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 S-2 

 

Details of the tunneling calculation 

Because the tunneling path is along an internal coordinate, the displacements of Cartesian 

coordinates along the path are generated by Wilson’s A matrix using eq. 1  

 Δx = A(x)ΔR  (S1) 

where A(x) is a generalized inverse matrix of Wilson B matrix at the current geometry x 

(where x is a vector of 3N Cartesian coordinates, where N is the number of atoms), and 

ΔR  is a column vector of internal coordinate displacements. Then the Cartesian 

coordinates are converted to isoinertial coordinates q by eq 2 of the main text. The end of 

the tunneling path is the geometry !q  at which V ( !q )−V (q0)#$ %&  becomes zero again (it is 

zero at the beginning of the tunneling path, with coordinates q0 , then positive, then 

comes back to zero). The location of the center of mass is unchanged by the tunneling 

process because it is carried out in internal coordinates, and in the presentation here we 

place the center of mass at the origin. 

Before calculating a tunneling path, its length is unknown. To calculate the 

imaginary action integral efficiently in the general case, we predefine a long enough 

tunneling path (longer than all the tunneling paths in the trajectories) and divide this 

predefined path into segments; in the current studies, the predefined path is 3.6 bohrs for 

bond length and 180 degrees for torsion angle, and the whole path is divided into 18 

segments. The relative potential energy of the end point of each segment relative to the 

starting point of the tunneling path is calculated, and if the relative potential energy is 

positive, the segment should be fully included in the real tunneling path; if segment M is 

the first segment whose end point has negative energy, a small step (10-3 bohr for bond 
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length and 0.1 degree for torsion angle) is used to search the precise ending point of the 

tunneling path. To calculate the distances ξi  of points i from the start of a curved path in 

isoinertial coordinates, an evenly spaced fine grid is created in internal coordinates along 

the tunneling path and the distance ξi
int  in internal coordinates is calculated for each grid 

point. Then ξi  in isoinertial coordinates is approximated as a sum of small chord lengths, 

i.e. ξi = q j −q j−1
j=1

i
∑ . Gauss-Legendre quadrature with 6 or more nodes is applied to the 

whole tunneling path. For a given Gauss-Legendre node ξk  that falls between ξi  and 

ξi−1 , we use linear interpolation to calculate the corresponding length in internal 

coordinate ξk
int , i.e.,

 
ξk
int =

(ξk − ξi−1)ξi
int + (ξi − ξk )ξi−1

int

ξi − ξi−1
. If more than one internal 

coordinate is used in the definition of the tunneling direction, this expression is used for 

each internal coordinate. Once all ξk
int  are known, the Cartesian coordinates of node k 

are calculated using Wilson’s A matrix iteratively, and then the potential energy is 

calculated for that Cartesian geometry. 

To conserve total angular momentum and total energy at the end of the tunneling 

path, the final atomic momenta are adjusted to satisfy 

 !xi × !pi
i=1

N

∑ = x0,i ×p0,i
i=1

N

∑   (S2) 

 !pi = p0,i   i = 1, …, N (S3) 

where x0,i  and p0,i  denote respectively the initial position vector of atom i in the 

unscaled Cartesian coordinates and the initial momentum of atom i. (Note that x0  in the 
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main text is a vector of length 3N obtained by joining the three components of all N x0,i  

into a single vector.)  The primed variables in eqs. S2 and S3 denote the same quantities 

as x0,i  and p0,i  but at the end of the tunneling step. The adjustment is accomplished as 

follows. 

The total angular momentum J, which must be conserved, is 

 J = xi ×pi
i=1

N
∑

 
 (S4) 

where xi  can be x0,i or !x  and where pi can be p0,i  or !pi . The change of Cartesian 

coordinates for atom i along the whole tunneling path is Δxi  so that 

 !xi = x0,i +Δxi   i = 1, …, N (S5) 

Equation S3 conserves the magnitudes of the atomic momenta, but not their 

directions. We denote the initial and final atomic momenta as 

 p0,i = p0,i u0,i = p0,iu0,i   i = 1, …, N (S6) 

 !pi = p0,i !ui = p0,i !ui   i = 1, …, N  (S7) 

where we have used eq. S3, and where u0,i  and !ui  are unit vectors. We choose to 

minimize the changes in direction subject to the constraints of eqs. S2 and S3. Thus we 

minimize the quantity 

 

f = u0,i − "ui
2

i=1

N

∑

= u0,iγ − "uiγ( )
2

γ=x,y,z
∑

i=1

N

∑
 (S8) 
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subject to the constraint of eq. S2. Note that u0,iγ  and u 'iγ  are direction cosines. Adding 

three Lagrange multipliers (λi, i =1,2,3 ) to enforce the constraint gives a new objective 

function: 

 

g = u0,iγ − #uiγ( )
2

γ=x,y,z
∑

i
∑ +λ1 Jx − p0,i ( #xiy #uiz − #xiz #uiy )

i
∑

&

'

(
(

)

*

+
+

+λ2 J y − p0,i ( #xiz #uix − #xix #uiz )
i
∑

&

'

(
(

)

*

+
+
+λ3 J z − p0,i ( #xix #uiy − #xiy #uix )

i
∑

&

'

(
(

)

*

+
+

 (S9) 

Then we combine all the final direction cosines into a single algebraic vector: 

 v1 = !u1x, v2 = !u1y,  v3 = !u1z,  v4 = !u2x,  etc.  (S10) 

Then the equations to be solved for the final direction cosines !uiγ  are 

 ∂g
∂v j

= 0,   j = 1, …, 3N (S11) 

 ∂g
∂λk

= 0.  k = 1, 2, 3 (S12) 

Equations S11 and S12 constitute 3N + 3 nonlinear equations, and they can be solved 

iteratively by the Newton-Raphson method for the 3N component of v  and the three 

components of λ .  Using the resulting v
 
along with eqs. S7 and S10, one obtains the 

momentum components after the tunneling event. 
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Illustration of the effect of varying the parameter η 

 

Figure S1. Linearity of the decay curves after induction time for various η values and the 

linear fitting results for obtaining rate constant.  

 

 


