Palladium-Catalyzed Benzo[d]isoxazole Synthesis by C-H

Activation/[4+1]Annulation

Pingping Duan,^a Yunfang Yang,^a Xinhao Zhang,^a Rong Ben,^b Yiyong Yan,^a Lu Dai,^a Mei Hong,^a Dongqi Wang,^{*a} Yun-Dong Wu^{*a} and Jing Zhao^{*a,b}

Supporting Information

Table of contents

1.	General Informations	S2
2.	Synthesis and Characterization of Starting Materials	S2-S5
3.	Condition Screening	S5-S7
4.	Experimental Procedure and Characterization of Products	S7-S17
5.	X-ray Crystallographic Data for 3-(p-tolyl)benzisoxazole	S17-S26
6.	Mechanistic Studies	S27-S31
7.	DFT Calculations	S31-S52
8.	The Synthesis and Characterization of Key Intermediate 6	S52-S53
9.	References	S53
10.	¹ H NMR and ¹³ C NMR Spectra of Those Compounds	S54-S139

1. General Informations

All reactions were carried out under an atmosphere of nitrogen unless otherwise noted. Reaction temperatures were reported as those of the oil bath. The dry solvents used were purified by distillation and were transferred under nitrogen.

Commercially available reagents were purchased from Adamas-beta, Sigma-Aldrich, Alfa Aesar, TCI, Accela, J&K and Aladdin and used as received unless otherwise stated. Palladium (II) trifluoroacetate was purchased from Sinocompound Technology Co., Ltd.

Reactions were monitored with analytical thin-layer chromatography (TLC) on silica. ¹H NMR and ¹³C NMR data were recorded on Bruker nuclear resonance (400 MHz and 500MHz) spectrometers, respectively. Chemical shifts (δ) are given in ppm relative to TMS. The residual solvent signals were used as references and the chemical shifts converted to the TMS scale (CDCl₃: $\delta_{\rm H}$ =7.26 ppm, $\delta_{\rm c}$ =77.16 ppm; DMSO-d₆: $\delta_{\rm H}$ = 2.50 ppm, $\delta_{\rm C}$ = 39.52 ppm; MeOD-d₄: $\delta_{\rm H}$ =3.31 ppm, $\delta_{\rm c}$ =49.00 ppm; Acetone-d₆: $\delta_{\rm H}$ = 2.05 ppm, $\delta_{\rm C}$ = 29.84 ppm, 206.26 ppm). HRMS (ESI and APCI) analysis were performed by the Analytical Instrumentation Center at Peking University, Shenzhen Graduate School and (HRMS) data were reported with ion mass/charge (m/z) ratios as values in atomic mass units. All melting points were uncorrected.

2. Synthesis and Characterization of Starting Materials

General procedure for preparation of substrates 1a-1j

Following a literature report,¹ in a 50 mL round-bottom flask, N-hydroxyphthalimide (1.0 eq), cooper (I) chloride (1.0 eq), freshly activated 4 Å molecular sieves (250mg/mmol), and phenylboronic acid (2.0 eq) were combined in 1,2-dichloroethane (0.2 M). The pyridine (1.1 eq) was then added to the suspension. The reaction mixture was open to the atmosphere and stirred at room temperature over 24-48h. Upon completion, silica gel was added to the flask and the solvent was removed under vacuum. The desired N-aryloxyphthalimides were obtained by flash column chromatography on silica gel.

Hydrazine monohydrate (3.0 eq) was added to the solution of N-aryloxyphthalimide (1.0 eq) in 10% MeOH in $CHCl_3$ (0.1 M). The reaction was allowed to stir at room temperature overnight. Upon completion, the reaction mixture was filtered off and washed with CH_2Cl_2 . The filtrate was concentrated under reduced pressure, and purified by flash silica gel column chromatography to

give the corresponding N-aryloxyamine.

In a 20 mL round-bottom flask, N-aryloxyamine (1.0 eq) was dissolved in ether (0.2 M). The flask was cooled in an ice bath, to which acetic anhydride (2.0 eq) was slowly added. The ice bath was allowed to warm to room temperature and the mixture was stirred for 3 h at room temperature. The reaction mixture was concentrated under reduced pressure and purified by flash silica gel column chromatography to give the corresponding N-aryloxyacetamide.

Characterization of Substrates 1

O_ NHA¢

1a, white solid, yield: 60%

¹H NMR (400 MHz, DMSO-d₆): δ 11.67 (s, 1H), 7.32 (t, J = 7.9 Hz, 2H), 7.01 (t, J = 7.6 Hz, 3H), 1.92 (s, 3H); ¹³C NMR (101 MHz, DMSO-d₆): δ 167.22, 159.55, 129.45, 122.25, 112.86, 19.43. IR (cm⁻¹): 3107, 2907, 1645, 1539, 1506, 743, 689. HRMS (ESI) calculated for C₈H₉NO₂Na (+): 174.0633; Found: 174.0527. Melting Point: 154-156 °C.

1b, white solid, yield: 56%

¹H NMR (400 MHz, DMSO-d₆): δ 11.62 (s, 1H), 7.15 (t, J = 7.7 Hz, 2H), 6.99 (d, J = 8.0 Hz, 1H), 6.92 (t, J = 7.3 Hz, 1H), 2.21 (s, 3H), 1.92 (s, 3H); ¹³C NMR (101MHz, DMSO-d₆): δ 167.09, 157.46, 130.69, 126.87, 123.50, 121.99, 111.54, 19.44, 15.48. IR (cm⁻¹): 3177, 2984, 2808, 1653, 1506, 1456, 1119, 991, 750. HRMS (ESI) calculated for C₉H₁₁NO₂Na (+): 188.0790; Found: 188.0682. Melting Point: 122-125 °C.

1c, white solid, yield: 50%

¹H NMR (400 MHz, Acetone-d₆): δ 10.75 (s, 1H), 7.16 (t, J = 7.0 Hz, 1H), 6.85 (d, J = 14.0 Hz, 3H), 2.29 (s, 3H), 1.97 (s, 3H); ¹³C NMR (101 MHz, Acetone-d₆): δ 167.75, 160.08, 139.21, 129.01, 122.99, 113.51, 109.98, 20.54, 18.75. HRMS (ESI) calculated for C₉H₁₁NO₂Na (+): 188.0790; Found: 188.0682.

1d, white solid, yield: 45%

¹H NMR (400 MHz, DMSO-d₆): δ 11.61 (s, 1H), 7.10 (d, J = 8.0 Hz, 2H), 6.90 (d, J = 7.9 Hz, 2H), 2.24 (s, 3H), 1.90 (s, 3H); ¹³C NMR (101 MHz, DMSO-d₆): δ 167.58, 158.00, 131.51, 130.14, 113.28, 20.52, 19.84; HRMS (ESI) calculated for C₉H₁₁NO₂Na (+): 188.0790; Found: 188.0682. Melting Point: 141-143 °C.

1e, brick-red solid, yield: 50%

¹H NMR (400 MHz, DMSO-d₆): δ 11.62 (s, 1H), 7.20 (t, J = 8.1 Hz, 1H), 6.75 – 6.48 (m, 3H), 3.73 (s, 3H), 1.90 (s, 3H); ¹³C NMR (101 MHz, DMSO-d₆): δ 167.61, 161.30, 160.88, 130.47, 108.23, 105.50, 99.59, 55.68, 19.83; IR (cm⁻¹): 3177, 2957, 1684, 1607, 1489, 1134, 685; HRMS (ESI) calculated for C₉H₁₁NO₃Na(+): 204.0739 ; Found: 204.0631. Melting Point: 98-100 °C.

1f, white solid, yield: 35%

¹H NMR (400 MHz, DMSO-d₆): δ 11.76 (s, 1H), 7.34 (dd, J = 15.4, 8.0 Hz, 1H), 6.85 (dd, J = 15.3, 9.9 Hz, 3H), 1.92 (s, 3H); ¹³C NMR (101MHz, DMSO-d₆): δ 167.92, 163.27 (J_{1F} = 244.5), 161.52 (J_{3F} = 10.6), 131.28 (J_{3F} = 10.2), 109.56, 109.34 (J_{2F} = 21.4), 101.12 (J_{2F} = 26.7), 19.85. HRMS (ESI) calculated for C₈H₈NO₂FNa(+): 192.0539; Found: 192.0430. Melting Point: 149-151°C.

1g, white solid, yield: 40%

¹H NMR (400 MHz, DMSO-d₆): δ 11.77 (s, 1H), 7.33 (t, J = 8.3 Hz, 1H), 7.08 (m, 2H), 6.99 (d, J = 8.1 Hz, 1H), 1.92 (s, 3H); ¹³C NMR (101 MHz, DMSO-d₆): δ 168.01, 160.94, 134.19, 131.43, 122.72, 113.44, 112.42, 19.89. HRMS (ESI) calculated for C₈H₈NO₂NaCl(+):208.0244 ; Found: 208.0135. Melting Point: 124-126°C.

1h, white solid, yield: 30%

1H NMR (400 MHz, DMSO-d6): δ 11.76 (s, 1H), 7.27 (t, J = 8.2 Hz, 1H), 7.21 (d, J = 5.4 Hz, 2H), 7.03 (d, J = 8.1 Hz, 1H), 1.92 (s, 3H); ¹³C NMR (101 MHz, DMSO-d6): δ 167.91, 160.93, 131.72, 125.63, 122.43, 116.24, 112.84, 19.84. IR (cm⁻¹): 3102, 2911, 1653, 1506, 991, 779. HRMS (ESI) calculated for C₈H₈NO₂NaBr(+): 251.9738; Found: 251.9631. Melting Point: 129-131 °C.

1i, white solid, yield: 45%

¹H NMR (400 MHz, DMSO-d₆): δ 11.74 (s, 1H), 7.35 (d, J = 8.8 Hz, 2H), 7.03 (d, J = 8.6 Hz, 2H), 1.91 (s, 3H); ¹³C NMR (101 MHz, DMSO-d₆): δ 167.88, 158.89, 129.68, 126.34, 115.22, 19.87. IR (cm⁻¹): 3109, 2911, 1663, 1506, 989, 824. HRMS (ESI) calculated for C₈H₈NO₂NaCl(+): 208.0244; Found: 208.0137. Melting Point: 151-153°C.

1j, white solid, yield: 35%

¹H NMR (400 MHz, DMSO-d₆): δ 11.74 (s, 1H), 7.47 (d, J = 8.7 Hz, 2H), 6.98 (d, J = 8.5 Hz, 2H), 1.91 (s, 3H); ¹³C NMR (101 MHz, DMSO-d₆): δ 167.88, 159.37, 132.58, 115.71, 114.05, 19.86. HRMS (ESI) calculated for C₈H₈NO₂NaBr(+): 251.9738; Found: 251.9630. Melting Point: 163-165°C.

3. Condition Sreening

Initial screening quickly identified $Pd(TFA)_2$ was a good catalyst and this reaction required oxidants.

Table S1. Condition Screening^{a,b}

0 NHAC +	10 mol% Pd(TFA) ₂ 20 mol% Ligand Oxidant 0.5 eq. Additive Solvent, T, 20h N ₂	N N
----------	--	--------

Entry	Solvent	Ligand	Oxidant	Additiv	Temperat	Yield
				e	ure	
1	toluene	pyridine	4 eq TBHP	_	80℃	N.R.
2	toluene	bpy	4 eq TBHP	-	80℃	N.R.
3	toluene	Cyclohexyl	4 eq TBHP	-	80℃	62%
		JohnPhos				
4	toluene	JohnPhos	4 eq TBHP	-	80°C	40%
5	toluene	DavePhos	4 eq TBHP	-	80°C	44%
6	toluene	-	4 eq	-	80°C	N.R.
			Ag ₂ CO ₃			
7	toluene	-	4 eq AgOAc	-	80℃	N.R.
8	toluene	_	$4 eq Ag_2O$	-	80℃	N.R.
9	toluene	-	$4 \text{ eq } K_2 S_2 O_8$	-	80℃	N.R.
10	toluene	-	4 eq	-	80°C	N.R.
			$Cu(OAc)_2$			
11	DCE	_	4 eq TBHP	-	80℃	30%
12	THF	-	4 eq TBHP	-	80°C	31%
13	1,4-dioxane	-	4 eq TBHP	-	80°C	46%
14	MeOH	-	4 eq TBHP	-	80°C	15%
15	CH ₃ CN	-	4 eq TBHP	-	80°C	9%
16	DMSO	-	4 eq TBHP	-	80°C	59%
17	xylene		4 eq TBHP		80°C	37%
18	t-AmOH	-	4 eq TBHP	-	80°C	75%
19	t-BuOH	-	4 eq TBHP	-	80°C	46%
20	PhCl	-	4 eq TBHP	-	80°C	N.R.
21	<i>t</i> -AmOH	Cyclohexyl	4 eq TBHP		80°C	48%
		JohnPhos				
22	<i>t</i> -AmOH	-	4 eq TBHP	PivOH	80℃	26%
23	<i>t</i> -AmOH	-	4 eq TBHP	Cs ₂ CO	80°C	N.R.
				3		
24	<i>t</i> -AmOH	_	4 eq TBHP	CsOAc	80℃	N.R.
25	<i>t</i> -AmOH	-	4 eq TBHP	K_2CO_3	80℃	N.R.
26	<i>t</i> -AmOH	-	4 eq TBHP	-	r.t	42%
27	<i>t</i> -AmOH	-	4 eq TBHP	-	50℃	70%
28	t-AmOH	-	4 eq TBHP	-	60℃	85%
29	t-AmOH	-	4 eq TBHP	-	70°C	86%

30	t-AmOH	-	4 eq TBHP	-	80°C	74%
31 ^c	<i>t</i> -AmOH	-	4 eq TBHP	-	80°C	73%
32	t-AmOH	-	4 eq TBHP	-	90℃	63%
33	t-AmOH	-	4 eq TBHP	-	100°C	53%
34	t-AmOH	-	4 eq TBHP	-	120°C	29%
35 ^d	t-AmOH	-	4 eq TBHP	-	60℃	41%
36 ^e	t-AmOH	-	4 eq TBHP	-	60℃	67%
37 ^f	t-AmOH	-	4 eq TBHP	-	60℃	58%
38 ^g	t-AmOH	-	4 eq TBHP	-	60℃	73%
39	t-AmOH	-	-	-	60℃	N.R.
40	t-AmOH	-	1 eq TBHP	-	60℃	75%
41	t-AmOH	-	1.5 eq TBHP	-	60℃	81%
42	t-AmOH	-	2 eq TBHP	-	60℃	78%
43	t-AmOH	-	2.5 eq TBHP	-	60℃	88%
44	t-AmOH	-	3 eq TBHP	-	60℃	80%
45	t-AmOH	-	3.5 eq TBHP	_	60℃	80%
46	t-AmOH	-	2.5 eq DTBP	_	60℃	N.R.
47	t-AmOH	Ph ₃ P	2.5 eq TBHP	-	60°C	51%
48	t-AmOH	Ph ₃ P=O	2.5 eq TBHP	-	60℃	57%

^aGC yield using mesitylene as an internal standard. ^bAll reactions were kept in dark place. ^csolated yield. ^dreaction under air. ^ereaction was not kept in dark place. ^fPd(OAc)₂ instead of Pd(TFA)_{2..}^g 5%Pd(TFA)_{2.} Note: Di-*tert*-butyl peroxide (DTBP).

4. Experimental Procedure and Characterization of Products

N-Phenoxyacetamides substrates (1) (0.5 mmol) and $Pd(TFA)_2$ (10 mol%) were weighed into a 25ml pressure tube, to which was added *tert*-Amyl alcohol (2 ml) and aldehydes (2) (1 mmol) and TBHP (1.25 mmol) in a glove box. The reaction vessel was stirred at 60°C for 20 h. Then the reaction mixture was cooled and diluted with ethyl acetate, and added with saturated NaHSO₃. The aqueous phase was extracted with ethyl acetate. Then the organic phase was washed with saturated NaCl and dried with anhydrous Na_2SO_4 . The solvent was evaporated and the residue was purified by column chromatography on silica gel (petroleum ether/EtOAc =100:1) to give the desired product.

Characterization Data

^{**13**} 3aa, white solid, yield: 78%

¹**H** NMR (400 MHz, CDCl3): δ 7.93 (d, J = 8.0 Hz, 1H), 7.88 (d, J = 8.0 Hz, 2H), 7.64 (d, J = 8.4 Hz, 1H), 7.59 (t, J = 7.6 Hz, 1H), 7.37 (dd, J=7.2, 4.4, 3H), 2.46 (s, 3H); ¹³C NMR (101 MHz, CDCl3): δ 163.81, 157.22, 140.46, 129.86, 129.72, 127.96, 126.06, 123.79, 122.30, 120.60, 110.13, 21.50. IR (cm-1): 3080, 2945, 1611, 1491, 1429, 1236, 824, 741. HRMS (APCI) calculated for C14H12NO(+): 210.0841; Found: 210.0917. Melting Point: 77-79 °C.

3ab, white solid, yield: 70%

¹**H NMR (400 MHz, CDCl₃):** δ 7.94 (d, J = 8.0 Hz, 1H), 7.80 (s, 1H), 7.77 (d, J = 7.7 Hz, 1H), 7.65 (d, J = 8.4 Hz, 1H), 7.63 – 7.57 (m, 1H), 7.46 (t, J = 7.6 Hz, 1H), 7.41 – 7.34 (m, 2H), 2.48 (s, 3H); ¹³**C NMR (101 MHz, CDCl₃):** δ 163.84, 157.40, 138.97, 131.05, 129.76, 129.03, 128.83, 128.69, 125.21, 123.83, 122.32, 120.58, 110.15, 21.49. **HRMS (APCI)** calculated for C₁₄H₁₂NO(+): 210.0841; Found: 210.0914.

3ac, white solid, yield: 56%

¹H NMR (400 MHz, CDCl₃): δ 7.69 – 7.65 (m, 1H), 7.64 – 7.57 (m, 2H), 7.54 (d, J=7.5, 1H), 7.46 – 7.39 (m, 2H), 7.39 – 7.32 (m, 2H), 2.44 (s, 3H); ¹³C NMR (101

MHz, **CDCl**₃): δ 163.16, 158.11, 137.56, 131.10, 130.04, 129.82, 129.81, 127.74, 126.03, 123.72, 122.33, 121.95, 110.03, 20.46. **IR (cm⁻¹):** 2924, 2860, 1508, 1456, 750, 669. **HRMS (APCI)** calculated for C₁₄H₁₂NO(+): 210.0841; Found: 210.0914.

3ad, pale yellow oil, yield: 82%

¹**H NMR (500 MHz, CDCl₃):** δ 8.01 – 7.96 (m, 2H), 7.94 (d, *J* = 8.0 Hz, 1H), 7.66 (d, *J* = 8.4 Hz, 1H), 7.63 – 7.60 (m, 1H), 7.59 – 7.54 (m, 3H), 7.41 – 7.37 (m, 1H); ¹³**C NMR (126 MHz, CDCl₃):** δ 163.91, 157.26, 130.20, 129.73, 129.11, 129.02, 128.09, 123.84, 122.20, 120.54, 110.15. **IR (cm⁻¹):** 3063, 2926, 2855, 1612, 1597, 1491, 1373, 897, 876, 750, 696. **HRMS (APCI)** calculated for C₁₃H₁₀NO(+): 196.0684; Found: 196.0755.

³ 3ae, white solid, yield: 90%

¹H NMR (400 MHz, CDCl₃): δ 7.93 (d, J=8.8, 3H), 7.65 (d, J = 8.4 Hz, 1H), 7.62 – 7.56 (m, 1H), 7.41 – 7.35 (m, 1H), 7.12-7.07 (m, 2H), 3.91 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 163.78, 161.22, 156.87, 129.67, 129.44, 123.72, 122.26, 121.36, 120.61,114.61,110.16,55.43. HRMS (APCI) calculated for C₁₄H₁₂NO₂(+): 226.0790; Found: 226.0866.

3af, yellow solid, yield: 66%

¹**H NMR (400 MHz, CDCl₃):**δ7.95 (d, J=8.0, 1H), 7.66 (d, J=8.4, 1H), 7.64 – 7.58 (m, 1H), 7.56 (d, J=7.5, 1H), 7.49 (dd, J=14.8, 6.6, 2H), 7.39 (t, J=7.4, 1H), 7.14 – 7.05 (m, 1H), 3.91 (s, 3H); ¹³**C NMR (101 MHz, CDCl₃):** δ 163.90, 160.11, 157.21, 130.20, 130.15, 129.81, 123.90, 122.26, 120.50, 120.48, 116.31, 113.20, 110.19,

55.47. **IR (cm⁻¹):** 3262, 2922, 2849, 1585, 1506, 1489, 1456, 1196, 1036, 758,696. HRMS **(APCI)** calculated for C₁₄H₁₂NO₂(+): 226.0790; Found: 226.0861.

3ag, pale yellow oil, yield: 56%

¹H NMR (400 MHz, CDCl₃): δ 7.70 (d, J=8.0, 1H), 7.67 (dd, J=7.5, 1.7, 1H), 7.63 (d, J=8.4, 1H), 7.59 – 7.49 (m, 2H), 7.34 – 7.28 (m, 1H), 7.12 (m, 2H), 3.87 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 163.27, 157.51, 156.51, 131.65, 131.34, 129.51, 123.55, 123.21, 121.94, 120.99, 117.71, 111.43, 109.83, 55.53. HRMS (APCI) calculated for C₁₄H₁₂NO₂(+): 226.0790; Found: 226.0863

3ah, white solid, yield: 53%

¹H NMR (400 MHz, CDCl₃): δ 7.95 (d, J = 8.0 Hz, 1H), 7.66 (d, J = 8.4 Hz, 1H), 7.64 – 7.57 (m, 1H), 7.42 – 7.36 (m, 1H), 7.12 (d, J = 2.3 Hz, 2H), 6.64 (t, J = 2.3 Hz, 1H), 3.89 (s, 6H); ¹³C NMR (101 MHz, CDCl₃): δ 163.90, 161.29, 157.26, 130.58, 129.85, 123.92, 122.27, 120.46, 110.20, 106.12, 102.44, 55.60; HRMS (APCI) calculated for C₁₅H₁₄NO₃(+): 256.0895; Found: 256.0968.

COOMe 3ai, white solid, yield: 76%

¹H NMR (400 MHz, CDCl₃): δ 8.22 (d, J = 8.4 Hz, 2H), 8.05 (d, J = 8.4 Hz, 2H), 7.93 (d, J = 8.0 Hz, 1H), 7.67 (d, J = 8.4 Hz, 1H), 7.65 – 7.58 (m, 1H), 7.48 – 7.36 (m, 1H), 3.97 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 166.47, 164.03, 156.46, 133.25, 131.64, 130.32, 130.04, 128.02, 124.23, 121.98, 120.17, 110.32, 52.39. IR (cm⁻¹): 3040, 2960, 1726, 1611, 1491, 1285, 1125, 1109, 739, 700. HRMS (APCI) calculated for C₁₅H₁₂NO₃(+):254.0739; Found: 254.0810. Melting Point: Electronic Supplementary Material (ESI) for Chemical Science This journal is O The Royal Society of Chemistry 2014

139-141°C.

3aj, white solid, yield: 73%

¹H NMR (400 MHz, CDCl₃): δ 7.91 (m, 3H), 7.67 (d, J = 8.4 Hz, 1H), 7.64 – 7.59 (m, 1H), 7.57 – 7.52 (m, 2H), 7.43 – 7.37 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 163.95, 156.31, 136.45, 129.97, 129.47, 129.30, 127.45, 124.09, 121.93, 120.19, 110.30. HRMS (APCI) calculated for C₁₃H₉NOCl(+): 230.0294; Found: 230.0364. Melting Point: 108-111°C.

3ak, pale yellow solid, yield: 64%

¹**H NMR (400 MHz, CDCl₃):** δ 8.25 (s, 1H), 8.18 (d, J = 7.7 Hz, 1H), 7.93 (d, J = 8.0 Hz, 1H), 7.82 (d, J = 7.9 Hz, 1H), 7.75 – 7.71 (m, 1H), 7.71 – 7.68 (m, 1H), 7.68 – 7.62 (m, 1H), 7.44 (m,1H); ¹³**C NMR (101 MHz, CDCl₃)**: δ 164.08, 156.11, 131.72 (J=33.0), 131.24, 130.12, 129.92, 129.74, 126. 88(J=3.3), 124.88(J=3.3), 124.30, 123.81(J=273.7), 121.74, 120.00, 110.38. **HRMS (APCI)** calculated for $C_{14}H_9NOF_3(+)$: 264.0558; Found: 264.0630. **Melting Point:** 57-60°C.

3al, yellow solid, yield: 47%

¹**H NMR (400 MHz, CDCl₃):** $\delta7.87 - 7.79$ (m, 2H), 7.67 (d, J=8.5,1H), 7.64 - 7.58 (m, 1H), 7.58 - 7.52 (m, 1H), 7.40 - 7.34 (m, 2H), 7.34 - 7.29 (m, 1H). ¹³**C NMR (101 MHz, CDCl₃):** δ 163.63, 160.24 (J_{1F} = 253.1), 158.98, 154.15, 132.12 (J_{3F} = 8.4), 131.10 (J_{4F} = 3.1), 129.97, 124.77 (J_{4F} = 3.7), 123.82, 122.88 (J_{3F} = 7.1), 121.03, 116.81, 116.49 (J_{2F} = 21.6), 109.98. **HRMS (APCI)** calculated for C₁₃H₉NOF(+): 214.0590; Found: 214.0661.

3am, white solid, yield: 48%

¹**H NMR (400 MHz, CDCl₃):** δ 7.92 (d, J = 8.0 Hz, 1H), 7.88 (d, J = 1.9 Hz, 2H), 7.69 (d, J = 8.4 Hz, 1H), 7.67 – 7.62 (m, 1H), 7.54 (t, J = 1.9 Hz, 1H), 7.44 (m, 1H); ¹³**C NMR (101 MHz, CDCl₃):** δ 164.11, 155.16, 135.90, 131.81, 130.26, 130.22, 126.38, 124.44, 121.63, 119.73, 110.45. **IR (cm⁻¹):** 3080, 2924, 1558, 1506, 1362, 750, 683. **HRMS (APCI)** calculated for C₁₃H₈NOCl₂(+): 263.9905; Found: 263.9974.

3an, yellow solid, yield: 75%

¹H NMR (400 MHz, CDCl₃): δ 8.48 (s, 1H), 8.10 (dd, J=8.5, 1.6, 1H), 8.07 (d, J=8.0, 1H), 8.03 (d, J=8.5, 1H), 7.99 (dd, J=4.9, 4.3, 1H), 7.96 – 7.90 (m, 1H), 7.69 (d, J=8.5, 1H), 7.63 (m, 1H), 7.59 (dt, J=6.8, 3.0, 2H), 7.46 – 7.40 (m, 1H); ¹³C NMR (126 MHz, CDCl₃): δ 164.02, 157.22, 134.10, 133.32, 129.77, 128.98, 128.55, 127.91, 127.89, 127.22, 126.77, 126.48, 125.06, 123.92, 122.29, 120.67, 110.22. IR (cm⁻¹): 3055, 2924, 2855, 1609, 1506, 1387, 1236, 835,820, 745, 675. HRMS (APCI) calculated for C₁₇H₁₂NO(+): 246.0841; Found: 246.0916. Melting Point: 84-86°C.

3ao, yellow oil, yield: 63%

¹H NMR (400 MHz, CDCl₃): δ 8.11 (dt, J = 8.0, 0.9 Hz, 1H), 7.71 (dd, J = 1.8, 0.6 Hz, 1H), 7.66 – 7.56 (m, 2H), 7.40 (m, 1H), 7.20 (dd, J = 3.5, 0.6 Hz, 1H), 6.64 (dd, J = 3.5, 1.8 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃): δ 163.38, 149.39, 144.47, 144.43, 130.11, 124.04, 122.76, 119.52, 111.90, 111.40, 109.93. HRMS (APCI) calculated for C₁₁H₈NO₂(+):186.0477; Found: 186.0548

3ap, yellow solid, yield: 55%

¹**H NMR** (400 MHz, CDCl₃): δ 8.01 (d, J = 8.0 Hz, 1H), 7.83 (dd, J = 3.7, 1.1 Hz, 1H), 7.67 – 7.63 (m, 1H), 7.63 – 7.58 (m, 1H), 7.56 (dd, J = 5.1, 1.1 Hz, 1H), 7.41 (m, 1H), 7.25 (dd, J = 5.1, 3.7 Hz, 1H); ¹³C **NMR** (101 MHz, CDCl₃): δ 163.78, 152.31, 130.06, 129.97, 128.19, 127.97, 127.92, 124.04, 121.97, 120.00, 110.24. IR (cm⁻¹): 2924, 2855, 1611, 1543, 1508, 1489, 1456, 1443, 1236, 891, 847, 746, 700. HRMS (APCI) calculated for $C_{11}H_8NOS(+):202.0248$; Found: 202.0324

3aq, pale yellow oil, yield:63%

¹H NMR (500 MHz, CDCl₃): δ 7.72 – 7.63 (m, 1H), 7.61 – 7.49 (m, 2H), 7.29 (m, 1H), 3.02 – 2.93 (m, 2H), 1.90 (dd, J=15.0, 7.4, 2H), 1.05 (t, J=7.4, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 162.97, 158.42, 129.57, 123.02, 121.78, 121.26, 109.87, 27.22, 21.11, 13.89. IR (cm⁻¹): 2963, 2928, 2874, 1612, 1522, 1439, 1379, 1238, 748. HRMS (APCI) calculated for C₁₀H₁₂NO(+): 162.0841; Found: 162.0914.

3ar, pale yellow oil, yield: 40%

¹H NMR (500 MHz, CDCl₃): δ 7.72 (d, J=7.9, 1H), 7.60 – 7.47 (m, 2H), 7.33 – 7.26 (m, 1H), 3.43 (dt, J=14.0, 7.0, 1H), 1.54 – 1.48 (m, 6H); ¹³C NMR (126 MHz, CDCl₃): δ 163.21, 163.07, 129.47, 122.90, 121.60, 120.86, 109.99, 26.88, 21.08. HRMS (APCI) calculated for C₁₀H₁₂NO(+):162.0841; Found: 162.0915.

3as, white solid, yield: 41%

¹H NMR (500 MHz, CDCl₃): δ 7.71 (d, J=7.9, 1H), 7.61 – 7.44 (m, 2H), 7.36 – 7.21 (m, 1H), 3.09 (m, 1H), 2.17 – 2.07 (m, 2H), 1.90 (d, J=13.0, 2H), 1.83 – 1.71 (m, 3H), 1.46 (dd, J=25.3, 12.5, 2H), 1.41 – 1.33 (m, 1H). ¹³C NMR (126 MHz, CDCl₃): δ 163.09, 162.24, 129.42, 122.82, 121.67, 121.02, 109.91, 36.40, 31.41, 26.19, 26.00. IR (cm⁻¹): 2936, 2857, 1558, 1508, 1236, 754. HRMS (APCI) calculated for C₁₃H₁₆NO(+): 202.1154; Found: 202.1225. Melting Point: 66-68°C.

3at, yellow solid, yield: 64%

¹H NMR (500 MHz, CDCl₃): δ 7.67 (d, J = 7.8 Hz, 1H), 7.52 (t, J = 9.0 Hz, 2H), 7.26 (dd, J = 10.5, 3.8 Hz, 1H), 3.56 – 3.41 (m, 1H), 2.26 – 2.12 (m, 2H), 2.01 (dd, J = 12.2, 7.4 Hz, 2H), 1.88 (s, 2H), 1.82 – 1.69 (m, 2H); ¹³C NMR (126 MHz, CDCl₃): δ 163.21, 161.80, 129.48, 122.88, 121.65, 121.34, 109.91, 36.92, 31.34, 25.62. HRMS (APCI) calculated for C₁₂H₁₄NO(+):188.0997; Found: 188.1070.

3au, pale yellow oil, yield: 51%

¹H NMR (400 MHz, CDCl₃): δ 7.68 (d, J = 7.9 Hz, 1H), 7.54 (d, J = 2.7 Hz, 2H), 7.32 – 7.28 (m, 1H), 2.28 – 2.17 (m, 1H), 1.25 (dd, J = 6.4, 4.3 Hz, 2H), 1.20 – 1.12 (m, 2H); ¹³C NMR (101 MHz, CDCl₃): δ 163.13, 160.27, 129.66, 123.05, 121.64, 121.13, 109.99, 7.63, 6.90. HRMS (APCI) calculated for C₁₀H₁₀NO(+): 160.0684; Found: 160.0759.

3ba, yellow solid, yield: 50%

¹H NMR (400 MHz, CDCl₃): δ 7.88 (d, J = 8.1 Hz, 2H), 7.74 (d, J = 7.9 Hz, 1H), 7.41 – 7.34 (m, 3H), 7.27 (dd, J = 8.2, 6.9 Hz, 1H), 2.63 (s, 3H), 2.46 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 163.16, 157.49, 140.31, 130.10, 129.80, 127.95, 126.36, 124.06, 120.89, 120.06, 119.57, 21.48, 15.24. **IR (cm⁻¹)**: 2957, 1940, 1506, 1406, 1111, 824, 743. **HRMS (APCI)** calculated for $C_{15}H_{14}NO(+)$: 224.0997; Found: 224.1071. **Melting Point:** 67-70°C.

3ca, white solid, yield: 57%

¹**H NMR** (400 MHz, CDCl₃): δ 7.86 (d, J = 8.1 Hz, 2H), 7.79 (d, J = 8.2 Hz, 1H), 7.43 (s, 1H), 7.37 (d, J = 7.9 Hz, 2H), 7.20 (d, J = 8.1 Hz, 1H), 2.55 (s, 3H), 2.46 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃): δ 164.48, 156.96, 140.73, 140.32, 129.79, 127.90, 126.24, 125.60, 121.65, 118.37, 110.01, 21.91, 21.49. **IR** (cm⁻¹): 2922, 2853, 1917, 1626, 1609, 1485, 1412, 1260, 1128, 1113, 824, 754, 662. **HRMS** (APCI) calculated for C₁₅H₁₄NO(+) : 224.0997; Found: 224.1070. **Melting Point:** 70-73°C.

3da, yellow solid, yield: 50%

¹H NMR (400 MHz, CDCl₃): δ 7.86 (d, J = 8.1 Hz, 2H), 7.69 (s, 1H), 7.53 (d, J = 8.6 Hz, 1H), 7.41 (dd, J=8.8, 1.2, 1H), 7.37 (d, J = 7.9 Hz, 2H), 2.51 (s, 3H), 2.46 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 162.52, 156.93, 140.28, 133.47, 131.30, 129.79, 127.95, 126.26, 121.50, 120.80, 109.64, 21.48, 21.24. HRMS (APCI) calculated for C₁₅H₁₄NO(+): 224.0997; Found: 224.1073.

3ea, white solid, yield: 60%

¹H NMR (400 MHz, CDCl₃): δ 7.84 (d, J = 8.1 Hz, 2H), 7.75 (d, J = 8.8 Hz, 1H), 7.36 (d, J = 7.9 Hz, 2H), 7.06 (d, J = 2.0 Hz, 1H), 6.98 (dd, J = 8.8, 2.1 Hz, 1H), 3.91 (s, 3H), 2.45 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 165.72, 162.05, 156.92, 140.32, 129.78, 127.87, 126.16, 122.48, 114.60, 113.98, 92.73, 55.78, 21.47. HRMS

(APCI) calculated for $C_{15}H_{14}NO_2(+)$: 240.0946; Found: 240.1018. Melting Point: 104-107°C.

3fa, white solid, yield: 55%

¹H NMR (400 MHz, CDCl₃): δ 7.89 – 7.85 (m, 1H), 7.85 – 7.80 (m, 2H), 7.37 (d, J = 8.0 Hz, 2H), 7.32 (dd, J = 8.5, 2.0 Hz, 1H), 7.14 (td, J = 8.9, 2.1 Hz, 1H), 2.46 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 164.45 (J_{3F} = 13.7), 164.15 (J_{1F} = 252.0), 157.09, 140.73, 129.90, 127.92, 125.51, 123.29 (J_{3F} = 11.0), 117.20, 113.04 (J_{2F} = 25.5), 97.47 (J_{2F}=26.9), 21.48. HRMS (APCI) calculated for C₁₄H₁₁NOF(+): 228.0746; Found: 228.0817. Melting Point: 90-93°C.

3ga, pale yellow solid, yield: 64%

¹H NMR (400 MHz, CDCl₃): δ 7.82 (d, J = 8.0 Hz, 3H), 7.64 (d, J = 1.3 Hz, 1H), 7.38 – 7.32 (m, 3H), 2.46 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 164.03, 157.06, 140.79, 136.43, 129.92, 127.89, 125.43, 124.84, 122.88, 119.41, 110.54, 21.50. HRMS (APCI) calculated for C₁₄H₁₁NOCl(+): 244.0451; Found: 244.0520. Melting Point: 103-106°C.

3ha, white solid, yield: 76%

¹H NMR (400 MHz, CDCl₃): δ 7.82 (d, J = 7.7 Hz, 3H), 7.77 (d, J = 8.5 Hz, 1H), 7.49 (dd, J = 8.5, 1.4 Hz, 1H), 7.37 (d, J = 7.9 Hz, 2H), 2.46 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 164.20, 157.16, 140.82, 129.93, 127.90, 127.49, 125.39, 124.35, 123.14, 119.81, 113.59, 21.51. IR (cm⁻¹): 2920, 2849, 1595, 1485, 1402, 826, 754.

HRMS (APCI) calculated for $C_{14}H_{11}NOBr(+)$: 287.9946; Found: 288.0019. **Melting Point:** 111-114°C.

3ia, white solid, yield: 40%

¹H NMR (400 MHz, CDCl₃): δ 7.88 (d, J = 1.3 Hz, 1H), 7.81 (d, J = 8.1 Hz, 2H), 7.60 – 7.48 (m, 2H), 7.37 (d, J = 7.9 Hz, 2H), 2.46 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 162.34, 156.84, 140.80, 130.19, 129.96, 129.44, 127.85, 125.39, 121.95, 121.69, 111.18, 21.50. IR (cm⁻¹): 2922, 2855, 1491, 1425, 1358, 1265, 812, 758; HRMS (APCI) calculated for $C_{14}H_{11}NOCl(+)$: 244.0451; Found: 244.0521. Melting Point: 112-115°C.

3ja, white solid, yield: 48%

¹H NMR (400 MHz, CDCl₃): δ 8.06 (d, J = 1.7 Hz, 1H), 7.82 (d, J = 8.1 Hz, 2H), 7.68 (dd, J = 8.8, 1.9 Hz, 1H), 7.54 (d, J = 8.8 Hz, 1H), 7.38 (d, J = 7.9 Hz, 2H), 2.47 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ162.69, 156.74, 140.84, 132.81, 129.97, 127.89, 125.35, 124.87, 122.64, 116.68, 111.61, 21.51. HRMS (APCI) calculated for C₁₄H₁₁NOBr(+): 287.9946; Found: 288.0015.

5. X-ray Crystallographic Data for 3-(p-tolyl)benzo[d]isoxazole

Figure S1. 3-(*p*-tolyl)benzo[*d*]isoxazole (3aa)

Tab	le S2.	Crystal data	and structure	refinement for a	•

Identification code	a		
Empirical formula	C14 H11 N O		
Formula weight	209.24		
Temperature	295(2) K		
Wavelength	1.54178 Å		
Crystal system	Monoclinic		
Space group	P 21/c		
Unit cell dimensions	a = 25.1525(18) Å	$\square = 90^{\circ}$.	
	b = 11.4250(4) Å	$\square = 94.475(7)^{\circ}.$	
	c = 7.5575(3) Å	$\Box = 90^{\circ}$.	
Volume	2165.16(19) Å ³		
Ζ	8		
Density (calculated)	1.284 Mg/m ³		
Absorption coefficient	0.644 mm ⁻¹		
F(000)	880		
Crystal size	0.30 x 0.10 x 0.05 mm ³		
Theta range for data collection	6.56 to 68.35°.		
Index ranges	-24<=h<=30, -12<=k<=13, -9<=l<=8		
Reflections collected	15741		
Independent reflections	3881 [R(int) = 0.0440]		
Completeness to theta = 68.35°	97.7 %		
Absorption correction	Semi-empirical from equivaler	nts	
Max. and min. transmission	0.968 and 0.803		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	3881 / 0 / 291		
Goodness-of-fit on F ²	1.023		
Final R indices [I>2sigma(I)]	R1 = 0.0491, $wR2 = 0.1300$		
R indices (all data)	indices (all data) $R1 = 0.0701$, $wR2 = 0.1466$		
Largest diff. peak and hole	0.259 and -0.197 e.Å ⁻³		

	х	У	Z	U(eq)
O(1)	4411(1)	9719(1)	4035(2)	84(1)
O(2)	577(1)	4791(1)	6083(2)	92(1)
N(1)	3875(1)	9898(1)	4427(2)	76(1)
N(2)	1121(1)	4960(1)	5772(2)	81(1)
C(1)	1428(1)	8582(2)	5887(3)	89(1)
C(2)	2008(1)	8656(1)	5559(2)	60(1)
C(3)	2324(1)	9600(1)	6157(2)	65(1)
C(4)	2853(1)	9660(1)	5847(2)	60(1)
C(5)	3093(1)	8780(1)	4909(2)	51(1)
C(6)	3656(1)	8861(1)	4525(2)	55(1)
C(7)	4028(1)	7953(1)	4195(2)	53(1)
C(8)	4490(1)	8547(2)	3896(2)	64(1)
C(9)	4959(1)	8004(2)	3510(2)	80(1)
C(10)	4947(1)	6812(2)	3436(2)	81(1)
C(11)	4030(1)	6729(2)	4149(2)	63(1)
C(12)	4492(1)	6181(2)	3764(2)	76(1)
C(13)	2779(1)	7836(1)	4325(2)	58(1)
C(14)	2250(1)	7782(1)	4657(2)	61(1)
C(15)	3581(1)	3404(2)	4758(3)	90(1)
C(16)	2996(1)	3561(1)	4961(2)	60(1)
C(17)	2632(1)	2729(1)	4327(2)	62(1)
C(18)	2096(1)	2848(1)	4545(2)	57(1)
C(19)	1903(1)	3810(1)	5409(2)	51(1)
C(20)	1333(1)	3920(1)	5680(2)	55(1)
C(21)	949(1)	3017(1)	5911(2)	54(1)
C(22)	487(1)	3621(2)	6163(2)	67(1)
C(23)	9(1)	3088(2)	6484(2)	83(1)
C(24)	14(1)	1902(2)	6561(2)	82(1)
C(25)	2269(1)	4656(1)	6055(2)	60(1)
C(26)	2803(1)	4530(1)	5830(2)	65(1)
C(27)	471(1)	1260(2)	6303(2)	78(1)
C(28)	942(1)	1795(2)	5983(2)	66(1)

Table S3Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³)for a.U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

O(1)-C(8)	1.359(2)
O(1)-N(1)	1.4170(17)
O(2)-C(22)	1.359(2)
O(2)-N(2)	1.4188(18)
N(1)-C(6)	1.3105(18)
N(2)-C(20)	1.3069(18)
C(1)-C(2)	1.502(2)
C(1)-H(1A)	0.9600
C(1)-H(1B)	0.9600
C(1)-H(1C)	0.9600
C(2)-C(14)	1.377(2)
C(2)-C(3)	1.393(2)
C(3)-C(4)	1.372(2)
C(3)-H(3)	0.9300
C(4)-C(5)	1.3942(19)
C(4)-H(4)	0.9300
C(5)-C(13)	1.389(2)
C(5)-C(6)	1.4721(19)
C(6)-C(7)	1.431(2)
C(7)-C(8)	1.380(2)
C(7)-C(11)	1.399(2)
C(8)-C(9)	1.384(2)
C(9)-C(10)	1.362(3)
C(9)-H(9)	0.9300
C(10)-C(12)	1.391(3)
C(10)-H(10)	0.9300
C(11)-C(12)	1.371(2)
C(11)-H(11)	0.9300
С(12)-Н(12)	0.9300
C(13)-C(14)	1.375(2)
С(13)-Н(13)	0.9300
C(14)-H(14)	0.9300
C(15)-C(16)	1.502(2)
C(15)-H(15A)	0.9600
C(15)-H(15B)	0.9600
С(15)-Н(15С)	0.9600

Table S4. Bond lengths [Å] and angles [°] for a.

C(16)-C(17)	1.380(2)
C(16)-C(26)	1.393(2)
C(17)-C(18)	1.377(2)
С(17)-Н(17)	0.9300
C(18)-C(19)	1.3857(19)
C(18)-H(18)	0.9300
C(19)-C(25)	1.396(2)
C(19)-C(20)	1.4693(19)
C(20)-C(21)	1.433(2)
C(21)-C(22)	1.378(2)
C(21)-C(28)	1.397(2)
C(22)-C(23)	1.386(2)
C(23)-C(24)	1.357(3)
С(23)-Н(23)	0.9300
C(24)-C(27)	1.389(3)
C(24)-H(24)	0.9300
C(25)-C(26)	1.375(2)
C(25)-H(25)	0.9300
C(26)-H(26)	0.9300
C(27)-C(28)	1.370(2)
C(27)-H(27)	0.9300
C(28)-H(28)	0.9300
C(8)-O(1)-N(1)	107.85(11)
C(22)-O(2)-N(2)	107.96(11)
C(6)-N(1)-O(1)	106.92(12)
C(20)-N(2)-O(2)	106.71(13)
C(2)-C(1)-H(1A)	109.5
C(2)-C(1)-H(1B)	109.5
H(1A)-C(1)-H(1B)	109.5
C(2)-C(1)-H(1C)	109.5
H(1A)-C(1)-H(1C)	109.5
H(1B)-C(1)-H(1C)	109.5
C(14)-C(2)-C(3)	117.43(14)
C(14)-C(2)-C(1)	120.83(15)
C(3)-C(2)-C(1)	121.74(15)
C(4)-C(3)-C(2)	121.25(14)
C(4)-C(3)-H(3)	119.4

C(2)-C(3)-H(3)	119.4
C(3)-C(4)-C(5)	121.01(14)
C(3)-C(4)-H(4)	119.5
C(5)-C(4)-H(4)	119.5
C(13)-C(5)-C(4)	117.67(13)
C(13)-C(5)-C(6)	121.24(13)
C(4)-C(5)-C(6)	121.09(13)
N(1)-C(6)-C(7)	111.28(13)
N(1)-C(6)-C(5)	118.87(13)
C(7)-C(6)-C(5)	129.85(13)
C(8)-C(7)-C(11)	118.84(14)
C(8)-C(7)-C(6)	104.02(14)
C(11)-C(7)-C(6)	137.13(13)
O(1)-C(8)-C(7)	109.93(14)
O(1)-C(8)-C(9)	126.19(16)
C(7)-C(8)-C(9)	123.88(18)
C(10)-C(9)-C(8)	116.06(16)
C(10)-C(9)-H(9)	122.0
C(8)-C(9)-H(9)	122.0
C(9)-C(10)-C(12)	121.81(16)
С(9)-С(10)-Н(10)	119.1
C(12)-C(10)-H(10)	119.1
C(12)-C(11)-C(7)	117.80(15)
C(12)-C(11)-H(11)	121.1
C(7)-C(11)-H(11)	121.1
C(11)-C(12)-C(10)	121.59(18)
C(11)-C(12)-H(12)	119.2
C(10)-C(12)-H(12)	119.2
C(14)-C(13)-C(5)	120.74(14)
С(14)-С(13)-Н(13)	119.6
С(5)-С(13)-Н(13)	119.6
C(13)-C(14)-C(2)	121.90(14)
C(13)-C(14)-H(14)	119.1
C(2)-C(14)-H(14)	119.1
C(16)-C(15)-H(15A)	109.5
C(16)-C(15)-H(15B)	109.5
H(15A)-C(15)-H(15B)	109.5
C(16)-C(15)-H(15C)	109.5

109.5
109.5
117.65(14)
120.77(16)
121.56(15)
121.37(14)
119.3
119.3
121.11(13)
119.4
119.4
117.91(13)
121.01(12)
121.06(13)
111.52(13)
119.44(13)
129.03(13)
118.73(14)
103.89(15)
137.35(13)
109.92(14)
126.21(16)
123.85(18)
116.11(16)
121.9
121.9
121.80(16)
119.1
119.1
120.54(14)
119.7
119.7
121.43(14)
119.3
119.3
121.63(19)
119.2
119.2

C(27)-C(28)-C(21)	117.86(15)
C(27)-C(28)-H(28)	121.1
C(21)-C(28)-H(28)	121.1

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	67(1)	69(1)	118(1)	15(1)	8(1)	-13(1)
O(2)	74(1)	72(1)	132(1)	-5(1)	21(1)	16(1)
N(1)	68(1)	58(1)	102(1)	10(1)	3(1)	-6(1)
N(2)	75(1)	59(1)	112(1)	-2(1)	15(1)	8(1)
C(1)	64(1)	100(2)	104(2)	2(1)	9(1)	14(1)
C(2)	61(1)	59(1)	60(1)	4(1)	0(1)	9(1)
C(3)	75(1)	57(1)	63(1)	-7(1)	4(1)	15(1)
C(4)	74(1)	46(1)	59(1)	-4(1)	-4(1)	3(1)
C(5)	61(1)	45(1)	46(1)	1(1)	-1(1)	2(1)
C(6)	64(1)	49(1)	50(1)	4(1)	-2(1)	-5(1)
C(7)	57(1)	58(1)	44(1)	0(1)	2(1)	1(1)
C(8)	64(1)	67(1)	61(1)	4(1)	4(1)	-7(1)
C(9)	57(1)	106(2)	78(1)	3(1)	10(1)	-6(1)
C(10)	63(1)	105(2)	75(1)	-14(1)	7(1)	14(1)
C(11)	64(1)	61(1)	65(1)	-6(1)	4(1)	0(1)
C(12)	71(1)	71(1)	86(1)	-15(1)	3(1)	11(1)
C(13)	65(1)	50(1)	59(1)	-8(1)	4(1)	2(1)
C(14)	65(1)	53(1)	65(1)	-6(1)	-1(1)	-2(1)
C(15)	65(1)	97(2)	109(2)	7(1)	6(1)	-1(1)
C(16)	63(1)	60(1)	57(1)	6(1)	4(1)	-5(1)
C(17)	71(1)	54(1)	61(1)	-4(1)	11(1)	0(1)
C(18)	67(1)	51(1)	53(1)	-6(1)	4(1)	-8(1)
C(19)	63(1)	46(1)	45(1)	3(1)	2(1)	-3(1)
C(20)	67(1)	48(1)	51(1)	0(1)	4(1)	5(1)
C(21)	57(1)	60(1)	45(1)	4(1)	2(1)	1(1)
C(22)	68(1)	68(1)	66(1)	4(1)	9(1)	9(1)
C(23)	60(1)	110(2)	81(1)	8(1)	13(1)	9(1)
C(24)	65(1)	105(2)	78(1)	18(1)	5(1)	-14(1)
C(25)	78(1)	48(1)	54(1)	-3(1)	6(1)	-5(1)
C(26)	76(1)	59(1)	58(1)	-1(1)	-1(1)	-17(1)
C(27)	70(1)	74(1)	89(1)	16(1)	2(1)	-10(1)
C(28)	65(1)	61(1)	70(1)	11(1)	1(1)	-1(1)

Table S5.Anisotropic displacement parameters (Ųx 10³) for a.The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [$h^2a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12}$]

6. Mechanistic Studies

6.1 KIE Experiment

Synthesis of deuterated substrate 1a-d5

Following the general procedure for the synthesis of substrate 1^1 , deuterated substrate $1a-d_5$ was obtained from (d₅-phenyl)boronic acid.

A mixture of **1a-d**₅ (31.2 mg, 0.2 mmol), **1a** (30.2 mg, 0.2 mmol), Pd(TFA)₂ (6.6 mg, 10 mol%), *p*-tolualdehyde (23.6 μ l, 0.2 mmol) and TBHP (0.06 ml, 0.5 mmol) in *tert*-Amyl alcohol (1ml) was stirred at 60 °C for 1h under N₂ atmosphere. The solvent was evaporated to dryness in vacuo. The residual was separated on a silica gel column to get the products.

The intermolecular KIE was determined by ¹HNMR: K_H/K_D =3.2

N-Phenoxyacetamides substrates (1) (0.4 mmol) and $Pd(TFA)_2$ (10 mol%) were weighed into a 25ml pressure tube, to which was added *tert*-Amyl alcohol (1 ml) and TBHP (1 mmol) in a glove box. The reaction vessel was stirred at 60°C for 20 h. The solvent was evaporated and the residue was purified by column chromatography on silica gel.

We only obtained the starting material 1. No phenyl acetate was observed, which ruled out the possibility of nitrogen radical initiation.

N-Phenoxyacetamides substrates (1) (0.4 mmol) and $Pd(TFA)_2$ (10 mol%) were weighed into a 25mL pressure tube, to which was added D-*tert*-Butanol (1 ml) and TBHP (1 mmol) in a glove box. The reaction vessel was stirred at 60°C for 6 h. The solvent was evaporated and the residue was purified by column chromatography on silica gel. We only recovered the starting material without any D-compound.

Then we carried the experiment without TBHP and reducing the reaction time to 1h, the result was consisted with that above mentioned. So we concluded that the C-H activation was irreversible.

6.4

N-Phenoxyacetamides substrates (1) (0.4 mmol) and $Pd(TFA)_2$ (10 mol%) were weighed into a 25mL pressure tube, to which was added *t*ert-Amyl alcohol (1 ml) and aldehyde (0.8 mmol) in a glove box. The reaction vessel was stirred at 60°C for 20 h. The solvent was evaporated and the residue was purified by column chromatography on silica gel.

No product was obtained and the aldehyde was recovered which demonstrated that

aldehyde could be only transformed when TBHP was present.

When the loading of catalyst was increased to 1equivalent, we failed to obtain the desired product, which rejected a catalytic cycle involving Pd(II)/Pd(0)/Pd(II) process.

6.5 Effect of radical scavenger^{a,b}

Entry	TEMPO	Yield(GC)
	(mol%)	
1	10	60%
2	50	21%
3	100	N.R.
4	200	N.R.

^aThe reactions were carried out in a 0.1 mmol-scale of 1a.

^bYield was determined by GC using mesitylene as internal standard.

6.6

Potassium *tert*-butoxide (1.24g, 11mmol) was added to a solution of acetohydroxamic acid (0.83g, 11 mmol) in dry THF (15 ml). After stirring for 1 h, 2-fluorobenzophenone (1.7ml, 10 mmol) in THF (15 ml) was added, and the reaction was brought to reflux. After refluxing for overnight, the reaction mixture was cooled and distributed between ether and saturated aqueous ammonium chloride solution, after which the organic layer was separated, dried (MgSO₄), and evaporated, then purified by flash silica gel column chromatography to give the corresponding product (**1k**).²

1k, white solid, 5%

¹H NMR (500 MHz, DMSO): δ11.66 (s, 1H), 7.78 (d, J=7.4, 2H), 7.65 (t, J=7.2, 1H), 7.51 (t, J=7.4, 3H), 7.35 (d, J=7.0, 1H), 7.25 – 7.13 (m, 2H), 1.82 (s, 3H); ¹³C NMR (126 MHz, DMSO): δ195.07, 167.90, 157.15, 137.23, 134.01, 132.32, 129.99, 129.40, 129.12, 126.60, 122.79, 112.99, 19.74. IR (cm⁻¹): 3117, 2928, 1653, 1508, 928, 756. HRMS (ESI) calculated for $C_{15}H_{13}NO_3Na(+)$: 278.0895; Found: 278.0786.

Entry	Х	Additive	Oxidant	Yield(GC)
1	10 mol% Pd(TFA) ₂	-	-	86%
2	$10 \text{ mol}\% \text{Pd}(\text{TFA})_2$	1 eq TFA	-	73%
3	$10 \text{ mol}\% \text{Pd}(\text{TFA})_2$	-	2.5 eq TBHP	19%

The starting materials were all exclusively converted to the product by GC detection, which indicated that the starting material **1k** was the intermediate in the process of the reaction.

6.7

We observed the generation of *tert*-pentyl acetate under our standard reaction conditions by GC-MS.

7. DFT Calculations

All the calculations were carried out with the Gaussian 09 package.³ Geometry optimization and energy calculations were performed with the B3LYP method.⁴ The 6-31G (d) basis set was used for all atoms except Pd, for which a LANL2DZ basis set with ECP was used. Single point energy calculations were then carried out on the above-obtained geometries at the $M06^{5}/SDD^{6}-6-311++G$ (d, p) level and solvent effect (solvent = ^{*t*}BuOH) was calculated using the SMD⁷

solvation model. Computed structures were illustrated using CYLVIEW⁸ drawings.

Figure S2. The structures of four transition states.

Figure S3. A catalytic cycle involving direct aldehyde insertion.

Figure S4. Gibbs free energy profile for the mechanism in Figure S3.

The C-H activation step gave palladcycle intermediate **B5**. In the main text, radical addition of acyl radical generated from aldehyde by TBHP gave intermediate **A6**. Alternatively, the benzaldehyde could coordinate to intermediate **B5** and the direct aldehyde insertion led to the intermediate **B7**. β -Hydrogen elimination of **B7** could form intermediate **B9** which was similar to **A8** in the radical mechanism shown in the main text. The calculation results showed that the aldehyde insertion was the rate-determining step with very high activation energy of 52.3kcal/mol. Therefore, this mechanism was not reasonable in our case.

Figure S5. A mechanism proposed involving nitrogen radical initiation.

Figure S6. Gibbs free energy profile for the mechanism in Figure S5.

As shown in Figure S5, a mechanism involving nitrogen radical initiation was proposed which was similar to the mechanism reported by Kang Zhao and coworkers.⁹ The radical activation of N-phenoxyacetamides gave the amide nitrogen radical that underwent radical addition to form a Pd^{III} radical intermediate **C3**. This step costed activation energy of 39.8 kcal/mol (Figure S6) and is the

rate-determining step. Therefore, we excluded this mechanism in our case. The following steps, C-H activation, reductive elimination, nucleophilic attack and deacylation were similar to the steps in the mechanism proposed in the main text.

Figure S7. Gibbs free energy for elimination reaction.

In our computational study, we considered the pathway from A9 to TS5_A_1, in which the attack of the Ac group took place before hydrolysis. This pathway had a very high barrier. We further calculated the pathway of intramolecular N to O acetyl transfer. The calculation suggested that this pathway also had a very high barrier (43.5kcal/mol) and was unlikely to occur.

Table S6. Energies of structures on pathway A (single point energy were calculated at the M06/SDD, 6-311++G(d,p) level of theory in solvent).

Structure	E	Н	G	ΔE	∆н	∆G
PdTFA ₂	-1180.20762	-1180.135581	-1180.194879	0.0	0.0	0.0
Sub	-515.229752	-515.059459	-515.108106	0.0	0.0	0.0
PhCHO	-345.42276	-345.305264	-345.343008			
<i>t</i> BuOH	-233.588721	-233.444878	-233.481574			
<i>t</i> BuOOH	-308.707438	-308.558983	-308.598826			
TFA	-526.760288	-526.713979	-526.752715			
tAmOH	-272.879249	-272.705224	-272.745127			
<i>t</i> AmylOAc	-425.490055	-425.274283	-425.322893			
H ₂ O	-76.430296	-76.405377	-76.426822			
A1	-1695.466999	-1695.222146	-1695.312811	-18.6	-17.0	-6.2
TS1_A	-1695.45871	-1695.217815	-1695.305585	-13.4	-14.3	-1.6
A2	-1695.45883	-1695.216476	-1695.306073	-13.5	-13.5	-1.9
A3	-1168.689146	-1168.493761	-1168.564754	-7.6	-8.0	-9.1
TS2_A	-1168.66446	-1168.474363	-1168.542345	7.9	4.2	5.0

A4	-1168.690799	-1168.494632	-1168.565234	-8.6	-8.5	-9.4
A5	-641.907893	-641.760182	-641.810589	5.6	4.3	-8.2
A6	-1512.905929	-1512.613631	-1512.700786	-73.8	-74.4	-73.5
TS3_A	-1512.887083	-1512.596567	-1512.681668	-62.0	-63.7	-61.5
A7	-1512.901832	-1512.609766	-1512.696529	-71.3	-72.0	-70.8
A8	-1512.930839	-1512.636938	-1512.721055	-89.5	-89.0	-86.2
TS4_A	-1512.917	-1512.625873	-1512.704163	-80.8	-82.1	-75.6
A9	-1512.928973	-1512.634814	-1512.717638	-88.3	-87.7	-84.0
A10	-859.462627	-859.195512	-859.256766	-76.4	-76.6	-72.3
Pro	-630.444771	-630.246519	-630.295086	-91.0	-92.6	-99.2

Table S7. Energies of structures on pathway B (single point energy were calculated at the M06/SDD, 6-311++G(d,p) level of theory in solvent).

Structure	E	Н	G	ΔE	ΔH	∆G
B1(A1)	-1695.466999	-1695.222146	-1695.312811	-18.6	-17.0	-6.2
TS1_B(TS1_A)	-1695.45806	-1695.217165	-1695.304935	-13.4	-14.3	-1.6
B2(A2)	-1695.45883	-1695.216476	-1695.306073	-13.5	-13.5	-1.9
B3(A3)	-1168.689146	-1168.493761	-1168.564754	-7.6	-8.0	-9.1
TS2_B(TS2_A)	-1168.66446	-1168.474363	-1168.542345	7.9	4.2	5.0
B4(A4)	-1168.690799	-1168.494632	-1168.565234	-8.6	-8.5	-9.4
B5(A5)	-641.907893	-641.760182	-641.810589	5.6	4.3	-8.2
B6	-987.362193	-987.094196	-987.165291	-14.2	-13.7	-15.5
ТЅЗ_В	-987.282708	-987.01655	-987.081859	35.7	35.0	36.8
B7	-987.286962	-987.019475	-987.086486	33.0	33.2	33.9
B8	-987.330762	-987.062046	-987.127892	5.5	6.5	8.0
TS4_B	-987.273407	-987.011537	-987.077872	41.5	38.2	39.3
B9	-987.327416	-987.062022	-987.129096	7.6	6.5	7.2
TS5_B	-987.315809	-987.052085	-987.117348	14.9	12.7	14.6
B10	-987.317828	-987.053012	-987.119255	13.6	12.1	13.4
B11(A10)	-859.462627	-859.195512	-859.256766	-76.4	-76.6	-72.3
Pro	-630.444771	-630.246519	-630.295086	-91.0	-92.6	-99.2

Table S8. Energies of structures on pathway C (single point energy were calculated at the M06/SDD, 6-311++G(d,p) level of theory in solvent).

Structure	E	н	G	ΔE	∆н	∆G
C1	-748.147349	-747.845061	-747.912885	38.4	35.3	35.6
TS1_C	-748.135933	-747.838773	-747.906078	45.5	39.2	39.8
C2	-748.171957	-747.868272	-747.937107	22.9	20.7	20.4
С3	-1694.824926	-1694.592854	-1694.683868	1.5	-0.5	-0.6
C4	-2039.661408	-2039.3213	-2039.427358	-70.8	-70.4	-57.1
C5	-2039.661532	-2039.321544	-2039.429966	-70.9	-70.6	-58.7
TS2_C	-2039.618919	-2039.284471	-2039.389697	-44.2	-47.3	-33.4
C6	-2039.633446	-2039.293511	-2039.397244	-53.3	-53.0	-38.2
--------------	--------------	--------------	--------------	-------	-------	-------
C7(A6)	-1512.905929	-1512.613631	-1512.700786	-73.8	-74.4	-73.5
C8	-1512.92294	-1512.629631	-1512.71672	-84.5	-84.4	-83.5
TS3_C(TS3_A)	-1512.887083	-1512.596567	-1512.681668	-62.0	-63.7	-61.5
C9(A7)	-1512.901832	-1512.609766	-1512.696529	-71.3	-72.0	-70.8
C10(A8)	-1512.930839	-1512.636938	-1512.721055	-89.5	-89.0	-86.2
TS4_C(TS4_A)	-1512.917	-1512.625873	-1512.704163	-80.8	-82.1	-75.6
C11(A9)	-1512.928973	-1512.634814	-1512.717638	-88.3	-87.7	-84.0
C12(A10)	-859.462627	-859.195512	-859.256766	-76.4	-76.6	-72.3
Pro	-630.444771	-630.246519	-630.295086	-91.0	-92.6	-99.2

Cartesian coordinates (in Å) of related structures which were calculated at the B3LYP/Lanl2dz + 6-31G(d) level of theory.

TS1_A					TS2_A				
Cartesian coordinates					Cartesian coordinates				
ATOM	Х	Y	Z	ATOM	Х	Y	Z		
Н	-2.036334	0.508439	1.071182	Ν	-2.360417	-0.807169	-0.268261		
С	2.274792	-1.692125	-0.100031	0	1.701609	-0.709260	-0.785686		
0	1.293520	-2.253461	-0.658687	0	1.603994	0.555243	1.091532		
0	2.113494	-0.614440	0.558902	С	2.201815	-0.133318	0.214781		
С	3.689691	-2.272048	-0.248615	С	3.738919	-0.219034	0.365497		
0	-1.825252	-1.162503	-0.602053	С	-2.031563	1.345935	0.385623		
С	-2.893679	-0.774976	-0.091133	С	-0.688939	1.227865	-0.096736		
0	-3.035742	0.087074	0.840954	С	-2.639216	2.594496	0.559597		
С	-4.209961	-1.352949	-0.657923	С	-0.088582	2.407413	-0.616654		
С	2.062879	4.227909	-1.754739	Н	0.331789	0.764422	0.665739		
С	0.706289	4.495719	-1.964742	С	-1.960943	3.732559	0.140798		
С	-0.268491	3.777483	-1.277704	Н	-3.650560	2.646619	0.948717		
С	0.122061	2.788683	-0.368651	С	-0.698559	3.643303	-0.472852		
С	1.469125	2.506933	-0.143154	Н	0.906477	2.340114	-1.046323		
С	2.433516	3.235329	-0.849077	Н	-2.435404	4.703343	0.254961		
Н	2.820971	4.785639	-2.296234	Н	-0.197769	4.542333	-0.818462		
Н	0.403290	5.263943	-2.670592	0	-2.760775	0.239287	0.641647		
Н	-1.326475	3.966615	-1.429445	С	-2.578891	-2.074081	0.235956		
Н	1.779800	1.732388	0.546357	С	-3.638788	-2.323778	1.273569		
Н	3.483520	3.013924	-0.680123	Н	-3.340104	-1.876922	2.228519		
0	-0.946290	2.169889	0.276295	Н	-4.586075	-1.861510	0.978656		
Ν	-0.693655	1.011864	1.053440	Н	-3.765881	-3.400444	1.397878		
С	-0.237565	1.241494	2.386106	0	-1.864675	-2.953346	-0.265920		
С	-0.301086	2.656876	2.914155	Pd	-0.421946	-0.746627	-0.675264		
н	0.440934	3.288742	2.415516	F	4.092741	-0.278864	1.655624		

ATOM

Ν

С

С

С

С С

Н С

Н

Н Н

0

С

С

Н

Н

Н

0

0

0

С

С

F

F

F

Pd

С

0 С

С

Н	-1.284525	3.100233	2.731124
Н	-0.092371	2.625541	3.984363
0	0.094914	0.275051	3.041657
Pd	0.068236	-0.648419	0.106986
F	3.640586	-3.596620	-0.419308
F	4.430260	-1.995405	0.831075
F	4.279110	-1.720220	-1.325693
F	-3.995351	-2.526912	-1.253176
F	-5.108519	-1.513924	0.319212
F	-4.703270	-0.489594	-1.562230

TS3_A

Car

F	4.234619	-1.289200	-0.264061
F	4.287885	0.887341	-0.175983

TS3_A			TS4_A						
Cartesiar	n coordinates	5		Cartesian coordinates					
Х	Y	Z	ATOM	Х	Y	Z			
-0.132606	-1.488437	1.172596	Ν	0.684857	-0.022802	1.006720			
-2.330244	-1.241224	0.621343	С	1.402695	2.109670	0.757717			
-1.909608	-1.023430	-0.711042	С	1.816392	1.540933	-0.438851			
-3.634670	-1.640708	0.924060	С	1.533890	3.465590	1.035580			
-2.795028	-1.362772	-1.754483	С	2.397610	2.351606	-1.413800			
-4.503923	-1.910093	-0.127802	С	2.120522	4.265157	0.051907			
-3.925905	-1.790579	1.958371	н	1.188787	3.874281	1.979370			
-4.081414	-1.798155	-1.464223	С	2.547505	3.717689	-1.164140			
-2.482884	-1.208607	-2.783007	н	2.721599	1.918562	-2.355579			
-5.516616	-2.236578	0.090716	н	2.239315	5.328957	0.236215			
-4.770524	-2.027493	-2.271272	Н	2.992668	4.358419	-1.919073			
-1.431493	-1.089002	1.619156	0	0.837163	1.235993	1.666798			
0.815872	-1.330105	2.213944	С	0.993315	-1.128832	1.888434			
0.287930	-1.003595	3.598496	С	1.595006	-0.789500	3.228457			
-0.190948	-0.019232	3.609194	Н	2.521898	-0.220701	3.101076			
-0.459402	-1.734959	3.920616	Н	0.910083	-0.169265	3.814800			
1.137601	-1.011541	4.282145	Н	1.796353	-1.724919	3.752170			
1.983249	-1.558791	1.977571	0	0.766486	-2.245922	1.488929			
2.201789	-0.626530	-0.910098	0	-2.923927	-0.118611	0.899404			
2.254422	1.096890	0.562091	0	-2.800975	-0.340844	-1.290992			
2.769577	0.305834	-0.215860	С	-3.485165	-0.253450	-0.227600			
4.293787	0.371014	-0.488863	С	-5.018464	-0.332678	-0.288715			
4.876973	-0.824938	-0.294092	F	-5.433922	-1.479250	0.277894			
4.518875	0.738495	-1.770208	F	-5.561147	0.693558	0.386039			
4.896855	1.264426	0.307219	F	-5.454388	-0.296596	-1.551636			
0.176640	-0.858529	-0.725489	Pd	-1.039242	-0.180255	-0.129719			
-1.128875	0.683460	-1.248862	С	1.539955	0.058692	-0.551109			
-0.922045	0.714390	-2.440758	0	0.535811	-0.314373	-1.354740			
-1.522248	1.802765	-0.366768	С	2.739037	-0.848318	-0.585945			
-0.878291	2.054937	0.851560	С	2.613401	-2.121523	-1.160278			

S-38

С	-2.545716	2.648720	-0.828589
С	-1.273200	3.156738	1.610470
Н	-0.027584	1.452455	1.150063
С	-2.944796	3.729426	-0.048270
Н	-3.019445	2.448679	-1.784693
С	-2.310289	3.982570	1.172142
Н	-0.758218	3.375381	2.541140
Н	-3.741314	4.380538	-0.396506
Н	-2.616857	4.833513	1.774057

A1

Cartesian coordinates

С	3.973874	-0.450001	-0.049480
С	3.710899	-2.978923	-1.205192
Н	1.653766	-2.416426	-1.567560
С	5.066493	-1.315046	-0.087065
Н	4.082932	0.539054	0.385651
С	4.936964	-2.579427	-0.667694
Н	3.608039	-3.962052	-1.655666
Н	6.019766	-0.999632	0.327922
Н	5.790614	-3.251061	-0.701699

A2

ATOM	Х	Y	Z	ATOM	Х	Y	Z
Н	-1.642941	0.457747	1.531935	Н	-2.061479	0.505265	1.073292
С	2.457106	-1.308999	-0.162076	С	2.271040	-1.700640	-0.101594
0	1.506276	-1.905732	-0.739370	0	1.287742	-2.262234	-0.656034
0	2.223941	-0.323051	0.608850	0	2.113539	-0.620511	0.554429
С	3.911172	-1.729128	-0.423969	С	3.684799	-2.283043	-0.251670
0	-1.604797	-1.138450	-0.531894	0	-1.833262	-1.160913	-0.596179
С	-2.723184	-1.029975	0.090905	С	-2.901407	-0.771924	-0.090683
0	-2.972576	-0.447350	1.149129	0	-3.045533	0.093757	0.841420
С	-3.872781	-1.742630	-0.670513	С	-4.219562	-1.346231	-0.656262
С	0.877366	3.845203	-2.445115	С	2.071000	4.236457	-1.750600
С	-0.513879	3.919844	-2.335614	С	0.714328	4.506577	-1.957110
С	-1.168004	3.329610	-1.255409	С	-0.260027	3.785059	-1.272919
С	-0.415270	2.678551	-0.276880	С	0.130958	2.790389	-0.370451
С	0.975881	2.602878	-0.361063	С	1.478086	2.505967	-0.148817
С	1.613442	3.184330	-1.461535	С	2.442033	3.238073	-0.851468
Н	1.383071	4.295634	-3.293825	Н	2.828812	4.796877	-2.289711
Н	-1.096354	4.426345	-3.099683	н	0.410959	5.279473	-2.657696
Н	-2.248085	3.361904	-1.156620	н	-1.318069	3.976224	-1.421795
Н	1.564500	2.095258	0.394250	Н	1.788772	1.726859	0.535528
Н	2.695028	3.120566	-1.538065	н	3.492105	3.014789	-0.685371
0	-1.162429	2.199515	0.800834	0	-0.937071	2.166910	0.270777
Ν	-0.726301	0.977257	1.396315	Ν	-0.682810	1.013080	1.052482
С	-0.084171	1.159887	2.713191	С	-0.224708	1.245256	2.381178
С	0.109059	2.572165	3.189417	С	-0.289861	2.661683	2.907754
Н	0.724373	3.143662	2.487700	Н	0.455913	3.291926	2.412607
Н	-0.856621	3.083317	3.258953	Н	-1.271543	3.106638	2.719576
Н	0.590390	2.537675	4.167407	н	-0.086310	2.630951	3.978990
0	0.200524	0.155438	3.310883	0	0.111972	0.281168	3.039227
Pd	0.171167	-0.522387	0.204990	Pd	0.067272	-0.650432	0.109554
F	3.977693	-3.016961	-0.770950	F	3.633386	-3.608024	-0.418845
F	4.661216	-1.527120	0.665956	F	4.428291	-2.004807	0.825615

F	4.407441	-0.983724	-1.429304	F	4.272798	-1.734955	-1.331481
F	-3.573588	-3.035894	-0.874181	F	-4.006258	-2.517423	-1.256705
F	-5.017791	-1.673968	0.015216	F	-5.115282	-1.510786	0.322840
F	-4.058403	-1.156384	-1.867990	F	-4.714399	-0.478650	-1.555375

A3

A4

A6

Cartesian coordinates				Cartesian coordinates			
ATOM	Х	Y	Z	ATOM	Х	Y	Z
Ν	-2.304774	-0.918172	-0.405421	Ν	-2.377048	-0.908616	-0.321486
0	1.688844	-0.563030	-0.621832	0	1.747368	-0.612826	-0.694240
0	2.023049	0.397832	1.402497	0	1.915651	0.585645	1.221834
С	2.403918	-0.099968	0.349007	С	2.393133	-0.100768	0.213075
С	3.920347	-0.185640	0.038213	С	3.932749	-0.194332	0.241164
С	-2.353191	1.289600	0.136184	С	-2.288089	1.307636	0.164942
С	-0.984735	1.232778	0.554378	С	-0.935650	1.196515	-0.234810
С	-2.932520	2.491157	-0.277120	С	-2.866368	2.559775	0.390783
С	-0.197557	2.414748	0.455412	С	-0.201187	2.360286	-0.476109
н	-0.725016	0.545309	1.379942	Н	0.930638	0.674367	1.112160
С	-2.133514	3.627583	-0.337275	С	-2.094802	3.706800	0.203170
н	-3.970209	2.504710	-0.591942	Н	-3.908034	2.620991	0.689444
С	-0.765126	3.590866	0.004439	С	-0.771984	3.616578	-0.236357
н	0.834761	2.358784	0.782418	Н	0.819071	2.300340	-0.846671
н	-2.571387	4.559810	-0.683389	Н	-2.541259	4.680944	0.382198
н	-0.168782	4.494822	-0.066580	Н	-0.184095	4.515472	-0.397490
0	-3.095186	0.159596	0.120937	0	-3.038400	0.190007	0.337462
С	-2.662275	-2.151020	0.136755	С	-2.605933	-2.137279	0.236760
С	-4.005105	-2.333500	0.793721	С	-3.829503	-2.367513	1.087139
н	-4.052032	-1.762097	1.727349	Н	-3.742167	-1.813334	2.028388
н	-4.806914	-1.964907	0.145887	н	-4.729487	-2.005789	0.579977
н	-4.149913	-3.393933	1.005336	н	-3.917729	-3.435080	1.295846
0	-1.826525	-3.041372	-0.009277	0	-1.780317	-3.019558	-0.049822
Pd	-0.321385	-0.659112	-0.376518	Pd	-0.426784	-0.702885	-0.553017
F	4.655143	0.068533	1.128969	F	4.347500	-0.600593	1.447180
F	4.261558	-1.401985	-0.423876	F	4.360269	-1.050056	-0.683707
F	4.245932	0.724566	-0.905332	F	4.447327	1.019849	-0.009594

A5

Cartesian coordinates					Cartesiar	coordinates	i
ATOM	Х	Y	Z	ATOM	Х	Y	Z
Ν	-1.079960	0.595651	-0.512695	Ν	1.819317	-1.838157	-0.148624
С	1.111078	1.010520	-0.069832	С	2.700851	-0.215200	1.158598
С	1.205544	-0.390856	0.042448	С	1.359590	0.143602	1.353766
С	2.262993	1.800406	-0.069800	С	3.705917	0.371071	1.936500

С	2.451504	-1.004563	0.105968
С	3.506439	1.176041	0.043660
н	2.177082	2.878016	-0.167048
С	3.609212	-0.215003	0.127940
н	2.531592	-2.088084	0.164123
н	4.405745	1.785563	0.050979
Н	4.582854	-0.688436	0.215723
0	-0.115856	1.598771	-0.148049
С	-2.348170	0.818262	-0.025224
С	-2.776628	2.223046	0.317429
н	-2.237966	2.569369	1.206374
Н	-2.537269	2.913736	-0.497094
Н	-3.850381	2.225117	0.512027
0	-3.087007	-0.173167	0.040685
Pd	-0.565671	-1.253843	0.002764

С	0.992803	1.039197	2.352715
С	3.340573	1.296841	2.910791
Н	4.740888	0.083766	1.781190
С	1.996370	1.624805	3.130351
Н	-0.052525	1.274821	2.523655
Н	4.113423	1.755430	3.521058
Н	1.727733	2.335422	3.906448
0	3.009869	-1.123801	0.205204
С	1.979384	-2.610486	-1.293648
С	3.387377	-2.872889	-1.786790
Н	3.840826	-1.948602	-2.161081
Н	4.026678	-3.246206	-0.980951
Н	3.329586	-3.606793	-2.592069
0	0.975159	-3.077564	-1.810956
0	-1.733859	-0.086140	0.969162
0	-2.102120	-1.652894	-0.563924
С	-2.510341	-0.845051	0.280318
С	-4.015545	-0.681869	0.568563
F	-4.275611	-0.957803	1.859782
F	-4.390478	0.592027	0.330179
F	-4.753687	-1.489757	-0.196347
Pd	0.102218	-0.847000	0.190179
С	0.167413	0.389830	-1.518043
0	0.323855	-0.254961	-2.499220
С	0.060776	1.857311	-1.393603
С	-0.630524	2.501571	-0.358952
С	0.669641	2.603984	-2.422585
С	-0.708888	3.892936	-0.356288
Н	-1.133913	1.915028	0.399574
С	0.604830	3.992408	-2.391941
Н	1.187458	2.087021	-3.223583
С	-0.084917	4.637286	-1.359987
Н	-1.259281	4.396086	0.432934
Н	1.084880	4.571546	-3.175231
Н	-0.140124	5.722198	-1.343047

A7

Cartesian coordinates ATOM Х Υ Ζ ATOM Х Ν -0.309257 -1.147264 1.473535 0.118390 0.915584 Ν С -2.456008 -0.875068 0.702706 С 1.277866 2.084407 С С -2.209474 -0.690945 -0.690030 2.042638 0.960916 С -3.550938 С 1.428591 -1.614958 1.148646 3.318962 С -3.020157 -1.420379 С 2.951152 -1.603342 1.166048

A8

Cartesian coordinates

Υ

Ζ

1.304320

-0.362485

-0.775405

-1.015853

-1.847259

С	-4.362344	-2.260771	0.219572	С	2.318223	3.471675	-2.066699
Н	-3.701092	-1.735001	2.216304	Н	0.823521	4.147739	-0.663346
С	-4.077326	-2.193122	-1.155503	С	3.087935	2.383622	-2.493917
Н	-2.817711	-1.301939	-2.662989	Н	3.534136	0.318989	-2.191434
н	-5.198221	-2.860692	0.568111	Н	2.410863	4.437935	-2.554142
н	-4.700062	-2.728096	-1.865583	Н	3.781070	2.483900	-3.322898
0	-1.561098	-0.410092	1.625773	0	0.389360	2.154212	0.664570
С	0.655882	-0.583894	2.375177	С	-0.343686	1.106467	2.608940
С	0.296778	0.654001	3.162697	С	-0.064212	2.442386	3.271414
н	0.125630	1.490364	2.477836	н	0.984553	2.735017	3.163099
н	-0.615445	0.505949	3.747811	н	-0.672647	3.227918	2.809883
Н	1.133452	0.881800	3.824366	Н	-0.323170	2.353772	4.327573
0	1.697726	-1.192731	2.491474	0	-0.891158	0.175299	3.178931
0	2.129909	-1.141209	-0.510472	0	-2.985607	0.335156	0.353919
0	2.185620	1.034083	0.132641	0	-2.519223	-1.321177	-1.028718
С	2.701561	-0.018457	-0.215684	С	-3.354575	-0.567465	-0.460439
С	4.242026	-0.110539	-0.386619	С	-4.857030	-0.767836	-0.715860
F	4.746675	-1.193561	0.225848	F	-5.333100	-1.706366	0.122992
F	4.550588	-0.191273	-1.699931	F	-5.536574	0.368247	-0.511565
F	4.848368	0.974755	0.113343	F	-5.071153	-1.177347	-1.974238
Pd	0.089493	-1.100908	-0.501396	Pd	-0.979082	-0.269948	0.122827
С	-1.439556	0.483828	-1.313395	С	1.944172	-0.457071	-0.327616
0	-0.890963	0.289264	-2.410215	0	0.873237	-1.096191	-0.215167
С	-1.497281	1.837578	-0.703370	С	3.190067	-1.239838	-0.120304
С	-0.463038	2.737065	-1.015691	С	3.137818	-2.642603	-0.221584
С	-2.563215	2.258094	0.108009	С	4.394263	-0.619860	0.258361
С	-0.488941	4.030811	-0.504477	С	4.274604	-3.404553	0.024749
Н	0.363735	2.396940	-1.627717	Н	2.201552	-3.115002	-0.497896
С	-2.594084	3.561203	0.599772	С	5.525177	-1.390149	0.522452
н	-3.379500	1.579840	0.335335	н	4.435535	0.458571	0.366401
С	-1.554618	4.445643	0.299786	С	5.469483	-2.780123	0.398560
н	0.324348	4.714282	-0.728986	Н	4.230863	-4.485691	-0.068640
Н	-3.427843	3.886537	1.215221	Н	6.448037	-0.905584	0.827494
н	-1.574989	5.458307	0.693266	н	6.354377	-3.378146	0.598297

A9

Cartesian coordinates

Curtesian coordinates					Cartesia	1 00
ATOM	Х	Y	Z	ATOM	Х	
Ν	2.003585	-1.050259	-0.793467	С	1.156599	-0.
С	3.840337	-0.747636	0.414789	С	2.152511	0.
С	2.890321	0.066143	1.013036	С	3.408206	-0.
С	5.124993	-0.910964	0.912505	С	3.634928	-1
С	3.205154	0.753137	2.179267	С	2.643502	-2.
С	5.434875	-0.211078	2.083547	С	1.392951	-2.

A10

TOM	Х	Y	Z
С	1.156599	-0.762555	0.279158
С	2.152511	0.032637	-0.276268
С	3.408206	-0.462534	-0.615481
С	3.634928	-1.819725	-0.371388
С	2.643502	-2.640092	0.185900
С	1.392951	-2.112716	0.519622

Н С Н н Н 0 С С Н Н н 0 0 0 С С F F F Pd С 0 С С С С н С н

С

Н

Н

Н

0.971808

-0.427699

2.419481

0.817487

5.843997	-1.555935	0.418981	С	-0.038370	0.108173	0.622488
4.489203	0.607040	2.713739	Н	4.166848	0.178751	-1.051130
2.464683	1.384769	2.659914	Н	4.601184	-2.245930	-0.626445
6.428317	-0.312569	2.510775	н	2.849433	-3.692209	0.357507
4.755395	1.132300	3.625846	Н	0.616161	-2.737384	0.950940
3.385054	-1.372867	-0.738221	0	1.766480	1.334344	-0.438328
1.208580	-1.914250	-1.421830	Ν	0.352966	1.333686	-0.126571
1.835226	-3.040871	-2.199907	С	-1.381669	-0.424534	0.132990
2.558480	-2.660716	-2.927282	С	-2.379605	-0.794628	1.038241
2.373098	-3.707839	-1.517879	С	-1.599063	-0.597071	-1.239328
1.042535	-3.590717	-2.707809	С	-3.584718	-1.325662	0.572669
-0.049107	-1.797019	-1.411243	н	-2.214119	-0.654371	2.099234
-3.181152	-0.872625	-0.687214	С	-2.802359	-1.126452	-1.701227
-2.620834	0.252651	1.124179	н	-0.826631	-0.307631	-1.946001
-3.501532	-0.180664	0.319440	С	-3.800505	-1.493617	-0.795007
-4.981383	0.110203	0.612623	н	-4.357185	-1.603597	1.284837
-5.718712	0.014312	-0.499837	н	-2.961072	-1.250818	-2.769124
-5.443305	-0.781400	1.509471	н	-4.739831	-1.905381	-1.154513
-5.129175	1.340418	1.125088	0	-0.131241	0.322195	2.019206
-1.128736	-0.698816	-0.042888	С	-0.231621	2.588805	-0.003132
1.592885	0.051390	0.213301	0	-1.362888	2.690452	0.435097
0.545817	-0.354758	0.973085	С	0.600485	3.754922	-0.498653
1.360686	1.370484	-0.539811	н	1.495842	3.882181	0.119468
0.466874	2.303125	0.001052	н	0.937690	3.593637	-1.527423
2.068808	1.693351	-1.703519	н	-0.017023	4.652388	-0.442706
0.273337	3.535853	-0.625311	н	0.771510	0.428931	2.360050
-0.077535	2.054796	0.906058				
1.871012	2.924418	-2.329281				
2.773911	0.983152	-2.126733				

Pro

3.848743

3.160937

-1.792483

-3.237138

4.248946 -0.200120

4.806663 -2.281626

Cartesian coordinates

ATOM	Х	Y	Z
С	1.153730	0.167155	0.017555
С	2.172495	-0.785266	-0.103864
С	3.530728	-0.471255	-0.040846
С	3.841285	0.868888	0.164126
С	2.835410	1.848181	0.309606
С	1.488582	1.512739	0.242851
С	-0.052368	-0.622943	-0.100889

Pd(TFA)2

ATOM	Х	Y	Z
Pd	-0.003519	0.000152	0.001809
С	0.005784	2.424277	0.001260
0	-0.318118	1.781622	1.046114
0	0.315010	1.777943	-1.046190
С	-0.013355	-2.423959	0.001633
0	0.311142	-1.780936	-1.042826
0	-0.322509	-1.777995	1.049325

Н	4.293385	-1.235709	-0.141673
Н	4.883999	1.168464	0.221564
Н	3.122923	2.881115	0.482204
Н	0.722175	2.269081	0.375423
0	1.635766	-2.017709	-0.272090
Ν	0.235463	-1.894056	-0.269202
С	-1.460832	-0.191711	-0.043375
С	-1.842920	1.080641	-0.496242
С	-2.445034	-1.062871	0.452843
С	-3.179510	1.476811	-0.445423
Н	-1.099255	1.750195	-0.917012
С	-3.778767	-0.664479	0.499158
Н	-2.149029	-2.046668	0.802137
С	-4.150379	0.607373	0.054265
Н	-3.461966	2.462999	-0.803714
Н	-4.530105	-1.346372	0.888079
Н	-5.191012	0.917385	0.095546

С	-0.070681	-3.958154	-0.004101
С	0.062477	3.958500	0.006045
F	-0.448003	4.438472	-1.133510
F	-0.624160	4.448455	1.040349
F	1.342968	4.349526	0.105810
F	-1.351178	-4.348536	-0.106361
F	0.437583	-4.439051	1.136040
F	0.617530	-4.447807	-1.037512

Sub

Cartesian coordinates

ATOM	Х	Y	Z
С	-3.294551	0.608911	0.270823
С	-3.064488	-0.767859	0.190597
С	-1.790052	-1.256635	-0.086103
С	-0.739546	-0.356522	-0.283906
С	-0.947759	1.018846	-0.206786
С	-2.233303	1.491683	0.072053
Н	-4.289210	0.986825	0.488446
Н	-3.880595	-1.468292	0.346261
Н	-1.590546	-2.321786	-0.147804
Н	-0.122075	1.703181	-0.358320
Н	-2.398111	2.564137	0.134950
0	0.481324	-0.955811	-0.567481
Ν	1.538846	-0.057977	-0.748998
Н	1.883857	-0.144642	-1.700202
С	2.486166	-0.031261	0.278538
С	3.802588	0.599360	-0.151056
Н	4.571314	-0.180067	-0.197977
Н	3.750391	1.103818	-1.121156
Н	4.107634	1.320467	0.611242
0	2.253813	-0.418807	1.402804

B6

Cartesian coordinates

ATOM	Х	Y	Z
Ν	-2.669514	-0.994643	-0.257404
С	-2.743545	1.254996	0.061497
С	-1.359604	1.186537	-0.206219
С	-3.381737	2.492502	0.194705
С	-0.637499	2.364305	-0.381588
С	-2.632854	3.661720	0.058410
Н	-4.448421	2.524078	0.394106
С	-1.268204	3.606985	-0.234414

TS3_B

ATOM	Х	Y	Z
Ν	-2.686085	0.129503	-0.000086
С	-0.720269	1.416545	0.263903
С	0.473240	0.800863	-0.212717
С	-0.986827	2.768000	0.035696
С	1.280706	1.591449	-1.059864
С	-0.133159	3.524794	-0.759387
н	-1.902366	3.186347	0.440486
С	0.992776	2.922250	-1.332479

Н	0.417659	2.328458	-0.640623	Н	2.181331	1.142990	-1.465716
Н	-3.126886	4.623646	0.166292	Н	-0.361373	4.568032	-0.957881
Н	-0.695413	4.522390	-0.355237	Н	1.652868	3.496900	-1.975511
0	-3.468532	0.116992	0.200996	0	-1.722187	0.709286	0.954908
С	-2.938191	-2.187730	0.341867	С	-3.788045	-0.376513	0.693814
С	-4.248671	-2.382018	1.069899	С	-4.111229	0.162359	2.071354
Н	-5.092853	-2.058132	0.453155	н	-4.111604	1.256510	2.078725
Н	-4.352711	-3.437855	1.326425	н	-5.090769	-0.217547	2.366094
Н	-4.264509	-1.777868	1.984005	н	-3.358260	-0.165435	2.796323
0	-2.085725	-3.081663	0.209552	0	-4.470644	-1.212372	0.115045
Pd	-0.720305	-0.676518	-0.370817	Pd	-1.216632	-1.063652	-0.690637
С	2.153678	0.195824	0.198609	С	1.053410	-0.626823	0.203629
0	1.396108	-0.503106	-0.485777	0	0.715098	-1.594017	-0.751841
С	3.603988	0.050288	0.194111	С	2.568314	-0.559112	0.405728
С	4.234141	-0.924608	-0.602680	С	3.433635	-1.181664	-0.498425
С	4.373391	0.902264	1.005404	С	3.096909	0.108451	1.517448
С	5.618472	-1.038916	-0.582552	С	4.815512	-1.124645	-0.297197
Н	3.623766	-1.574128	-1.221846	н	3.010859	-1.715156	-1.342613
С	5.760489	0.783012	1.021345	С	4.475831	0.166731	1.715363
Н	3.879069	1.651595	1.619157	н	2.426283	0.585261	2.229634
С	6.380327	-0.186492	0.227861	С	5.340194	-0.450189	0.806069
Н	6.110649	-1.788995	-1.194392	н	5.481603	-1.614246	-1.003061
Н	6.357190	1.439524	1.647325	Н	4.875702	0.687374	2.581627
Н	7.462715	-0.280503	0.239688	н	6.414904	-0.409887	0.962345
Н	1.730480	0.980297	0.845654	н	0.624374	-0.857828	1.196959

B7

Cartesian coordinates

B8

ATOM	Х	Y	Z	ATOM	Х	Y	Z
Ν	-2.860325	0.140160	-0.245896	Ν	-2.237278	0.312037	0.087701
С	-0.739414	1.357174	0.114922	С	-0.534824	1.844499	0.259100
С	0.621350	0.998976	-0.002135	С	0.679154	1.248092	-0.114561
С	-1.232681	2.620825	-0.177461	С	-0.838751	3.172411	-0.021746
С	1.472944	2.017271	-0.450041	С	1.591223	2.054716	-0.806409
С	-0.347184	3.602363	-0.625565	С	0.094273	3.955541	-0.701178
Н	-2.295242	2.812006	-0.076719	Н	-1.795509	3.574802	0.296395
С	1.004890	3.297438	-0.760930	С	1.306766	3.389658	-1.098981
Н	2.529068	1.798479	-0.558347	Н	2.544142	1.629454	-1.104919
Н	-0.720731	4.592112	-0.870982	Н	-0.127325	4.996219	-0.920059
н	1.702739	4.051217	-1.113603	н	2.037880	3.990285	-1.633085
0	-1.656365	0.381864	0.601995	0	-1.484741	1.094869	0.980061
С	-3.933718	-0.215487	0.588438	С	-3.367642	-0.238846	0.604592
С	-3.841204	0.001693	2.088572	С	-4.146776	0.371966	1.727381
н	-3.595378	1.041721	2.326134	н	-4.244974	1.452216	1.587190

н	-4.807264	-0.259162	2.523597	Н	-5.130796	-0.097505	1.780395
н	-3.059461	-0.625250	2.530636	Н	-3.617432	0.210307	2.673848
0	-4.930229	-0.654016	0.036115	0	-3.681917	-1.317161	0.022307
Pd	-1.265071	-1.244393	-0.622531	Pd	-1.510319	-1.440354	-0.570714
С	1.154507	-0.422788	0.375929	С	0.954666	-0.230432	0.203862
0	0.679706	-1.459979	-0.459621	0	0.388158	-1.075667	-0.777037
С	2.680100	-0.487680	0.378858	С	2.441357	-0.547235	0.337455
С	3.380348	-0.849285	-0.778694	С	3.150763	-1.140089	-0.713066
С	3.395399	-0.186463	1.543342	С	3.116305	-0.236194	1.524787
С	4.775268	-0.896965	-0.770934	С	4.513935	-1.413906	-0.577247
Н	2.822022	-1.104822	-1.672985	Н	2.622324	-1.394195	-1.625751
С	4.790696	-0.229950	1.550049	С	4.477983	-0.506811	1.659813
Н	2.858130	0.084415	2.449738	Н	2.571374	0.221297	2.348105
С	5.484639	-0.584934	0.391350	С	5.181769	-1.097450	0.607044
н	5.308951	-1.182242	-1.673870	Н	5.053701	-1.878225	-1.398762
Н	5.333854	0.006751	2.461222	Н	4.987850	-0.262591	2.588259
н	6.570678	-0.624260	0.395943	Н	6.241804	-1.313208	0.712112
н	0.827656	-0.606065	1.414822	Н	0.499360	-0.428689	1.187480

TS4_B

Cartesian coordinates

ATOM	Х	Y	Z	ATOM	Х	Y	Z
Ν	-2.136749	0.544156	0.417786	Ν	-2.138755	0.533036	0.266551
С	-0.484943	2.121159	0.355968	С	-0.308176	1.885838	0.284879
С	0.427234	1.434238	-0.485613	С	0.751732	1.244754	-0.396189
С	-0.439685	3.520456	0.430777	С	-0.470590	3.268407	0.190640
С	1.310286	2.215310	-1.257282	С	1.612826	2.046716	-1.171025
С	0.469677	4.260885	-0.314721	С	0.387737	4.038557	-0.590876
Н	-1.162759	4.003990	1.079687	Н	-1.292869	3.717771	0.737596
С	1.342182	3.604213	-1.183118	С	1.427212	3.421862	-1.287826
Н	2.004570	1.704641	-1.919034	Н	2.436671	1.573086	-1.696545
Н	0.477208	5.344498	-0.236842	Н	0.239943	5.112526	-0.659916
Н	2.044763	4.162351	-1.794612	Н	2.098768	4.006150	-1.909607
0	-1.440827	1.553312	1.170327	0	-1.185279	1.210525	1.110796
С	-2.658894	-0.408946	1.142045	С	-3.139310	-0.050947	0.930107
С	-2.999762	-0.346230	2.602683	С	-3.566648	0.277737	2.330291
Н	-2.903099	0.669571	2.990409	Н	-3.364187	1.324638	2.568200
Н	-4.026073	-0.701385	2.743888	Н	-4.631367	0.057947	2.440655
Н	-2.342387	-1.015558	3.169661	Н	-3.012899	-0.346685	3.041449
0	-2.844558	-1.545484	0.502535	0	-3.692279	-0.997814	0.255763
Pd	-1.317537	-1.375621	-0.920039	Pd	-1.761888	-1.330309	-0.690788
С	0.725814	-0.060778	-0.685899	С	1.093314	-0.220686	-0.362465
0	0.405536	-0.603096	-1.825470	0	0.340420	-1.134728	-0.742637
С	1.923854	-0.603616	0.053163	С	2.460321	-0.610716	0.077702

С	2.604735	-1.714701	-0.469443
С	2.366000	-0.020342	1.250799
С	3.717412	-2.225299	0.191891
н	2.252576	-2.156724	-1.395347
С	3.473652	-0.543896	1.915706
н	1.844244	0.840721	1.656125
С	4.152569	-1.644785	1.388364
Н	4.247794	-3.077633	-0.223652
Н	3.808841	-0.088860	2.843454
н	5.018493	-2.048727	1.905644
н	-0.242229	-0.931275	0.186854

TS5_B

С 2.921285 -1.906414 -0.225341 С 3.275218 0.248749 0.836238 С 4.176662 -2.322016 0.203264 Н 2.280944 -2.567558 -0.798950 С 4.527080 -0.178561 1.275996 Н 2.922209 1.240643 1.095612 С 4.981751 -1.459260 0.955538 Н 4.529668 -3.319040 -0.043914 н 5.145613 0.487573 1.870490 Н 5.960375 -1.788114 1.294554 Н -1.780115 -2.763944 -1.326190

B10

	Cartesian coordinates				Cartesian coordinates				
ATOM	Х	Y	Z	ATOM	Х	Y	Z		
Ν	-0.405266	-0.651553	0.920039	Ν	-0.401453	-0.574730	0.871109		
С	-1.332649	1.414777	0.832205	С	-1.226806	1.529813	0.829907		
С	-0.688265	1.371454	-0.399660	С	-0.549813	1.426970	-0.375402		
С	-2.185994	2.455541	1.190931	С	-2.004721	2.631916	1.168917		
С	-0.894072	2.403998	-1.315457	С	-0.637004	2.459857	-1.304819		
С	-2.378956	3.483738	0.266368	С	-2.080648	3.665506	0.231085		
Н	-2.680123	2.452395	2.157003	Н	-2.527354	2.677018	2.118666		
С	-1.743313	3.461081	-0.980908	С	-1.408958	3.583299	-0.995382		
Н	-0.397554	2.373672	-2.281096	Н	-0.114833	2.382762	-2.253866		
Н	-3.039971	4.307562	0.520790	Н	-2.678419	4.543347	0.459883		
Н	-1.914809	4.263476	-1.691999	Н	-1.492185	4.395398	-1.711295		
0	-1.085531	0.366391	1.682191	0	-1.067919	0.444163	1.659913		
С	0.581742	-1.308301	1.702077	С	0.461968	-1.375747	1.690658		
С	0.900538	-0.752181	3.071605	С	0.513860	-1.056217	3.165744		
н	0.013311	-0.734068	3.711814	Н	-0.481925	-1.099359	3.617354		
Н	1.673412	-1.378408	3.519674	Н	1.175281	-1.781003	3.642460		
Н	1.258099	0.279713	2.985129	Н	0.893113	-0.040547	3.320422		
0	1.135609	-2.276195	1.215537	0	1.076795	-2.276237	1.163070		
Pd	-1.561689	-1.809457	-0.582955	Pd	-1.698506	-1.698144	-0.643002		
С	0.191048	0.165996	-0.629582	С	0.204925	0.116710	-0.498469		
0	-0.177025	-0.702995	-1.562853	0	-0.198417	-0.699871	-1.513886		
С	1.677129	0.385045	-0.552437	С	1.720377	0.258815	-0.461446		
С	2.539547	-0.570356	-1.111417	С	2.519691	-0.665587	-1.145140		
С	2.218178	1.517489	0.077390	С	2.329842	1.300657	0.252588		
С	3.919747	-0.389052	-1.048037	С	3.908628	-0.543448	-1.120321		
Н	2.111511	-1.441544	-1.592000	Н	2.037803	-1.467726	-1.690461		
С	3.600040	1.691096	0.143921	С	3.719955	1.413289	0.284784		
Н	1.558483	2.265725	0.505682	Н	1.719507	2.031453	0.775297		
С	4.453104	0.739305	-0.420463	С	4.512337	0.492979	-0.404854		

Н	4.580480	-1.132203	-1.485627	Н	4.520774	-1.262705	-1.657597
Н	4.009975	2.572129	0.630214	Н	4.182166	2.224895	0.840429
Н	5.529968	0.877398	-0.371043	Н	5.595141	0.584645	-0.385587
Н	-2.159593	-2.425324	-1.871116	Н	-2.273076	-2.227771	-1.975238

C1

Cartesian coordinates

TS1	С
-	-

	Cartesian coordinates			Cartesian coordinates				
ATOM	Х	Y	Z	ATOM	Х	Y	Z	
С	-3.953596	-1.706106	-0.489764	С	4.130738	-0.825360	0.428124	
С	-3.462557	-1.808621	0.815370	С	3.783699	-0.629552	-0.912524	
С	-2.335938	-1.088698	1.205353	С	2.578306	-0.018000	-1.244808	
С	-1.695401	-0.260568	0.278698	С	1.721867	0.402425	-0.220253	
С	-2.170683	-0.144727	-1.026810	С	2.051926	0.219677	1.124991	
С	-3.303657	-0.872937	-1.400287	С	3.262993	-0.399234	1.436592	
Н	-4.834574	-2.265992	-0.789879	Н	5.071088	-1.304430	0.684089	
Н	-3.961342	-2.449042	1.537986	Н	4.453130	-0.955053	-1.703622	
Н	-1.946221	-1.147910	2.216840	Н	2.286088	0.147332	-2.276754	
Н	-1.666145	0.506501	-1.729831	Н	1.378673	0.561334	1.901320	
Н	-3.677699	-0.781022	-2.416704	Н	3.529231	-0.543975	2.479882	
0	-0.569312	0.386911	0.765209	0	0.562174	1.009151	-0.659266	
Ν	0.019093	1.293976	-0.132535	Ν	-0.371812	1.252851	0.324710	
Н	0.980554	0.994689	-0.314460	Н	-0.904472	0.290613	0.670359	
С	-0.228240	2.636038	0.137018	С	-1.201422	2.343721	-0.011608	
С	0.727017	3.563488	-0.601159	С	-2.374560	2.489519	0.937779	
Н	1.243521	4.187666	0.135075	Н	-3.168020	3.034810	0.422327	
Н	1.470492	3.035742	-1.205719	Н	-2.737987	1.519687	1.285100	
Н	0.144750	4.227831	-1.246592	Н	-2.063743	3.079594	1.808179	
0	-1.145592	3.024891	0.831357	0	-0.934463	3.123300	-0.904058	
С	4.504211	-1.392931	-0.366104	С	-3.171532	-2.503167	0.551846	
С	3.034453	-1.024578	-0.095657	С	-2.054198	-1.623524	-0.066996	
Н	4.730332	-1.285312	-1.432536	Н	-2.817395	-2.970945	1.475598	
Н	5.171723	-0.731292	0.194546	Н	-4.050061	-1.893907	0.783947	
Н	4.709192	-2.429361	-0.076687	Н	-3.459137	-3.290229	-0.154545	
С	2.722284	-1.114172	1.438668	С	-2.588702	-0.934314	-1.341163	
С	2.053781	-1.922387	-0.877319	С	-0.817021	-2.484178	-0.378631	
Н	1.682530	-0.841116	1.633911	Н	-1.819663	-0.290730	-1.782449	
Н	2.892726	-2.150554	1.749538	Н	-2.879345	-1.678281	-2.091742	
Н	3.386838	-0.456122	2.004439	Н	-3.462812	-0.319412	-1.103459	
Н	2.212942	-2.975540	-0.621304	Н	-1.056415	-3.287521	-1.085390	
Н	1.017244	-1.659482	-0.647616	Н	-0.019730	-1.875891	-0.819309	
Н	2.213796	-1.805847	-1.954602	Н	-0.431267	-2.935420	0.541561	
0	2.808109	0.311388	-0.373654	0	-1.774968	-0.668153	0.922306	

C2

С3

Cartesian coordinates

ATOM	Х	Y	Z	ATOM	Х	Y	Z
С	-3.497297	-2.222438	-0.150645	Ν	-0.304837	1.683387	-1.118005
С	-4.088450	-1.107068	0.450066	С	-1.514620	2.218230	0.819179
С	-3.390910	0.095422	0.529616	С	-2.428597	1.167523	0.797364
С	-2.096936	0.164410	0.005515	С	-1.245397	2.967041	1.962130
С	-1.488208	-0.932557	-0.608710	С	-3.071448	0.834806	1.989114
С	-2.205289	-2.127541	-0.675646	н	-2.627736	0.625635	-0.118464
Н	-4.042545	-3.159533	-0.214311	С	-1.905155	2.622446	3.141194
Н	-5.093271	-1.171686	0.857051	Н	-0.530058	3.781643	1.922432
Н	-3.821777	0.979108	0.988761	С	-2.811334	1.556951	3.156531
Н	-0.490323	-0.858421	-1.023053	Н	-3.772115	0.006456	1.991874
Н	-1.747549	-2.990102	-1.151385	Н	-1.704340	3.182492	4.049326
0	-1.512115	1.416513	0.119164	Н	-3.315932	1.290799	4.080321
Ν	-0.188934	1.481852	-0.123103	0	-0.880565	2.641702	-0.362514
Н	1.312229	0.043411	-0.328957	С	0.014278	2.165695	-2.425883
С	0.200410	2.846389	-0.119467	С	-0.459272	3.541763	-2.818987
С	1.691413	3.003147	-0.335305	Н	-1.547623	3.619953	-2.731039
Н	2.181377	3.146312	0.636069	Н	-0.022185	4.302313	-2.163732
Н	2.134307	2.127960	-0.816803	н	-0.153901	3.720775	-3.850354
Н	1.869512	3.901136	-0.932035	0	0.647862	1.409513	-3.133565
0	-0.570866	3.776362	0.042274	0	-1.089727	-1.092692	-0.986809
С	3.858478	-1.906428	-0.687854	0	-1.037753	-2.153122	1.024708
С	2.760225	-1.235663	0.142374	С	-1.513508	-1.916592	-0.068158
Н	3.413494	-2.534460	-1.466926	С	-2.868241	-2.548658	-0.482976
Н	4.480315	-1.149133	-1.176832	F	-3.856309	-1.641841	-0.232332
Н	4.500112	-2.532860	-0.058509	F	-2.926320	-2.860437	-1.785055
С	3.371963	-0.308798	1.205401	F	-3.132636	-3.645867	0.230719
С	1.857416	-2.290988	0.801515	0	2.450128	0.658696	0.093326
Н	2.584844	0.199354	1.777394	0	2.014233	-1.495413	0.171762
н	3.990527	-0.868566	1.916636	С	2.816736	-0.536745	0.336067
н	3.997889	0.454507	0.730721	С	4.260294	-0.794459	0.793734
н	2.421405	-2.918811	1.501653	F	5.079518	-0.741749	-0.271450
Н	1.042774	-1.814376	1.360587	F	4.642712	0.144599	1.671028
Н	1.412140	-2.939321	0.039107	F	4.371967	-1.996293	1.364026
0	2.000505	-0.462225	-0.801265	Pd	0.559164	-0.066456	-0.473867

Cartesian coordinates

C5

C4

	Cartesian coordinates				Cartesian coordinates				
АТОМ	Х	Y	Z	ATOM	Х	Y	Z		
Ν	0.401265	-0.195328	1.587204	Ν	0.543006	-1.537687	1.166942		
С	2.123734	1.380448	1.441009	С	1.971914	-2.475338	-0.438050		
С	3.094813	0.387934	1.319480	С	0.916698	-2.942647	-1.222069		
С	2.443302	2.736436	1.355411	С	3.308733	-2.620842	-0.821485		

С	4.416206	0.777292	1.097030	С	1.230176	-3.577822	-2.425150
н	2.827231	-0.658109	1.390001	Н	-0.115412	-2.806024	-0.923555
С	3.770433	3.105025	1.143252	С	3.596092	-3.265553	-2.021234
н	1.656682	3.475955	1.457249	Н	4.092040	-2.230430	-0.179877
С	4.760738	2.128117	1.010157	С	2.558070	-3.744913	-2.826717
н	5.178957	0.011199	0.992437	н	0.420088	-3.942551	-3.049653
н	4.028370	4.158406	1.079529	Н	4.630309	-3.387237	-2.329305
н	5.793568	2.417417	0.839948	н	2.783775	-4.242237	-3.765433
0	0.780032	1.120037	1.728024	0	1.812528	-1.834075	0.785854
С	-0.310796	-0.676959	2.688171	С	0.514234	-1.326700	2.595347
С	-0.029392	-0.081241	4.043900	С	1.654936	-1.901479	3.400896
н	1.045828	0.003482	4.226898	н	1.857236	-2.942956	3.134760
н	-0.453684	0.927878	4.094181	н	2.557622	-1.316366	3.198501
н	-0.494078	-0.713146	4.802149	н	1.390798	-1.824541	4.456394
0	-1.085655	-1.611224	2.488919	0	-0.451961	-0.773186	3.071360
0	0.548636	-2.242139	-0.350760	0	-2.211311	-0.468910	0.552122
0	1.909515	-0.816564	-1.476105	0	-2.128185	-1.823106	-1.262261
С	1.627071	-1.892894	-0.967363	С	-2.695677	-1.292979	-0.316917
С	2.687366	-3.025374	-0.947740	С	-4.198239	-1.565052	-0.045390
F	3.327466	-2.989410	0.246817	F	-4.734420	-2.347440	-0.987710
F	2.145595	-4.241090	-1.092862	F	-4.372882	-2.157168	1.148136
F	3.600076	-2.848634	-1.909956	F	-4.886404	-0.396422	-0.033519
0	-2.506368	0.372662	0.521916	0	1.513324	0.968337	-0.382575
0	-3.061943	-1.320406	-0.801006	0	2.513869	0.868384	1.660616
С	-3.373081	-0.333459	-0.118309	С	2.455132	1.184058	0.486204
С	-4.837950	0.121876	0.020274	С	3.597231	2.013638	-0.159442
F	-5.248817	-0.036477	1.289902	F	4.042323	1.449478	-1.295626
F	-4.942629	1.426315	-0.297776	F	3.134077	3.253164	-0.467581
F	-5.640553	-0.579936	-0.782238	F	4.632112	2.158365	0.672653
Pd	-0.853321	-0.831883	0.058724	Pd	-0.268869	0.109622	0.148837
С	-0.445561	0.225458	-1.707599	C	-0.726389	1.849683	1.127447
0	-0.742092	-0.449374	-2.627882	0	-0.495120	2.031567	2.259173
С	-0.004708	1.628360	-1.602767	C	-1.330110	2.578074	-0.010478
С	-0.681138	2.554101	-0.797760	C	-0.509328	3.404999	-0.803043
С	1.044458	2.026996	-2.450320	C	-2.712356	2.458327	-0.254770
С	-0.321172	3.899725	-0.871703	C	-1.099372	4.151143	-1.818301
Н	-1.488378	2.226646	-0.153400	Н	0.560134	3.443250	-0.631394
С	1.404061	3.369617	-2.491238	C	-3.275021	3.216626	-1.276865
Н	1.568673	1.284485	-3.040190	Н	-3.311969	1.770104	0.328919
С	0.717801	4.306477	-1.711094	С	-2.475260	4.061376	-2.053075
Н	-0.856665	4.628988	-0.270953	Н	-0.480717	4.798214	-2.432284
Н	2.216915	3.686553	-3.137729	н	-4.340013	3.139218	-1.472353
Н	0.996116	5.355677	-1.758415	Н	-2.924159	4.643306	-2.852792

TS2_C Cartesian coordinates

C6

Cartesian coordinates

ATOM Х Y Ζ ATOM Х Y Ζ Ν 1.150467 -1.994065 0.105195 Ν -1.374587 1.516030 0.666057 С С 0.368480 -1.386451 2.150871 -0.559685 0.504289 2.536266 С С 0.404226 -0.033257 1.664158 -0.533014 -0.166737 1.662253 С -0.158055 -1.6889503.424024 С -0.449464 0.291752 3.919808 С -0.239405 0.966034 2.448974 С 0.278728 -1.7626992.140584 Н 1.724571 0.306184 1.446587 -2.296626 -0.979523н 1.276153 С -0.694014 -0.667904 4.180474 С 0.004454 -0.933670 4.398310 Н -0.164573 -2.720303 3.760450 Н -0.740854 1.092938 4.591787 С С -0.729209 0.666654 3.702407 0.348198 -1.9692443.522785 н -0.257909 1.989413 Н 0.574987 2.088821 -2.551502 1.457834 Н -1.108864-0.893714 5.158771 Н 0.073000 -1.0894445.471176 Н -1.128614 1.454483 4.333883 Н 0.676418 -2.9312563.904095 0 0.904972 -2.3717631.449248 0 -1.070301 1.663784 2.083532 С -2.750227 -0.477169 С -2.649134 2.145637 1.858181 0.365534 С -3.927428 С -3.466540 2.731387 0.283303 2.670276 1.353897 Н -3.588286 1.179092 3.263100 н -3.836405 2.020116 2.155814 Н 1.948335 -4.619917 0.608833 н -2.879930 3.467767 1.817163 Н 3.428045 -4.441409-0.380479 н -4.322060 3.087227 0.819300 0 2.511469 -2.429996 -1.603595 0 -3.121393 1.488294 -0.725814 0 2.000000 0.850582 -0.893446 0 -1.717097 -1.059461-0.997528 0 2.883028 0.648827 0 -3.138872 1.177394 -1.0448680.764983 С 2.928629 0.919697 -0.060841 С -2.850489 -1.006343 -0.514326 С С 4.299824 1.431435 -0.568277 -4.080920 -1.169452-1.427066F 5.267221 0.577432 -0.206652 F -5.172691 -0.635383 -0.881813 F F 4.314834 1.571903 -1.892335 -3.858243 -0.640385 -2.621739F 4.552118 2.627486 -0.003162 F -4.286217 -2.499135-1.573674 0 -0.974497 0 -1.673157 -0.0777161.597556 1.244160 0.205757 0 0 -1.545684 -1.264832 -2.304441 1.023408 1.663775 -1.907488С -2.083951 -1.437923 -1.222394 С 1.697067 1.901571 -0.905166 С С -3.398696 -2.240125 -1.081782 2.753603 3.025968 -0.877221 F -3.256380 -3.238860 -0.190761 F 2.441411 3.935750 0.060560 F -4.383281 -1.427159-0.641039 F 3.962787 2.510899 -0.579115F F -3.774730 -2.763389-2.2500242.831834 3.637847 -2.060364Pd -0.089848 Pd 0.140182 -0.443382 -0.022236 0.058214 -0.260545 С -0.745374 1.615759 -1.167513С 1.190886 -1.334321 -1.236632 0 -0.260451 1.839704 -2.237573 0 0.692193 -1.629340 -2.282818 С -0.489238 С -1.778752 2.434076 2.479598 -1.861588 -0.719437 С -2.662164 1.915318 0.468474 С 3.118586 -1.373449 0.429893 С С 3.065514 -1.8663923.785324 -0.877745 -2.908892-1.460120 С -3.629384 2.748040 1.030455 С 4.332661 -1.929197 0.831766 н н 0.867014 -0.554149 -2.610273 0.735717 2.683659 0.985921

С	-2.820103	4.611311	-0.292577	С	4.271998	-3.460692	-1.045986
Н	-1.184552	4.165582	-1.631374	Н	2.561347	-3.268851	-2.350692
С	-3.703768	4.092689	0.659972	С	4.907198	-2.970728	0.100548
Н	-4.327744	2.343562	1.757227	Н	4.830953	-1.543964	1.716333
н	-2.881896	5.655813	-0.583891	Н	4.720841	-4.268668	-1.616499
н	-4.454202	4.737650	1.108871	н	5.852613	-3.400322	0.420443

8. The Synthesis and Characterization of key intermediate 6

oc 5, white solid, 30%

¹H NMR (400 MHz, MeOD-d₄): δ 7.87 (dd, J = 8.8, 5.1 Hz, 1H), 7.38 (dd, J = 8.8, 2.0 Hz, 1H), 7.16 (td, J = 9.0, 2.2 Hz, 1H), 4.18 (dt, J=13.4, 2.8, 2H), 3.36 (m, 1H), 3.04 (s, 2H), 2.15 – 2.04 (m, 2H), 1.89 – 1.73 (m, 2H), 1.48 (s, 9H); ¹³C NMR (101 MHz, MeOD-d₄): δ 164.40 ($J_{1F} = 250.3$), 163.74 ($J_{3F} = 13.9$), 160.91, 155.07, 122.87($J_{3F} = 11.1$), 117.14, 112.18 ($J_{2F} = 25.76$), 96.62 ($J_{2F} = 27.37$), 79.81, 43.25, 33.72, 29.99, 27.31. HRMS (ESI) calculated for C₁₇H₂₁N₂O₃FNa(+): 343.1536; Found: 343.1429.

Compound 5 (24 mg, 0.07 mmol) was dissolved in 4M HCl-MeOH (1 ml) at 0°C, the reaction mixture was stirred at 0°C to r.t overnight. The reaction was quenched by saturated aqueous solution of NaHCO₃ at 0°C. Concentrated and the aqueous phase was extracted with EtOAc. The combined organics were washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo.¹⁰

6, pale yellow solid, >95%

¹**H NMR (400 MHz, MeOD-d₄):** δ 7.93 (dd, J=8.7, 5.1, 1H), 7.43 (dd, J=8.7, 1.8, 1H), 7.27 – 7.14 (m, 1H), 3.65 – 3.45 (m, 3H), 3.22 (t, J=11.3, 2H), 2.35 (d, J=12.9, 2H), 2.22 – 2.06 (m, 2H); ¹³**C NMR (101 MHz, MeOD-d₄):** δ 164.43(J_{1F} = 250.5), 163.81 (J_{3F} = 13.9), 160.61, 122.91 (J_{3F} = 11.2), 116.97, 112.26(J_{2F} = 25.9), 96.67(J_{2F} = 27.4), 44.23, 32.62, 28.67. **IR (cm⁻¹):** 2934, 1717, 1684, 1653, 1558, 1506, 1456, 1339, 669. **HRMS (ESI)** calculated for C₁₂H₁₄N₂OF(+): 221.1012; Found: 221.1081.

9. References

- 1. H. M. Petrassi, K. B. Sharpless and J. W. Kelly, Org. Lett., 2001, 3, 139.
- 2. G. M. Shutske, J. Org. Chem., 1984, 49, 180.
- 3. M. J. Frisch, et al. *Gaussian 09, Rev. A.02*, Gaussian, Inc., Wallingford CT, 2009.
- 4. (a) A. D. Becke, J. Chem. Phys., 1993, 98, 5648; (b) C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785; (c) A. D. Becke, J. Chem. Phys., 1993, 98, 1372; (d) P. J. Stephens, F. J. Devlin, C. F. Chabalowski and M. J. Frisch, J. Phys. Chem., 1994, 98, 1623.
- 5. Y. Zhao and D. G. Truhlar, Theor, Chem. Acc., 2008, 120, 215.
- (a) M. Dolg, U. Wedig, H. Stoll and H. Preuss, J. Chem. Phys., 1987, 86, 866; (b)
 D. Andrae, U. Häußermann, M. Dolg, H. Stoll and H. Preuß, Theor. Chem. Acc., 1990, 77, 123.
- 7. A. V. Marenich, C. J. Cramer and D. G. Truhlar, J. Phys. Chem. B, 2009, 113, 6378.
- 8. C. Y. Legault, CYLView, 1.0b; Sherbrooke, Universite' de Canada, 2009; http://www.cylview.org.
- Q. Yu, N. Zhang, J. Huang, S. Lu, Y. Zhu, X. Yu and K. Zhao, *Chem. Eur. J.*, 2013, 19, 11184.
- 10. (a) T. J. Wilkinson, N. W. Stehle and P. Beak, *Org. Lett.*, **2000**, *2*, 155; (b) G. Pandey and M. Kapur, *Org. Lett.*, **2002**, *4*, 3883.

¹H and ¹³C NMR Spectra of Substrates and Products

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2014

