Supplementary Information

Mechanistic insights into the malonoyl peroxide *syn*-dihydroxylation of alkenes

Michael. J. Rawling,^a Julian H. Rowley,^a Matthew Campbell,^b Alan R. Kennedy,^a John A. Parkinson^a and Nicholas C. O. Tomkinson.^{*a}

^aWestCHEM, Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, U.K.

^bGlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, SG1 2NY, U.K.

E-mail: Nicholas.Tomkinson@strath.ac.uk

S3 Safety Warning

S4 General Techniques

S 5	Experimental Procedures and Analytical Data				
S5	General Procedure A for cycloalkane-1,1-dicarboxylic acid synthesis				
S5	Cyclopropane-1,1-dicarboxylic acid 5				
S6	Cyclopropane-1,1-dicarboxylic acid (¹⁸ O-labelled) 27				
S6	Cyclopentane-1,1-dicarboxylic acid S-63				
S7	General Procedure B for peroxide synthesis				
S7	Cyclopropyl malonoyl peroxide 1				
S8	Cyclopropyl malonoyl peroxide (¹⁸ O-labelled) 28				
S8	Cyclopentyl malonoyl peroxide 62				
S9	General Procedure \mathbf{C} for alkene dihydroxylation using malonoyl peroxides				
S10	rel-(1R,2R)-1-Cyclohexyl-2-phenylethane-1,2-diol 30				
S10	rel-(1R,2R)-1,2-Bisphenylethane-1,2-diol 42				
S11	rel-(1R,2S)-1-Phenylpropane-1,2-diol 51				
S11	rel-(1R,2R)-1-Phenylpropane-1,2-diol 52				
S12	rel-(1R,2R)-1-(4-Methoxyphenyl)propane-1,2-diol 54				
S12	rel-(1R,2R)-1-Mesitylpropane-1,2-diol 55				
S13	rel-(1R,2S)-1,2-Diphenylethane-1,2-diol 56				

S13	<i>rel-</i> (1 <i>R</i> ,2 <i>S</i>)-2,3-Dihydro-1 <i>H</i> -indene-1,2-diol 57				
S14	rel-(1R,2S)-1-(4-Methoxyphenyl)propane-1,2-diol S-66				
S15	Isolation of intermediates (14, 15, 58, 59, 60) in the dihydroxylation of stilbene				
S15	syn-7-Membered ring 14				
S15	syn-Hydroxy ester 15				
S16	anti-Hydroxy ester 58				
S16	anti-7-Membered ring 59				
S16	2,2-Diphenylacetaldehyde 61				
S17	Synthesis of alkenes				
S18	(trans, trans-2-Methoxy-3-phenylcyclopropyl)ethylene 23				
S20	(E)-(2-Cyclohexylvinyl)benzene 29				
S21	Oxidative cleavage of diol 30 to aldehydes 31 and 32				
S22	Synthesis of orthoester 43				
S23	Methylation of orthoester 43				
S24	Independent synthesis of methyl ester 45				
S25	Reaction of Peroxide 1 with Radical Clock Alkene 23				
S25	2-Phenylpenta-2,4-dienal 25				
S28	Reaction Kinetics				
S35	¹⁸ O-Induced ¹³ C NMR Shift				
S 37	DFT Calculations				
S54	¹ H and ¹³ C NMR Spectra				
S111	Mass Spectrometric Data				
S119	X-Ray Crystallographic Data				

S123 References

Safety Warning!

Peroxides are particularly dangerous. These procedures should be carried out by knowledgeable laboratory workers. DSC data for cyclopropyl malonoyl peroxide **1** is given in Tomkinson *et al.*, *J. Am. Chem. Soc.*, **2010**, *132*, 14409 (page S89, Supporting Information) and shows an onset temperature of 114.5 °C.

General Techniques

Commercially available solvents and reagents were used without further purification or drying and all reactions performed under an air atmosphere unless otherwise stated. Flash chromatography was carried out using Merck Kieselgel 60 H silica or Matrex silica 60. Analytical thin layer chromatography was carried out using aluminium-backed plates coated with Merck Kieselgel 60 GF254 that were visualised under UV light (at 254 nm). Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker Avance III 400 MHz, Bruker Avance DRX 500 MHz or Bruker Avance II 600 MHz spectrometer. NMR spectra were recorded in CDCl₃ at 25 °C unless stated otherwise and were reported in δ -units (ppm) relative to residual solvent peaks (CHCl₃, $\delta = 7.26$ for protons and $\delta = 77.16$ for carbon atoms; DMSO-d₆, $\delta = 2.50$ for protons and $\delta = 39.52$ for carbon atoms); J values were recorded in Hz and multiplicities were expressed by the usual conventions. ¹³C NMR (DEPTQ-135) spectra show quaternary carbons. Low-resolution mass spectra (MS) were determined using an Agilent 6130 single quadrupole with an APCI/electrospray dual source or ThermoQuest Finnigan LCQ DUO electrospray. ESI refers to electrospray ionization, CI refers to chemical ionization (ammonia), EI refers to electron ionization, APCI refers to atmospheric pressure chemical ionisation, NSI refers to nanospray ionisation and ASAP refers to atmospheric solids analysis probe. High-resolution mass spectra were obtained courtesy of the EPSRC Mass Spectrometry Service at University of Wales, Swansea, U.K. using the ionization methods specified. In vacuo refers to evaporation at reduced pressure using a rotary evaporator and diaphragm pump, followed by the removal of trace volatiles using a vacuum (oil) pump. Melting points were determined using a Stuart SMP11 and are uncorrected. Infrared spectra were determined on neat samples using a Shimadzu IRAffinity-1 equipped with an ATR (Attenuated Total Reflectance) accessory, and were reported in cm⁻¹. GC-MS was performed using an Agilent 7890A GC system, equipped with a 30 m DB5MS column connected to a 5975C inert XL CI MSD with Triple-Axis Detector. Singlecrystal diffraction data were measured on Oxford Diffraction Xcalibur E and Gemini S instruments. The structures were refined to convergence on F^2 and against all independent reflections by full-matrix least-squares, using the SHELXL-97 program.¹ Selected parameters are given on pages S119–S122 and full details are given in the deposited cif files. This data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Experimental Procedures and Analytical Data

General Procedure (A) for Dicarboxylic Acid Synthesis²

Benzyltriethyl ammonium chloride (0.10 mol, 1 equiv) was added to a stirring solution of 50% (by w.t.) aqueous NaOH (200 mL). Diethyl malonate (0.10 mol, 1 equiv) and dibromoalkane (0.15 mol, 1.5 equiv) were pre-mixed and added to the reaction vessel in one portion. The resulting heterogeneous mixture was stirred vigorously with an overhead mechanical stirrer at room temperature for *n* hours. The reaction was diluted with water (100 mL) and washed with diethyl ether (2×100 mL) to remove unreacted starting material. The aqueous phase was acidified to pH 1 with concentrated HCl before being extracted with ethyl acetate (3×50 mL), washed with brine (1×50 mL), dried over MgSO₄ and concentrated to dryness by rotary evaporation to afford the target 1,1-dicarboxylic acids. No further purification was necessary.

Cyclopropane-1,1-dicarboxylic acid³ 5

Reaction of diethyl malonate (15.2 mL, 0.10 mol) and 1,2-dibromoethane (12.9 mL, 0.15 mol) in a rapidly stirring mixture of 50% aq. NaOH (200 mL) and benzyltriethyl ammonium chloride (22.8 g, 0.10 mol) according to General Procedure **A** for 4 h at 25 °C gave the title compound **5** as a colourless solid (6.7 g, 53.2 mmol, 53%).

Colourless solid; m.p. 128–130 °C; IR (neat)/cm⁻¹: 2849, 1713, 1166; ¹H NMR (400 MHz, DMSO-d₆) δ 1.31 (s, 4H); ¹³C NMR (100 MHz, DMSO-d₆) δ 172.0, 27.3, 16.5; LRMS (ESI) *m*/*z* 112.0 [M – H₂O]⁺; HRMS (EI) calculated for C₅H₆O₄ [M]⁺ 130.0266, found 130.0268.

¹⁸O-Enriched cyclopropane-1,1-dicarboxylic acid 27

Cyclopropane-1,1-dicarboxylic acid **5** (289 mg, 2.24 mmol, 1.0 equiv) and ¹⁸OH₂ (97% ¹⁸O incorporation, 1.00 mL, 56 mmol, 25.0 equiv) were stirred in a sealed sample vial for 15 days at 25 °C. The solution was transferred to a 5 mL round bottom flask and the water removed by rotary evaporation. The compound was dissolved in fresh ¹⁸OH₂ (97% ¹⁸O incorporation, 1.00 mL, 56 mmol, 25.0 equiv) and stirred for a further 15 days at 25 °C, following levels of ¹⁸O incorporation by electrospray ionisation mass spectrometry. Removal of solvent by rotary evaporation gave the ¹⁸O-enriched title compound as a colourless solid (292 mg).

Colourless solid; See analytical data for cyclopropane-1,1-dicarboxylic acid **5**. LRMS (ESI) m/z 136.9 and 134.9 [M – H]⁻.

Cyclopentane-1,1-dicarboxylic acid³ S-63

Reaction of diethyl malonate (10.0 mL, 66.0 mmol) and 1,4-dibromobutane (11.8 mL, 99.0 mmol) in a rapidly stirring mixture of 50% aq. NaOH (130 mL) and benzyltriethyl ammonium chloride (15.1 g, 66.0 mol) according to General Procedure **A** for 5 h at 25 °C gave the title compound **S-63** as a colourless solid (8.1 g, 51.1 mmol, 77%).

Colourless solid; m.p. 165 °C; IR (neat)/cm⁻¹: 2968, 2878, 1689, 1269, 1190; ¹H NMR (400 MHz, DMSO-d₆) δ 2.03–2.00 (m, 4H), 1.58–1.54 (m, 4H); ¹³C NMR (100 MHz, DMSO-d₆) δ 174.0, 60.0, 34.1, 25.2; LRMS (CI) *m*/*z* 176.3 [M + NH₄]⁺; HRMS (ES) calculated for C₇H₁₄O₄N [M + NH₄]⁺ 176.0917, found 176.0917.

General Procedure B for Peroxide Synthesis

Cycloalkane-1,1-dicarboxylic acid (23.1 mmol, 1 equiv) was stirred in methanesulfonic acid (25 mL) for 10 minutes before addition of urea hydrogen peroxide (6.50 g, 69.2 mmol, 3 equiv) portionwise over 5 minutes. After stirring for 18 hours at 25 °C the contents of the reaction flask were poured into a mixture of ice (50 g) and ethyl acetate (25 mL). The phases were separated and the aqueous phase extracted using ethyl acetate (3×30 mL). The combined organic phases were washed with sodium hydrogen carbonate (3×20 mL) followed by brine (30 mL). Drying over MgSO₄, filtration and removal of solvent by rotary evaporation (caution!) afforded the corresponding malonoyl peroxide as colourless crystals (75-82%) with no need for purification.

Cyclopropyl malonoyl peroxide³ 1

Reaction of cyclopropane-1,1-dicarboxylic acid 5 (3.00 g, 23.1 mmol) and urea hydrogen peroxide (6.50 g, 69.2 mmol) in methanesulfonic acid (25 mL) according to General Procedure **B** for 18 h at 25 °C gave the title compound **1** as a colourless solid (2.43 g, 19.0 mmol, 82%).

Colourless solid; m.p. 70–72 °C; IR (neat)/cm⁻¹: 3021, 1828, 1796, 1087; ¹H NMR (400 MHz, CDCl₃) δ 2.10 (s, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 172.3, 23.8, 19.9. Unable to obtain low or high resolution mass spectrometry data for malonoyl peroxides using inhouse or Swansea National Mass Spectrometry Service.

¹⁸O-Enriched cyclopropyl malonoyl peroxide 28

Reaction of ¹⁸O-enriched cyclopropane-1,1-dicarboxylic acid **27** (279 mg, 2.02 mmol, 1 equiv) and urea hydrogen peroxide (570 mg, 6.07 mmol, 3 equiv) in methanesulfonic acid (2 mL) according to General Procedure **B** for 18 h at 25 °C gave the title compound **28** as a colourless solid (204 mg, 1.55 mmol, 77%).

See analytical data for cyclopropyl malonoyl peroxide **1**. Unable to obtain low or high resolution mass spectrometry data for malonoyl peroxides using in-house or Swansea National Mass Spectrometry Service.

Cyclopentyl malonoyl peroxide³ 62

Reaction of cyclopentane-1,1-dicarboxylic acid **S-63** (3.65 g, 23.1 mmol) and urea hydrogen peroxide (6.50 g, 69.2 mmol) in methanesulfonic acid (25 mL) according to General Procedure **B** for 18 h at 25 °C gave the title compound as a colourless solid (2.88 g, 18.5 mmol, 80%).

Colourless solid; m.p. 41 °C; IR (neat)/cm⁻¹: 2973, 1797, 1712, 1265; ¹H NMR (400 MHz, CDCl₃) 2.27–2.23 (m, 4H), 2.01–1.98 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) 175.8, 46.9, 37.7, 26.8. Unable to obtain low or high resolution mass spectrometry data for malonoyl peroxides using in-house or Swansea National Mass Spectrometry Service.

General Procedure C for Alkene Dihydroxylation

Alkene (1.20 mmol, 1 equiv) was added in one portion to a solution of malonoyl peroxide (1.44 mmol, 1.2 equiv), H₂O (22 μ L, 1.20 mmol, 1 equiv) and chloroform (2 mL) and stirred at either 25 or 40 °C. On consumption of alkene (TLC analysis – 100% petroleum ether) the reaction mixture was evaporated to dryness *in vacuo* and 1M NaOH (10 mL) was added. The reaction mixture was stirred at 60 °C for 4 h and allowed to cool to room temperature before the aqueous layer was extracted with ethyl acetate (3 × 20 mL). The combined organic layers were washed with brine (1 × 10 mL), dried (MgSO₄) and the solvent removed by rotary evaporation to afford the target diol. Diacid **5** was recovered by acidifying the aqueous phase to pH 1 by dropwise addition of concentrated HCl with stirring at 0–5 °C. Extraction with ethyl acetate (3 × 20 mL), washing with brine (1 × 10 mL) and drying over MgSO₄ then removal of solvent by rotary evaporation afford the target divelopment of the diacid as a colourless solid (80–90%).

Reaction of (*E*)-(2-cyclohexylvinyl)benzene **29** (58 mg, 0.31 mmol, 1 equiv), H₂O (6 μ L, 0.31 mmol, 1 equiv) and ¹⁸O-labelled cyclopropyl malonoyl peroxide **1** (49 mg, 3.71 mmol) in CHCl₃ (1 mL) according to General Procedure **C** for 24 h at 40 °C (crude diol 25:1 *syn:anti*) and purification by silica gel flash chromatography (1:2 diethyl ether:petroleum ether) gave the title compound as a colourless solid (62 mg, 0.28 mmol, 90%).

Colourless solid; m.p. 83–84 °C; IR (neat)/cm⁻¹: 3271, 3030, 2920, 2853, 1450, 1162; ¹H NMR (500 MHz, CDCl₃) δ 7.29–7.17 (m, 5H), 4.62 (d, *J* = 5.7 Hz, 1H), 3.39 (app t, *J* = 5.7 Hz, 1H), 2.18 (bs, 2H), 1.77–1.52 (m, 5H), 1.25–1.04 (m, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 142.0, 128.7, 128.0, 126.7, 80.2, 74.5, 39.4, 30.3, 27.5, 26.5, 26.4, 26.2; LRMS (EI) *m/z* 222.2 [M]⁺; HRMS (EI) calculated for C₁₄H₂₀¹⁶O¹⁸O [M]⁺ 222.1506, found 222.1516.

(Non ¹⁸O-labelled: LRMS (EI) m/z 220.2 [M]⁺)

rel-(1R,2R)-1,2-Bisphenylethane-1,2-diol³ 42

Reaction of (*E*)-stilbene **13** (3.00 g, 16.7 mmol), H₂O (300 μ L, 16.7 mmol, 1 equiv) and cyclopropyl malonoyl peroxide **1** (2.56 g, 20.0 mmol, 1.2 equiv) in CHCl₃ (25 mL) according to General Procedure **C** for 24 h at 40 °C (crude diol 33:1 *syn:anti*) and purification by silica gel flash chromatography (1:4 diethyl ether:petroleum ether) gave the title compound as a colourless solid (3.07 g, 14.4 mmol, 86%).

Colourless solid; m.p. 104–105 °C; IR (neat)/cm⁻¹: 3389, 3060, 2922, 2852, 1068; ¹H NMR (400 MHz, CDCl₃) δ 7.24–7.23 (m, 6H), 7.14–7.11 (m, 4H), 4.70 (s, 2H), 2.89 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 140.0, 128.3, 128.1, 127.1, 79.3; LRMS (APCI) *m*/*z* 196.1 [M – H₂O]⁺; HRMS (CI) calculated for C₁₄H₁₄O₂Na [M + Na]⁺ 237.0886, found 237.0887.

rel-(1*R*,2*S*)-1-Phenylpropane-1,2-diol⁴ 51

Reaction of *trans*- β -methylstyrene **46** (155 µL, 1.20 mmol, 1 equiv), H₂O (22 µL, 1.20 mmol, 1 equiv) and cyclopropyl malonoyl peroxide **1** (184 mg, 1.44 mmol, 1.2 equiv) in CHCl₃ (2 mL) according to General Procedure **C** for 24 h at 40 °C (crude diol 16:1 *syn:anti*) and purification by silica gel flash chromatography (1:2 diethyl ether:petroleum ether) gave the title compound as a colourless solid (168 mg, 1.10 mmol, 92%).

Colourless solid; m.p. 87 °C; IR (neat)/cm⁻¹: 3408, 3242, 3067, 3040, 2968, 2927, 2891, 1034, 1018; ¹H NMR (400 MHz, CDCl₃) δ 7.38–7.28 (m, 5H), 4.66 (dd, *J* = 3.6, 3.6 Hz, 1H), 4.03–3.96 (m, 1H), 2.65 (d, *J* = 3.6 Hz, 1H), 2.11 (d, *J* = 4.6 Hz, 1H), 1.07 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 140.5, 128.5, 127.9, 126.8, 77.6, 71.4, 17.4; LRMS (ESI) *m*/*z* 135.1 [M – OH]⁺; HRMS (ESI) calculated for C₉H₁₁O [M – OH]⁺ 135.0804, found 135.0800.

rel-(1*R*,2*R*)-1-Phenylpropane-1,2-diol³ 52

Reaction of *trans*- β -methylstyrene **44** (155 µL, 1.20 mmol, 1 equiv), H₂O (22 µL, 1.20 mmol, 1 equiv) and cyclopropyl malonoyl peroxide **1** (184 mg, 1.44 mmol, 1.2 equiv) in CHCl₃ (2 mL) according to General Procedure **C** for 24 h at 40 °C (crude diol 16:1 *syn:anti*) and purification by silica gel flash chromatography (1:2 diethyl ether:petroleum ether) gave the title compound as a colourless solid (168 mg, 1.10 mmol, 92%).

Colourless solid; m.p. 51–53 °C; IR (neat)/cm⁻¹: 3435, 1714, 1520, 1392, 1061, 1024; ¹H NMR (400 MHz, CDCl₃) δ 7.35–7.27 (m, 5H), 4.30 (dd, *J* = 7.5, 2.6 Hz, 1H), 3.82–3.80 (m, 1H), 3.48 (d, *J* = 2.6 Hz, 1H), 3.23 (d, *J* = 2.0 Hz, 1H), 1.00 (d, *J* = 6.5 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 141.2, 128.6, 128.2, 127.0, 79.6, 72.3, 18.8; LRMS (ESI) *m*/*z* 134.1 [M – H₂O]⁺; HRMS (ESI) calculated for C₉H₁₀O [M – H₂O]⁺ 134.0732, found 134.0730.

rel-(1R,2R)-1-(4-Methoxyphenyl)propane-1,2-diol³ 54

Reaction of *trans*-anethole (180 μ L, 1.20 mmol, 1 equiv), H₂O (22 μ L, 1.20 mmol, 1 equiv) and cyclopropyl malonoyl peroxide **1** (184 mg, 1.44 mmol, 1.2 equiv) in CHCl₃ (2 mL) according to General Procedure **C** for 2 h at 40 °C (crude diol 5.5:1 *syn:anti*) and purification by silica gel flash chromatography (1:2 diethyl ether:petroleum ether) gave the title compound as a colourless solid (166 mg, 0.912 mmol, 76%).

Colourless solid; m.p. 64–65 °C; IR (neat)/cm⁻¹: 3390, 2979, 2901, 1485, 1397, 1065, 1048; ¹H NMR (400 MHz, CDCl₃) δ 7.23 (d, *J* = 8.7 Hz, 2H), 6.87 (d, *J* = 8.7 Hz, 2H), 4.27 (d, *J* = 7.5 Hz, 1H), 3.81–3.77 (m, 4H), 3.00 (bs, 1H), 2.90 (bs, 1H), 1.00 (d, *J* = 6.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.5, 133.3, 128.2, 114.0, 79.2, 72.4, 55.4, 18.9; LRMS (EI) *m/z* 182.1 [M]⁺; HRMS (EI) calculated for C₁₀H₁₄O₃ [M]⁺ 182.0943, found 182.0940.

rel-(1R,2R)-1-Mesitylpropane-1,2-diol³ 55

Reaction of *E*-1-mesitylpropene (192 mg, 1.20 mmol, 1 equiv), H₂O (22 μ L, 1.20 mmol, 1 equiv) and cyclopropyl malonoyl peroxide **1** (184 mg, 1.44 mmol, 1.2 equiv) in CHCl₃ (2 mL) according to General Procedure **C** for 24 h at 40 °C (crude diol >50:1 *syn:anti*) and purification by silica gel flash chromatography (2:1 ethyl acetate:petroleum ether) gave the title compound as a colourless solid (217 mg, 1.12 mmol, 93%).

Colourless solid; m.p. 83–85 °C; IR (neat)/cm⁻¹: 3390, 2971, 2934, 1040, 1016; ¹H NMR (250 MHz, CDCl₃) δ 6.82 (s, 2H), 4.86 (d, *J* = 9.1 Hz, 1H), 4.35–4.26 (dq, *J* = 9.1 Hz, 6.4 Hz, 1H), 2.67 (bs, 2H), 2.41 (s, 6H), 2.25 (s, 3H), 1.01 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (62.5 MHz, CDCl₃) δ 137.3, 137.0, 133.4, 130.4, 76.5, 70.0, 21.3, 20.9, 18.8; LRMS (EI) *m*/*z* 194.1 [M]⁺; HRMS (EI) calculated for C₁₂H₁₈O₂ [M]⁺ 194.1307, found 194.1309.

rel-(1R,2S)-1,2-Diphenylethane-1,2-diol³ 56

Reaction of (*Z*)-stilbene **13** (3.00 g, 16.7 mmol), H_2O (300 µL, 16.7 mmol, 1 equiv) and cyclopropyl malonoyl peroxide **1** (2.56 g, 20.0 mmol, 1.2 equiv) in CHCl₃ (25 mL) according to General Procedure **C** for 24 h at 40 °C (crude diol 3:1 *syn:anti*) and purification by silica gel flash chromatography (1:4 diethyl ether:petroleum ether) gave the title compound as a colourless solid (3.07 g, 14.4 mmol, 86%).

Colourless solid; m.p. 133 °C; IR (neat)/cm⁻¹: 3320, 2943, 2861, 1054; ¹H NMR (400 MHz, CDCl₃) δ 7.32–7.24 (m, 10H), 4.82 (s, 2H), 2.25 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 139.9, 128.4, 128.3, 127.2, 78.2; LRMS (ESI) *m*/*z* 196.1 [M – H₂O]⁺; HRMS (ESI) calculated for C₁₄H₁₂O [M – H₂O]⁺ 196.0888, found 196.0886.

rel-(1*R*,2*S*)-2,3-Dihydro-1*H*-indene-1,2-diol³ 57

Reaction of indene (140 μ L, 1.20 mmol, 1 equiv), H₂O (22 μ L, 1.20 mmol, 1 equiv) and cyclopropyl malonoyl peroxide **1** (184 mg, 1.44 mmol, 1.2 equiv) in CHCl₃ (2 mL) according to General Procedure **C** for 24 h at 40 °C (crude diol >50:1 *syn:anti*) and purification by silica gel flash chromatography (1:2 diethyl ether:petroleum ether) gave the title compound as a colourless solid 104 mg, 0.70 mmol, 58%).

Colourless solid; m.p. 88–90 °C; IR (neat)/cm⁻¹: 3395, 3058, 2924, 1060, 1041; ¹H NMR (400 MHz, CDCl₃) 7.44–7.42 (m, 1H), 7.30–7.23 (m, 3H), 5.00 (dd, J = 6.9, 5.2 Hz, 1H), 4.52–4.47 (m, 1H), 3.12 (dd, J = 16.3, 5.7 Hz, 1H), 2.95 (dd, J = 16.3, 3.5 Hz, 1H), 2.58 (d, J = 7.3 Hz, 1H), 2.49 (d, J = 6.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) 142.1, 140.3, 128.8, 127.2, 125.4, 125.2, 76.0, 73.5, 38.5; LRMS (EI) *m*/*z* 150.1 [M]⁺; HRMS (EI) calculated for C₉H₁₀O₂ [M]⁺ 150.0681, found 150.0684.

rel-(1R,2R)-1-(4-Methoxyphenyl)propane-1,2-diol⁵ S-66

Reaction of *trans*-anethole (180 μ L, 1.20 mmol, 1 equiv), H₂O (22 μ L, 1.20 mmol, 1 equiv) and cyclopropyl malonoyl peroxide **1** (184 mg, 1.44 mmol, 1.2 equiv) in CHCl₃ (2 mL) according to General Procedure **C** for 2 h at 40 °C (crude diol 5.5:1 *syn:anti*) and purification by silica gel flash chromatography (1:2 diethyl ether:petroleum ether) gave the title compound as a colourless solid (166 mg, 0.912 mmol, 76%).

Colourless solid; m.p. 92–93 °C; IR (neat)/cm⁻¹: 3393, 2976, 2920, 1480, 1391, 1056, 1042; ¹H NMR (400 MHz, CDCl₃) δ 7.28 (d, *J* = 8.6 Hz, 2H), 6.90 (d, *J* = 8.6 Hz, 2H), 4.60 (dd, *J* = 3.8, 3.8 Hz, 1H), 4.02–3.95 (m, 1H), 3.81 (s, 3H), 2.30 (d, *J* = 3.3 Hz, 1H), 1.86 (d, *J* = 4.7 Hz, 1H), 1.10 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.4, 132.5, 128.1, 114.0, 77.4, 71.4, 55.4, 17.7; LRMS (EI) *m*/*z* 182.1 [M]⁺; HRMS (EI) calculated for C₁₀H₁₄O₃ [M]⁺ 182.0943, found 182.0941.

Isolation of reaction intermediates 14, 15, 58, 59 and 61 in the dihydroxylation of stilbene.

(*E*)-Stilbene **13** (3.00 g, 16.7 mmol), H₂O (300 μ L, 16.7 mmol, 1 equiv) and cyclopropyl malonoyl peroxide **1** (2.56 g, 20.0 mmol, 1.2 equiv) were stirred in CHCl₃ (25 mL) according to General Procedure **C** for 24 h at 40 °C but the hydrolysis step using 1M NaOH was not performed. Solvent was removed *in vacuo* and compounds **14**, **15** and **61** were separated by silica gel flash chromatography using a solvent gradient; Diphenyl acetaldehyde **61** (1:4 diethyl ether:petroleum ether, R_f 0.48), *syn*-7-membered ring **14** (1:2 Et₂O:petroleum ether, R_f 0.40) and predominantly *syn*-hydroxyester **15** (1:1 diethyl ether:petroleum ether, R_f 0.12). Compounds **14** and **15** were then crystallised by vapour diffusion crystallisation (chloroform:petroleum ether b.p. 30–40 °C) to give colourless needles. The *anti*-7-membered ring **59** and *anti*-hydroxy ester **58** were isolated from an identical reaction using (*Z*)-stilbene. Silica gel column chromatography and two vapour diffusion recrystallisations (chloroform:petroleum ether b.p. 30–40 °C) were required to isolate **58** and **59** as single diastereomers.

rel-(6R,7R)-6,7-Diphenyl-5,8-dioxaspiro[2.6]nonane-4,9-dione 14

Colourless solid; m.p. 122–124 °C; IR (neat)/cm⁻¹: 3067, 3030, 2920, 1722, 1707, 1339, 1190, 1066; ¹H NMR (400 MHz, CDCl₃) δ 7.24–7.19 (m, 6H), 7.07–7.04 (m, 4H), 5.82 (s, 2H), 2.08 (dd, *J* = 9.8, 3.7 Hz, 2H), 1.86 (dd, *J* = 9.8, 3.7 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 169.3, 134.8, 129.2, 128.7, 127.4, 84.8, 29.1, 23.2; Unable to get LRMS or HRMS either in-house or from the National Mass Spectrometry Service, Swansea.

1-(((*rel-1R,2R*)-2-Hydroxy-1,2-diphenylethoxy)carbonyl)cyclopropanecarboxylic acid 15

Colourless solid; m.p. 117–119 °C; IR (neat)/cm⁻¹: 3377, 3059, 3034, 2913, 2851, 1740, 1686, 1192, 1130; ¹H NMR (400 MHz, CDCl₃) δ 7.27–7.23 (m, 6H), 7.13–7.05 (m, 4H), 5.91

(d, J = 7.4 Hz, 1H), 4.92 (d, J = 7.4 Hz, 1H), 1.86–1.77 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 174.4, 171.3, 138.7, 135.6, 128.9, 128.6, 128.5, 128.4, 127.2, 127.0, 82.0, 76.7, 25.7, 22.1, 21.7; HRMS (NSI) calculated for C₁₉H₁₇O₅ [M + H]⁺ 327.1081, found 327.1087.

1-(((rel-1S,2R)-2-Hydroxy-1,2-diphenylethoxy)carbonyl)cyclopropanecarboxylic acid 58

Colourless solid; m.p. 109–110 °C; IR (neat)/cm⁻¹: 3458, 3064, 3032, 2918, 1757, 1734, 1649, 1207, 1169; ¹H NMR (400 MHz, CDCl₃) δ 7.36–7.33 (m, 6H), 7.24–7.22 (m, 4H), 5.88 (d, *J* = 6.7 Hz, 1H), 4.91 (d, *J* = 6.7 Hz, 1H), 1.77–1.64 (m, 3H), 1.52–1.46 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 174.6, 170.6, 139.2, 135.7, 129.2, 128.8, 128.7, 128.5, 127.5, 127.0, 80.9, 76.1, 25.3, 22.2, 21.9; HRMS (NSI) calculated for C₁₉H₁₉O₅ [M + H]⁺ 327.1227, found 327.1231.

rel-(6R,7S)-6,7-Diphenyl-5,8-dioxaspiro[2.6]nonane-4,9-dione 59

Colourless solid; m.p. 154–155 °C; IR (neat)/cm⁻¹: 3062, 3022, 2932, 1726, 1706, 1339, 1192, 1067; ¹H NMR (400 MHz, CDCl₃) δ 7.34–7.25 (m, 6H), 7.04–7.01 (m, 4H), 6.00 (s, 2H), 2.16 (app. t, *J* = 9.1 Hz, 2H), 1.83 (dd, *J* = 9.7, 8.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 169.3, 132.9, 129.2, 128.4, 127.2, 82.8, 29.1, 25.5, 23.0; HRMS (NSI) calculated for C₁₉H₁₇O₄ [M + H]⁺ 309.1121, found 309.1120.

2,2-Diphenylacetaldehyde⁶ 61

Colourless oil; IR (neat)/cm⁻¹: 3059, 3028, 1724; ¹H NMR (400 MHz, CDCl₃) δ 10.01 (d, J = 2.4 Hz, 1H), 7.47–7.31 (m, 10H), 4.98 (d, J = 2.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 198.6, 136.3, 129.2, 129.0, 127.6, 64.0; HRMS (CI) calculated for C₁₄H₁₆NO [M + NH₄]⁺ 214.1226, found 214.1224.

Synthesis of Alkenes

Synthesis of Radical Clock 23

(*trans,trans-2*-Methoxy-3-phenylcyclopropyl)methanol⁷

cis-\beta-Methoxystyrene (3.4 mL, 25.6 mmol) was added to a suspension of anhydrous copper sulfate (420 mg, 2.6 mmol) in anhydrous benzene (10 mL). The mixture was heated to 75 °C. Whilst stirring rapidly a solution of ethyl diazoacetate (87%, 6.21 mL, 51.2 mmol) in anhydrous benzene (20 mL) was added drop wise over 3 h. Stirring was continued for 1 h at 75 °C before cooling to ambient temperature and stirring for a further 16 h. The contents of the reaction flask were poured onto water (50 mL) and the aqueous layer was extracted with diethyl ether (2 x 50 mL). The combined organics were washed with water (3 x 50 mL) and brine (2 x 50 mL) and then dried over magnesium sulfate. The solvent was removed under reduced pressure to give a brown oil. The oil was subjected to flash chromatography (10% ethyl acetate in petroleum ether) to yield a colourless oil (2.8 g, a mixture of ethyl trans, trans-2-methoxy-3-phenylcyclopropanecarboxylate and diethyl fumarate). The oil was dissolved in anhydrous diethyl ether (100 mL) and cooled to 0 °C. Lithium aluminium hydride (950 mg, 25.0 mmol) was added in portions and the mixture was heated under reflux for 18 h. The reaction was cooled to 0 °C and quenched with ice (2 g) and 0.5 M sodium hydroxide solution (8 mL). After stirring for 15 minutes the contents of the flask were filtered through celite. The filter and flask were washed with diethyl ether (60 mL) and the combined organics washed with water (50 mL) and brine (50 mL) and then dried over magnesium sulfate. The solvent was removed under reduced pressure to give the *title compound* as a colourless oil (1.71 g, 38%).

Colourless oil; v_{max} (ATR)/cm⁻¹ 3379, 3061, 3024, 2990, 2934, 2874, 2826; ¹H NMR (400 MHz, CDCl₃) δ 7.33–7.19 (5H, m), 3.75–3.60 (2H, m), 3.40 (1H, dd, J = 6.6, 3.2 Hz), 3.18 (3H, s), 1.99 (1H, app. t, J = 6.6 Hz), 1.84–1.77 (1H, m), 1.61 (1H, br. s); ¹³C NMR (101 MHz, CDCl₃) δ 137.0, 128.1, 128.1, 125.9, 64.2, 64.0, 58.3, 28.8, 27.9; m/z (CI): 161.0 [M - H₂O + H]⁺; HRMS (APCI) calculated for C₁₁H₁₃O 161.0961 [M - H₂O + H]⁺, found 161.0959.

trans,trans-2-Methoxy-3-phenylcyclopropanecarbaldehyde⁷

Oxalyl chloride (610 μ L, 7.23 mmol) was added to anhydrous dichloromethane (20 mL). The mixture was cooled to -78 °C and dimethyl sulfoxide (1.10 mL, 15.8 mmol) was added drop wise. The mixture was stirred for 10 minutes and a solution of triethylamine (4.60 mL, 32.8 mmol) and (*trans,trans*-2-methoxy-3-phenylcyclopropyl)methanol (1.17 g, 6.57 mmol) in dichloromethane (15 mL) was added drop wise over 15 minutes. The reaction was monitored by TLC and upon complete consumption of starting alcohol (approx. 30 minutes) the reaction was allowed to warm to ambient temperature. Water (15 mL) and diethyl ether (20 mL) were added and the mixture was poured into a separatory funnel. The layers were separated and the aqueous layer was extracted with diethyl ether (2 x 20 mL). The combined organics were washed with water (20 mL) and brine (20 mL) and then dried over sodium sulfate. The solvent was removed under reduced pressure to give a brown oil (1.16 g, quant.).

Brown oil; v_{max} (ATR)/cm⁻¹ 3059, 3028, 2990, 2936, 2830, 1701; ¹H NMR (400 MHz, CDCl₃) δ 9.81 (1H, d, J = 2.7 Hz), 7.37–7.25 (5H, m), 3.95 (1H, dd, J = 7.1, 2.6 Hz), 3.37 (3H, s), 2.99–2.94 (1H, m), 2.62–2.58 (1H, m); ¹³C NMR (101 MHz, CDCl₃) δ 198.6, 134.5, 128.5, 128.4, 127.1, 68.5, 59.1, 38.0, 34.4; m/z (CI): 177.0 [M + H]⁺; HRMS (APCI) calculated for C₁₁H₁₃O₂ 177.0910 [M + H]⁺, found 177.0909.

(*trans,trans-2*-Methoxy-3-phenylcyclopropyl)ethylene 23⁷

Methyltriphenylphosphonium bromide (3.93 g, 11.0 mmol) was added to anhydrous THF (26 mL). The suspension was cooled to 0 °C and 1.7 M *n*-butyllithium in hexane (4.40 mL) was added. The mixture was stirred for 15 minutes, over which time a pale yellow colour developed. A solution of *trans,trans*-2-methoxy-3-phenylcyclopropanecarbaldehyde (1.14 g, 6.48 mmol) in anhydrous THF (8 mL) was added drop wise and the mixture was stirred at ambient temperature. The reaction was monitored by TLC and upon complete consumption

of starting aldehyde (approximately 1 h) the reaction mixture was poured into a separatory funnel containing a mixture of ammonium chloride (20 mL) and diethyl ether (20 mL). The layers were separated and the aqueous layer was further extracted with diethyl ether (2 x 20 mL). The combined organics were washed with brine (30 mL) and dried over sodium sulfate. The solvent was removed under reduced pressure and the residue purified by flash chromatography (3% ethyl acetate in petroleum ether) to give the *title compound* as a colourless oil (835 mg, 73%).

Colourless oil; v_{max} (ATR)/cm⁻¹ 3084, 3061, 3026, 2982, 2934, 2826; ¹H NMR (400 MHz, CDCl₃) δ 7.30–7.15 (5H, m), 5.66 (1H, ddd, J = 17.2, 10.4, 7.7 Hz), 5.13–5.07 (1H, m), 5.00–4.96 (1H, m), 3.43 (1H, dd, J = 6.6, 3.3 Hz), 3.20 (3H, s), 2.10 (1H, app t, J = 6.6 Hz), 2.06–2.00 (1H, m); ¹³C NMR (101 MHz, CDCl₃) δ 137.7, 137.1, 128.1, 128.1, 126.0, 113.8, 66.9, 58.4, 31.9, 30.4; *m*/*z* (CI): 175.0 [M + H]⁺; HRMS (APCI) calculated for C₁₂H₁₅O 175.1117 [M + H]⁺, found 175.1116.

Synthesis of (E)-(2-Cyclohexylvinyl)benzene 29

2-Cyclohexyl-1-phenylethanol S-67

A dry 100 mL 3–necked flask equipped with a reflux condenser was flushed with nitrogen gas before being charged with magnesium turnings (0.79 g, 32.9 mmol) and dry tetrahydrofuran (15 mL). (Bromomethyl)cyclohexane (3.94 mL, 28.2 mmol) was added and the solution heated under reflux. After 30 min. the resulting solution was cooled to 0–5 °C using an ice bath before a solution of benzaldehyde (1.91 mL, 18.8 mmol) in dry tetrahydrofuran (20 mL) was added dropwise *via* syringe. The reaction was stirred at room temperature for 5 hours then cooled to 0–5 °C and carefully quenched by dropwise addition of water, before solvent was removed by rotary evaporation. H₂O (100 mL) and ethyl acetate (100 mL) were added followed by ethylenediaminetetraacetic acid (EDTA) (30 g), and the solution stirred for 1 hour until both phases were clear. The phases were separated and the aqueous phase extracted with ethyl acetate (3 × 30 mL) before the combined organic phases were washed with brine (1 × 50 mL), dried over MgSO₄ and solvent removed by rotary evaporation to give a yellow oil. Purification by silica flash column chromatography (1:8

ethyl acetate:petroleum ether) gave the title compound **S-67** as a colourless solid (2.09 g, 55%).

Colourless solid; m.p. 53–54 °C; IR (neat)/cm⁻¹: 3237, 2918, 2845, 1454, 1445; ¹H NMR (400 MHz, CDCl₃) δ 7.35–7.34 (m, 4H), 7.30–7.26 (m, 1H), 4.78 (dd, *J* = 8.7, 5.1 Hz, 1H), 1.90 (bs, 1H), 1.84–1.64 (m, 6H), 1.56–1.38 (m, 2H), 1.30–1.15 (m, 3H), 1.02–0.92 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 145.5, 128.6, 127.6, 126.0, 72.2, 47.2, 34.3, 34.1, 33.0, 26.6, 26.4, 26.3; LRMS (EI) *m*/*z* 204.2 [M]⁺; HRMS (ASAP) calculated for C₁₄H₂₄NO [M + NH₄]⁺ 222.1852, found 222.1852.

(E)-(2-Cyclohexylvinyl)benzene⁸ 29

2-Cyclohexyl-1-phenylethanol **S-67** (1.75 g, 8.59 mmol), *p*-toluenesulfonic acid monohydrate (0.21 g, 1.12 mmol) and toluene (30 mL) were added to a 50 mL round bottom flask equipped with a Dean–Stark condenser. The reaction mixture was heated under reflux for 2.5 hours before 5 drops of triethylamine were added to quench the reaction. H₂O (30 mL) was added and the phases separated before the aqueous phase was extracted with diethyl ether (2 \times 20 mL). The combined organic phases were washed with brine (1 \times 30 mL), dried over MgSO₄ and solvent removed by rotary evaporation to give a pale yellow oil. Purification by silica flash column chromatography (petroleum ether) gave the title compound **29** as a colourless oil (1.46 g, 91%).

Colourless oil; IR (neat)/cm⁻¹: 3024, 2920, 2849, 1447; ¹H NMR (400 MHz, CDCl₃) δ 7.41– 7.39 (m, 2H), 7.35–7.31 (m, 2H), 7.25–7.21 (m, 1H), 6.40 (d, *J* = 16.0 Hz, 1H), 6.23 (dd, *J* = 16.0, 6.9 Hz, 1H), 2.23–2.13 (m, 1H), 1.87–1.72 (m, 5H), 1.42–1.18 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 138.1, 136.9, 128.6, 127.3, 126.8, 126.0, 41.3, 33.1, 26.3, 26.2; LRMS (EI) *m*/*z* 186.1 [M]⁺; HRMS (ASAP) calculated for C₁₄H₁₉ [M + H]⁺ 187.1481, found 187.1480.

Oxidative cleavage of diol⁹

*Preparation of NaIO*₄ *on silica*: A mixture of sodium metaperiodate (0.514 g, 2.40 mmol) and water (1.00 mL) was stirred at 75 °C until homogeneous. To the hot aqueous solution was added silica gel (2.00 g). The mixture was stirred and crushed manually at 75 °C using a spatula until a free-flowing colourless powder formed. The resulting powder was dried (80 °C at 0.1 Torr) for 4 hours before use.

Anhydrous sodium metaperiodate on silica (150 mg) and anhydrous dichloromethane (500 μ L) were added to a small sample vial and stirred vigorously. A solution of diol **30** (10 mg, 0.046 mmol) in anhydrous dichloromethane (500 μ L) was added to the reaction vessel in one portion. After 10 minutes, diol **30** had cleanly converted into the two aldehydes **31** and **32** by TLC analysis (1:5 ethyl acetate:petroleum ether). The characteristic almond-like smelling solution of the two aldehydes was filtered through a small sinter funnel and directly analysed by GCMS (see Supplementary Information pages S115–S117).

Synthesis of orthoester 41

1-((*rel-4R*,5*R*)-2-Methoxy-4,5-diphenyl-1,3-dioxolan-2-yl) cyclopropanecarboxylic acid 43

Cyclopropyl malonoyl peroxide **1** (166 mg, 1.30 mmol, 1 equiv) was dissolved in chloroform (2.6 mL) in a 5 mL round bottom flask and the solution dried over activated 3Å molecular sieves for 2 hours. Methanol (100 μ L) was also dried over activated 3Å molecular sieves for 2 hours in a separate vessel. *Trans*-stilbene (234 mg, 1.30 mmol, 1 equiv) was weighed into a dry 10 mL round bottom flask followed by addition of the dry peroxide solution and dry methanol (53 μ L, 1.30 mmol, 1 equiv) in quick succession. The flask was sealed under nitrogen and stirred for 20 hours at 40 °C. Solvent was removed by rotary evaporation to produce a colourless gum (440 mg). Attempts to purify the compound by silica gel chromatography or crystallisation proved unsuccessful. Due to the relatively clean conversion of the reaction, identification of most of the minor co-products within the reaction mixture and comparison with a similar orthoester in the literature,¹⁰ we were able to assign both the ¹H and ¹³C NMR spectra of the crude reaction mixture with reasonable confidence (see Supplementary Information pages S101–S102 for ¹H and ¹³C DEPT-Q 135 spectra of the crude reaction mixture).

¹H NMR (400 MHz, CDCl₃) δ 8.00 (bs, 1H), 7.37–7.34 (m, 5H), 7.31–7.29 (m, 2H), 7.24–7.21 (m, 3H), 5.13 (d, *J* = 9.0 Hz, 1H), 4.90 (d, *J* = 9.0 Hz, 1H), 3.63 (s, 3H), 1.51–1.42 (m, 3H), 1.35–1.31 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 174.7, 135.8, 135.5, 128.90, 128.87, 128.8, 126.9, 126.7, 120.5, 87.3, 85.3, 50.8, 28.6, 14.3, 13.4.

Methylation of orthoester 43

Methyl 1-((*rel-4R*,5*R*)-2-methoxy-4,5-diphenyl-1,3-dioxolan-2-yl) cyclopropane carboxylate 44

CAUTION! Generation of diazomethane is dangerous due to high risk of explosion. Standard safety protocols for generating diazomethane should be followed and the procedures only carried out by experienced synthetic chemists.

The crude reaction mixture containing orthoester **43** (440 mg) was dissolved in diethyl ether (10 mL). Diazomethane was generated by careful addition of *N*-nitroso-*N*-methylurea (excess, approximately 250 mg) to an unstirred biphasic solution of 40% by w.t. aqueous potassium hydroxide (3 mL) and diethyl ether (10 mL) at 0–5 °C in a clean, scratch-free, glass sample vial without a ground glass joint. Nitrogen was gently bubbled through the yellow diazomethane-diethyl ether solution and the outlet flow passed through the diethyl ether solution containing **43** using a plastic cannula. The reaction was deemed complete when the product flask held a slight yellow colour indicating excess diazomethane present. Both flasks were cooled to 0–5 °C and excess diazomethane quenched by drop wise addition of the minimum amount of acetic acid until no yellow colour remained. Diethyl ether and methyl acetate (formed during quenching of diazomethane with acetic acid) were removed by rotary evaporation and the resulting residue purified by silica gel column chromatography (1:3 diethyl ether: petroleum ether) to afford the title compound **44** as a colourless oil (189 mg, 0.53 mmol, 41%).

Colourless oil; IR (neat)/cm⁻¹: 3062, 3032, 2951, 2909, 2837, 1719, 1319, 1213, 1119, 1078, 1009; ¹H NMR (400 MHz, CDCl₃) δ 7.35–7.23 (m, 10H), 5.09 (d, *J* = 9.0 Hz, 1H), 4.89 (d, *J* = 9.0 Hz, 1H), 3.75 (s, 3H), 3.58 (s, 3H), 1.44–1.29 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 172.2, 136.6, 136.3, 128.72, 128.68, 126.94, 126.87, 120.8, 87.1, 85.4, 52.4, 50.7, 29.0, 13.9, 13.0; LRMS (ESI) *m*/*z* 377.1 [M + Na]⁺; HRMS (NSI) calculated for C₂₁H₂₂O₅Na [M + Na]⁺ 377.1359, found 377.1353.

Independent synthesis of methyl ester 45

1-(*rel*-(1*R*,2*R*)-2-Hydroxy-1,2-diphenylethyl) 1-methyl cyclopropane-1,1-dicarboxylate 45

Syn-hydroxy ester **15** (30 mg, 0.092 mmol) was methylated using the diazomethane generation method described above for orthoester **44** (see Supplementary Information page S23); *N*-nitroso-*N*-methylurea (excess, approximately 40 mg), aqueous potassium hydroxide (40% by w.t., 0.5 mL) and diethyl ether (2 x 2 mL). Purification of the crude reaction mixture by silica gel column chromatography (1:1 diethyl ether:petroleum ether) afforded the title compound **45** as a colourless oil (23 mg, 0.068 mmol, 74%).

Colourless oil; IR (neat)/cm⁻¹: 3491, 3062, 3036, 2953, 1716, 1209, 1132, 907; ¹H NMR (400 MHz, CDCl₃) δ 7.23–7.21 (m, 6H), 7.13–7.07 (m, 4H), 5.80 (d, *J* = 8.4 Hz, 1H), 4.95 (dd, *J* = 8.4, 2.1 Hz, 1H), 3.99 (d, *J* = 2.1 Hz, 1H), 3.79 (s, 3H), 1.67–1.61 (m, 2H), 1.46–1.42 (m, 1H), 1.31–1.27 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 168.7, 138.4, 136.3, 128.4, 128.2, 128.1, 127.38, 127.35, 82.4, 77.4, 52.8, 28.2, 17.5, 17.0; HRMS (NSI) calculated for C₂₀H₂₁O₅ [M + H]⁺ 341.1384, found 341.1385.

Reaction of peroxide 1 with radical clock alkene 23

2-Phenylpenta-2,4-dienal 25¹¹

(*trans,trans*-2-Methoxy-3-phenylcyclopropyl)ethylene **23** (49 mg, 0.28 mmol) was dissolved in deuterated chloroform (0.5 mL). Deuterium oxide (5 μ L, 0.28 mmol) was added followed by cyclopropyl malonyl peroxide **1** (36 mg, 0.28 mmol). The reaction mixture was heated to 40 °C for 96 h. 40 μ L Of reaction mixture was added to 0.5 mL CDCl₃ and analysed by ¹H NMR spectroscopy. Complete consumption of starting materials was observed. To the NMR tube trifluoroacetic acid (40 μ L, 0.52 mmol) was added. The tube was shaken and heated to 40 °C for 18 h over which time all of the intermediates cleanly converted to 2-phenylpenta-2,4-dienal, cyclopropane-1,1-dicarboxylic acid and methanol (Figure S2). The reaction intermediates also decompose on silica. A sample of 2-phenylpenta-2,4-dienal for analysis was isolated from the crude reaction mixture using preparative TLC (20% ethyl acetate in petroleum ether, R_f = 0.54).

Colourless oil; v_{max} (ATR)/cm⁻¹ 2957, 2924, 2853, 1686; ¹H NMR (400 MHz, CDCl₃) δ 9.69 (1H, s), 7.45–7.34 (3H, m), 7.24–7.20 (2H, m), 7.07 (1H, d, *J* = 11.2 Hz), 6.72 (1H, ddd, J = 16.9, 11.2, 10.0 Hz), 5.86–5.80 (1H, m), 5.63–5.59 (1H, m); ¹³C NMR (101 MHz, CDCl₃) δ 193.6, 149.5, 142.2, 133.1, 132.4, 129.9, 128.4, 128.4, 128.0; *m*/*z* (CI): 158.9 [M + H]⁺; HRMS (APCI) calculated for C₁₁H₁₁O 159.0804 [M + H]⁺, found 159.0801.

Reaction of 23 with the peroxide 1 under standard reaction conditions led to a complex reaction mixture. The ¹H NMR spectra for this reaction mixture prior to the addition of TFA is shown at the bottom of Figure S2 (p S27). This confirms the consumption of both 23 and 1. It is possible that cyclopropane ring opening of the Newcomb clock could occur either before or after the addition of TFA. Potential intermediates for this reaction are collected in Figure S1. Each of these intermediates could converge onto the observed product 25. Due to the complex nature of this reaction mixture we did not fully purify and characterise the intermediates and reacted them immediately with TFA.

It is important to note that along with dioxygenation products aliphatic alkenes have the potential to form allylic alcohol products (for examples see *J. Org. Chem.* 2012, **77**, 921). Whilst the cyclopropyl ring of the Newcomb clock **23** would disfavour allylic alcohol formation, as we have not characterised the intermediates within this transformation (as noted above) the uncertainty of results obtained with this mechanistic probe should be considered.

Figure S1. Potential intermediates in the reaction between 1 and 23.

Figure S2. ¹H NMR spectra from reaction of alkene **23** with peroxide **1**.

Reaction Kinetics

Kinetic Order of Reaction: Kinetic data was obtained using homogeneous solutions of *trans*-stilbene **13** (n mmol), peroxide **1** (n mmol), and water (n mmol) in d_8 -1,4-dioxane (500 µL) in an NMR tube (Scheme S1). Clean conversion of starting materials to dioxygenated products **14** and **15** (Figure S3) allowed integration of the ¹H NMR spectra to be used as a means of measuring accurate conversion, and therefore concentration of reagents and products, at known time intervals (Figure S4).

Scheme S1. Homogeneous reaction conditions used to obtain kinetic data.

Figure S3. ¹H NMR spectrum of the dihydroxylation reaction at t = 4 hours showing the signals used to follow reaction conversion.

Figure S4. Reaction profile of the cyclopropyl malonoyl peroxide 1 (X, 0.5 M) mediated dihydroxylation of stilbene 13 (\diamond , 0.5 M) in the presence of one equivalent of water (0.5 M) leading to products 14 and 15 (\blacktriangle).

The reaction order in stilbene **13** (0.25 M) was determined using an excess of peroxide **1** (0.5 M) and water (0.5 M) under the conditions shown in Scheme S1, and the concentration of stilbene **13** followed over time (24 hours, 93% conversion). A linear correlation was observed in the logarithmic plot of stilbene **13** concentration against time, showing a first-order dependence in stilbene **13** (Figure S5).

The reaction order in peroxide 1 (0.25 M) was determined in the same way using an excess of stilbene 13 (0.5 M) and water (0.5 M) and followed for 24 hours (94% conversion). A linear correlation was observed in the logarithmic plot of peroxide 1 concentration against time, showing a first-order dependence in peroxide 1 (Figure S6).

Determining the kinetic order in water proved complex due to its dual role as a stoichiometric reagent and catalyst within the dihydroxylation reaction. It should be noted that reaction of alkenes with peroxide **1** proceeds in the absence of water to produce 7-membered 7-membered ring **14** and a complex mixture of unidentifiable co-products, presumably arising from decomposition of dioxonium intermediate **37**. Previous work (stilbene **13** (0.385 M), peroxide **1** (0.77 M), water (n M) in d₈-dioxane at 40 °C) had shown that increasing the concentration of water produced a small increase in the rate of reaction (Figure S7).¹² This was attributed to water's ability to hydrogen bond to the peroxide **1**, activating it toward nucleophilic attack by the alkene.

Figure S7. Conversion with increasing water equivalents $(1 (\blacksquare), 2 (\diamondsuit), 5 (\blacktriangle) and 10 (\times))$ against time.

Doubling the concentration of water (from 0.385 M to 0.77 M, 1 to 2 equiv respectively) only increased the initial rate of reaction by a factor of 1.06, consistent with water exerting a small catalytic effect.

With the approximation that the reaction is zero-order in water, the overall dihydroxylation reaction can be considered pseudo-second-order, being first-order in both alkene and peroxide as shown by equation S1.

Rate =
$$k$$
[alkene][peroxide] Equation S1

When equal concentrations (0.5 M) of all starting materials are used, [alkene] = [peroxide] so equation S1 can be re-written as:

$$Rate = k[alkene]^2$$
 Equation S2

Therefore the plot of 1/[alkene] against time (48 hours, 90% conversion) gives a linear relationship (Figure S8) with a second-order rate constant, $k = 0.32 \text{ M}^{-1} \cdot \text{hr}^{-1}$ (or $k = 8.89 \times 10^{-5} \text{ M}^{-1} \cdot \text{s}^{-1}$).

Figure S8. Linear plot of 1/[alkene] against time showing second-order kinetics of the dihydroxylation reaction.

Scheme S2. Reaction conditions for Hammett analysis.

Cyclopropyl malonoyl peroxide **1** (0.341 g, 2.67 mmol, 1 equiv) and 1,4-dinitrobenzene (0.112 g, 0.668 mmol, 0.25 equiv) were dissolved in CDCl₃ (4 mL) at 25 °C in a 10 mL round-bottom flask with stirring (Scheme S2). 40 μ L of the homogeneous solution was removed and added to an NMR tube containing CDCl₃ (500 μ L) and the ratio of internal standard (1,4-dinitrobenzene) to cyclopropyl malonoyl peroxide **1** was determined by integration of the ¹H NMR spectra. D₂O (48 μ L, 2.67 mmol, 1 equiv) and alkene (2.67 mmol, 1 equiv) were added to the reaction vessel and timing commenced immediately. Samples were removed for ¹H NMR analysis (as above; 40 μ L of reaction mixture added to 500 μ L CDCl₃ in NMR tube) at known time intervals.

The rate of reaction was monitored by consumption of cyclopropyl malonoyl peroxide **1** relative to the internal standard (1,4-dinitrobenzene) by integration of the corresponding ¹H NMR signals:

Cyclopropyl malonoyl peroxide 1: ¹H NMR (400 MHz, CDCl₃) δ 2.11 (s, 4H)

1,4-Dinitrobenzene: ¹H NMR (400 MHz, CDCl₃) δ 8.43 (s, 4H)

The conversion versus time data plotted in Figure S9 is an average of two runs for alkenes **16–22** using the method described in Scheme S2.

Figure S9. Plot of conversion against time for the reaction of peroxide 1 with substituted styrenes 16–22.

Initial rates of reaction were derived from Figure S9 and used to construct Hammett plots (Figures 10 and 11) based on literature σ or σ^+ values (Table S1).¹³

Styrene	Initial rate (M·s ⁻¹)	σ	σ^+
4-OMe 16	4.13×10^{-3}	-0.27	-0.78
4-Me 17	1.12×10^{-4}	-0.17	-0.31
3-Me 18	4.17×10^{-5}	-0.07	-0.07
H 19	$2.55 imes 10^{-5}$	0	0
4-Br 20	9.33×10^{-6}	0.23	0.15
3-Cl 21	4.92×10^{-6}	0.37	0.40
3-NO ₂ 22	$1.81 imes 10^{-6}$	0.71	0.67

Table S1. Initial rate of reaction between peroxide 1 and styrenes 16–22 and the
corresponding σ and σ^+ constants.

Figure S10. Curved Hammett plot for the reaction of peroxide 1 with substituted styrenes 16-22 using σ parameters.

Figure S11. Linear Hammett plot for the reaction of peroxide 1 with substituted styrenes 16–22 using σ^+ parameters.

¹⁸O-Induced ¹³C NMR Shift

(*E*)-Stilbene **13** (360 mg, 2 mmol), H₂O (36 μ L, 2 mmol, 1 equiv) and cyclopropyl malonoyl peroxide **1** (307 mg, 2 mmol, 1.2 equiv) were stirred in anhydrous CHCl₃ (3 mL) according to General Procedure **C** for 24 h at 40 °C but the hydrolysis step using 1M NaOH was not performed. Solvent was removed *in vacuo* and compound **41** isolated by silica gel flash chromatography (1:1 diethyl ether:petroleum ether, $R_{\rm f}$ 0.12). Two crystallisations by vapour diffusion crystallisation (chloroform:petroleum ether b.p. 30–40 °C) gave pure **41** as colourless needles. H₂O was replaced with ¹⁸OH₂ (97% ¹⁸O, 36 μ L, 2 mmol, 1 equiv) and the procedure repeated to afford ¹⁸O-labelled **41**.

[0.10 M] solutions of both unlabelled- and ¹⁸O-labelled **41** in CDCl₃ were prepared and 0.60 mL of each solution was added to separate NMR tubes. ¹³C NMR data was obtained using a Bruker Avance II 600 MHz spectrometer and the chemical shift values (ppm) were reported to 5 decimal places. The spectra were corrected to CDCl₃, $\delta = 77.16000$ (see Table S2). The difference in δ values for each carbon were calculated and reported in ppb.

Carbon #	¹⁶ 0	¹⁶ O corrected to CDCl ₃	¹⁸ 0	¹⁸ O corrected to CDCl ₃	$\Delta\delta$ ppm	Δδ ppb
$CDCl_3$	77.16033	77.16000	77.15953	77.16000	N/A	N/A
11	174.62628	174.62595	174.58778	174.58825	0.0385	38.5
15	171.00381	171.00348	171.00800	171.00847	-0.00419	-4.19
7	138.76712	138.76679	138.76622	138.76669	0.0009	0.9
4	135.55464	135.55431	135.55453	135.55500	0.00011	0.11
1/10	128.96355	128.96322	128.96100	128.96147	0.00255	2.55
2/9	128.64206	128.64173	128.63983	128.64030	0.00223	2.23
1/10	128.58778	128.58745	128.58464	128.58511	0.00314	3.14
2/9	128.52710	128.52677	128.52433	128.52480	0.00277	2.77
3	127.21489	127.21456	127.21382	127.21429	0.00107	1.07
8	126.92214	126.92181	126.92115	126.92162	0.00099	0.99
5	81.91898	81.91865	81.91493	81.91540	0.00405	4.05
6	76.72570	76.72537	76.72165	76.72212	0.00405	4.05
12	25.66526	25.66493	25.65508	25.65555	0.01018	10.18
13/14	22.22142	22.22109	22.21777	22.21824	0.00365	3.65
13/14	21.85441	21.85408	21.85163	21.85210	0.00278	2.78

 Table S2.
 ¹⁸O-induced
 ¹³C NMR shift data for unlabelled/¹⁸O-labelled
 41.

Figure S12. ¹³C NMR of unlabelled 41 (top) and ¹⁸O-labelled 41 (bottom).
DFT Calculations

DFT calculations were performed using the Gaussian09 suite of programs.¹⁴ Although widely used for organic systems, B3LYP¹⁵ has been shown to be particularly successful at calculating O—O, C—O and O—H bond energies¹⁶ and hence was chosen for this study. Transition states and local minima were found at the B3LYP/6-31G level of theory. The obtained geometries were then re-optimised where necessary and characterised using frequency calculations at the B3LYP/6-31+G** level of theory with chloroform PCM solvation. A classical approach was used when analysing frequency data whereby fully converged local minima (reactants and intermediates) contain no imaginary frequencies and first order saddle points (transition states, TS's) possess one imaginary frequency (which when animated moves in the anticipated direction).

Figure S14. IRC plot for TS2 leading to open chain zwitterion 39.

Each transition state was further characterised by following the intrinsic reaction coordinate (B3LYP/6-31G) (Figures S13 and S14). From this it was clear that each transition state led to a different intermediate. **TS1** formed cyclic intermediate **37** (Figure S13) whereas **TS2** formed an open-chain intermediate **39** (Figure S14). Formation of **37** could be due to a concerted reaction process. Upon closer inspection of the reaction coordinate path it was clear that a high-energy intermediate was present which reaffirms a concerted mechanism is not occurring. The relative energy of **38** was derived from a non-optimised structure as attempts to optimise this derivative from **TS1** all led to ring closure (Figure S13).

Figure S15. Atomic structure of 37 displaying ATP charge localisation.

The relative energies of **1** and **13** compared to charged species **37** and **39** was somewhat surprising (Figure S16). For **39** it was apparent from comparison of gas-phase and solution-phase energies that the PCM solvation stabilises the zwitterionic species. However, the

relative energy of **37** is similar in gas and solution phase. Closer inspection of **37** revealed three aspects which likely contribute to its stability. Firstly, an anion C—H interaction between the carboxylate and phenyl ring is present (2.25 Å) and secondly, the close proximity of the carboxylate to the oxonium ion (2.90 Å to the oxygen atoms and 2.43 Å to the electrophilic carbon centre). Finally, inspection of the APT (atomic polar tensor) charge distribution reveals extensive charge delocalisation within the carboxylate. Charge delocalisation is also prevalent within the oxonium ion and benzylic carbon sites (Figure S15). A combination of these three factors likely stabilise the zwitterion **37** and this gives rise to its low energy. When a basis set larger than 6-31G is used in the gas phase, upon optimisation, **37** ring closes to form lactone **40**. The gas-phase data presented is based on structures optimised with solvation and then frequency calculations performed at the B3LYP/6-31+G** level.

Figure S16. Calculated relative Gibbs free energies (kcal mol⁻¹). B3LYP/6-31+G** Chloroform PCM (Black), B3LYP/6-31+G** Gas Phase (Blue)

Diradical Mechanism

Local minima and transition states were found using analogous methodology to the ionic investigation. Spin-unrestricted B3LYP (UB3LYP) was used for all calculations involving radical species.

A transition state **TS3** (28.9 kcalmol⁻¹) to form the diradical species **S68** from peroxide **1** was found (Figure S17).

Figure S17. Peroxide Homolytic Cleavage (kcal mol⁻¹).

Apparent transition states for the reaction of diradical **S68** with stilbene were found. However, upon following the IRC it became clear that they were not true transition states for the reaction. Despite extensive searching no transition states were found for a radical pathway.

Single Electron Transfer (SET) Mechanism

Figure S18. SET Process

	S69	S70	Combined
Gas Phase	-4.1	156.0	151.9
Chloroform	-39.0	137.5	98.5
Table S3. Energies of SET Intermediates (kcal mol ⁻¹)			

The combined energies of **S69** and **S70** were found to be significantly higher (98.5 kcal mol⁻¹) compared to the ground state reactants (Table S3). This was found to be solely due to **S70** as **S69** is lower in energy than **1**. Despite the favourable formation of **S69**, it is likely to be highly reactive which could explain why malonyl peroxide **1** is not amenable to mass spectrometric analysis.

Cartesian Coordinates

The number of imaginary frequencies relate to structures optimised at the B3LYP/6-31+G** level with PCM chloroform solvation.

All Gibbs Free Energies are calculated at 298.15 K.

Peroxide 1

Gibbs Free Energies (hartrees):

B3LYP/6-31+G** Chloroform PCM = -493.711605

B3LYP/6-31+G** Gas Phase = -493.703630

0	4.329233	-1.054453	0.938960
С	3.357199	-1.374798	0.304004
0	3.458481	-1.516588	-1.071207
С	1.971279	-1.674410	0.693146
С	1.252665	-2.004729	-0.546396
0	2.147150	-1.909307	-1.601095
С	1.281879	-0.940460	1.855357
С	1.637311	-2.360803	2.028020
0	0.110495	-2.317727	-0.765747
Н	1.893070	-0.184030	2.336667
Н	0.854075	-3.109242	1.966534
Н	2.501626	-2.616002	2.632368
Н	0.245499	-0.677258	1.670851

Stilbene 13

Gibbs Free Energies (hartrees):

B3LYP/6-31+G** Chloroform PCM = -540.577615 $^{\circ}$

B3LYP/6-31+G** Gas Phase = -540.557129

С	3.595168	1.210355	0.004308
С	2.856495	2.396618	0.002866
С	1.461100	2.352577	0.001878
С	0.766074	1.126151	0.002302
С	1.528665	-0.061086	0.003778
С	2.921507	-0.017880	0.004751
С	-0.702319	1.150974	0.001217
С	-1.533857	0.086746	0.001455
С	-3.002229	0.111617	0.000376
С	-3.697314	-1.114761	0.000790
С	-5.092719	-1.158724	-0.000180
С	-5.831318	0.027574	-0.001611
С	-5.157575	1.255783	-0.002056
С	-3.764744	1.298916	-0.001062
Η	-5.601240	-2.118634	0.000187
Η	-3.131641	-2.043184	0.001896
Η	-3.269115	2.264580	-0.001428
Η	-5.721854	2.184125	-0.003154
Η	-6.916897	-0.001310	-0.002392
Η	-1.106520	-0.914518	0.002573
Η	-1.129674	2.152233	0.000121
Η	0.895371	3.280966	0.000770
Η	1.033105	-1.026782	0.004180
Η	3.364957	3.356558	0.002500
Η	3.485827	-0.946196	0.005839
Η	4.680747	1.239302	0.005095

5-Membered Ring Zwitterion 37

Gibbs Free Energies (hartrees):

B3LYP/6-31+G** Chloroform PCM = -1034.315781

B3LYP/6-31+G** Gas Phase = -1034.293099

	6.	1	
С	-4.985331	1.759805	-1.476177
С	-5.326849	0.411642	-1.671942
С	-4.394497	-0.594820	-1.391601
С	-3.117363	-0.258853	-0.933723
С	-2.776896	1.082125	-0.740091
С	-3.713529	2.088104	-1.005503
С	-6.680470	0.034042	-2.201790
0	-7.748362	0.686307	-1.391673
С	-8.575535	1.301973	-2.175912
0	-8.348306	1.164435	-3.443736
С	-7.007563	0.535717	-3.633085
С	-9.666609	2.124430	-1.663528
С	-9.113115	3.581011	-1.524620
0	-9.903505	4.444285	-1.109165
С	-7.054955	-0.497923	-4.720389
С	-7.883524	-1.626751	-4.621991
С	-7.904193	-2.571994	-5.647313
С	-7.090182	-2.403825	-6.773574
С	-6.261739	-1.284081	-6.874840
С	-6.248814	-0.330369	-5.853462
С	-10.663466	1.577117	-0.666011
С	-11.102862	1.874526	-2.071754
0	-7.898155	3.676050	-1.862045
Η	-10.568615	0.537401	-0.368020
Η	-11.686260	2.771594	-2.249465
Н	-1.787306	1.344240	-0.377876
Η	-2.396393	-1.042648	-0.722839
Н	-6.356727	1.365678	-3.912177
Н	-5.716829	2.542299	-1.664848
Н	-6.859192	-1.037270	-2.098896
Н	-3.454674	3.129999	-0.844218
Η	-5.610346	0.544494	-5.937030
Η	-8.523135	-1.767448	-3.754847
Η	-11.310364	1.038224	-2.732299
Η	-5.630990	-1.147469	-7.747630
Η	-7.105298	-3.143026	-7.568702
Η	-8.553025	-3.438706	-5.568088
Η	-10.949730	2.267902	0.119674
Н	-4.663202	-1.638378	-1.531955

Open Chain Zwitterion 39

Gibbs Free Energies (hartrees):

$B3LYP/6-31+G^{**}$ Chloroform PCM = -1034.281123

B3LYP/6-31+G** Gas Phase = -1034.243110

С	-1.832752	-0.680824	0.653063
С	-0.917431	-0.951446	-0.383464
С	-1.154917	-2.000616	-1.291976
С	-2.320709	-2.750331	-1.188666
С	-3.243154	-2.473482	-0.167786
С	-3.000469	-1.439755	0.741726
С	0.360371	-0.102479	-0.505604
0	-0.592029	4.236341	2.396801
С	-0.933385	3.264618	1.677194
0	-1.558507	2.223768	2.028667
С	1.162635	-0.926012	0.416664
С	-0.616861	3.379539	0.163874
С	-0.480563	2.123339	-0.619772
0	0.250013	1.188605	0.071724
С	2.091412	-1.937065	0.110787
С	2.555574	-2.192445	-1.214123
С	3.502793	-3.175121	-1.436152
С	4.007470	-3.920385	-0.355190
С	3.571564	-3.682445	0.956431
С	2.623241	-2.700957	1.192408
С	0.257199	4.532990	-0.336472
С	-1.217840	4.566459	-0.572106
0	-0.877656	1.902755	-1.748957
Н	0.666249	5.150256	0.455838
Н	-1.583567	4.384331	-1.577552
Н	-4.151071	-3.063619	-0.088202
Н	-2.517824	-3.544788	-1.901275
Н	0.955636	-0.731321	1.467479
Н	-1.660893	0.160979	1.322953
Н	0.709693	-0.056625	-1.536934
Н	-3.722923	-1.217588	1.520491
Н	2.273135	-2.503231	2.200681
Н	2.181411	-1.607142	-2.046259
Н	-1.816734	5.237629	0.034347
Η	3.975834	-4.262107	1.778826
Н	4.752310	-4.688382	-0.539820
Н	3.863357	-3.367183	-2.440684
Н	0.908157	4.341999	-1.184993
Н	-0.444183	-2.212221	-2.085532

High-Energy Zwitterion 38

Gibbs Free Energies (hartrees):

B3LYP/6-31+G** Chloroform PCM = -1034.258963

B3LYP/6-31+G** Gas Phase = -1034.231598

Number of imaginary frequencies=N/A (non-optimised structure)

~		1 717400	
C	2.295495	-1./1/406	-0.976556
С	1.726989	-1.590678	0.303938
С	2.520431	-1.866171	1.431966
С	3.856053	-2.252684	1.288447
С	4.414759	-2.372750	0.011151
С	3.630342	-2.107440	-1.117886
С	0.309710	-1.135252	0.528434
\bigcirc	0 270815	4 444774	1 107934
C	0.217507	3 18/209	0 967921
\circ	0.022460	2 350634	1 9/0/921
C	0.022400	1 570007	1.940497
C	-0.720034	-1.5/990/	-0.409017
C	0.370224	2.399276	-0.429892
C	0.301680	1.13/324	-0.609068
0	0.21/899	0.441401	0.585554
С	-2.115754	-1.480147	-0.158544
С	-2.647353	-0.861180	1.018602
С	-4.020282	-0.809904	1.220728
С	-4.900295	-1.354662	0.268496
С	-4.401863	-1.950584	-0.903733
С	-3.032703	-2.011030	-1.119126
С	1.311824	3.376482	-1.390669
С	-0.157184	3.471654	-1.593831
0	0.306449	0.553742	-1.713746
Н	1.818607	4.210813	-0.919615
Н	-0.601733	2.942821	-2.428975
Н	5.453008	-2.666910	-0.104067
н	4 457414	-2 453232	2 168955
н	-0 416141	-2 013439	-1 352865
H	1 714119	-1 464579	-1 854890
н	0 024476	-1 315627	1 566246
ц	1 061077	-2 191707	-2 110356
ц	-2 638753	-2 /6/319	-2 023387
и П	_1 078813	-0 383862	1 725836
л Ц	-0 655756	1 375695	_1 263226
п тт	-0.033730	4.373093	-1.203220
п т	-5.00/29/	-2.336912	-1.639075
н	-3.9/14//	-1.304006	0.433/31
H	-4.415245	-0.331433	2.109/84
Н	1.896146	2.///334	-2.079664
Η	2.093664	-1.759468	2.425087

Lactone 40

Gibbs Free Energies (hartrees):

B3LYP/6-31+G** Chloroform PCM = -1034.325054

B3LYP/6-31+G** Gas Phase = -1034.314026

		Zwitterio	n 37	-1034.315	781	5.82	
		Lactone 3	38	-1034.325	054	0	
				Free energ	gy /hartrees	E _{rel} /kcal m	ol ⁻¹
н –	2.024	1033	2.0	114/5/	-1.0808	28	
H	4./6	35/4 1522	-1.2	282634	-1.5711	12	
н –	3.24	/554	-3.3	3532/9	-1.3893	86 10	
н –	5.089	9617	-2.8	890151	0.2178	15	
Н —	4.74()972	-1.2	250990	2.0577	96	
Н	2.310	5704	-3.1	41498	-0.9543	13	
Н —	1.080	0492	-2.1	82626	-1.1673	63	
Н –	2.564	4016	-0.0	89587	2.2882	50	
Н	0.301	1002	4.8	846956	1.6614	88	
Н –	0.438	3907	0.3	805708	-1.3886	23	
Н	1.060	082	2.5	523372	1.2700	51	
Н —	0.344	4508	0.2	27388	1.6645	46	
Н –	2.793	1772	4.3	37424	-1.2898	14	
Н —	1.629	9660	5.7	63608	0.3870	21	
Н	3.984	4512	-3.2	277239	-0.2001	63	
Н	3.093	3598	-1.1	48064	-2.3211	26	
0	2.603	3965	0.0	46165	1.4700	04	
С	3.238	3676	-2.6	543759	-0.6703	35	
С	3.69	7974	-1.4	67746	-1.4776	50	
С –	2.710	5188	-0.7	97383	1.4778	58	
С –	3.944	4007	-1.4	54085	1.3487	74	
С –	4.138	3949	-2.3	874463	0.3162	93	
С –	3.103	3092	-2.6	534143	-0.5884	99	
С –	1.881	1419	-1.9	70910	-0.4651	07	
С –	1.678	3828	-1.0	46090	0.5706	79	
0	4.786	6624	-0.6	591549	1.6711	73	
С	3.724	1736	-0.6	58889	1.1032	86	
С	3.095	5902	-1.2	249739	-0.1120	12	
С –	0.376	5427	-0.3	803177	0.7066	16	
0	0.74	7920	-1.2	23951	0.6559	34	
С	1.839	9539	-0.4	89328	0.2716	93	
0	1.423	3273	0.5	50518	-0.5299	01	
с –	0.023	3864	0.6	574715	-0.4453	82	
C –	0.215	5552	4.2	26510	0.9350	31	
C –	1.300)787	4.7	42563	0.2173	56	
с –	1.95	3727	3.0	42276	-0.7233	42	
с с –	$1 52^{\circ}$	1540	2.1	31205	-0 9463	01	
с с –	0.210	2784	2.5	06419	-0 2235	4 9	U
C	0 210)243	29	14952	0 7189	79	

Transition State 1 TS1

Gibbs Free Energies (hartrees):

 $B3LYP/6-31+G^{**}$ Chloroform PCM = -1034.242268

B3LYP/6-31+G** Gas Phase = -1034.219966

Number of imaginary frequencies=1 (-314.94 cm⁻¹)

С	-2.293912	-1.739200	0.988099
С	-1.721561	-1.660653	-0.298429
С	-2.533551	-1.918897	-1.420810
С	-3.877236	-2.265691	-1.265956
С	-4.431982	-2.354317	0.016033
С	-3.637688	-2.085966	1.138940
С	-0.302073	-1.323981	-0.530698
0	-0.259046	4.415718	-1.229379
С	-0.221847	3.185596	-0.966165
0	-0.035525	2.252506	-1.877249
С	0.720782	-1.600309	0.410409
С	-0.378499	2.666748	0.432624
С	-0.292808	1.198195	0.581067
0	-0.150461	0.547019	-0.632745
С	2.124570	-1.490542	0.162405
С	2.657548	-0.898531	-1.018207
С	4.033466	-0.835798	-1.209448
С	4.909898	-1.356601	-0.242718
С	4.404009	-1.929011	0.934905
С	3.030184	-1.985893	1.141778
С	-1.322749	3.437631	1.380631
С	0.147740	3.544009	1.584671
0	-0.339392	0.609548	1.680432
Η	-1.840715	4.267932	0.913628
Η	0.594620	3.014396	2.418140
Η	-5.476352	-2.621982	0.139991
Η	-4.488703	-2.462091	-2.140362
Η	0.428169	-1.916417	1.405541
Η	-1.702412	-1.483692	1.858628
Η	-0.015165	-1.363357	-1.576659
Η	-4.069500	-2.137430	2.133136
Η	2.632446	-2.418282	2.054820
Η	1.990742	-0.445905	-1.742421
Η	0.646630	4.450149	1.259153
Η	5.083246	-2.318584	1.685278
Η	5.982020	-1.304305	-0.401304
Н	4.430738	-0.370213	-2.104639
Н	-1.900054	2.832302	2.069987
Н	-2.106055	-1.841582	-2.416172

Transition State 2 TS2

Note: For clarity, a mirror image of this structure is used within the main text

Gibbs Free Energies (hartrees):

B3LYP/6-31+G** Chloroform PCM = -1034.240511

B3LYP/6-31+G** Gas Phase = -1034.219293

Number of imaginary frequencies=1 (-333.60 cm⁻¹)

С	2.363608	-1.666567	-0.944249
С	1.679159	-1.714792	0.285398
С	2.313576	-2.289202	1.402462
С	3.596205	-2.832510	1.287167
С	4.264577	-2.792720	0.058242
С	3.648313	-2.201076	-1.053077
С	0.305397	-1.183489	0.435095
0	1.554815	4.203485	-1.330330
С	1.216555	3.076984	-0.886072
0	1.715564	1.943291	-1.339640
С	-0.707883	-1.527147	-0.491343
С	0.217244	2.910066	0.214256
С	-0.060803	1.514034	0.605433
0	0.566210	0.581150	-0.216890
С	-2.126391	-1.471385	-0.325287
С	-2.768481	-1.045389	0.872848
С	-4.156509	-1.049345	0.961817
С	-4.940098	-1.478197	-0.122016
С	-4.327214	-1.899341	-1.312728
С	-2.941230	-1.894209	-1.415230
С	-0.933011	3.935867	0.309855
С	0.167630	3.991841	1.310118
0	-0.780955	1.187495	1.569819
Η	-0.941504	4.668664	-0.489558
Η	-0.027085	3.635672	2.315338
Η	5.263717	-3.206778	-0.031004
Η	4.073927	-3.277268	2.154029
Η	-0.361986	-1.876266	-1.462434
Η	1.914083	-1.156838	-1.789308
Η	0.001118	-0.958806	1.452391
Η	4.176217	-2.141578	-1.999002
Η	-2.461782	-2.216295	-2.334661
Η	-2.175283	-0.672640	1.697052
Η	0.918806	4.767012	1.206715
Η	-4.933188	-2.225356	-2.150977
Η	-6.022107	-1.480628	-0.040150
Η	-4.635758	-0.714074	1.875134
Η	-1.896322	3.545495	0.618170
Η	1.798195	-2.314230	2.358455

Peroxide Homolytic Cleavage Transition State 3 TS3

Gibbs Free Energies (hartrees):

B3LYP/6-31+G** Chloroform PCM = -493.665534

B3LYP/6-31+G** Gas Phase = -493.657960

Number of imaginary frequencies= $1(-277.04 \text{ cm}^{-1})$

С	-0.002010	1.581146	-0.748882
С	0.003068	1.587124	0.739924
Η	-0.910292	1.845138	-1.278976
Η	0.927831	1.794620	-1.263463
Η	-0.901454	1.855588	1.274184
Η	0.936541	1.804869	1.246088
С	-0.021346	0.227536	0.001096
0	-1.186072	-1.884300	0.012109
0	1.117097	-1.878585	0.001403
С	-1.225172	-0.610694	0.008465
С	1.287777	-0.564089	0.000041
0	-2.399390	-0.030336	0.010901
0	2.373471	0.045690	-0.002362

Diradical S68

Gibbs Free Energies (hartrees):

B3LYP/6-31+G** Chloroform PCM = -493.676423

B3LYP/6-31+G** Gas Phase = -493.668946

С	-4.139720	0.114807	1.059203
С	-2.695032	-0.097020	0.877329
Η	-4.795915	0.025564	0.199817
Н	-4.585426	-0.101992	2.024216
Η	-2.319478	-0.338569	-0.111365
Η	-2.108773	-0.464196	1.713147
С	-3.210997	1.356564	1.037968
0	-3.027746	3.437154	-0.225073
0	-2.783789	3.258549	2.506832
С	-3.241543	2.188665	-0.181885
С	-2.952294	2.014189	2.334884
0	-3.484700	1.734048	-1.337425
0	-2.874274	1.393799	3.434875

Peroxide Radical Anion S69

Gibbs Free Energies (hartrees):

B3LYP/6-31+G** Chloroform PCM = -493.773791

B3LYP/6-31+G** Gas Phase = -493.710226

\sim	1 251007	1 050000	0 010200
0	4.351997	-1.032222	0.919380
С	3.347018	-1.381481	0.277463
0	3.471361	-1.518398	-1.123455
С	1.974496	-1.674983	0.685551
С	1.279081	-2.000613	-0.558178
0	2.174069	-1.906989	-1.647683
С	1.273236	-0.924348	1.864709
С	1.636604	-2.375979	2.041145
0	0.108402	-2.322588	-0.795438
Н	1.873275	-0.176000	2.378482
Н	0.838606	-3.115099	2.010505
Н	2.485421	-2.621988	2.675991
Н	0.226396	-0.669119	1.712989

Stilbene Radical Cation S70

Gibbs Free Energies (hartrees):

B3LYP/6-31+G** Chloroform PCM = -540.358573

B3LYP/6-31+G** Gas Phase = -540.308553

3.545331	1.203534	0.004277
2.820438	2.407003	0.002770
1.436880	2.373131	0.001791
0.735168	1.130317	0.002285
1.495300	-0.078771	0.003824
2.876902	-0.035604	0.004798
-0.690828	1.167421	0.001223
-1.545326	0.070424	0.001442
-2.971321	0.107527	0.000395
-3.673036	-1.135286	0.000773
-5.056594	-1.169157	-0.000203
-5.781484	0.034314	-0.001576
-5.113054	1.273452	-0.001966
-3.731453	1.316617	-0.001001
-5.580107	-2.119274	0.000091
-3.105874	-2.061527	0.001841
-3.231939	2.278859	-0.001308
-5.685162	2.195209	-0.003022
-6.866898	0.009617	-0.002342
-1.105705	-0.923529	0.002503
-1.130448	2.161374	0.000138
0.869717	3.299371	0.000626
0.995789	-1.041015	0.004245
3.343950	3.357121	0.002378
3.449011	-0.957361	0.005969
4.630745	1.228232	0.005050
	3.545331 2.820438 1.436880 0.735168 1.495300 2.876902 -0.690828 -1.545326 -2.971321 -3.673036 -5.056594 -5.781484 -5.113054 -3.731453 -5.580107 -3.105874 -3.231939 -5.685162 -6.866898 -1.105705 -1.130448 0.869717 0.995789 3.343950 3.449011 4.630745	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

¹H and ¹³C Spectra

Cyclopropane-1,1-dicarboxylic acid **5**: ¹H NMR (400 MHz, DMSO-d₆)

Cyclopropane-1,1-dicarboxylic acid **5**: ¹³C NMR (100 MHz, DMSO-d₆)

Cyclopentane-1,1-dicarboxylic acid **S-63**: ¹H NMR (400 MHz, DMSO-d₆)

Cyclopentane-1,1-dicarboxylic acid **S-63**: ¹³C NMR (100 MHz, DMSO-d₆)

4.5

4.0

ppm

3.5

3.0

4.00H

2.5

2.0

1.5

0.5

0.(

1.0

Cyclopropyl malonoyl peroxide 1: ¹H NMR (400 MHz, CDCl₃)

8.0

8.5

7.5

7.0

6.5

6.0

5.5

5.0

Cyclopropyl malonoyl peroxide 1: ¹³C NMR (100 MHz, CDCl₃)

S61

Cyclopentyl malonoyl peroxide 62: ¹H NMR (400 MHz, CDCl₃)

Cyclopentyl malonoyl peroxide **62**: ¹³C NMR (100 MHz, CDCl₃)

rel-(1*R*,2*R*)-1-Cyclohexyl-2-phenylethane-1,2-diol **30** (25:1 *syn:anti*): ¹H NMR (500 MHz, CDCl₃)

rel-(1R,2R)-1-Cyclohexyl-2-phenylethane-1,2-diol **30** (25:1 syn:anti): ¹³C NMR DEPTQ-135 (125 MHz, CDCl₃)

rel-(1*R*,2*R*)-1,2-Diphenylethane-1,2-diol **42**: ¹H NMR (400 MHz, CDCl₃)

rel-(1R,2R)-1,2-Diphenylethane-1,2-diol 42: ¹³C NMR DEPTQ-135 (100 MHz, CDCl₃)

rel-(1*R*,2*S*)-1-Phenylpropane-1,2-diol **51**: ¹H NMR (400 MHz, CDCl₃)

rel-(1*R*,2*S*)-1-Phenylpropane-1,2-diol **51**: ¹³C NMR DEPTQ-135 (100 MHz, CDCl₃)

rel-(1*R*,2*R*)-1-Phenylpropane-1,2-diol **52**: ¹H NMR (400 MHz, CDCl₃)

rel-(1*R*,2*R*)-1-Phenylpropane-1,2-diol **52**: ¹³C NMR DEPTQ-135 (100 MHz, CDCl₃)

rel-(1*R*,2*R*)-1-(4-Methoxyphenyl)propane-1,2-diol **54**: ¹H NMR (400 MHz, CDCl₃)

rel-(1*R*,2*R*)-1-(4-Methoxyphenyl)propane-1,2-diol **54**: ¹³C NMR DEPTQ-135 (100 MHz, CDCl₃)

rel-(1*R*,2*R*)-1-Mesitylpropane-1,2-diol **55**: ¹H NMR (250 MHz, CDCl₃)

rel-(1*R*,2*R*)-1-Mesitylpropane-1,2-diol **55**: ¹³C NMR DEPTQ-135 (62.5 MHz, CDCl₃)

rel-(1*R*,2*S*)-1,2-Diphenylethane-1,2-diol **56**: ¹H NMR (400 MHz, CDCl₃)

rel-(1R,2S)-1,2-Diphenylethane-1,2-diol 56: ¹³C NMR DEPTQ-135 (100 MHz, CDCl₃)

rel-(1*R*,2*S*)-2,3-Dihydro-1*H*-indene-1,2-diol **57**: ¹H NMR (400 MHz, CDCl₃)

rel-(1*R*,2*S*)-2,3-Dihydro-1*H*-indene-1,2-diol **57**: ¹³C NMR DEPTQ-135 (100 MHz, CDCl₃)

rel-(1*R*,2*S*)-1-(4-Methoxyphenyl)propane-1,2-diol **S66**: ¹H NMR (400 MHz, CDCl₃)

rel-(1R,2S)-1-(4-Methoxyphenyl)propane-1,2-diol S66: ¹³C NMR DEPTQ-135 (100 MHz, CDCl₃)

rel-(6R,7R)-6,7-Diphenyl-5,8-dioxaspiro[2.6]nonane-4,9-dione 14 ¹H NMR (400 MHz, CDCl₃)

rel-(6*R*,7*R*)-6,7-Diphenyl-5,8-dioxaspiro[2.6]nonane-4,9-dione 14: ¹³C NMR DEPTQ-135 (100 MHz, CDCl₃)

1-(((*rel*-1*R*,2*R*)-2-Hydroxy-1,2-diphenylethoxy)carbonyl)cyclopropanecarboxylic acid 15: ¹H NMR (400 MHz, CDCl₃)

1-(((*rel-1R,2R*)-2-Hydroxy-1,2-diphenylethoxy)carbonyl)cyclopropanecarboxylic acid 15: ¹H NMR DEPTQ-135 (100 MHz, CDCl₃)

1-(((*rel*-1*S*,2*R*)-2-Hydroxy-1,2-diphenylethoxy)carbonyl)cyclopropanecarboxylic acid 58: ¹H NMR (400 MHz, CDCl₃)

1-(((*rel-1S,2R*)-2-Hydroxy-1,2-diphenylethoxy)carbonyl)cyclopropanecarboxylic acid 58: ¹³C NMR DEPTQ-135 (100 MHz, CDCl₃)

rel-(6R,7S)-6,7-Diphenyl-5,8-dioxaspiro[2.6]nonane-4,9-dione 59: ¹H NMR (400 MHz, CDCl₃)

rel-(6R,7S)-6,7-Diphenyl-5,8-dioxaspiro[2.6]nonane-4,9-dione 59: ¹³C NMR DEPTQ-135 (100 MHz, CDCl₃)

2,2-Diphenylacetaldehyde 61: ¹H NMR (400 MHz, CDCl₃)

S90

2,2-Diphenylacetaldehyde 61: ¹³C NMR DEPTQ-135 (100 MHz, CDCl₃)

2-Cyclohexyl-1-phenylethanol S67: ¹H NMR (400 MHz, CDCl₃)

(trans,trans-2-Methoxy-3-phenylcyclopropyl)methanol ¹H NMR (400 MHz, CDCl₃)

S93

(*trans,trans*-2-Methoxy-3-phenylcyclopropyl)methanol ¹³C NMR (101 MHz, CDCl₃)

trans,trans-2-Methoxy-3-phenylcyclopropanecarbaldehyde ¹³C NMR (101 MHz, CDCl₃) crude reaction mixture

(trans,trans-2-Methoxy-3-phenylcyclopropyl)ethylene 23 ¹H NMR (400 MHz, CDCl₃)

S97

(*trans,trans-2*-Methoxy-3-phenylcyclopropyl)ethylene 23 ¹³C NMR (101 MHz, CDCl₃)

2-Cyclohexyl-1-phenylethanol S67: ¹³C NMR DEPTQ-135 (100 MHz, CDCl₃)

(*E*)-(2-Cyclohexylvinyl)benzene 29: ¹H NMR (400 MHz, CDCl₃)

(*E*)-(2-Cyclohexylvinyl)benzene 29: ¹³C NMR DEPTQ-135 (100 MHz, CDCl₃)

1-((*rel-4R*,5*R*)-2-Methoxy-4,5-diphenyl-1,3-dioxolan-2-yl) cyclopropanecarboxylic acid 43: ¹H NMR (400 MHz, CDCl₃)

1-((*rel-4R*,5*R*)-2-Methoxy-4,5-diphenyl-1,3-dioxolan-2-yl) cyclopropanecarboxylic acid 43: ¹³C NMR DEPTQ-135 (100 MHz, CDCl₃)

Methyl 1-((*rel-4R*,5*R*)-2-methoxy-4,5-diphenyl-1,3-dioxolan-2-yl) cyclopropane carboxylate 44: ¹H NMR (400 MHz, CDCl₃)

Methyl 1-((*rel-4R*,5*R*)-2-methoxy-4,5-diphenyl-1,3-dioxolan-2-yl) cyclopropane carboxylate 44: ¹³C NMR DEPTQ-135 (100 MHz, CDCl₃)

Methyl 1-((*rel-4R*,5*R*)-2-methoxy-4,5-diphenyl-1,3-dioxolan-2-yl) cyclopropane carboxylate 44: HSQC (400 MHz, CDCl₃)

Methyl 1-((*rel-4R*,5*R*)-2-methoxy-4,5-diphenyl-1,3-dioxolan-2-yl) cyclopropane carboxylate 44: HMBC (400 MHz, CDCl₃)

1-(*rel*-(1*R*,2*R*)-2-Hydroxy-1,2-diphenylethyl) 1-methyl cyclopropane-1,1-dicarboxylate 45: ¹H NMR (400 MHz, CDCl₃)

1-(*rel*-(1*R*,2*R*)-2-Hydroxy-1,2-diphenylethyl) 1-methyl cyclopropane-1,1-dicarboxylate 45: ¹³C NMR DEPTQ-135 (100 MHz, CDCl₃)

2-Phenylpenta-2,4-dienal 25: ¹H NMR (400 MHz, CDCl₃)

S110

S111

Mass Spectrometric Data

S113

X-Ray Crystallographic Data

rel-(6R,7R)-6,7-diphenyl-5,8-dioxaspiro[2.6]nonane-4,9-dione 14

Available from Cambridge Crystallographic Data Centre as supplementary publication number **CCDC 936075**.

Empirical formula	$C_{19}H_{16}O_4$
$M_r(g mol^{-1})$	308.32
Crystal system	Monoclinic
Space group	$P 2_1/n$
<i>a</i> / Å	9.5528(6)
<i>b</i> / Å	10.1091(5)
<i>c</i> / Å	16.1660(9)
β (°)	104.844(5)
$V/\text{\AA}^3$	1509.05(15)
Ζ	4
Temp K	123(2)
20max	54
λ/ Å	0.71073
Measured reflections	7058
Unique reflections	3293
R _{int}	0.0348
Observed rflns $[I > 2\sigma(I)]$	2293
μ (mm ⁻¹)	0.095
No. of parameters	208
R [on F , obs rflns only]	0.0515
wR [on F ² , all data]	0.1023
GoF	1.037
Largest diff. peak/hole/e Å-3	0.233/-0.233

1-(((*rel*-1*R*,2*R*)-2-hydroxy-1,2-diphenylethoxy)carbonyl) cyclopropane carboxylic acid 15

Available from Cambridge Crystallographic Data Centre as supplementary publication number **CCDC 936076**.

Empirical formula	$C_{19}H_{18}O_5$
$M_r(g mol^{-1})$	326.33
Crystal system	Monoclinic
Space group	$P 2_1/c$
<i>a</i> / Å	10.7552(7)
b/ Å	10.1502(7)
<i>c</i> / Å	14.9906(8)
β (°)	93.447(5)
$V/\text{\AA}^3$	1633.52(18)
Ζ	4
Temp K	153(2)
20max	55
λ/Å	0.71073
Measured reflections	13349
Unique reflections	3678
R _{int}	0.0492
Observed rflns $[I > 2\sigma(I)]$	2463
μ (mm ⁻¹)	0.096
No. of parameters	225
R [on F , obs rflns only]	0.0471
wR [on F ² , all data]	0.1191
GoF	1.028
Largest diff. peak/hole/e Å ⁻³	0.224/-0.262

$1-(((\mathit{rel-1S,2R})-2-hydroxy-1,2-diphenylethoxy) carbonyl) cyclopropane carboxylic acid 58$

Available from Cambridge Crystallographic Data Centre as supplementary publication number **CCDC 936077**.

Empirical formula	$C_{19}H_{18}O_5$
$M_r(g \text{ mol}^{-1})$	326.33
Crystal system	Orthorhombic
Space group	P 2 ₁ 2 ₁ 2 ₁
<i>a</i> / Å	5.6981(7)
b∕ Å	8.6185(7)
c/ Å	32.841(7)
β (°)	
$V/\text{\AA}^3$	1612.6(4)
Ζ	4
Temp K	123(2)
20max	146.4
λ/ Å	1.5418
Measured reflections	3829
Unique reflections	2650
R _{int}	0.0360
Observed rflns $[I > 2\sigma(I)]$	2185
μ (mm ⁻¹)	0.804
No. of parameters	223
<i>R</i> [on <i>F</i> , obs rflns only]	0.0626
wR [on F ² , all data]	0.1667
GoF	1.063
Largest diff. peak/hole/e Å ⁻³	0.318/-0.232

rel-(6*R*,7*S*)-6,7-diphenyl-5,8-dioxaspiro[2.6]nonane-4,9-dione 59

Available from Cambridge Crystallographic Data Centre as supplementary publication number **CCDC 936074**.

Empirical formula	$C_{19}H_{16}O_4$
$M_r(g mol^{-1})$	308.32
Crystal system	Monoclinic
Space group	P 2 ₁ /c
<i>a</i> / Å	13.4714(4)
b/ Å	5.8443(2)
<i>c</i> / Å	19.1637(6)
β (°)	103.276(3)
$V/\text{\AA}^3$	1468.45(8)
Ζ	4
Temp K	123(2)
20max	146.2
λ/Å	1.5418
Measured reflections	6142
Unique reflections	2878
R _{int}	0.0213
Observed rflns $[I > 2\sigma(I)]$	2434
μ (mm ⁻¹)	0.799
No. of parameters	208
R [on F, obs rflns only]	0.0406
wR [on F ² , all data]	0.1103
GoF	1.036
Largest diff. peak/hole/e Å ⁻³	0.302/-0.227

0

References

- 1. G. Sheldrick, *Acta Crystallographica Section A*, 2008, **64**, 112-122.
- 2. R. K. Singh and S. Danishefski, Org. Syn., 1990, Coll. Vol. 7, 411-414.
- 3. J. C. Griffith, K. M. Jones, S. Picon, M. J. Rawling, B. M. Kariuki, M. Campbell and N. C. O. Tomkinson, *J. Am. Chem. Soc.*, 2010, **132**, 14409-14411.
- 4. D. Kihumbu, T. Stillger, W. Hummel and A. Liese, *Tetrahedron: Asymm.*, 2002, **13**, 1069-1072.
- 5. D. Acetti, E. Brenna and C. Fuganti, *Tetrahedron: Asymm.*, 2007, **18**, 488-492.
- 6. M. J. González, J. González and R. Vicente, *Eur. J. Org. Chem.*, 2012, **2012**, 6140-6143.
- 7. M.-H. Le Tadic-Biadatti and M. Newcomb, J. Chem. Soc., Perkin Trans. 2, 1996, 1467-1473.
- 8. G. Cahiez, O. Gager, J. Buendia and C. Patinote, *Chemistry A European Journal*, 2012, **18**, 5860-5863.
- 9. Y.-L. Zhong and T. K. M. Shing, J. Org. Chem., 1997, 62, 2622-2624.
- 10. S. Superchi, M. I. Donnoli, G. Proni, G. P. Spada and C. Rosini, *J. Org. Chem.*, 1999, **64**, 4762-4767.
- 11. S. E. Gottschling, T. N. Grant, K. K. Milnes, M. C. Jennings and K. M. Baines, *J. Org. Chem.*, 2005, **70**, 2686-2695.
- 12. S. Picon, M. Rawling, M. Campbell and N. C. O. Tomkinson, *Org. Lett.*, 2012, **14**, 6250-6253.
- 13. (a) H. C. Brown and Y. Okamoto, J. Am. Chem. Soc., 1958, 80, 4979-4987; (b) C. Hansch, A. Leo and R. W. Taft, Chem. Rev., 1991, 91, 165-195.
- Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, 2009.
- 15. C. Lee, W. Yang and R. G. Parr, *Physical Review B*, 1988, **37**, 785-789.
- 16. B. S. Jursic and R. M. Martin, Int. J. Quantum Chem, 1996, **59**, 495-501.