Hz), 150.4 (d, *J* = 12.5 Hz), 149.1 (dd, *J* = 260.2 Hz, 19.4 Hz), 148.7 (d, *J* = 8.3 Hz), 133.0 (m), 131.4 (d, *J* = 10.1 Hz), 130.2 (d, *J* = 0.9 Hz), 117.3 (d, *J* = 7.9 Hz), 113.1 (m), 104.0 (d, *J* = 21.2 Hz). MS (EI): *m/z* (%) 334 (M⁺, 100), 332 (M⁺, 100), 253, 209. HRMS: Calculated for C₁₀H₃N₂F₂S₂Br: 331.8889; Found: 331.8893.

5-(5,6-difluorobenzo[c][1,2,5]thiadiazol-4-yl)thiophene-2-carbaldehyde (7e). The reaction was performed on a 1 mmol scale in 3 mL DMSO. The product (130 mg, 46% yield) was purified with silica gel chromatography (Petroleum ether /Dichloromethane = 40:1) as a yellow solid. m.p. 157 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.04 (s, 1H), 8.34 (d, *J* = 4.0 Hz, 1H), 7.89 (dd, *J* = 3.6 Hz, 1.2 Hz, 1H), 7.77 (dd, *J* = 8.8 Hz, 7.6 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -125.3 (dd, *J* = 16.4 Hz, 8.1 Hz, 1F), -126.8 (dd, *J* = 16.9 Hz, 9.0 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃) δ 183.2, 153.8 (dd, *J* = 257.2 Hz, 18.8 Hz), 150.5 (dd, *J* = 263.4 Hz, 19.4 Hz), 150.4 (d, *J* = 12.1 Hz), 148.7 (d, *J* = 7.4 Hz), 145.1 (d, *J* = 5.7 Hz), 140.2 (m), 135.5 (d, *J* = 7.9 Hz), 131.6 (d, *J* = 9.2 Hz), 112.8 (d, *J* = 10.6 Hz), 105.8 (d, *J* = 20.0 Hz). MS (EI): *m/z* (%) 282 (M⁺, 100), 281, 209. HRMS: Calculated for C₁₁H₄N₂F₂OS₂: 281.9733; Found: 281.9738.

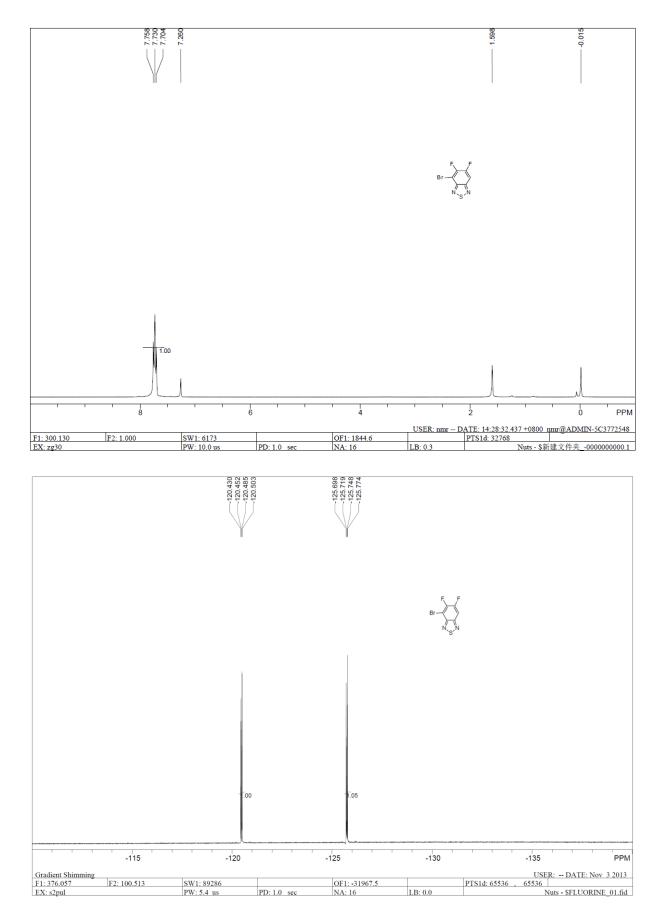
General procedure for the preparation of compounds 11 and 12.


To a 25 mL of sealed tube were added $Pd(TFA)_2$ (5 mol %), Ag_2O (93 mg 2.0 equiv), 7 (0.2 mmol, 1 equiv) under N₂, followed by DMSO (1 mL) with stirring. **10** (0.3 mmol, 1.5 equiv) was then added. The reaction mixture was stirred at 80 °C (preheated oil bath). After stirring for 7 h, the reaction mixture was cooled to room temperature, diluted with dichloromethane, filtered, washed with brine, dried over Na₂SO₄, and concentrated. The residue was purified with silica gel chromatography to provide pure product.


4-(4,8-Bis(octyloxy)benzo[1,2-b:4,5-b']dithiophen-2-yl)-7-(5-bromothiophen-2-yl)-5,6-difluorob enzo[c][1,2,5]thiadiazole (11). The product (86 mg, 55% yield) as a dark brown solid was purified with silica gel chromatography (Petroleum ether/dichloromethane = 40:1). m.p. 112 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.60 (s, 1H), 7.89 (d, *J* = 3.6 Hz, 1H), 7.35 (dd, *J* = 13.0 Hz, 1.4Hz, 2H), 7.09 (d, *J* = 4.0 Hz, 1H), 4.21 (d, *J* = 4.0 Hz, 2H), 4.15 (d, *J* = 4.8 Hz, 2H), 1.90-1.35 (m, 18H), 1.09 (t, *J* = 7.2 Hz, 3H), 1.06 (t, *J* = 7.2 Hz, 3H), 0.99 (m, 6H). ¹⁹F NMR (376 MHz, CDCl₃) δ -126.3 (d, *J* = 14.8 Hz, 1F), -127.8 (d, *J* = 14.8 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃) δ 150.4 (dd, *J* = 260.4 Hz, 19.8 Hz), 149.6 (dd, *J* = 257.8 Hz, 20.2 Hz), 148.5 (d, *J* = 12.0 Hz), 148.1 (d, *J* = 9.5 Hz), 145.2, 143.8, 133.2 (m), 132.6, 131.1 (d, *J* = 10.8 Hz), 130.9 130.8, 130.2 (d, *J* = 6.7 Hz), 130.1, 126.6, 124.6 (d, *J* = 9.2 Hz), 120.3, 117.3 (d, *J* = 8.1 Hz), 110.7 (d, *J* = 11.2 Hz), 111.6 (d, *J* = 11.4 Hz), 111.2 (d, *J* = 10.6 Hz), 75.9, 75.7, 40.73, 40.69, 30.6, 30.5, 29.3, 29.26, 23.9, 23.87, 23.2, 14.2, 11.5, 11.4. MS (MALDI): *m/z* (%) 780.1 (M⁺), 779.1 (M⁺), 778.1 (M⁺), 776.1 (M⁺), 553.9 (100). HRMS: Calculated for C₃₆H₃₉N₂O₂F₂S₄Br: 776.1040; Found: 776.1039.

5-(7-(4,8-Bis(octyloxy)benzo[1,2-b:4,5-b']dithiophen-2-yl)-5,6-difluorobenzo[c][1,2,5]thiadiazol-4-yl)thiophene-2-carbaldehyde (12). The product (89 mg, 61% yield) as a dark brown solid was purified with silica gel chromatography (Petroleum ether/Dichloromethane=20:1). m.p. 164 °C. ¹H NMR (300 MHz, CDCl₃) δ 9.97 (s, 1H), 8.68 (s, 1H), 8.25 (d, *J* = 4.2 Hz, 1H), 7.78 (d, *J* = 3.6 Hz, 1H), 7.36 (d, *J* = 4.2 Hz, 2H), 4.20 (d, *J* = 14.1 Hz, 4H), 1.90-1.30 (m, 18H), 1.09 (t, *J* = 7.5 Hz, 3H), 1.06 (t, *J* = 7.2 Hz, 3H), 0.98 (m, 6H). ¹⁹F NMR (282 MHz, CDCl₃) δ -124.4 (d, *J* = 14.7 Hz, 1F), -126.3 (d, *J* = 14.7 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃) δ 183.0, 150.9 (dd, *J* = 261.7 Hz, 19.6 Hz), 150.0 (dd, *J* = 260.5 Hz, 19.1 Hz), 148.4 (d, *J* = 9.1 Hz), 148.2 (d, *J* = 8.4 Hz), 145.4, 144.6 (d, *J* = 5.9 Hz), 143.8, 140.3, 135.2, 132.8, 131.2 (d, *J* = 9.4 Hz), 130.7, 130.5, 130.3, 129.8, 126.9, 125.3 (d, J = 9.4 Hz), 120.3, 113.2 (d, J = 10.9 Hz), 110.7 (d, J = 11.2 Hz), 75.9, 75.8, 40.7, 40.68, 30.6, 30.5, 29.3, 29.26, 23.9, 23.87, 23.2, 14.2, 11.5, 11.4. MS (MALDI): m/z (%) 728.2 (M⁺+H), 727.2 (M⁺+H). HRMS: Calculated for C₃₇H₄₀N₂O₃F₂N₂S₄: 726.1890; Found: 727.1946.

4,4'-(5,5'-(5,6-diffuorobenzo[c][1,2,5]thiadiazole-4,7-diyl)bis(3-hexylthiophene-5,2-diyl))bis(N,N -**diphenylaniline)** (**14**). To a 25 mL of sealed tube were added **6a** (0.1 mmol, 1.0 equiv), (4-(diphenylamino)phenyl)boronic acid (73 mg, 2.5 equiv), Pd(PPh₃)₄ (2 mol %), K₂CO₃ (55 mg 4.0 equiv) under N₂, followed by DMF (2 mL), H₂O (400 uL) with stirring. The reaction mixture was stirred at 110 °C (oil bath). After stirring for 10 h, the reaction mixture was cooled to room temperature, diluted with dichloromethane, filtered, washed with brine, dried over Na₂SO₄, and concentrated. The residue was purified with silica gel chromatography (Petroleum ether (100%)) to provide pure product (95 mg, 96%) as a red solid. ¹H NMR (400 MHz, CDCl₃) δ 8.14 (s, 2H), 7.40 (d, *J* = 8.8 Hz, 4H), 7.30 (t, *J* = 7.6 Hz, 8H), 7.20-7.10 (m, 12H), 7.06 (t, *J* = 7.2 Hz, 4H), 2.77 (t, *J* = 7.8 Hz, 4H), 1.71 (m, 4H), 1.45-1.25(m, 12H), 0.90(t, *J* = 5.8 Hz, 6H). ¹⁹F NMR (376 MHz, CDCl₃) δ -128.6 (s, 2F). ¹³C NMR (100 MHz, CDCl₃) δ 149.7 (dd, *J* = 258.5 Hz, 20.2 Hz), 148.8 (t, *J* = 4.1 Hz), 147.4, 147.38, 141.7, 138.7, 133.5, 129.9, 129.3, 129.1, 127.7, 124.7, 123.2, 122.9, 111.2 (m), 31.6, 31.0, 29.2, 28.8, 22.6, 14.1. MS (MALDI): *m/z* (%) 993.4 (M⁺), 992.4 (M⁺), 991.4 (M⁺), 990.4 (M⁺, 100). HRMS: Calculated for C₆₂H₅₆N₄F₂S₃: 990.36297; Found: 990.3618.

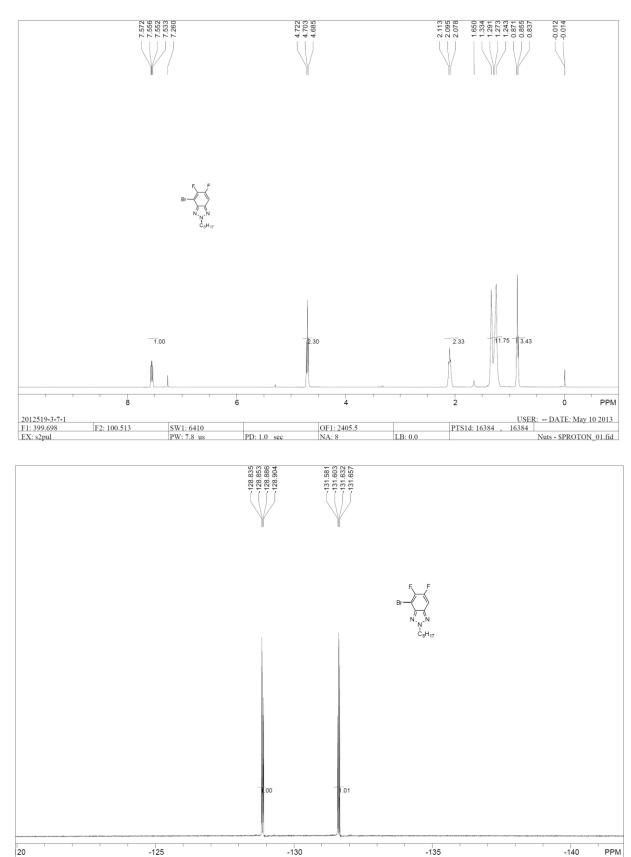


Figue S1: UV-vis absorption spectra of 14 in chloroform.

References:

- (1) a) Krikura, T.; Ishizaki, T.; Hirai, K.; Murayama, S.; Suzue, S. US Patent US4791225 A1, 1988.
- (2) Weber, E.; Keana, J. F. W. US5514680 A1, 1996.
- (3) Wang, N.; Chen, Z.; Wei, W.; Jiang, Z. J. Am. Chem. Soc. 2013, DOI: 10.1021/ja409881g.
- (4) Zhou, H; Stuart, A.C.; Price, S.C.; You, W; Yang, L; Liu, S. Angew. Chem., Int. Ed. 2011, 50, 2995 2998.

4-Bromo-5,6-difluorobenzo[c][1,2,5]thiadiazole (1).



20

Gradient Shin F1: 376.057 EX: s2pul

ing

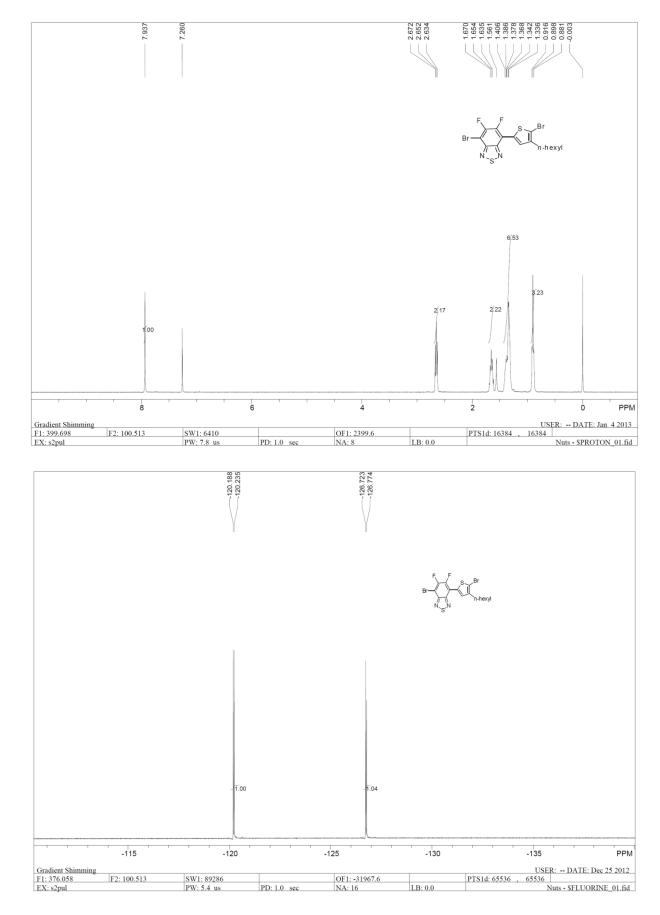
F2: 100.513

4-Bromo-5,6-difluoro-2-octyl-2H-benzo[d][1,2,3]triazole(4).

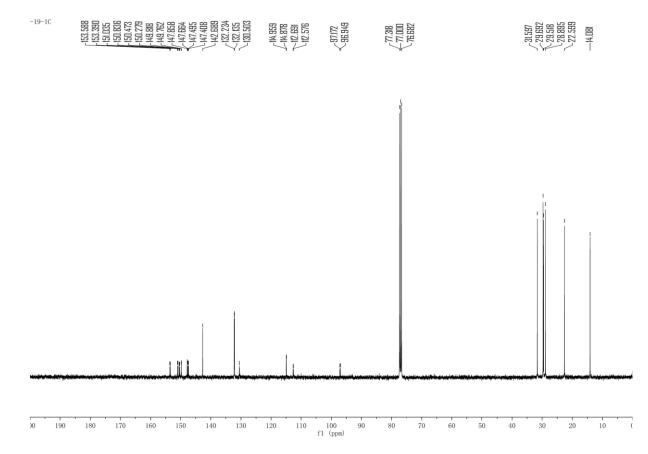
OF1: -31967.5 NA: 16

-135

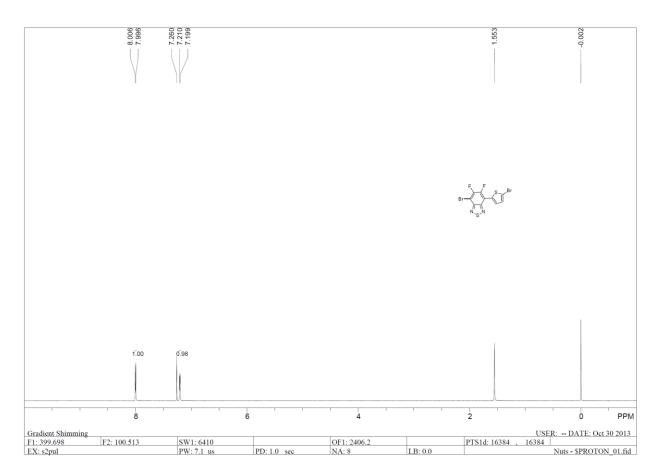
LB: 0.0

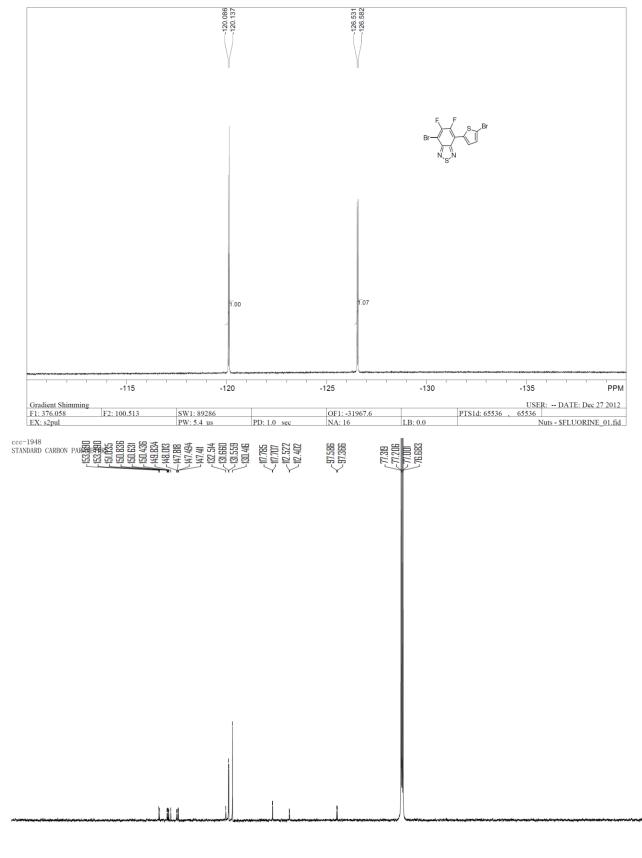

USER: -- DATE: Nov 3 2013 PTS1d: 65536 , 65536

Nuts - \$FLUORINE_01.fid

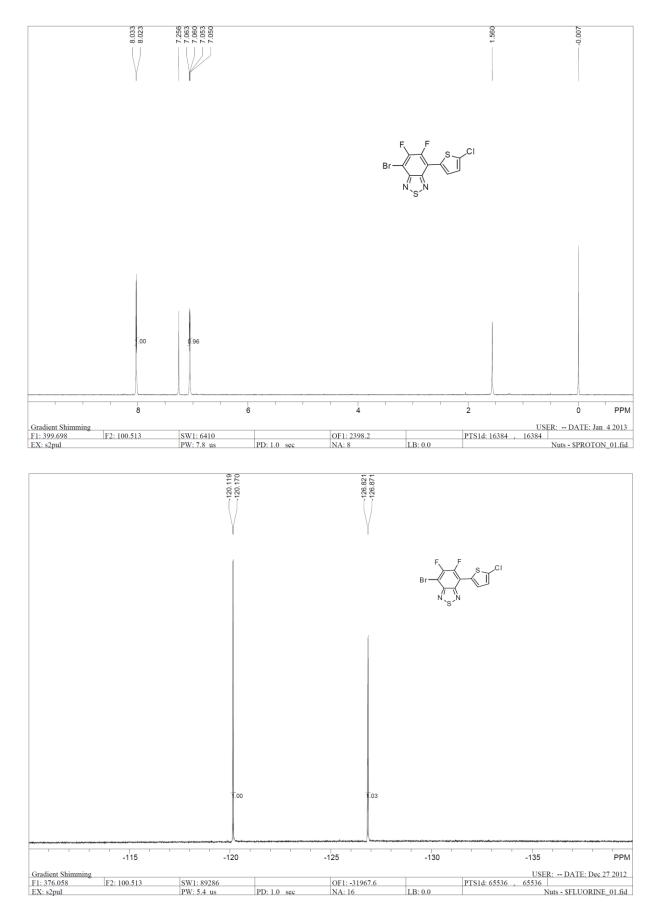

-130

PD: 1.0 sec

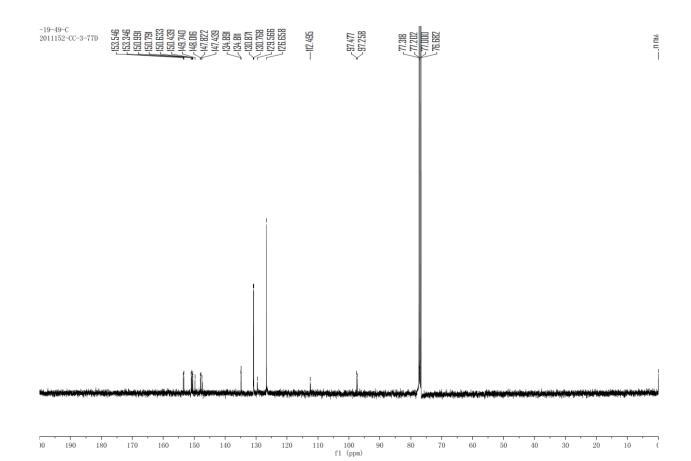

SW1: 89286 PW: 5.4 us

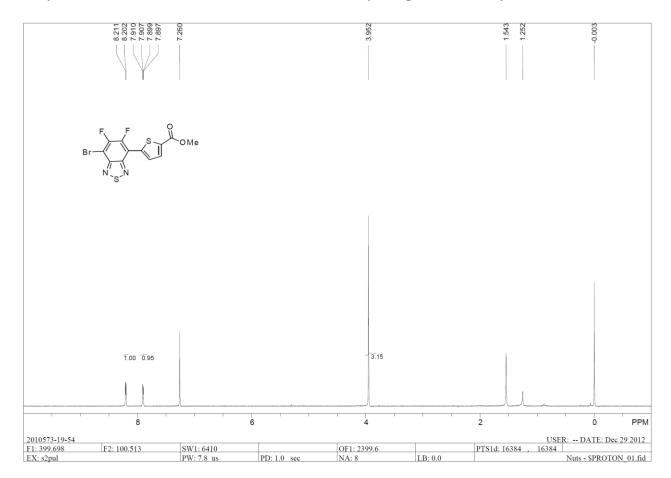


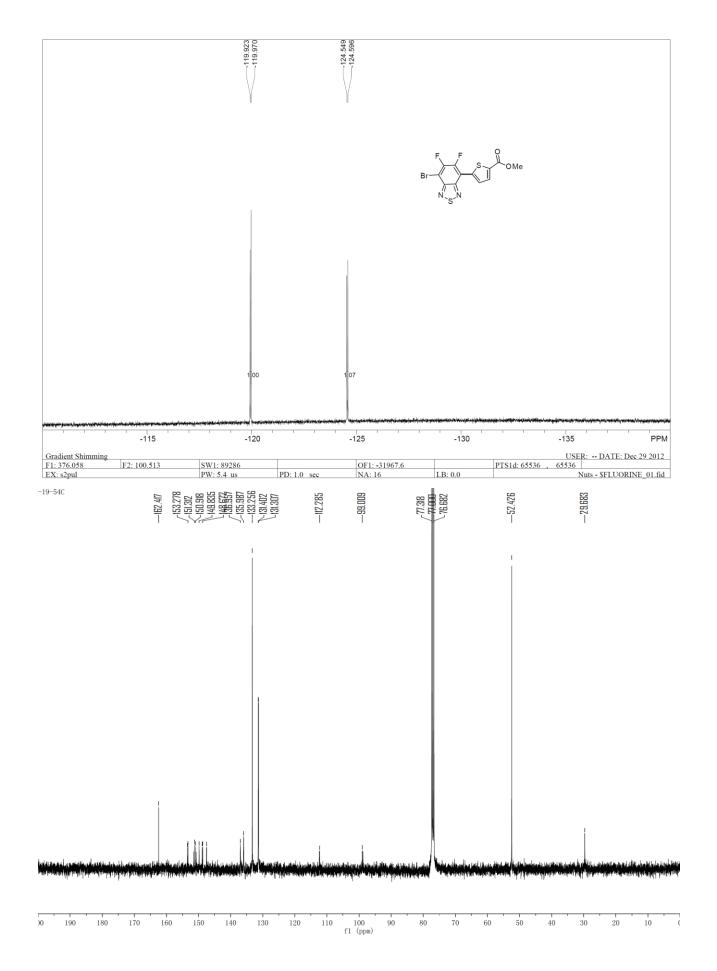
4-Bromo-7-(5-bromo-4-hexylthiophen-2-yl)-5,6-difluorobenzo[c][1,2,5]thiadiazole(3a).

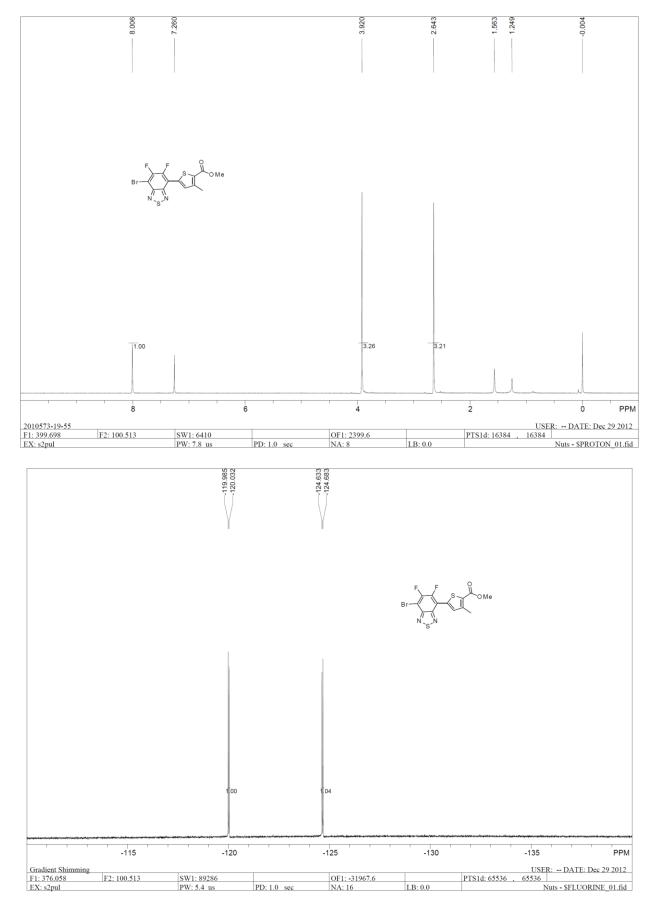


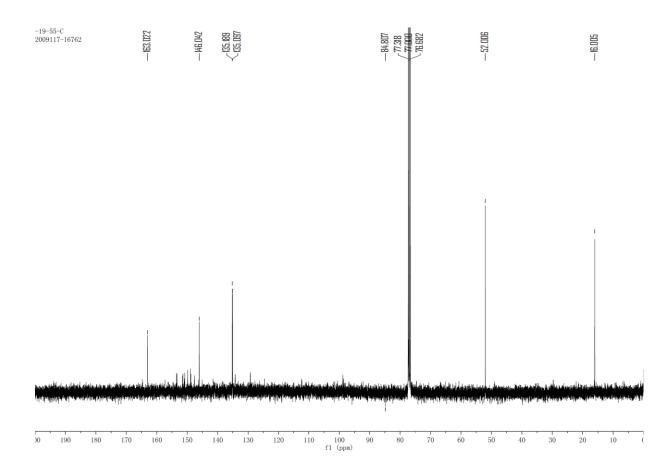
4-Bromo-7-(5-bromothiophen-2-yl)-5,6-difluorobenzo[c][1,2,5]thiadiazole (3b).

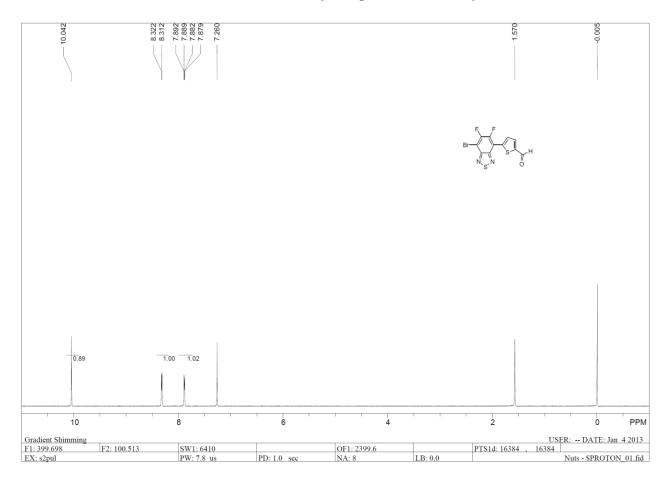


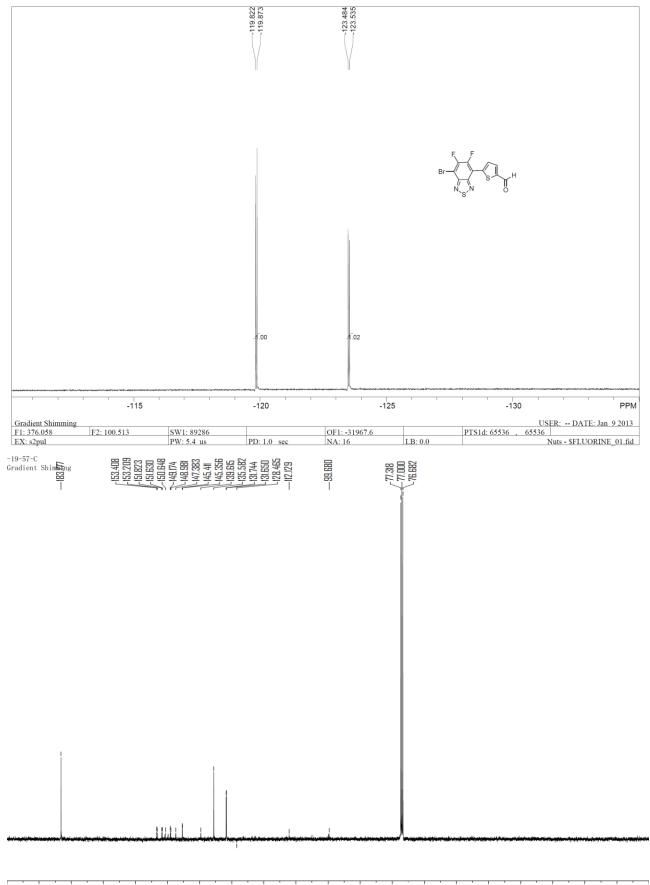

)0 ć f1 (ppm)

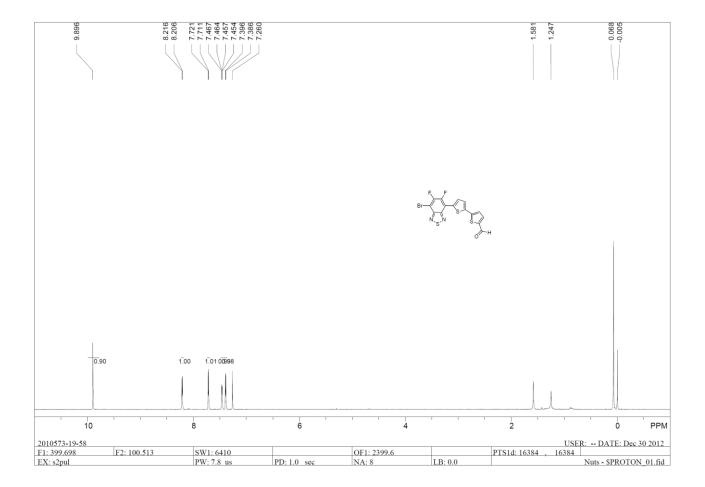



4-Bromo-7-(5-chlorothiophen-2-yl)-5,6-difluorobenzo[c][1,2,5]thiadiazole (3c).

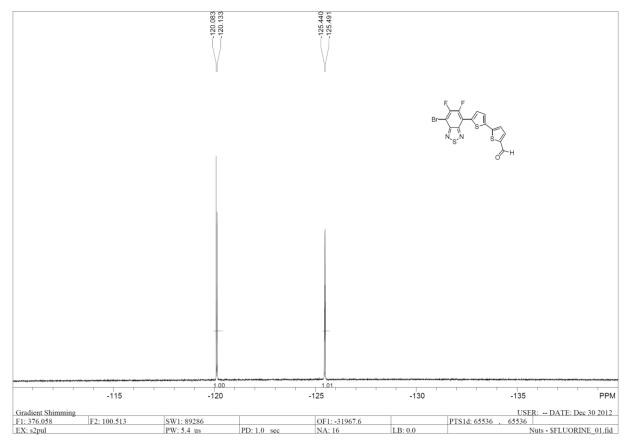

Methyl 5-(7-bromo-5,6-difluorobenzo[c][1,2,5]thiadiazol-4-yl)thiophene-2-carboxylate (3d).

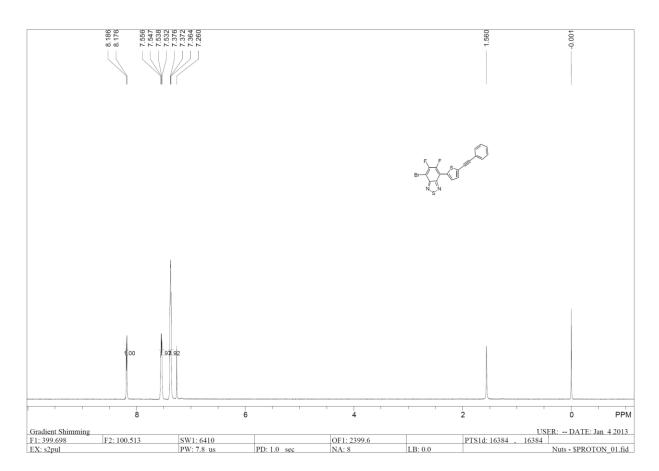


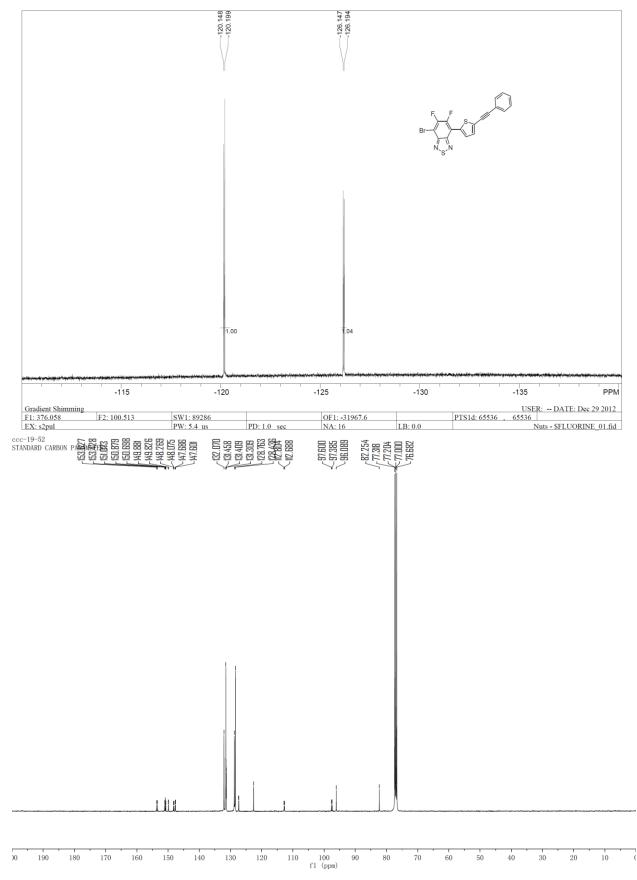




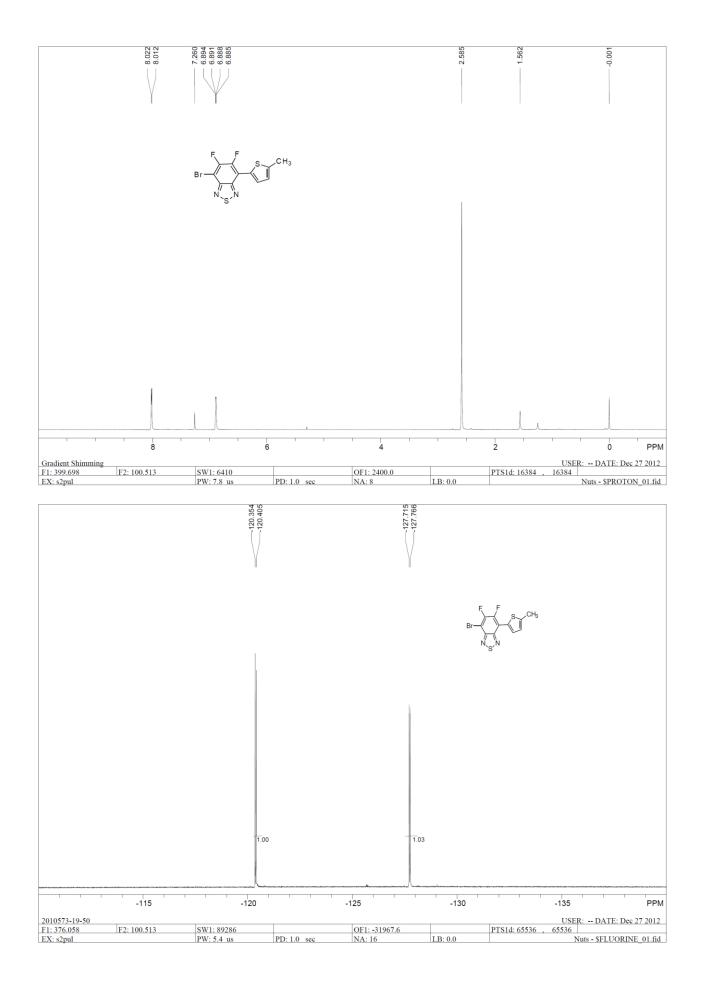
5-(7-Bromo-5,6-difluorobenzo[c][1,2,5]thiadiazol-4-yl)thiophene-2-carbaldehyde (3f).

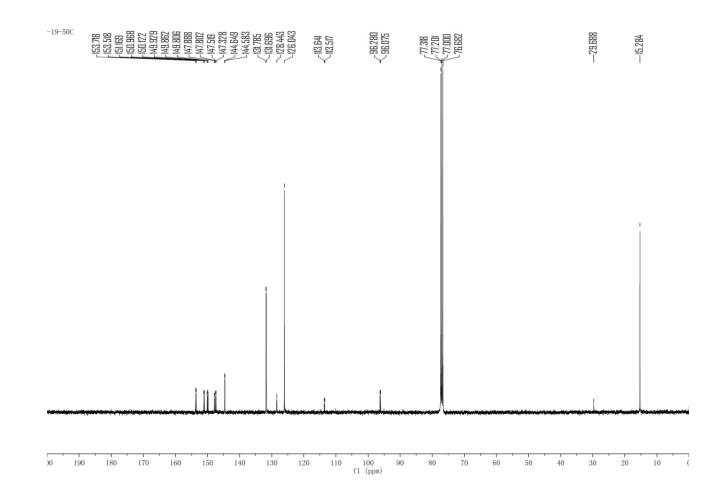


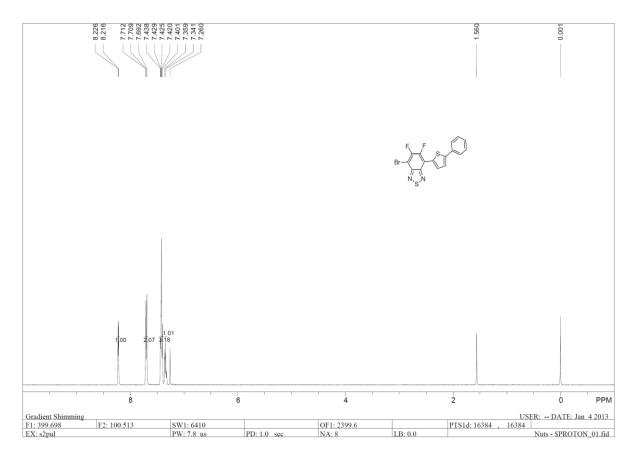

)0 f1 (ppm) (

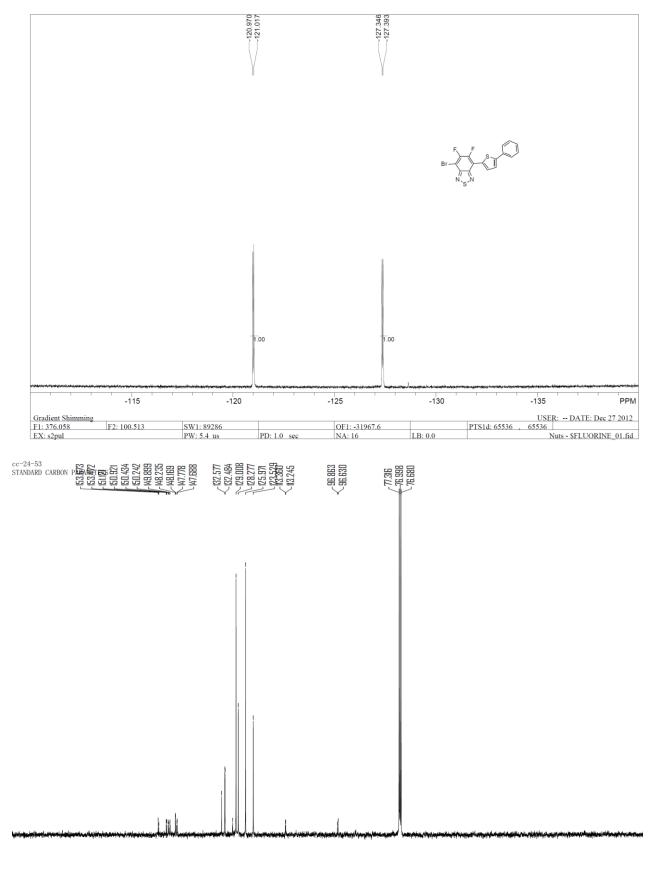


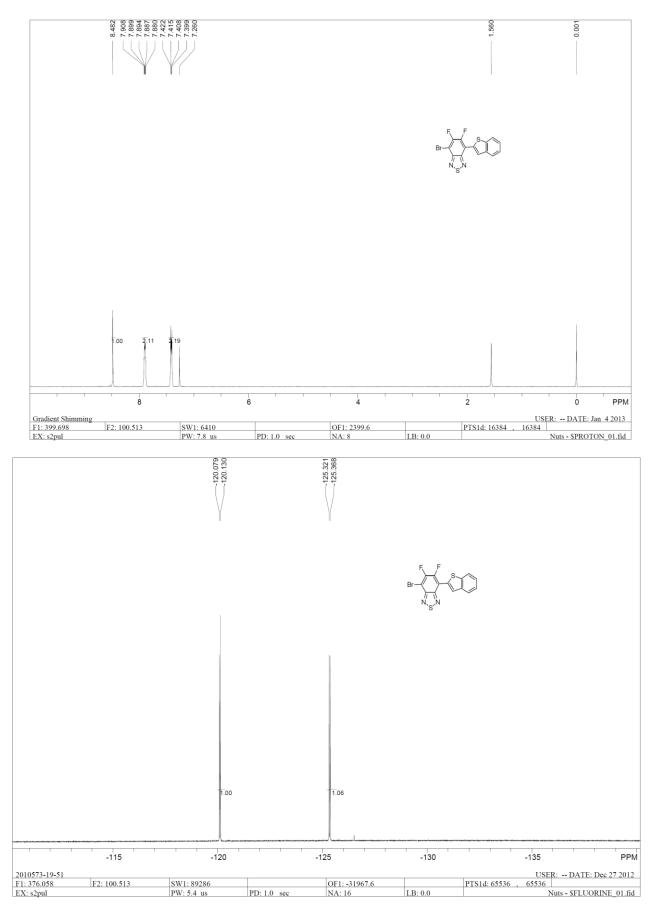
5'-(7-Bromo-5,6-difluorobenzo[c][1,2,5]thiadiazol-4-yl)-[2,2'-bithiophene]-5-carbaldehyde (3g).



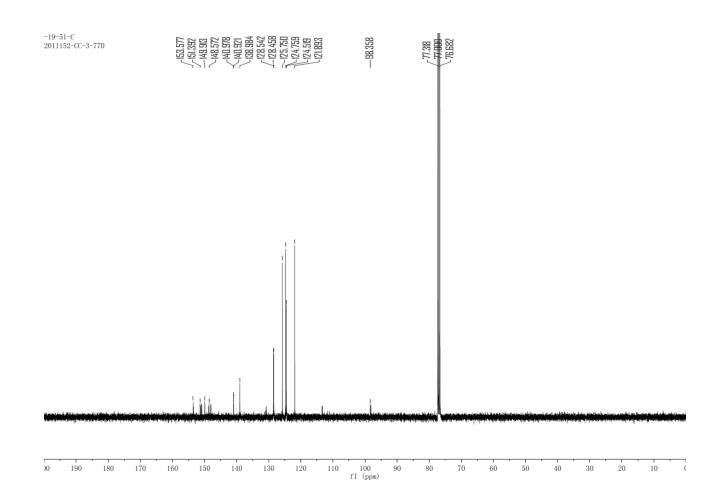

4-Bromo-5,6-difluoro-7-(5-(phenylethynyl)thiophen-2-yl)benzo[c][1,2,5]thiadiazole (3h).



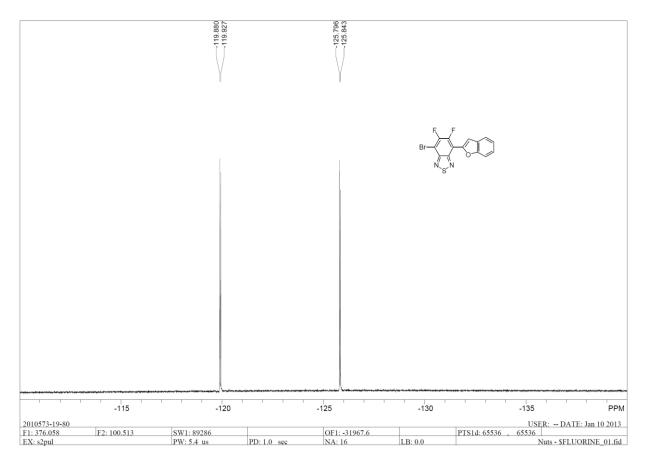

4-Bromo-5,6-difluoro-7-(5-methylthiophen-2-yl)benzo[c][1,2,5]thiadiazole (3i).



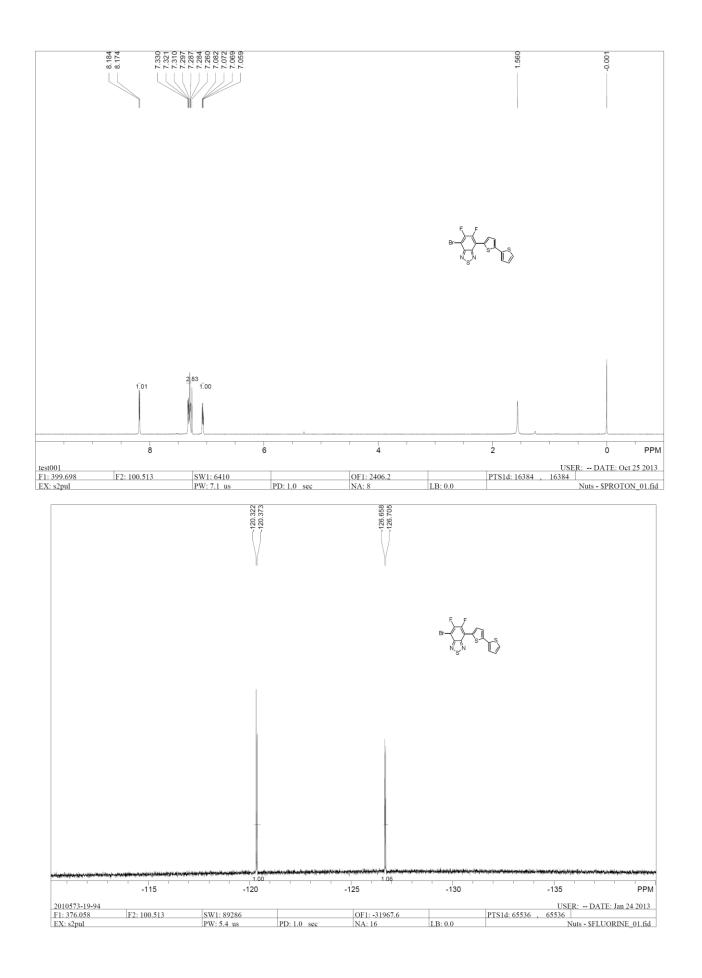
 $\label{eq:constraint} 4-Bromo-5, 6-difluoro-7-(5-phenylthiophen-2-yl) benzo [c] [1,2,5] thiadiazole~(3j).$

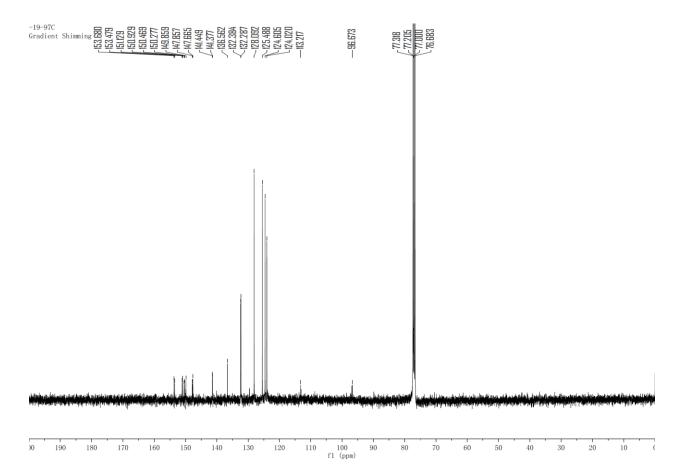


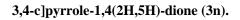
)0 f1 (ppm) . 190 . 170 (

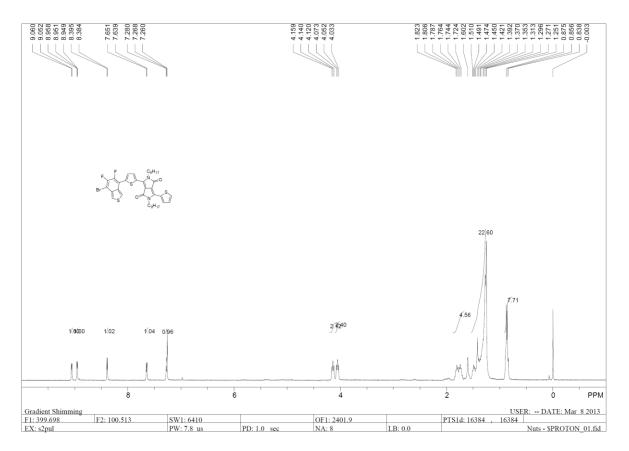


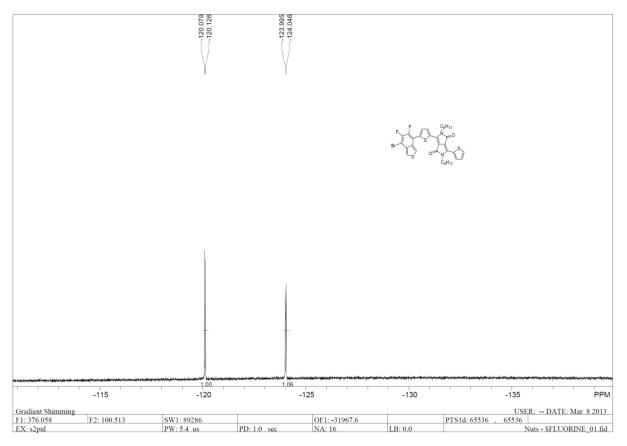
4-(Benzo[b]thiophen-2-yl)-7-bromo-5,6-difluorobenzo[c][1,2,5]thiadiazole (3k).

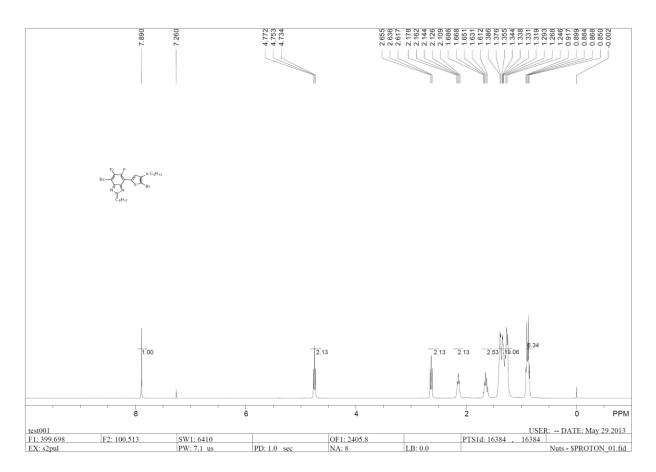


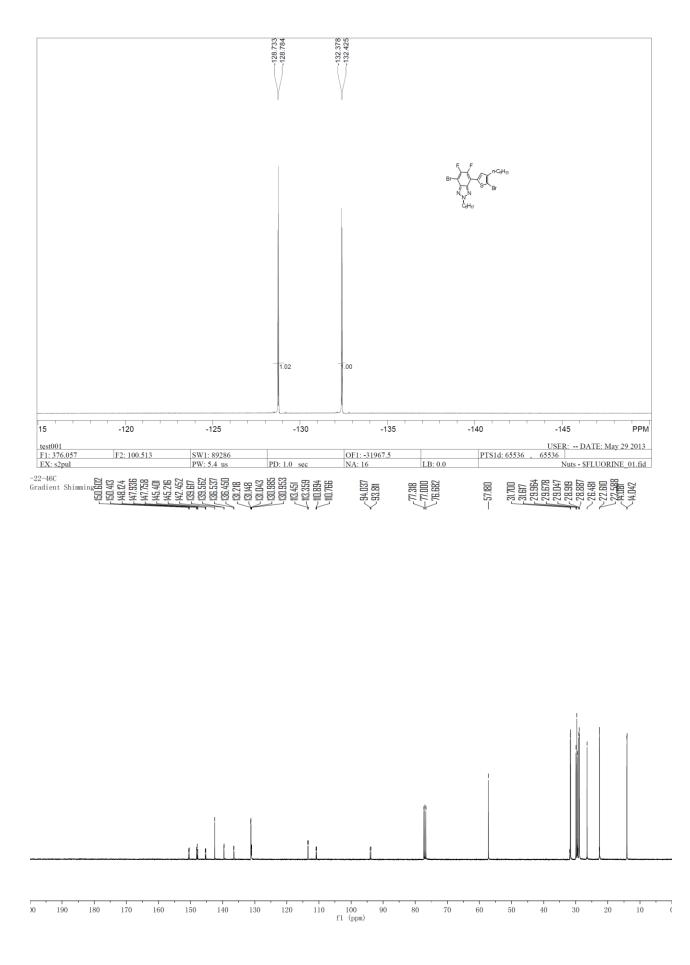

4-(Benzofuran-2-yl)-7-bromo-5,6-difluorobenzo[c][1,2,5]thiadiazole (3l).

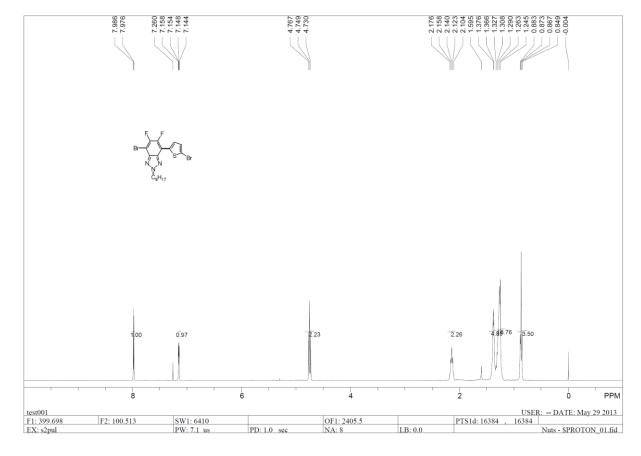


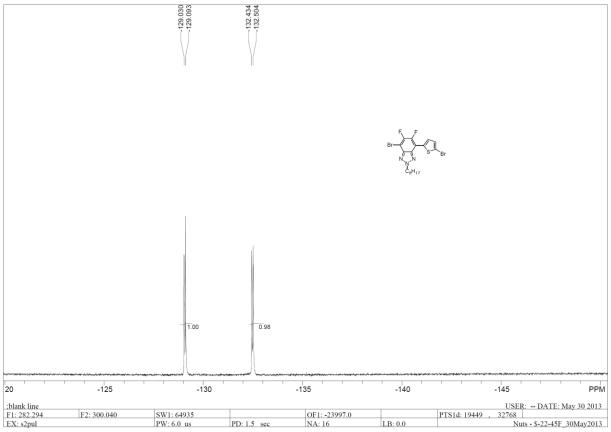

4-([2,2'-Bithiophen]-5-yl)-7-bromo-5,6-difluorobenzo[c][1,2,5]thiadiazole (3m).

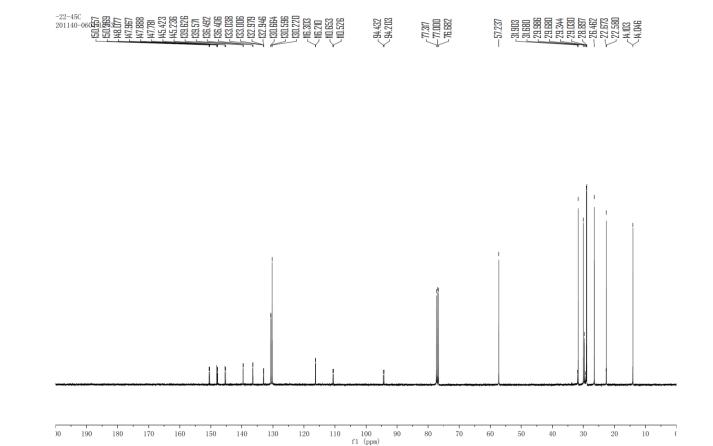


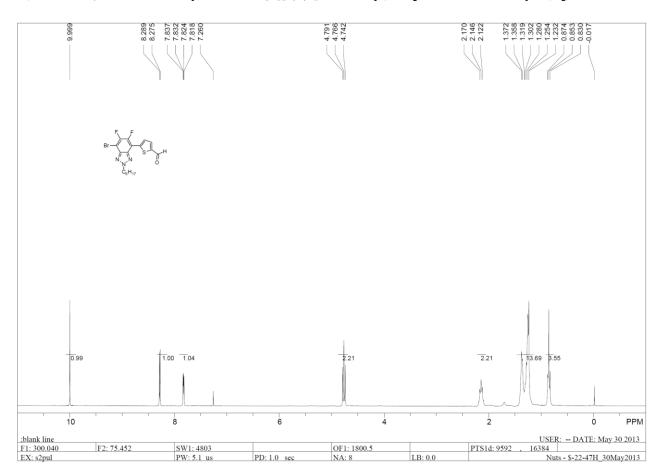

3-(5-(7-Bromo-5,6-difluorobenzo[c][1,2,5]thiadiazol-4-yl)thiophen-2-yl)-2,5-dioctyl-6-(thiophen-2-yl)pyrrolo[

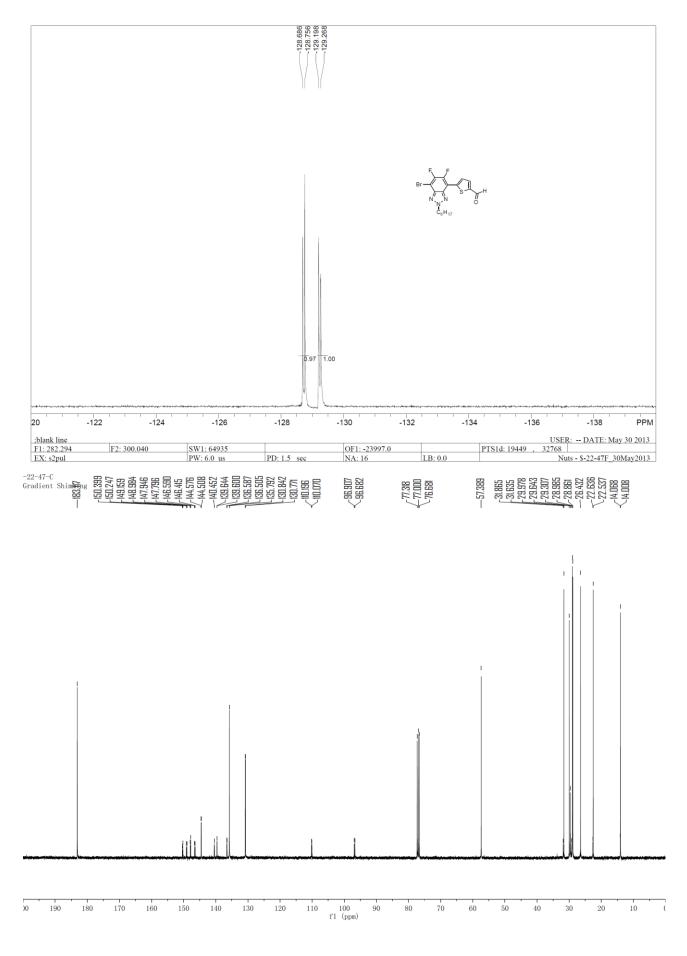


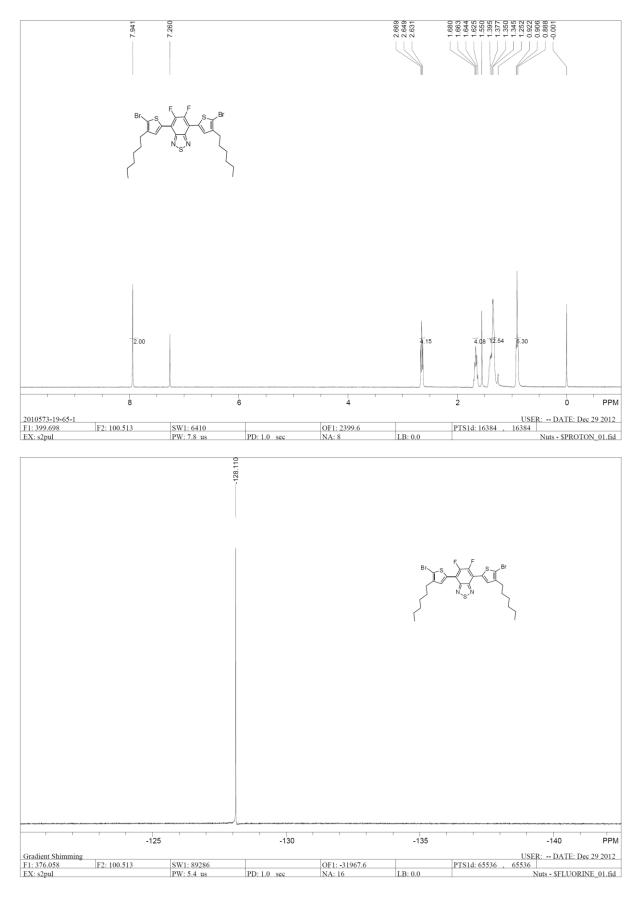


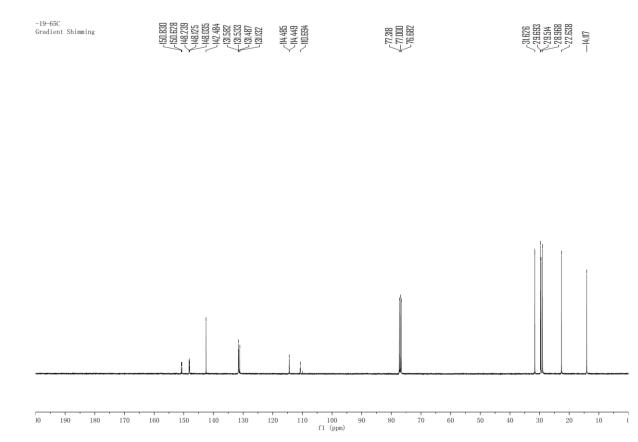

4-Bromo-7-(5-bromo-4-hexylthiophen-2-yl)-5,6-difluoro-2-octyl-2H-benzo[d][1,2,3]triazole (30).

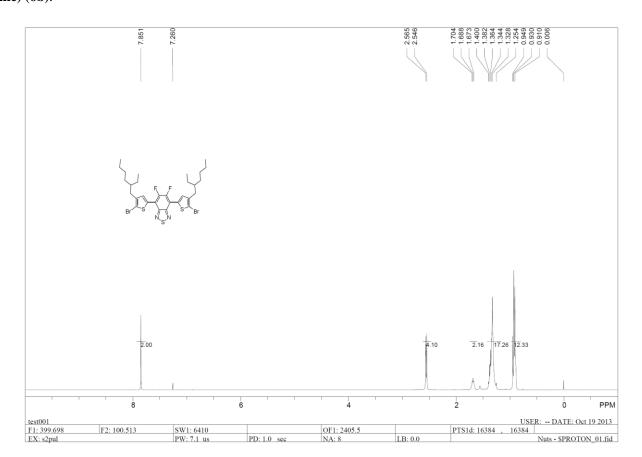


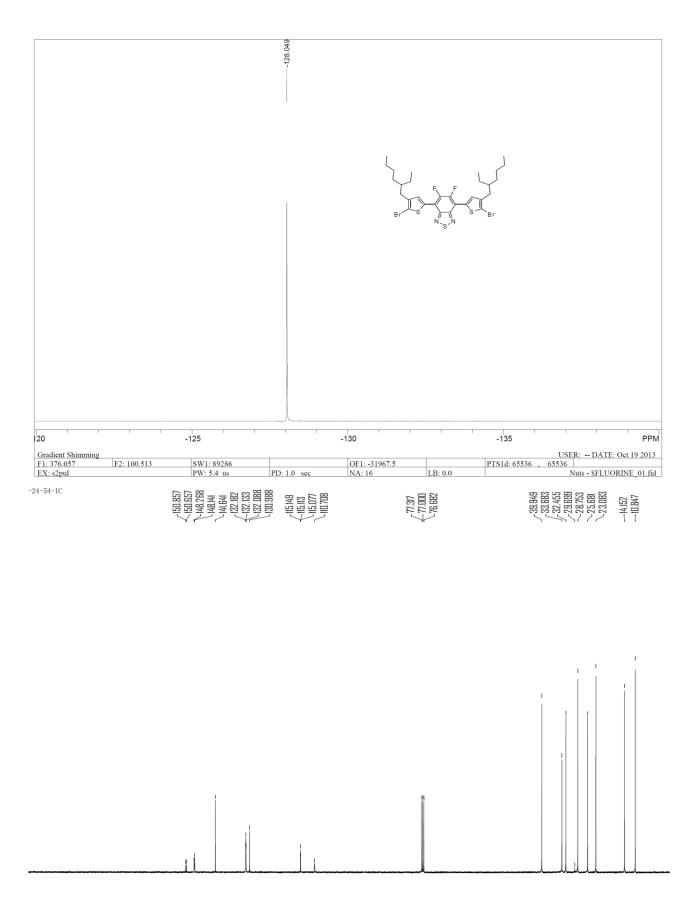


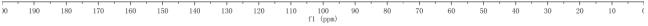

4-Bromo-7-(5-bromothiophen-2-yl)-5,6-difluoro-2-octyl-2H-benzo[d][1,2,3]triazole (3p).

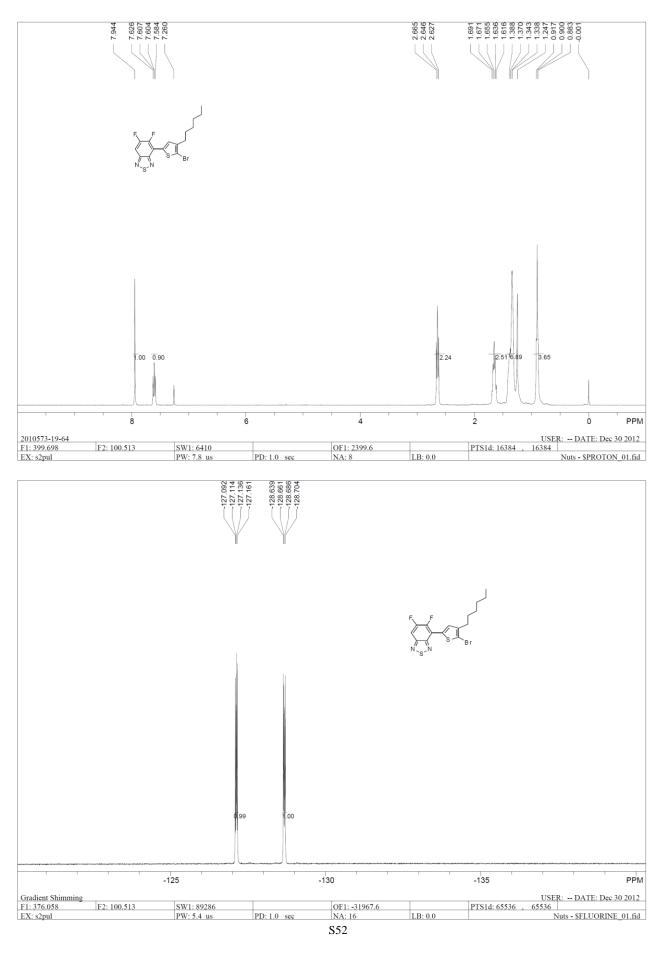



5-(7-Bromo-5,6-difluoro-2-octyl-2H-benzo[d][1,2,3]triazol-4-yl)thiophene-2-carbaldehyde(3q).

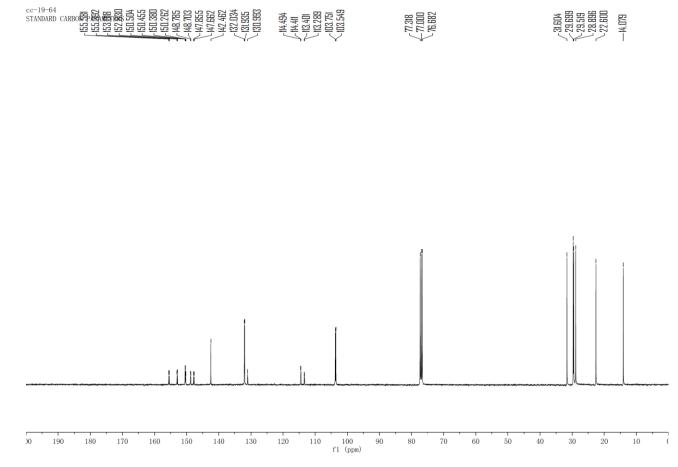


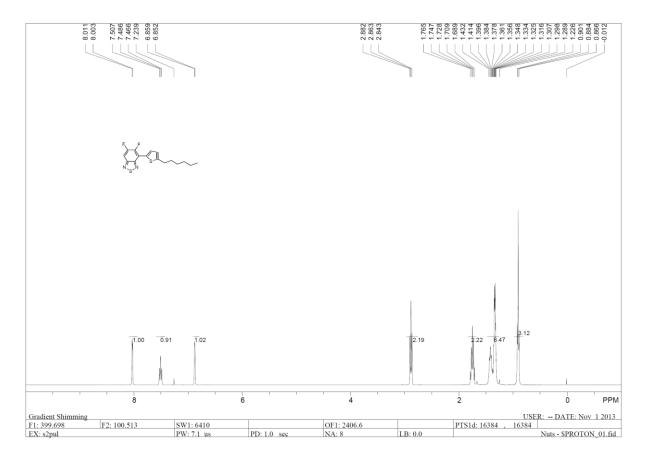


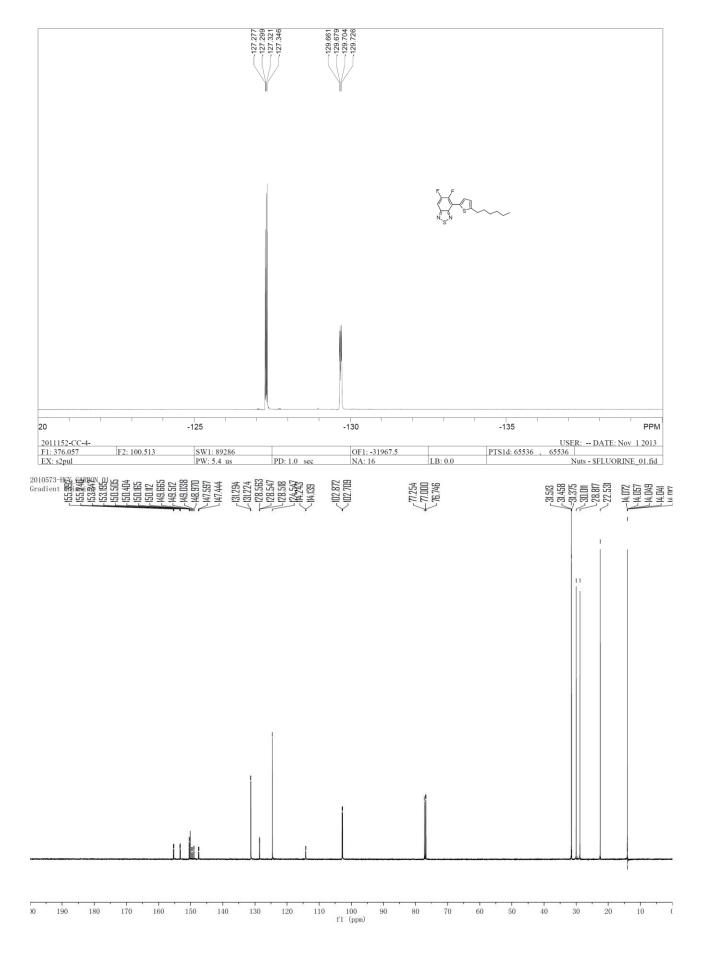

4,7-bis(5-bromo-4-hexylthiophen-2-yl)-5,6-difluorobenzo[c][1,2,5]thiadiazole (6a).

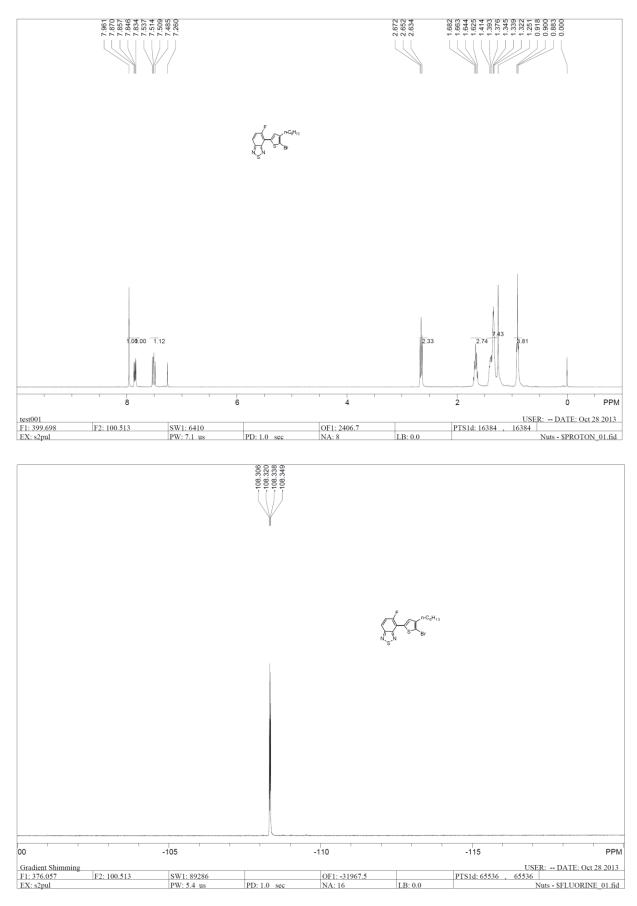


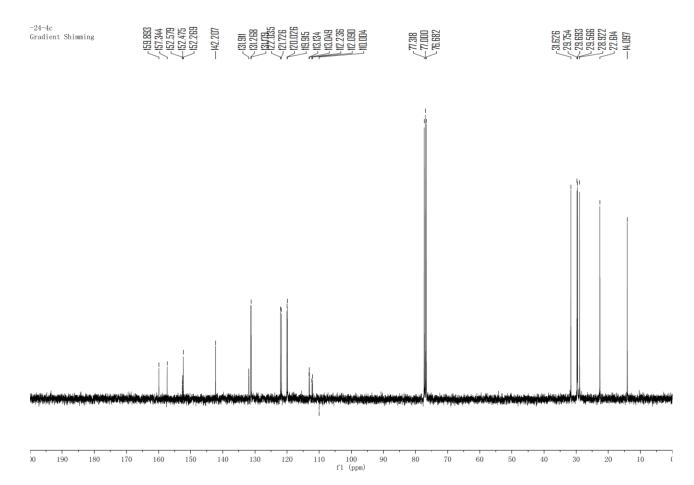
4,4'-(5,5'-(5,6-difluorobenzo[c][1,2,5]thiadiazole-4,7-diyl)bis(3-hexylthiophene-5,2-diyl))bis(N,N-diphenylanil ine) (6b).

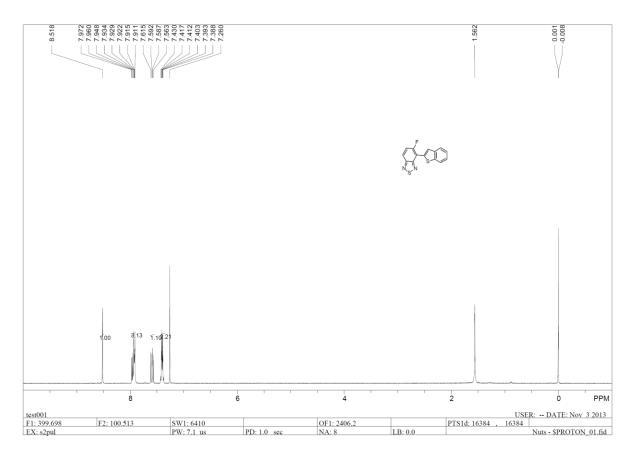


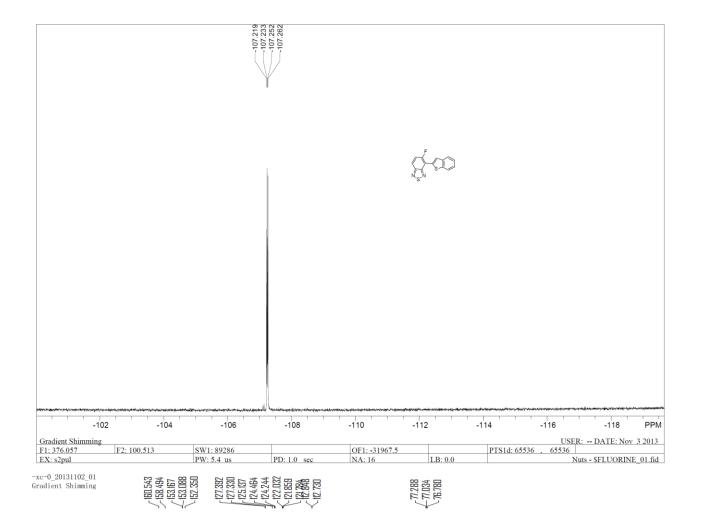


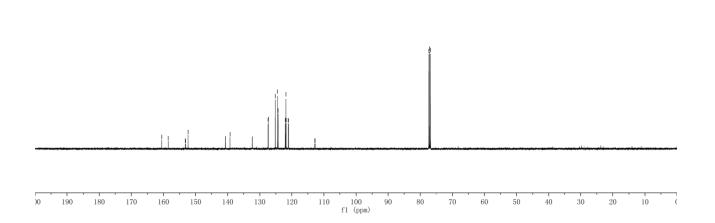


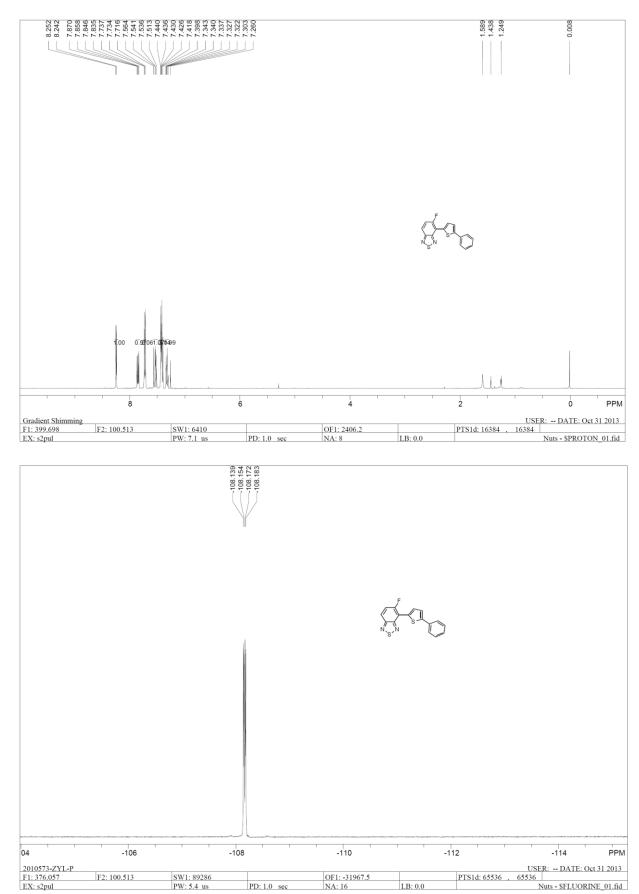

4-(5-Bromo-4-hexylthiophen-2-yl)-5,6-difluorobenzo[c][1,2,5]thiadiazole (7a).


5,6-Difluoro-4-(5-hexylthiophen-2-yl)benzo[c][1,2,5]thiadiazole(7c).

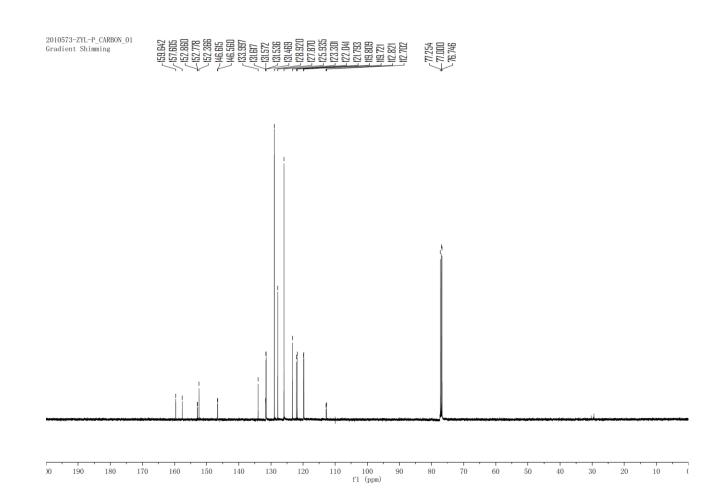


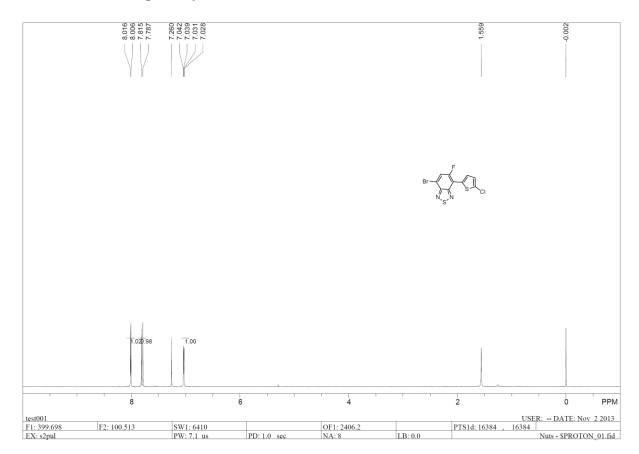


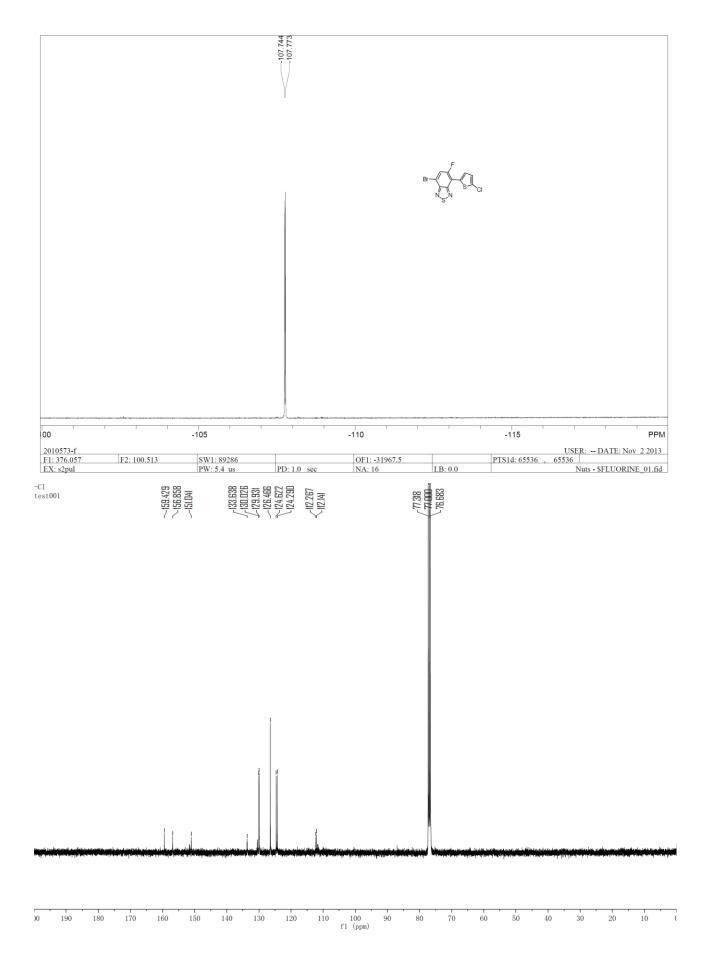

4-(5-Bromo-4-hexylthiophen-2-yl)-5-fluorobenzo[c][1,2,5]thiadiazole (9a).

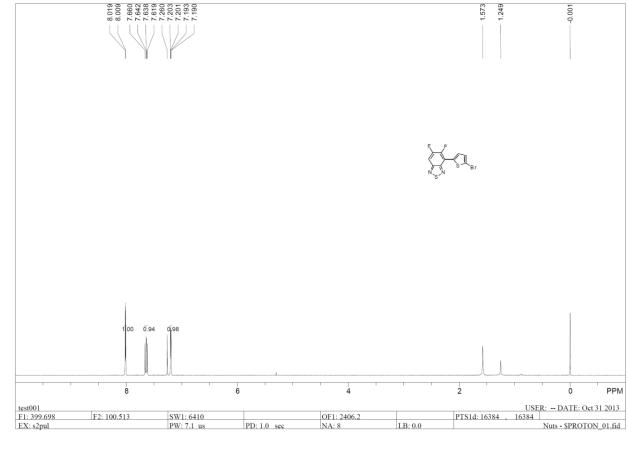


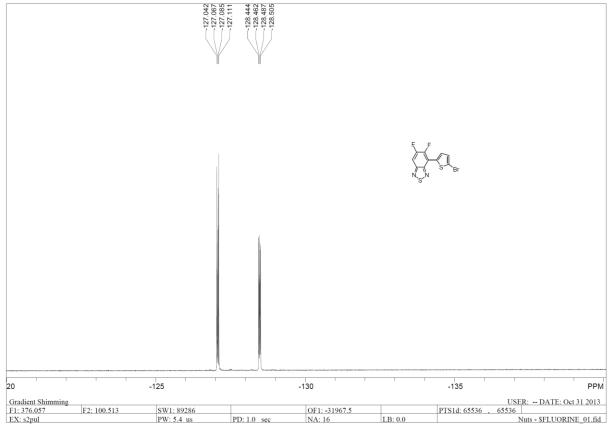
4-(Benzo[b]thiophen-2-yl)-5-fluorobenzo[c][1,2,5]thiadiazole (9b).

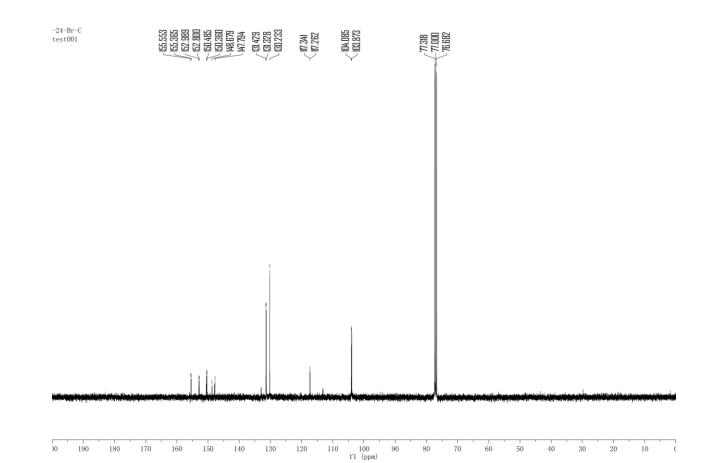


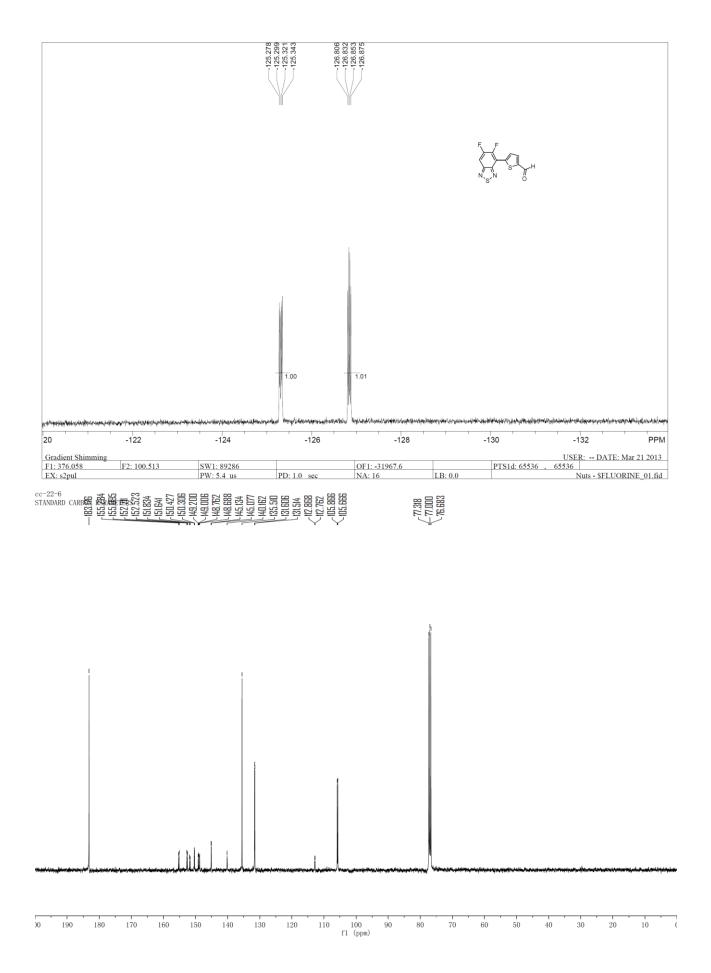


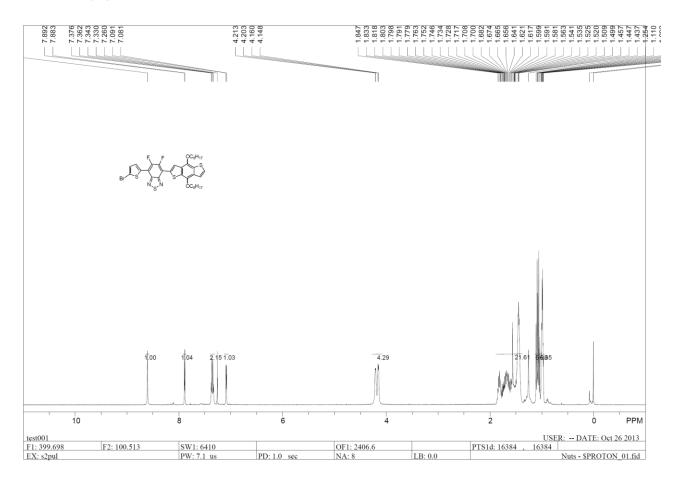


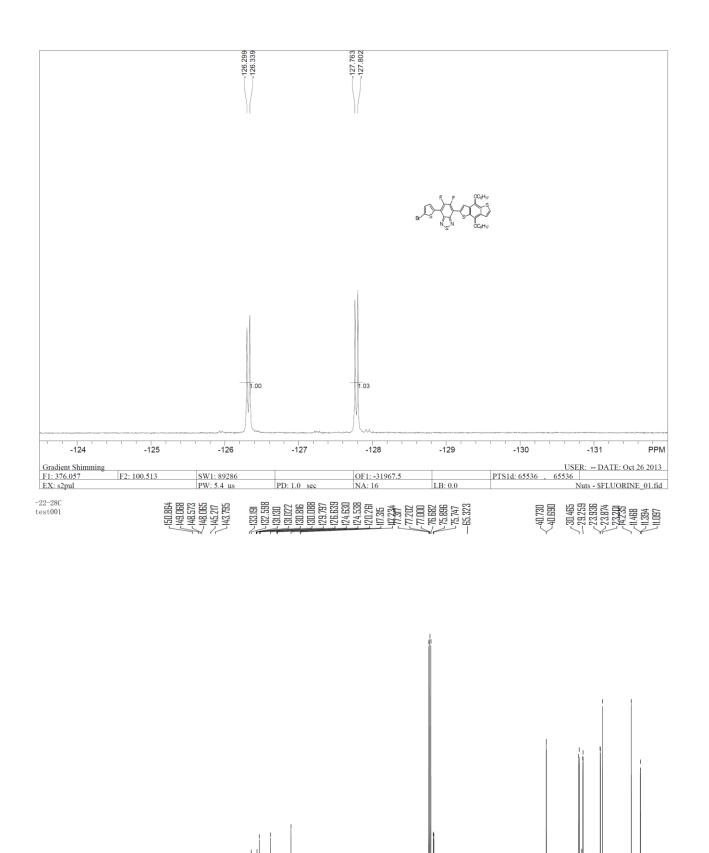

5-Fluoro-4-(5-phenylthiophen-2-yl)benzo[c][1,2,5]thiadiazole (9c).

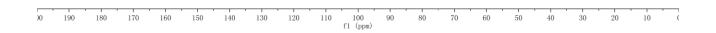

7-Bromo-4-(5-chlorothiophen-2-yl)-5-fluorobenzo[c][1,2,5]thiadiazole (9d).




4-(5-Bromothiophen-2-yl)-5,6-difluorobenzo[c][1,2,5]thiadiazole (7d).

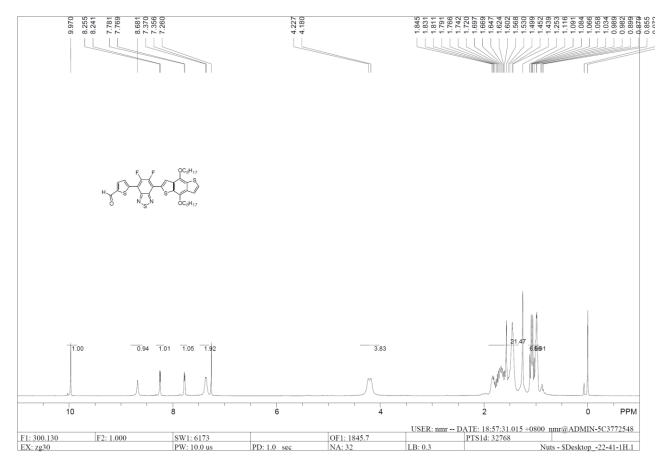

5-(5,6-difluorobenzo[c][1,2,5]thiadiazol-4-yl)thiophene-2-carbaldehyde (7e).

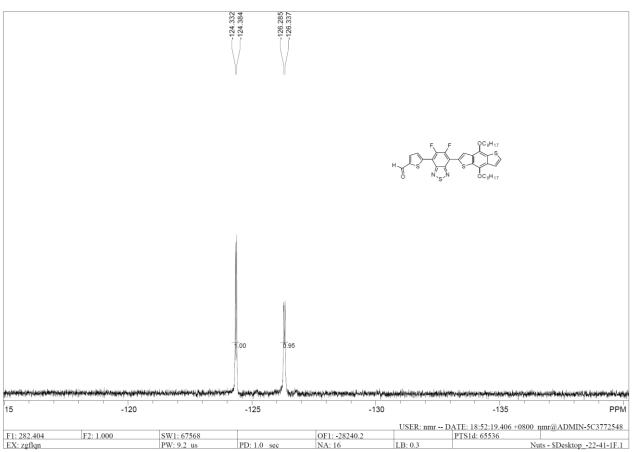


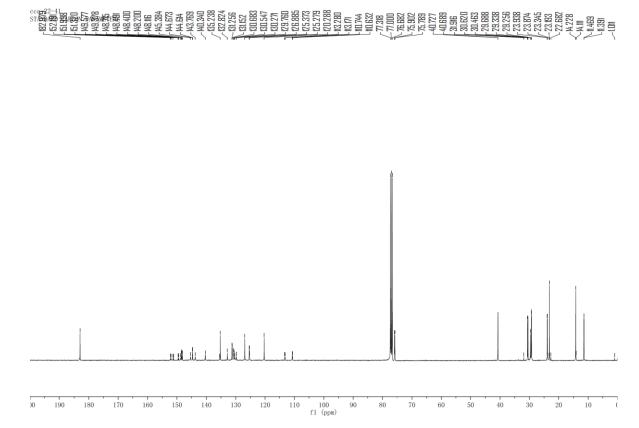


4-(4,8-Bis(octyloxy)benzo[1,2-b:4,5-b'] dithiophen-2-yl)-7-(5-bromothiophen-2-yl)-5,6-difluorobenzo[c][1,2,5]

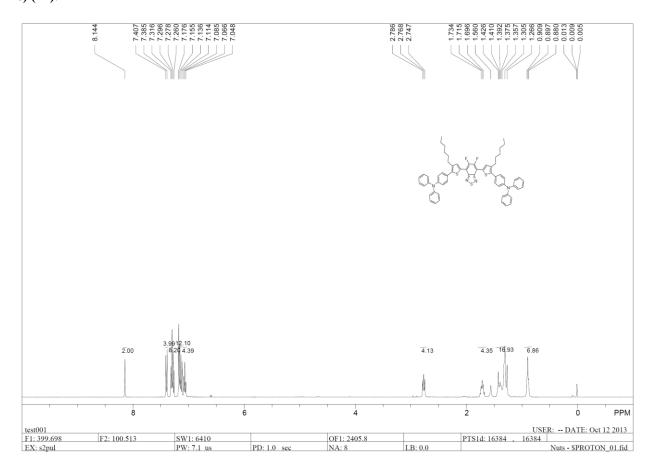
thiadiazole (11).

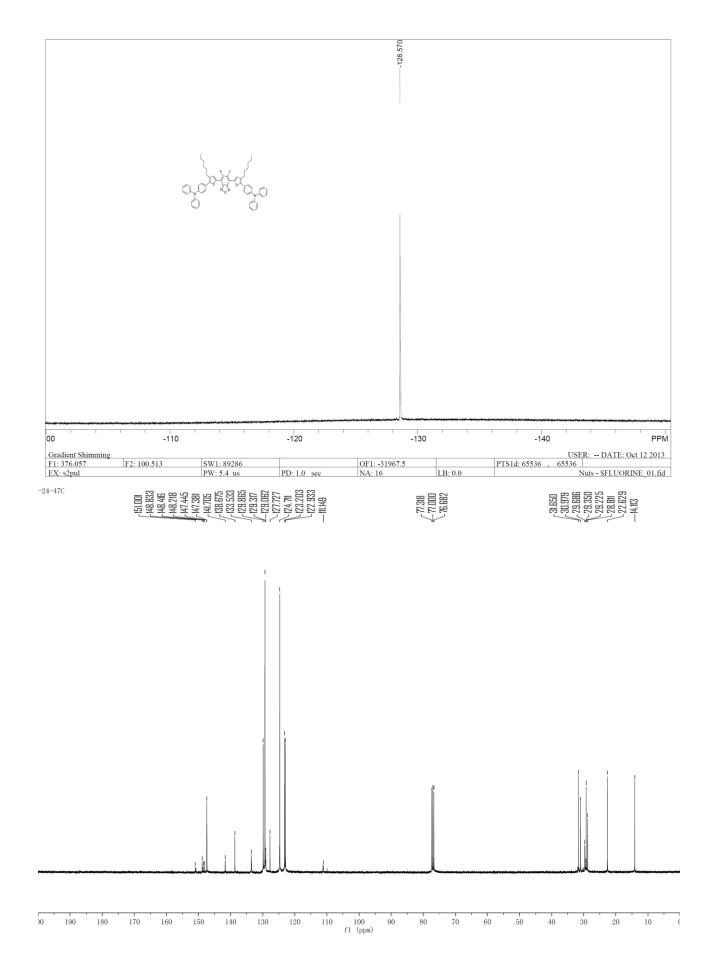






5-(7-(4,8-Bis(octyloxy)benzo[1,2-b:4,5-b']dithiophen-2-yl)-5,6-difluorobenzo[c][1,2,5]thiadiazol-4-yl)thiophen


e-2-carbaldehyde (12).



4,4'-(5,5'-(5,6-difluorobenzo[c][1,2,5]thiadiazole-4,7-diyl)bis(3-hexylthiophene-5,2-diyl))bis(N,N-diphenylanil ine) (14).

