Supporting Information

Orthogonal Construction of ZnSalen/Salophen Library as a

Colour Palette for One- and Two-Photon Live Cell Imaging

Da Xie, Jing Jing, Yuan-Bo Cai, Juan Tang, Juan-Juan Chen, Jun-Long Zhang*^a

^a Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China.

* To whom corresponding should be addressed.

E-mail: zhangjunlong@pku.edu.cn

Content

1 General experimental information	3
2 Synthesis and Characterization	4
2.1 Structure of salicylaldehydes and diamines used in this work	4
2.2 Synthesis and characterization of diamine	4
2.3 Synthesis and characterization of salicylaldehyde derivatives	5
2.4 Synthesis and characterization of ZnSalen/Salophen complexes	9
3 Photophysical properties	71
3.1 Determination of the fluorescence quantum yield of ZnSalen/Salophens	71
3.2 Determination of the two-photon absorption cross section of a1s1 , a3s1-a11s1 and a1s10 .	71
3.3 Simulation of the two-photon absorption cross section according to the two-state model	71
3.4 Cyclic voltammetry of a1s1-a11s1 and a1s10	72
3.5 Computational studies of a1s1-a11s1 and a1s10	73
3.6 Supporting Tables and Figures (Table S1~S8 and Figure S2-S6)	74
4 Determination of the octanol-water partition coefficients ($\log P$)	88
5 Live cell imaging	88
5.1 Cell culture	88
5.2 CCK-8 assay	88
5.3 Colocalization assay	89
5.4 Emission spectra in living cells	89
5.5 One-photon multicolour imaging	89
5.6 Two-photon confocal microscopy imaging	89
5.7 Multicolour two-photon confocal microscopy imaging	90
5.8 Supporting Tables and Figures (Table S9 and Figure S7-S9)	90
6 Reference	95

1 General experimental information

All solvents and chemicals were purchased from Alfa Aesar and J&K and used without further purification, unless specifically mentioned. Cellular imaging trackers were purchased from Invitrogen (Life Technologies). The ¹H NMR spectroscopic measurements were carried out using a Varian-300 NMR or a Bruker-400 NMR spectrometer, at 300 MHz or 400 MHz, respectively. Tetramethysilane (TMS) is used as the internal reference. The ¹⁹F NMR spectroscopic measurements were carried out using a Varian-300 NMR and CF₃COOH was selected as the external reference. Electrospray ionization (ESI) mass spectra were performed on a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer (FT-ICR, Bruker, USA). FT-IR spectra were taken on a Nicolet iN10 MX Fourier Transform Infrared Spectrometer. The steady-state absorption spectra were attained on an Agilent 8453 UV-vis spectrophotometer in 1cm path length quartz cells. Single-photon luminescence spectra were recorded using fluorescence lifetime and steady state spectrophotometer (Edinburgh Instrument FLS920). Quantum yields of one photon emission of all the synthesized compounds were measured relative to the fluorescence of Rhodamine B in ethanol or fluorescein in 1M NaOH aqueous solution. The two-photon absorption cross section of the probes was calculated at each wavelength relative to Rhodamine B as standard. The two photon fluorescence data was acquired using a Tsunami femtosecond Ti: Sapphire laser (pulse width \leq 100fs, 80 MHz repetition rate, tuning range 740-880 nm, Spectra Physics Inc., USA). Cyclic voltammetry experiments were recorded on a Shanghai Chenhua CHI660C electrochemical workstation. A glassy carbon electrode was selected as working electrode while SCE (saturated calomel electrode) served as reference electrode; the auxiliary electrode was a platinum wire. Confocal fluorescent images of living cells were performed using Nikon A1R-si Laser Scanning Confocal Microscope (Japan), equipped with lasers of 405/488/543/638 nm. Several lasers and channels were used to obtain images. Two photon fluorescence microscopy images were performed on a modified Olympus Fluoview FV1000MPE microscope system equipped with an excitation light laser provided by a modelocked Ti: sapphire laser, (Mai Tai, Spectra-Physics Inc., USA).

2 Synthesis and characterization

All the reactions were carried out under nitrogen. To monitor the reactions, thin-layer chromatography was performed and visualized by 254 nm UV-illumination.

2.1 Structure of salicylaldehydes and diamines used in this work:

Figure S1 Summary of the structures of salicylaldehydes and diamines used in this work

2.2 Synthesis and characterization of diamine

All diamines except *a***6** are commercially available. Thiophene-3,4-diamine (a10) was used in the form of dihydrochloride.

Synthesis of a6

Diamine *a***6** was prepared according to the reported literature¹. Light gray solid was obtained. ¹H NMR (400MHz, CDCl₃): δ (ppm) 3.40 (4H, s, NH₂). ¹⁹F NMR (282MHz, CH₂Cl₂): δ (ppm) -95.82 (2F, m), -85.54 (2F, m). FT-IR (KBr pellete, cm⁻¹): 3441 (s, N-H), 3341 (s, N-H).

2.3 Synthesis of salicylaldehyde derivatives

Salicylaldehyde **s1** and **s9** are commercially available. Salicylaldehyde **s6**, **s7**, **s8** were prepared according to the reported literature.^{2,3}

2.3.1 Synthesis of s2

Scheme S1. Synthetic route for preparation of s2: (i) 3-bromoprop-1-yne, K₂CO₃, CH₃CN, reflux, 12h; (ii) BBr₃, DCM, -78 °C to r.t., 16h; (iii-1) POCl₃, DMF, 0°C to r.t., 12h; (iii-2) icy H₂O.

s2-1 3-methoxy-N,N-di(prop-2-ynyl)aniline

A reaction mixture of 3-methoxyaniline (2.0 g, 15.0 mmol), 3-bromoprop-1-yne (3.6 g, 30.0 mmol) and K_2CO_3 (2.0g, 15.0 mmol) in acetonitrile (50 mL) was refluxed under nitrogen for 12 h. After filtration and evaporation, the remaining liquid residue was purified by column chromatography to give **s2-1** as yellow oil (2.0g, 68%).

¹H NMR (CDCl₃, 300 MHz): δ (ppm) 7.20 (1H, t, J = 16.2 Hz, ArH), 6.56 (1H, dd, J₁ = 8.1 Hz, J₂ = 2.1 Hz, ArH), 6.52 (1H, t, J = 4.8 Hz, ArH), 6.45 (1H, dd, J₁ = 8.1 Hz, J₂ = 2.1 Hz, ArH), 4.12 (4H, d, J = 2.4 Hz, 2× CH₂), 3.8 (3H, s, OCH₃), 2.26 (2H, t, J = 4.8 Hz, 2× C≡CH).

s2-2 3-(diprop-2-ynylamino)phenol

Compound **s2-1** (2.0 g, 10.0 mmol) was dissolved in 10 mL redistilled CH_2Cl_2 , and boron tribromide (1.2 mL, 12.0 mmol) was added at -78°C. The mixture was warmed slowly to room temperature and stirred for 16 h. Cold methanol was added to quench extra boron tribromide. After evaporation and extraction (using CH_2Cl_2 and H_2O), the residue was purified by column chromatography to give **s2-2** as yellow oil (0.9 g, 49%).

¹H NMR (300 MHz, CDCl₃): δ (ppm) 7.11 (1H, t, J = 5.4 Hz, ArH), 6.50 (1H, dd, J₁ = 7.8 Hz, J₂ = 2.4 Hz, ArH), 6.45 (1H, t, J = 4.5 Hz, ArH), 6.37 (1H, dd, J₁ = 7.8 Hz, J₂ = 2.4 Hz, ArH), 4.05 (4H, d, J = 2.4 Hz, 2× CH₂), 2.24 (2H, t, J = 4.8 Hz, 2× C≡CH).

s2 4-(diprop-2-ynylamino)-2-hydroxybenzaldehyde

POCl₃ (0.8 mL, 5.0 mM) was added slowly in anhydrous DMF (5 mL) in the ice-water bath and stirred for 30 min. Then compound **s2-2** (0.9 g, 5.0 mmol) dissolved in DMF was added in drops. The mixture was slowly warmed to room temperature and stirred overnight. The reaction solution was poured into ice, stirred for a few minutes, and filtered to give **s2** as brown solid (610.0 mg, 58%).

¹H NMR (300 MHz, CDCl₃): δ (ppm) 11.48 (1H, s, OH), 9.63 (1H, s, CHO), 7.40 (1H, d, J = 8.4 Hz, ArH), 6.50 (1H, dd, J₁ = 8.4 Hz, J₂ = 2.7 Hz, ArH), 6.36 (1H, d, J = 2.4 Hz, ArH), 4.03 (4H, d, J = 2.4 Hz, 2× CH₂), 2.24 (2H, t, J = 2.4 Hz, 2× C≡CH).

2.3.2 Synthesis of s3

Scheme S2. Synthetic route for preparation of s3: (i) $Br(CH_2)_4Br$, KOH, CH₃CN, reflux, 12h; (ii-1) POCl₃, DMF, 0°C to r.t., 30min; (ii-2) icy H₂O, 30min. (iii) BBr₃, DCM, -78°C to r.t., 16h.

s3-1 1-(3-methoxyphenyl)pyrrolidine

3-methoxy-N-methylaniline (3 g, 21.9 mmol), 1,4-dibromobutane (5 g, 23.1 mmol) and KOH (3.1 g, 55.4 mmol) were mixed in 30 mL CH₃CN and the mixture was refluxed for 12 h. After filtration and evaporation, the remaining liquid residue was purified by column chromatography to give **s3-1** as yellow oil (2.33 g, 60%).

¹H NMR (300 MHz, CDCl₃): δ (ppm) 7.13 (1H, t, J = 8.1Hz, ArH), 6.22 (2H, m, ArH), 6.11 (1H, t, J = 2.4 Hz, ArH), 3.80 (3H, s, OCH₃), 3.26 (4H, m, 2× NCH₂), 1.99 (4H, m, 2× NCH₂CH₂).

s3-2 2-methoxy-4-(pyrrolidin-1-yl)benzaldehyde

 $POCl_3$ (1.3 mL, 13.9 mmol) was slowly added into anhydrous DMF (1.5 mL) in ice-water bath and stirred for 30 minutes. Then **s3-1** (2.5g, 14.1 mmol) was added in drops. The mixture was slowly warmed to room temperature and stirred for additional 20 min. Then the reaction was quenched by 10 mL icy water with vigorous stirring and saturated aqueous NaHCO₃ solution was used to tune pH to 7~8. Ethyl acetate is used as extractant, each 20 mL. The organic phase containing only one solute (monitored by TLC, PE: EA 3:1) was merged and dried by anhydrous Na₂SO₄. After evaporation, product **s3-2** was obtained as a while solid (1.80 g, 62%).

¹H NMR (300 MHz, CDCl₃): δ (ppm) 10.13 (1H, s, CHO), 7.70 (1H, d, J = 8.7 Hz, ArH), 6.18 (1H, dd, J₁ = 8.8 Hz, J₂ = 1.4 Hz, ArH), 5.91 (1H, d, J = 1.7 Hz, ArH), 3.89 (3H, s, OCH3), 3.44 (4H, m, NCH₂), 2.03 (4H, m, NCH₂CH₂).

s3 2-hydroxy-4-(pyrrolidin-1-yl)benzaldehyde

s3-2 (1.45 g, 7.1 mmol) was dissolved in 30 mL CH_2Cl_2 under N_2 , and boron tribromide (1.6 mL, 17.2 mmol) was added at -78°C. The mixture was warmed slowly to room temperature and stirred for 16 hours. Cold methanol and icy water was added to quench reaction and saturated aqueous NaHCO₃ solution was used to tune pH to 7~8. After extracting three times by ethyl acetate, each

25 mL, the organic layer was merged and dried by anhydrous Na₂SO₄. It was then purified by column chromatography (eluent PE: EA 10:1) to give product **s3** as a yellow solid (1.04 g, 77%). ¹H NMR (300 MHz, CDCl₃): δ (ppm) 11.69 (1H, s, OH), 9.50 (1H, s, CHO), 7.28 (1H, d, J = 8.9Hz, ArH), 6.17 (1H, dd, J₁ = 2.1Hz, J₂ = 8.7Hz, ArH), 5.97 (1H, d, J = 2.0Hz, ArH), 3.38 (4H, t, J = 6.6Hz, NCH₂), 2.04 (4H, m, NCH₂CH₂).

2.3.3 Synthesis of s4

Scheme S3. Synthetic route for preparation of s4: (i) BrCH₂CH₂Br, KHCO₃, CH₃CN, reflux, 12h; (ii-1) POCl₃, DMF, 0°C to r.t., 30min; (ii-2) icy H₂O, 30min. (iii) BBr₃, DCM, -78°C to r.t., 16h; (iv) morpholine, KHCO₃, KI, CH₃CN, reflux, 12h.

s4-1 N-(2-bromoethyl)-3-methoxy-N-methylaniline

A reaction mixture of 3-methoxy-N-methylaniline (2.0 g, 14 mmol), 1, 2-dibromoethane (27.5 g, 140 mmol) and KHCO₃ (1.7 g, 17 mmol) in acetonitrile (30 mL) was refluxed under nitrogen for 12 h. After filtration and evaporation, the remaining liquid residue was purified by column chromatography to give **s4-1** as yellow oil (2.04 g, 57%).

¹H NMR (300 MHz, CDCl₃): δ (ppm) 7.01 (1H, m, ArH), 6.20 (3H, m, ArH), 4.91 (3H, s, OCH₃), 3.69 (2H, t, J = 15.3Hz, NCH₂), 3.49 (2H, t, J = 15.3Hz, CH₂Br), 2.96 (3H, s, NCH₃).

s4-2 4-((2-chloroethyl)(methyl)amino)-2-methoxybenzaldehyde

 $POCl_3$ (1.0 mL, 10.7 mmol) was slowly added into anhydrous DMF (1.2 mL) in ice-water bath and stirred for 30 minutes. Then **s4-1** (3.0 g, 12.3 mmol) was added in drops. The mixture was slowly warmed to room temperature and stirred for additional 20 minutes. Then the reaction was quenched by 10mL icy water with vigorous stirring and saturated aqueous NaHCO₃ solution was used to tune pH to 7~8. Ethyl acetate is used as extractant, each 20 mL. The organic phase containing only one solute (monitored by TLC, PE: EA 3:1) was merged and dried by anhydrous Na₂SO₄. After evaporation, product **s4-2** was obtained as a while solid (2.15 g, 74%).

¹H NMR (400 MHz, CDCl₃): δ (ppm) 10.18 (1H, s, CHO), 7.44 (1H, d, J = 8.9Hz, ArH), 6.32 (1H, dd, J₁ = 2.2Hz, J₂ = 8.8Hz, ArH), 6.09 (1H, d, J = 2.2Hz, ArH), 3.91 (3H, s, OCH₃), 3.78 (2H, t, J = 6.8Hz, NCH₂), 3.67 (2H, t, J = 6.5Hz, CH₂Br), 3.14 (3H, s, NCH₃).

s4-2 (1.2 g, 5.3 mmol) was dissolved in 30mL CH₂Cl₂ under N₂, and boron tribromide (1.2 mL, 12.9 mmol) was added at -78°C. The mixture was warmed slowly to room temperature and stirred for 16 hours. Cold methanol and icy water was added to quench reaction and saturated aqueous NaHCO₃ solution was used to tune pH to 7~8. After extracting three times by ethyl acetate, each 25 mL, the organic layer was merged and dried by anhydrous Na₂SO₄. It was then purified by column chromatography (eluent PE: EA 10:1) to give product **s4-3** as yellow solid (1.02 g, 91%). ¹H NMR (300 MHz, CDCl₃): δ (ppm) 11.58 (1H, s, OH), 9.58 (1H, s, CHO), 7.35 (1H, d, J = 8.7 Hz, ArH), 6.33 (1H, dd, J₁ = 8.7 Hz, J₂ = 2.4 Hz, ArH), 6.14 (1H, d, J = 2.4 Hz, ArH), 3.77 (2H, t, J = 13.2 Hz, NCH₂), 3.67 (2H, t, J = 13.2 Hz, CH₂Br), 3.14 (3H, s, NCH₃),.

s4 2-hydroxy-4-(methyl(2-morpholinoethyl)amino)benzaldehyde

s4-3 (1.4 g, 6.6 mmol), KHCO₃ (1.32 g, 13.2 mmol), KI (3.3 g, 19.9 mmol) was mixed by 40 mL CH₃CN under N₂ and morpholine (5 mL, excess) was then added dropwise. The mixture was refluxed for 12 hours, and after filtration, excess morpholine and solvent of the filtrate was removed under reduced pressure. The brown residue was dissolved in CH₂Cl₂, and was then purified by column chromatography to give **s4** as orange oil (1.45 g, 84%).

¹H NMR (400 MHz, CDCl₃): δ (ppm) 11.60 (1H, s, OH), 9.53 (1H, s, CHO), 7.29 (1H, d, J = 8.9Hz, ArH), 6.30 (1H, dd, J₁ = 2.3Hz, J₂ = 8.9Hz, ArH), 6.10 (1H, d, J = 2.1Hz, ArH), 3.71 (4H, m, CH₂OCH₂), 3.54 (2H, t, J = 7.2Hz, N(CH₃)CH₂), 3.07 (3H, s, NCH₃), 2.56 (2H, t, J = 7.2Hz, N(CH₃)CH₂CH₂), 2.50 (4H, m, CH₂CCH₂OCH₂CH₂).

2.3.4 Synthesis of s5

Scheme S4. Synthetic route for preparation of s5: (i) piperidine, KHCO₃, KI, CH₃CN, reflux, 12h.

s5 2-hydroxy-4-(methyl(2-(piperidin-1-yl)ethyl)amino)benzaldehyde

s4-3 (0.25 g, 0.95 mmol), KHCO₃ (0.15 g, 1.5 mmol), KI (0.24g, 1.5 mmol) was mixed with 20 mL CH₃CN under N₂ and piperidine (0.5 mL, excess) was then added dropwise. The mixture was refluxed for 12h, and after filtration, excess piperidine and solvent of the filtrate was removed under reduced pressure. The brown residue was dissolved in CH₂Cl₂, which was purified by column chromatography to give s5 as red solid (0.14 g, 55%).

¹H NMR (400 MHz, CDCl₃): δ (ppm) 11.61 (1H, s, OH), 9.52 (1H, s, CHO), 7.28 (1H, d, J = 8.9 Hz, ArH), 6.31 (1H, m, ArH), 6.09 (1H, d, J = 2.3 Hz, ArH), 3.55 (2H, m, N(CH₃)CH₂), 3.06 (3H,

s, NCH₃), 2.52 (2H, m, N(CH₃)CH₂CH₂), 2.46 (4H, m, 2× CH₂), 1.61 (4H, m, 2× CH₂), 1.47 (2H, m, CH₂).

2.3.5 Synthesis of s10

Scheme S5. Synthetic route for preparation of **s10**: (i) BrCH₂CH₂Br, KHCO₃, CH₃CN, reflux, 12h; (ii) morpholine, KHCO₃, KI, CH₃CN, reflux, 12h.

s10-1 4-(2-bromoethoxy)-2-hydroxybenzaldehyde

A reaction mixture of 2,4-dihydroxybenzaldehyde, 1,2-dibromoethane and KHCO₃ in acetonitrile was refluxed under nitrogen for 12 h. After filtration and evaporation, the remaining liquid residue was purified by column chromatography to give **s10-1** as white solid (60%).

¹H NMR (400 MHz, CDCl₃): δ (ppm) 11.46 (1H, s, OH), 9.74 (1H, s, CHO), 7.46 (1H, d, J = 8.7 Hz, ArH), 6.57 (1H, dd, J₁ = 8.7 Hz, J₂ = 2.4 Hz, ArH), 6.43 (1H, d, J = 2.3 Hz, ArH), 4.34 (2H, t, J = 6.2 Hz, CH₂Br), 3.65 (2H, t, J = 6.2 Hz, OCH₂).

s10 2-hydroxy-4-(2-morpholinoethoxy)benzaldehyde

s10-1 (0.8 g, 3.3 mmol), KHCO₃ (0.65g, 6.5 mmol), KI (1.63 g, 9.8 mmol) was mixed with 40 mL CH₃CN under N₂ and morpholine (5 mL, excess) was then added dropwise. The mixture was refluxed for 12h, and after filtration, excess morpholine and solvent of the filtrate was removed under reduced pressure. The brown residue was dissolved in CH₂Cl₂, which was purified by column chromatography to give **s10**as orange oil (0.54 g, 66%).

¹H NMR (400 MHz, CDCl₃): δ (ppm) 11.46 (1H, s, OH), 9.72 (1H, s, CHO), 7.43 (1H, d, J = 8.7 Hz, ArH), 6.55 (1H, dd, J₁ = 8.7 Hz, J₂ = 2.3 Hz, ArH), 6.43 (1H, d, J = 2.3 Hz, ArH), 4.16 (2H, t, J = 6.2 Hz, CH₂Br), 3.73 (4H, m, CH₂CH₂OCH₂CH₂), 2.82 (2H, t, J = 6.2 Hz, OCH₂), 2.57 (4H, m, CH₂OCH₂).

2.4 Synthesis and characterization of ZnSalen/Salophen complexes

2.4.1 Synthetic Procedures:

Unless specially mentioned, ZnSalen/Salophens are synthesized according to the following general methods.

Two equivalents of salicylaldehyde derivative and one equivalent of diamine were dissolved in ethanol. After stirring at room temperature for 1h, 1.05 equiv. of $Zn(OAc)_2 \cdot H_2O$ was added and the mixture was kept stirring and refluxing for additional 16h, during which some precipitate formed. After cooling to the room temperature, the mixture was filtered and the solid was washed in turn by water, methanol, ethyl acetate (or dichloromethane, acetone), and petroleum ether, 1mL each time, to remove the extra zinc salt, diamine and salicylaldehyde derivatives. After dried under reduced pressure, the product was obtained as powder or sheet-like solid.

A typical synthetic procedure of ZnSalen (synthesis of **a1s9**):

Scheme S6. Synthetic route for preparation of a1s9.

s9 (50.0 mg, 0.23 mmol) and **a1** (12.4 mg, 0.12 mmol) were dissolved in 10mL ethanol. After stirring at room temperature for 1h, $Zn(OAc)_2 \cdot H_2O$ (25.3mg, 0.12 mmol) was added and the mixture was kept stirring and refluxing for additional 16h. After cooling to the room temperature, the mixture was filtered and the brown solid was washed in turn by water, methanol, ethyl acetate and petroleum ether, 1mL each time. After drying under reduced pressure, the product **a1s9** was obtained as red-brown powder.

2.4.2 Characterization of ZnSalen/Salophens

a1s1

Dark green solid, yield 75%.

¹H NMR (400 MHz, d⁶-DMSO): δ (ppm) 8.12 (2H, s, 2× CH=N), 7.18 (2H, d, J = 9.1Hz, ArH), 6.23 (2H, d, J = 9.1Hz, ArH), 5.83 (2H, s, ArH), 3.41 (8H, m, 4× CH₂), 1.15 (12H, t, J = 6.3Hz, 4× CH₃).

HR MS (ESI⁺, DMSO, FT-ICR): m/z calcd. for $C_{26}H_{29}N_6O_2Zn$ ([M+H]⁺) 521.16380, found 521.16324.

FT-IR (KBr pellete, cm⁻¹): 2974 (C-H), 2930 (C-H), 2210 (C \equiv N), 1616 (C=N), 1568 (Ar C=C), 1489 (Ar C=C), 1443 (Ar C=C), 1180 (C-O).

UV-vis (DMSO) λ_{max}, nm (log ε): 387 (4.79), 439 (4.39), 593 (4.93)

a1s2

Brown solid, yield 77%.

¹H NMR (400 MHz, d⁶-DMSO): δ (ppm) 8.27 (2H, s, 2× CH=N), 7.30 (2H, d, J = 9.2Hz, ArH), 6.37 (2H, dd, J₁ = 9.1Hz, J₂ = 2.4Hz, ArH), 6.10 (2H, d, J = 2.4Hz, ArH), 4.27 (8H, d, J = 1.9Hz, 4× CH₂), 3.26 (4H, t, J = 2.2Hz, 4× C=CH).

HR MS (ESI⁺, DMSO, FT-ICR): m/z calcd. for $C_{30}H_{21}N_6O_2Zn$ ([M+H]⁺) 561.10120, found 561.10172.

FT-IR (KBr pellete, cm⁻¹): 3283 (C=C), 2214 (C=N), 1614 (C=N), 1574 (Ar C=C), 1499 (Ar C=C), 1452 (Ar C=C), 1180 (C-O).

UV-vis (DMSO) λ_{max} , nm (log ϵ): 377 (4.69), 420 (4.33), 578 (4.78).

Brown solid, yield 69%.

¹H NMR (400 MHz, d⁶-DMSO): δ (ppm) 8.13 (2H, s, 2× CH=N), 7.18 (2H, d, J = 9.0Hz, ArH), 6.15 (2H, dd, J₁ = 1.9Hz, J₂ = 9.0Hz, ArH), 5.71 (2H, d, J = 1.7Hz, ArH), 3.36 (8H, m, 4× NCH₂), 1.96 (8H, m, 4× NCH₂CH₂).

HR MS (ESI⁺, DMSO, FT-ICR): m/z calcd. for C₂₆H₃₅N₆NaO₂Zn ([M+Na]⁺) 549.19324, found 549.19400.

FT-IR (KBr pellete, cm⁻¹): 2970 (C-H), 2860 (C-H), 2205 (C≡N), 1620 (C=N), 1577 (Ar C=C), 1516 (Ar C=C), 1495 (Ar C=C), 1447 (Ar C=C), 1188 (C-O).

UV-vis (DMSO) λ_{max} , nm (log ϵ): 387 (4.70), 439 (4.33), 593 (4.81)

a1s4

Black solid, yield 50%.

¹H NMR (400 MHz, d⁶-DMSO): δ (ppm) 8.14 (2H, s, 2× CH=N), 7.17 (2H, d, J = 9.2 Hz, ArH), 6.31 (2H, d, J = 9.1 Hz, ArH), 5.84 (2H, s, ArH), 3.59 (8H, s, 2× CH₂OCH₂), 3.45 (4H, m, 2× N(CH₃)CH₂),

3.01 (6H, s, 2× CH₃), 2.35 (8H, s, 2× CH₂CH₂OCH₂CH₂), 2.30 (4H, t, J = 6.8Hz, 2× N(CH₃)CH₂CH₂).

HR MS (ESI⁺, DMSO, FT-ICR): m/z calcd. for $C_{32}H_{39}N_8O_4Zn$ ([M+H]⁺) 663.23852, found 663.23832.

FT-IR (KBr pellete, cm⁻¹): 2949(C-H), 2208 (C=N), 1614 (C=N), 1568 (Ar C=C), 1516 (Ar C=C), 1493 (Ar C=C), 1441 (Ar C=C), 1180 (O-H).

UV-vis (DMSO) λ_{max} , nm (log ϵ): 387 (4.75), 437 (4.45), 593 (4.82).

a1s5

Viridis solid, yield 49%.

¹H NMR (400 MHz, d⁶-DMSO): δ (ppm) 8.14 (2H, s, 2× CH=N), 7.16 (2H, d, J = 9.3Hz, ArH), 6.26 (2H, dd, J₁ = 9.2Hz, J₂ = 2.4Hz, ArH), 5.83 (2H, d, J = 2.3Hz, ArH), 3.51 (4H, m, 2× N(CH₃)CH₂), 3.02 (6H, s, 2× CH₃), 2.43 (4H, m, 2× N(CH₃)CH₂CH₂), 2.39 (8H, m, 4× CH₂), 1.49 (8H, m, 4× CH₂), 1.38 (4H, m, 2× CH₂).

HR MS (ESI⁺, DMSO, FT-ICR): m/z calcd. for $C_{34}H_{43}N_8O_2Zn$ ([M+H]⁺) 659.27950, found 659.27968.

FT-IR (KBr pellete, cm⁻¹): 2930 (C-H), 2853 (C-H), 2808 (C-H), 2210 (C≡N), 1614 (C=N), 1568 (Ar C=C), 1514 (Ar C=C), 1493 (Ar C=C), 1443 (Ar C=C).

UV-vis (DMSO) λ_{max} , nm (log ϵ): 387 (4.74), 439 (4.37), 594 (4.89).

a1s6

Black solid, yield 41%.

¹H NMR (400 MHz, d⁶-DMSO): δ (ppm) 8.14 (s, 2H, 2× CH=N), 7.17 (d, 2H, J = 9.3 Hz, ArH), 6.31 (2H, dd, J₁= 2.2 Hz, J₂ = 9.2 Hz, ArH), 5.84 (2H, d, J = 2.1 Hz, ArH), 4.39 (2H, s, 2× OH), 3.49 (4H, t, J = 5.9 Hz, 2× CH₂OH), 3.43 (4H, m, 2× N(CH₃)CH₂), 3.01 (6H, s, 2× CH₃), 2.3-2.5 (20H, m, 10× CH₂), 2.28 (4H, t, J = 6.6Hz, CH₂), 1.70 (4H, m, 2× CH₂CH₂CH₂).

HR MS (ESI⁺, DMSO, FT-ICR): m/z calcd. for $C_{38}H_{53}N_{10}O_4Zn$ ([M+H]⁺) 777.35372, found 777.35141.

FT-IR (KBr pellete, cm⁻¹): 3418 (O-H), 2940 (C-H), 2827 (C-H), 2208 (C≡N), 1616 (C=N), 1568 (Ar C=C), 1518 (Ar C=C), 1493 (Ar C=C), 1458 (Ar C=C).

UV-vis (DMSO) λ_{max}, nm (log ε): 387 (4.67), 439 (4.30), 595 (4.78).

Red solid, yield 56%.

¹H NMR (400 MHz, d⁶-DMSO): δ (ppm) 9.10 (4H, d, J = 5.6 Hz, pyH), 8.61 (2H, t, J = 7.8 Hz, pyH), 8.17 (4H, t, J = 6.7 Hz, pyH), 8.14 (2H, s, 2× CH=N), 7.18 (2H, d, J = 9.3 Hz, ArH), 6.26 (2H, dd, J₁ = 2.4 Hz, J₂ = 9.1 Hz, ArH), 5.80 (2H, d, J = 2.2 Hz, ArH), 4.68 (4H, m, 2× py-CH₂), 3.53 (4H, m, 2× N(CH₃)CH₂), 2.99 (6H, s, 2× CH₃), 2.24 (4H, m, 2× pyCH₂CH₂).

HR MS (ESI⁺, DMSO, FT-ICR): m/z calcd. for $C_{36}H_{36}ClN_8O_2Zn$ ([M-Cl]⁺) 711.19357, found 711.19157.

FT-IR (KBr pellete, cm⁻¹): 2920 (C-H), 2851 (C-H), 2208 (C≡N), 1616 (C=N), 1564 (Ar C=C), 1539 (Ar C=C), 1516 (Ar C=C), 1497 (Ar C=C), 1466 (Ar C=C).

UV-vis (DMSO) λ_{max} , nm (log ϵ): 387 (3.03), 413 (3.08), 593 (2.97).

Dark brown solid, yield 78%.

¹H NMR (400 MHz, d⁶-DMSO): δ (ppm) 8.24 (s, 2H), 8.06 (s, 2H), 7.19 (d, 2H, J = 7.6 Hz), 6.40 (d, 2H, J = 7.6 Hz), 5.96 (s, 2H), 5.51 (d, 2H, J = 8.8 Hz), 5.36 (s, 2H), 5.26 (s, 2H), 5.14 (s, 2H), 4.66 (m, 6H), 3.75 (s, 2H), 3.41 (s, 4H), 3.14 (s, 6H), 3.37 (s, 2H).

HR MS (ESI⁺, DMSO, FT-ICR): m/z calcd. for $C_{38}H_{43}N_{12}O_{12}Zn$ ([M+H]⁺), 923.24094; found 923.24361.

IR (KBr pellete, cm⁻¹): 3334 (C-H), 2218 (C≡N), 1612 (C=N), 1574 (Ar C=C), 1512 (Ar C=C), 1431 (Ar C=C).

UV-vis (DMSO) λ_{max}, nm (log ε): 384 (4.40), 589 (4.44).

a1s9

Red brown solid, yield 70%.

¹H NMR (400 MHz, d⁶-DMSO): δ (ppm) 7.95 (2H, s, 2× CH=N), 6.71 (2H, s, ArH), 3.27 (8H, m, 4× CH₂), 2.65 (4H, t, J = 6.0 Hz, 2× CH₂), 2.58 (4H, m, 2× CH₂), 1.84 (8H, m, 4× CH₂).

HR MS (ESI⁺, DMSO, FT-ICR): m/z calcd. for $C_{30}H_{29}N_6O_2Zn$ ([M+H]⁺) 569.16380; found 569.16433.

IR (KBr pellete, cm⁻¹): 2934 (C-H), 2846 (C-H), 2205 (C=N), 1624 (C=N), 1574 (Ar C=C), 1503 (Ar C=C), 1423 (Ar C=C).

UV-vis (DMSO) λ_{max} , nm (log ϵ): 400 (4.95), 458 (4.44), 621 (5.04).

a1s10

Dark red solid, yield 77%.

¹H NMR (400 MHz, d⁶-DMSO): δ (ppm) 8.39 (2H, s, 2× CH=N), 7.36 (2H, d, J = 9.3Hz, ArH), 6.25 (2H, d, J = 2.4Hz, ArH), 6.23 (2H, s, ArH), 4.13 (4H, t, J = 5.6Hz, 2× PhOCH₂), 3.58 (8H, m, 4× CH₂OCH₂), 2.70 (4H, t, J = 5.61Hz, 2× PhOCH₂CH₂), 2.47 (8H, m, 2× CH₂CH₂OCH₂CH₂). HR MS (ESI⁺, DMSO, FT-ICR): *m*/*z* calcd. forC₃₀H₃₃N₆O₆Zn ([M+H]⁺), 637.17476; found 637.17312.

IR (KBr pellete, cm⁻¹): 2949 (C-H), 2922 (C-H), 2864 (C-H), 2822 (C-H), 2218 (C=N), 1614 (C=N), 1582 (Ar C=C), 1512 (Ar C=C), 1487 (Ar C=C), 1441 (Ar C=C), 1202 (C-O). UV-vis (DMSO) λ_{max} , nm (log ϵ): 341 (4.50), 367 (4.40), 383 (4.43), 445 (4.11), 553 (4.57).

a2s1

Two equivalents of salicylaldehyde derivative (**s1**, 50mg, 0.26 mmol), one equivalent of diamine (**a2**, in the form of dihydrochloride, 24.2 mg, 0.13 mmol) and two equivalents of NaHCO₃ (26mg, 0.26 mmol) were mixed in 6mL ethanol. After stirring at room temperature for 1h, 1.5 equiv. of $Zn(OAc)_2 \cdot H_2O$ was added and the mixture was kept stirring and refluxing for additional 16h. After cooling to the room temperature, solvent of the mixture was evaporated under reduced pressure and 3mL methanol was added. The mixture was filtered and the yellow filtrate was set to volatilize at room temperature for about 20h, during which some yellow precipitate formed. After filtering and washed with 0.5mL ethanol, a2s1 was obtained as a yellow powder (15.6 mg, yield 23%).

¹H NMR (400 MHz, d⁶-DMSO): δ (ppm) 8.63 (2H, s, 2× CH=N), 7.48 (2H, s, thiophene H), 7.04 (2H, d, J = 9.0 Hz, ArH), 6.07 (2H, dd, J₁ = 8.9 Hz, J₂ = 2.4 Hz, ArH), 5.83 (2H, d, J = 2.4 Hz, ArH), 3.37 (8H, m, 4× CH₂), 1.14 (12H, t, J = 7.0 Hz, 4× CH₃).

HR MS (ESI⁺, DMSO, FT-ICR): m/z calcd. for $C_{52}H_{61}N_8O_4S_2Zn_2$ ([2M+H]⁺) 1053.28346, found 1053.28161.

FT-IR (KBr pellette, cm⁻¹): 2972 (C-H), 2928 (C-H), 1593 (C=N), 1510 (Ar C=C), 1431(Ar C=C), 1178 (Ar C=C).

UV-vis (DMSO) λ_{max} , nm (log ϵ): 413 (4.57), 445 (4.48).

a2s4

Two equivalents of salicylaldehyde derivative (**s3**, 60mg, 0.23 mmol), one equivalent of diamine (**a2**, in the form of dihydrochloride, 21.5 mg, 0.12mmol) and two equivalents of NaHCO₃ (23mg, 0.23 mmol) were mixed in 6mL ethanol. After stirring at room temperature for 1h, 1.5 equiv. of $Zn(OAc)_2 \cdot H_2O$ was added and the mixture was kept stirring and refluxing for additional 16h. After cooling to the room temperature, solvent of the mixture was evaporated under reduced pressure and 3mL methanol was added. The mixture was filtered and the yellow filtrate was set to volatilize at room temperature for about 20h, during which some brown precipitate formed. After filtering and washed with 0.5mL ethanol, a2s5 was obtained as a light brown powder (54mg, yield 71%).

¹H NMR (400 MHz, d⁶-DMSO): δ (ppm) 8.65 (2H, s, 2× CH=N), 7.50 (2H, s, thiophene H), 7.05 (2H, d, J = 8.8Hz, ArH), 6.10 (2H, d, J = 8.9Hz, ArH), 5.85 (2H, s, ArH), 3.58 (8H, m, CH₂OCH₂), 3.48 (4H, t, J = 6.8Hz, 2× N(CH₃)CH₂), 2.97 (6H, s, 2× CH₃), 2.48 (4H, s, 2× N(CH₃)CH₂CH₂), 2.45 (8H, s, 2× CH₂CH₂OCH₂CH₂OCH₂CH₂).

HR MS (ESI⁺, DMSO, FT-ICR): m/z calcd. for C₃₂H₄₁N₆O₄SZn ([M+H]⁺) 669.21960, found 669.22128.

FT-IR (KBr pellete, cm⁻¹): 2957 (C-H), 2864 (C-H), 2831 (C-H), 1584 (C=N), 1520 (Ar C=C), 1454 (Ar C=C), 1431 (Ar C=C), 1148 (C-O).

UV-vis (DMSO) λ_{max} , nm (log ϵ): 413 (4.51), 444 (4.40).

a3s1

Yellow solid, yield 69%.

¹H NMR (400 MHz, d₆-DMSO): δ (ppm) 8.66 (2H, s, 2× CH=N), 7.69 (2H, m, ArH), 7.17 (2H, m, ArH), 7.13 (2H, d, J = 8.94Hz, ArH), 6.07 (2H, d, J = 8.42Hz, ArH), 5.85 (2H, s, ArH), 3.36 (8H, m, 4× CH₂), 1.14 (12H, t, J = 6.74Hz, 4× CH₃).

HR MS (ESI⁺, DMSO, FT-ICR): m/z calcd. for $C_{28}H_{33}N_4O_2Zn$ ([M+H]⁺) 521.18895, found 521.19134.

FT-IR (KBr pellete, cm⁻¹): 2970 (C-H), 2922 (C-H), 1605 (C=N), 1568 (Ar C=C), 1506 (Ar C=C), 1429 (Ar C=C), 1190 (C-O).

UV-vis (DMSO) λ_{max} , nm (log ϵ): 390 (4.65), 449 (4.48).

a3s3

Yellow solid, yield 68%.

¹H NMR (400 MHz, d⁶-DMSO): δ (ppm) 8.66 (2H, s, 2× CH=N), 7.68 (2H, m, ArH), 7.17 (2H, m, ArH), 7.14 (2H, d, J = 9.0 Hz, ArH), 5.98 (2H, dd, J₁ = 8.8 Hz, J₂ = 2.2 Hz, ArH), 5.71 (2H, d, J = 2.1 Hz, ArH), 3.30 (8H, m, 4× NCH₂), 1.96 (8H, m, 4× NCH₂CH₂).

HR MS (ESI⁺, DMSO, FT-ICR): m/z calcd. for $C_{28}H_{29}N_4O_2Zn$ ([M+H]⁺) 517.15765, found 517.15899.

FT-IR (KBr pellette, cm⁻¹): 2974 (C-H), 2918 (C-H), 2860 (C-H), 1620 (C=N), 1578 (Ar C=C), 1516 (Ar C=C), 1495 (Ar C=C), 1447 (Ar C=C), 1188 (C-O).

UV-vis (DMSO) λ_{max} , nm (log ϵ): 390 (4.63), 448 (4.56).

a3s4

Yellow solid, yield 40%.

¹H NMR (400 MHz, d⁶-DMSO): δ (ppm) 8.68 (2H, s, 2× CH=N), 7.70 (2H, m, ArH), 7.18 (2H, m, ArH), 7.14 (2H, d, J = 9.0 Hz, ArH), 6.10 (2H, dd, J₁ = 8.9 Hz, J₂ = 1.9 Hz, ArH), 5.84 (2H, s, ArH), 3.58 (8H, m, 2× CH₂OCH₂), 3.49 (4H, t, J = 6.8 Hz, 2× N(CH₃)CH₂), 2.98 (6H, s, 2× CH₃), 2.47 (8H, s, 2× CH₂CH₂OCH₂CH₂), 2.45 (4H, d, J = 4.3 Hz, 2× N(CH₃)CH₂CH₂).

HR MS (ESI⁺, DMSO, FT-ICR): m/z calcd. for $C_{32}H_{43}N_6O_4Zn$ ([M+H]⁺) 663.26318, found 663.26532.

FT-IR (KBr pellete, cm⁻¹): 2949 (C-H), 2862 (C-H), 2816 (C-H), 1616 (C=N), 1568 (Ar C=C), 1516 (Ar C=C), 1493 (Ar C=C), 1443 (Ar C=C), 1180 (C-O).

UV-vis (DMSO) λ_{max} , nm (log ϵ): 391 (4.64), 446 (4.47).

a3s10

Yellow solid, yield 72%.

¹H NMR (400 MHz, d⁶-DMSO): δ (ppm) 8.87 (2H, s, 2× CH=N), 7.80 (2H, dd, J₁ = 6.2Hz, J₂ = 3.5 Hz, ArH), 7.29 (4H, m, ArH), 6.17 (4H, m, ArH), 4.09 (4H, t, J = 5.7Hz, 2× PhOCH₂), 3.59 (8H, m, 4× CH₂OCH₂), 2.70 (4H, t, J = 5.7Hz, 2× PhOCH₂CH₂), 2.48 (8H, d, J = 4.5Hz, 2× CH₂CH₂OCH₂CH₂).

HR MS (ESI⁺, DMSO, FT-ICR): m/z calcd. forC₃₂H₃₇N₄O₆Zn ([M+H]⁺) 637.19991, found 637.19884.

FT-IR (KBr pellete, cm⁻¹): 2922 (C-H), 2855 (C-H), 1609 (C=N), 1584 (Ar C=C), 1526(Ar C=C), 1431(Ar C=C), 1194 (C-O).

UV-vis (DMSO) λ_{max} , nm (log ϵ): 311 (4.47), 389 (4.55), 429 (4.33).

a4s1

Yellow solid, yield 57%.

¹H NMR (400 MHz, d⁶-DMSO): δ (ppm) 8.74 (1H, s, CH=N), 8.71 (1H, s, CH=N), 8.15 (1H, d, J = 1.6 Hz, ArH), 7.82 (1H, d, J = 8.7 Hz, ArH), 7.53 (1H, dd, J₁ = 8.4Hz, J₂ = 1.7 Hz, ArH), 7.15 (1H, d, J = 9.1 Hz, ArH), 7.14 (1H, d, J = 9.1 Hz, ArH), 6.13 (2H, m, ArH), 5.82 (2H, t, J = 2.0 Hz, ArH), 3.37 (8H, m, CH₂), 1.15 (12H, t, J = 7.0 Hz, CH₃).

HR MS (ESI⁺, DMSO, FT-ICR): m/z calcd. for $C_{29}H_{32}N_5O_2Zn$ ([M+H]⁺) 546.18420, found 546.18320.

FT-IR (KBr pellete, cm⁻¹): 2974 (C-H), 2930 (C-H), 2905 (C-H), 2222 (C≡N), 1609 (C=N), 1568 (Ar C=C), 1503 (Ar C=C), 1435 (Ar C=C), 1204 (C-O).

UV-vis (DMSO) λ_{max} , nm (log ϵ): 403 (4.70), 466 (4.60).

a4s3

Yellow solid, yield 60%.

¹H NMR (400 MHz, d⁶-DMSO): δ (ppm) 8.74 (1H, s, CH=N), 8.71 (1H, s, CH=N), 8.14 (1H, d, J = 1.3 Hz, ArH), 7.82 (1H, d, J = 8.6 Hz, ArH), 7.53 (1H, dd, J₁ = 8.4 Hz, J₂ = 1.5 Hz, ArH), 7.16 (1H, d, J = 9.0 Hz, ArH), 7.15 (1H, d, J = 8.9 Hz, ArH), 6.03 (2H, m, ArH), 5.70 (2H, t, J = 2.0Hz, ArH), 3.30 (8H, m, 4× NCH₂), 1.96 (8H, m, 4× NCH₂CH₂).

HR MS (ESI⁺, DMSO, FT-ICR): m/z calcd. for $C_{29}H_{28}N_5O_2Zn$ ([M+H]⁺) 542.15290, found 542.15309.

FT-IR (KBr pellete, cm⁻¹): 2959 (C-H), 2920 (C-H), 2847 (C-H), 2218 (C=N), 1611 (C=N), 1572 (Ar C=C), 1516 (Ar C=C), 1483 (Ar C=C), 1441 (Ar C=C), 1205 (C-O).

UV-vis (DMSO) λ_{max} , nm (log ϵ): 402 (4.71), 468 (4.60).

a4s4

Orange solid, yield 50%.

¹H NMR (400 MHz, d⁶-DMSO): δ (ppm) 8.76 (1H, s, CH=N), 8.73 (1H, s, CH=N), 8.16 (1H, d, J = 1.5 Hz, ArH), 7.83 (1H, d, J = 8.7 Hz, ArH), 7.55 (1H, dd, J₁ = 8.5 Hz, J₂ = 1.6 Hz, ArH), 7.16 (1H, d, J = 9.1 Hz, ArH), 7.15 (1H, d, J = 9.1 Hz, ArH), 6.16 (2H, m, ArH), 5.83 (2H, t, J = 2.0Hz, ArH), 3.58 (8H, m, 2× CH₂OCH₂), 3.51 (4H, m, 2× N(CH₃)CH₂), 3.00 (3H, s, CH₃), 2.99 (3H, s, CH₃), 2.48 (4H, s, 2× CH₂CH₂OCH₂CH₂), 2.44 (8H, m, 2× N(CH₃)CH₂).

HR MS (ESI⁺, DMSO, FT-ICR): m/z calcd. for $C_{35}H_{42}N_7O_4Zn$ ([M+H]⁺) 688.25843, found 688.25907.

FT-IR (KBr pellete, cm⁻¹): 2954 (C-H), 2916 (C-H), 2855 (C-H), 2818 (C-H), 2222 (C=N), 1604 (C=N), 1564 (Ar C=C), 1512 (Ar C=C), 1431 (Ar C=C), 1205 (Ar C=C).

UV-vis (DMSO) λ_{max} , nm (log ϵ): 403 (4.67), 467 (4.56).

a4s10

Yellow solid, yield 79%.

¹H NMR (400 MHz, d⁶-DMSO): δ (ppm) 8.95 (2H, m, 2× CH=N), 8.30 (1H, s, ArH), 7.96 (1H, d, J = 8.5Hz, ArH), 7.70 (1H, d, J = 8.5Hz, ArH), 7.29 (2H, t, J = 8.6Hz, ArH), 6.20 (4H, d, J = 7.1Hz, ArH), 4.11 (4 H, t, J = 5.5Hz, 2× PhOCH₂), 3.59 (8H, m, 4× CH₂OCH₂), 2.70 (4H, t, J = 5.6Hz, 2× PhOCH₂CH₂), 2.45 (4H, m, 2× CH₂CH₂OCH₂CH₂).

HR MS (ESI⁺, DMSO, FT-ICR): m/z calcd. for $C_{33}H_{36}N_5O_6Zn$ ([M+H]⁺) 662.19516, found 662.19514.

FT-IR (KBr pellete, cm⁻¹): 2955 (C-H), 2923 (C-H), 2861 (C-H), 2821 (C-H), 2226 (C≡N), 1612 (C=N), 1582 (Ar C=C), 1522 (Ar C=C), 1435 (Ar C=C), 1200 (C-O).

UV-vis (DMSO) λ_{max} , nm (log ϵ): 320 (4.51), 404 (4.58), 445 (4.40).

a5s1

Orange red solid, yield 81%.

¹H NMR (400 MHz, DMSO): δ (ppm) 8.78 (2H, s, 2× CH=N), 8.36 (2H, s, ArH), 7.14 (2H, d, J = 9.2 Hz, ArH), 6.20 (2H, dd, J₁ = 9.1Hz, J₂ = 2.2 Hz, ArH), 5.81 (2H, d, J = 2.1 Hz, ArH), 3.40 (8H, m, 4× CH₂), 1.15 (12H, t, J = 6.9 Hz, 4× CH₃).

HR MS (ESI⁺, DMSO, FT-ICR): m/z calcd. for $C_{30}H_{31}N_6O_2$ Zn ([M+H]⁺) 571.17945, found 571.17919.

FT-IR (KBr pellete, cm⁻¹): 2972 (C-H), 2924 (C-H), 2222 (C≡N), 1607 (C=N), 1560 (Ar C=C), 1493 (Ar C=C), 1437 (Ar C=C), 1186 (C-O).

UV-vis (DMSO) λ_{max} , nm (log ϵ): 428 (4.68), 504 (4.51).

a5s3

Orange red solid, yield 91%.

¹H NMR (400 MHz, DMSO): δ (ppm) 8.79 (2H, s, 2× CH=N), 8.35 (2H, s, ArH), 7.15 (2H, d, J = 9.0 Hz, ArH), 6.10 (2H, dd, J₁ = 8.9Hz, J₂ = 2.1 Hz, ArH), 5.69 (2H, d, J = 2.0 Hz, ArH), 3.32 (8H, m, 4× NCH₂), 1.95 (8H, m, 4× NCH₂CH₂).

HR MS (ESI⁺, DMSO, FT-ICR): m/z calcd. For $C_{60}H_{53}N_{12}O_4Zn_2$ ([2M+H]⁺) 1133.28902, found 1133.28503.

FT-IR (KBr pellete, cm⁻¹): 2959 (C-H), 2920 (C-H), 2847 (C-H), 2218 (C≡N), 1611 (C=N), 1572 (Ar C=C), 1516 (Ar C=C), 1483 (Ar C=C), 1441 (Ar C=C), 1205 (C-O).

UV-vis (DMSO) λ_{max} , nm (log ϵ): 427 (4.68), 509 (4.52).

a5s4

Orange solid, yield 70%.

¹H NMR (400 MHz, d⁶-DMSO): δ (ppm) 8.80 (2H, s, 2× CH=N), 8.37 (2H, s, ArH), 7.15 (2H, d, J = 9.2 Hz, ArH), 6.23 (2H, dd, J₁ = 9.1Hz, J₂ = 2.2 Hz, ArH), 5.82 (2H, d, J = 2.1 Hz, ArH), 3.58 (8H, m, 2× CH₂OCH₂), 3.52 (4H, t, J = 6.8 Hz, 2× N(CH₃)CH₂), 3.01 (6H, s, 2× CH₃), 2.48 (8H, s, 2× CH₂CH₂OCH₂CH₂), 2.44 (4H, m, 2× N(CH₃)CH₂).

HR MS (ESI⁺, DMSO, FT-ICR): m/z calcd. for $C_{36}H_{41}N_8O_4Zn$ ([M+H]⁺) 713.25367, found 713.25365.

FT-IR (KBr pellete, cm⁻¹): 2949 (C-H), 2918 (C-H), 2858 (C-H), 2814 (C-H), 2224 (C=N), 1603 (C=N), 1562 (Ar C=C), 1514 (Ar C=C), 1497 (Ar C=C), 1443 (Ar C=C), 1219 (C-O).

UV-vis (DMSO) λ_{max} , nm (log ϵ): 428 (4.67), 508 (4.52).

a5s10

Orange solid, yield 48%.

¹H NMR (400 MHz, d⁶-DMSO): δ (ppm) 9.01 (2H, s, 2× CH=N), 8.53 (2H, s, ArH), 7.28 (2H, d, J = 8.5Hz, ArH), 6.23 (4H, m, ArH), 4.12 (4H, t, J = 5.2Hz, 2× PhO-CH₂), 3.59 (8H, d, J = 4.0Hz, 4× CH₂OCH₂), 2.70 (4H, t, J = 5.2Hz, 2× PhOCH₂CH₂), 2.47 (8H, m, 2× CH₂CH₂OCH₂CH₂).

HR MS (ESI⁺, DMSO, FT-ICR): m/z calcd. for $C_{34}H_{35}N_6O_6Zn$ ([M+H]⁺) 687.19041, found 687.18950.

FT-IR (KBr pellete, cm⁻¹): 2931 (C-H), 2856 (C-H), 2830 (C-H), 2228 (C≡N), 1612 (C=N), 1574 (Ar C=C), 1514 (Ar C=C), 1439 (Ar C=C), 1215 (C-O).

UV-vis (DMSO) λ_{max}, nm (log ε): 333 (4.52), 422 (4.62), 470 (4.42).

a6s1

Yellow solid, yield 33%.

¹H NMR (400 MHz, d⁶-DMSO): δ (ppm) 8.58 (2H, s, CH=N), 7.00 (2H, d, J = 9.1 Hz, ArH), 6.09 (2H, dd, J₁ = 9.0Hz, J₂ = 2.4 Hz, ArH), 5.79 (2H, d, J = 2.1 Hz, ArH), 3.37 (8H, m, 4× CH₂), 1.13 (12H, t, J = 7.0 Hz, 4× CH₃).

HR MS (ESI⁺, DMSO, FT-ICR): m/z calcd. for $C_{56}H_{57}N_8O_4F_8Zn_2$ ([2M+H]⁺) 1185.29525 found 1185.29194.

FT-IR (KBr pellete, cm⁻¹): 2974 (C-H), 2928 (C-H), 1614 (C=N), 1566 (Ar C=C), 1487 (Ar C=C), 1429 (Ar C=C), 1186 (C-O).

UV-vis (DMSO) λ_{max} , nm (log ϵ): 389 (4.85), 452 (4.51).

a6s3

Orange solid, yield 36%.

¹H NMR (400 MHz, d⁵-Pyr): δ (ppm) 8.91 (2H, s, 2× CH=N), 7.25 (2H, d, J = 8.9 Hz, ArH), 6.31 (2H, d, J = 2.2 Hz, ArH), 6.15 (2H, dd, J₁ = 8.8Hz, J₂ = 2.3 Hz, ArH), 3.14 (8H, t, J = 6.5 Hz, 4× NCH₂), 1.59 (8H, m, 4× NCH₂CH₂).

HR MS (ESI⁺, DMSO, FT-ICR): m/z calcd. for C₂₈H₂₅F₄N₄O₂Zn ([M+H]⁺) 589.11996, found 589.12052.

FT-IR (KBr pellete, cm⁻¹): 2961 (C-H), 2858 (C-H), 1614 (C=N), 1560 (Ar C=C), 1516 (Ar C=C), 1483 (Ar C=C), 1449 (Ar C=C), 1225 (C-O).

UV-vis (DMSO) λ_{max} , nm (log ϵ): 390 (4.80), 451 (4.47).

a6s4

Orange solid, yield 30%.

¹H NMR (400 MHz, d⁶-DMSO): δ (ppm) 8.60 (2H, s, 2× CH=N), 7.02 (2H, d, J = 9.1 Hz, ArH), 6.12 (2H, dd, J₁ = 9.0Hz, J₂ = 2.3Hz, ArH), 5.80 (2H, d, J = 2.0 Hz, ArH), 3.57 (8H, m, 2× CH₂OCH₂), 3.49 (4H, t, J = 7.0 Hz, 2× N(CH₃)CH₂), 2.98 (6H, s, 2× CH₃), 2.46 (4H, m, 2× CH₂CH₂OCH₂CH₂), 2.43 (8H, m, 2× N(CH₃)CH₂CH₂).

HR MS (ESI⁺, DMSO, FT-ICR): m/z calcd. for $C_{68}H_{77}N_{12}O_8F_8Zn_2$ ([2M+H]⁺) 1469.44370, found 1469.44221.

FT-IR (KBr pellete, cm⁻¹): 2957 (C-H), 2918 (C-H), 2854 (C-H), 2820 (C-H), 1616 (C=N), 1568 (Ar C=C), 1514 (Ar C=C), 1487 (Ar C=C), 1443 (Ar C=C), 1205 (C-O).

UV-vis (DMSO) λ_{max} , nm (log ϵ): 388 (4.82), 450 (4.49).

a6s10

Yellow solid, yield 79%.

¹H NMR (400 MHz, d⁶-DMSO): δ (ppm) 8.77 (2H, s, 2× CH=N), 7.18 (2H, d, J = 8.8Hz, ArH), 6.16 (4H, m, ArH), 4.10 (4H, t, J = 5.7Hz, 2× PhO-CH₂), 3.58 (8H, m, 4× CH₂OCH₂), 2.69 (4H, t, J = 5.7Hz, 2× PhOCH₂CH₂), 2.47 (8H, m, 2× CH₂CH₂OCH₂CH₂).

HR MS (ESI⁺, DMSO, FT-ICR): m/z calcd. for $C_{32}H_{33}F_4N_4O_6Zn$ ([M+H]⁺) 709.16222, found 709.16168.

FT-IR (KBr pellete, cm⁻¹): 2959 (C-H), 2860 (C-H), 2820 (C-H), 1614 (C=N), 1585 (Ar C=C), 1526 (Ar C=C), 1445 (Ar C=C), 1217 (C-O).

UV-vis (DMSO) λ_{max} , nm (log ϵ): 312 (4.51), 386 (4.47), 426 (4.26).

a7s1

Orange solid, yield 54%.

¹H NMR (400 MHz, d⁶-DMSO): δ (ppm) 8.88 (1H, s, pyH), 8.80 (1H, s, CH=N), 8.73 (1H, s, CH=N), 8.24 (1H,d, J = 5.4 Hz, pyH), 7.62 (1H, d, J = 5.6 Hz, pyH), 7.14 (2H, t, J = 9.0 Hz, ArH), 6.14 (1H, dd, J₁ = 9.1Hz, J₂ = 2.0Hz, ArH), 6.09 (1H, dd, J₁ = 8.6Hz, J₂ = 1.9Hz, ArH), 5.83 (1H, d, J = 2.1 Hz, ArH), 5.82 (1H, d, J = 2.0 Hz, ArH), 3.38 (8H, m, 4× CH₂), 1.17 (12H, t, J = 6.7Hz, 4× CH₃).

HR MS (ESI⁺, DMSO, FT-ICR): m/z calcd. for $C_{27}H_{32}N_5O_2Zn$ ([M+H]⁺) 522.18420, found 522.18299.

FT-IR (KBr pellete, cm⁻¹): 2972 (C-H), 2926 (C-H), 2904 (C-H), 1605 (C=N), 1562 (Ar C=C), 1487 (Ar C=C), 1437 (Ar C=C), 1200 (C-O).

UV-vis (DMSO) λ_{max} , nm (log ϵ): 395 (4.67), 458 (4.48).

a7s3

Brown solid, yield 59%.

¹H NMR (400 MHz, d⁵-Pyr): δ (ppm) 9.14 (1H, s, pyH), 9.03 (1H, s, CH=N), 8.90 (1H, s, CH=N), 8.48 (1H, d, J = 5.4 Hz, pyH), 7.50 (1H, d, J = 5.4 Hz, pyH), 7.36 (1H, s, ArH), 7.34 (1H, s, ArH), 6.41 (1H, s, ArH), 6.36 (1H, s, ArH), 6.15 (1H, s, ArH), 6.13 (1H, s, ArH), 3.17 (8H, m, 4× NCH₂), 1.60 (8H, m, 4× NCH₂CH₂).

HR MS (ESI⁺, DMSO, FT-ICR): m/z calcd. for $C_{27}H_{28}N_5O_2Zn$ ([M+H]⁺) 518.15290, found 518.15307.

FT-IR (KBr pellete, cm⁻¹): 2965 (C-H), 2927 (C-H), 2858 (C-H), 1616 (C=N), 1597 (Ar C=C), 1560 (Ar C=C), 1518 (Ar C=C), 1481 (Ar C=C), 1443 (Ar C=C), 1207 (C-O).

UV-vis (DMSO) $\lambda_{max},$ nm (log ϵ): 396 (4.64), 456 (4.46).

a7s4

Orange solid, yield 50%.

¹H NMR (400 MHz, d⁶-DMSO): δ (ppm) 8.87 (1H, s, pyH), 8.80 (1H, s, CH=N), 8.76 (1H, s, CH=N), 8.24 (1H, d, J = 5.4 Hz, pyH), 7.63 (1H, d, J = 5.6 Hz, pyH), 7.16 (1H, d, J = 9.3Hz, ArH), 7.13 (1H, d, J = 9.4Hz, ArH), 6.18 (1H, dd, J₁ = 9.0Hz, J₂ = 1.6Hz, ArH), 6.13 (1H, dd, J₁ = 8.9Hz, J₂ = 1.6Hz, ArH), 5.84 (1H, d, J = 1.4 Hz, ArH), 5.83 (1H, d, J = 1.4 Hz, ArH), 3.58 (8H, s, 2× CH₂OCH₂), 3.50 (4H, d, J = 6.4 Hz, 2× N(CH₃)CH₂), 3.00 (3H, s, CH₃), 2.98 (3H, s, CH₃), 2.48 (4H, s, 2× N(CH₃)CH₂CH₂).

HR MS (ESI⁺, DMSO, FT-ICR): m/z calcd. for $C_{33}H_{42}N_7O_4Zn$ ([M+H]⁺) 664.25843, found 664.25834.

FT-IR (KBr pellete, cm⁻¹): 2955 (C-H), 2858 (C-H), 2822 (C-H), 2198 (C-H), 1612 (CH=N), 1593 (Ar C=C), 1562 (Ar C=C), 1514 (Ar C=C), 1493 (Ar C=C), 1441 (Ar C=C), 1202 (C-O). UV-*vis* (DMSO) λ_{max} , nm (log ε): 396 (4.65), 457 (4.46).

Yellow solid, yield 85%.

¹H NMR (400 MHz, d⁶-DMSO): δ (ppm) 9.02 (1H, s, pyH), 9.02 (1H, s, CH=N), 8.98 (1H, s, CH=N), 8.40 (1H, d, J = 5.5Hz, pyH), 7.75 (1H, d, J = 5.6Hz, pyH), 7.30 (2H, dd, J₁ = 12.5Hz, J₂ =5.6 Hz, ArH), 6.19 (4H, m, ArH), 4.11 (4H, m, 2× PhOCH₂), 3.59 (8H, m, 4× CH₂OCH₂), 2.70 (4H, t, J = 5.6Hz, 2× PhOCH₂CH₂), 2.47 (8H, m, 2× CH₂CH₂OCH₂CH₂).

HR MS (ESI⁺, DMSO, FT-ICR): m/z calcd. for $C_{31}H_{36}N_5O_6Zn$ ([M+H]⁺) 638.19516, found 638.19529.

FT-IR (KBr pellete, cm⁻¹): 2957 (C-H), 2918 (C-H), 2858 (C-H), 2816 (C-H), 1609 (C=N), 1574 (Ar C=C), 1520 (Ar C=C), 1433 (Ar C=C), 1205 (C-O).

UV-vis (DMSO) λ_{max} , nm (log ϵ): 316 (4.49), 395 (4.53), 436 (4.32).

a8s1

Yellow solid, yield 54%.

¹H NMR (400 MHz, d⁶-DMSO): δ (ppm) 9.10 (1H, s, CH=N), 8.71 (1H, s, CH=N), 8.13 (1H, d, J = 4.6 Hz, pyH), 8.06 (1H, d, J = 8.1 Hz, pyH), 7.16 (1H, d, J = 8.5Hz, pyH), 7.14 (2H, m, ArH), 6.11 (2H t, J = 7.6 Hz, ArH), 5.85 (2H, s, ArH), 3.37 (8H, m, 4× CH₂), 1.15 (12H, t, J = 6.8 Hz, 4× CH₃).

HR MS (ESI⁺, DMSO, FT-ICR): m/z calcd. for $C_{27}H_{32}N_5O_2Zn$ ([M+H]⁺) 522.18420, found 522.18415.

FT-IR (KBr pellete, cm⁻¹): 2970 (C-H), 2924 (C-H), 1593 (Ar C=C), 1553 (Ar C=C), 1504 (Ar C=C), 1431 (Ar C=C), 1196 (C-O).

UV-vis (DMSO) λ_{max} , nm (log ϵ): 382 (4.46), 432 (4.60).

a8s3

Yellow solid, yield 60%.

¹H NMR (400 MHz, d⁵-Pyr): δ (ppm) 9.78 (1H, s, CH=N), 8.90 (1H, s, CH=N), 8.31 (1H, dd, J₁ = 4.6 Hz, J₂ = 1.5 Hz, pyH), 7.91 (1H, dd, J₁ = 8.2 Hz, J₂ = 1.5 Hz, pyH), 7.38 (2H, t, J = 8.9 Hz, ArH), 7.06 (1H, dd, J₁ = 8.0 Hz, J₂ = 4.7Hz, pyH), 6.46 (1H, d, J = 2.2Hz, ArH), 6.40 (1H, d, J = 2.2Hz, ArH), 6.17 (1H, dd, J₁ = 8.8 Hz, J₂ = 2.3 Hz, ArH), 6.13 (1H, dd, J₁ = 8.8 Hz, J₂ = 2.3 Hz, ArH), 3.19 (8H, m, 4× NCH₂), 1.62 (8H, m, 4× NCH₂).

HR MS (ESI⁺, DMSO, FT-ICR): m/z calcd. for $C_{27}H_{28}N_5O_2Zn$ ([M+H]⁺) 518.15290, found 518.15376.

FT-IR (KBr pellete, cm⁻¹): 2965 (C-H), 2858 (C-H), 1616 (C=N), 1597 (Ar C=C), 1560 (Ar C=C), 1517 (Ar C=C), 1481 (Ar C=C), 1444 (Ar C=C), 1207 (C-O).

UV-vis (DMSO) λ_{max} , nm (log ϵ): 385 (4.46), 433 (4.61).

a8s4

Yellow solid, yield 40%.

¹H NMR (400 MHz, d⁶-DMSO): δ (ppm) 9.12 (1H, s, CH=N), 8.73 (1H, s, CH=N), 8.15 (1H, dd, J₁ = 4.6, J₂ = 1.4 Hz, pyH), 8.08 (1H, m, pyH), 7.19 (2H, m, ArH), 7.14 (1H, d, J = 9.0 Hz, pyH), 6.17 (2H, m, ArH), 5.89 (2H, m, ArH), 3.59 (8H, m, 2× CH₂OCH₂), 3.50 (4H, m, 2× N(CH₃)CH₂), 3.00 (3H, s, CH₃), 2.99 (3H, s, CH₃), 2.46 (12H, m, 2× CH₂CH₂OCH₂CH₂CH₂CH₂ and 2× N(CH₃)CH₂CH₂).

HR MS (ESI⁺, DMSO, FT-ICR): m/z calcd. for $C_{33}H_{42}N_7O_4Zn$ ([M+H]⁺) 664.25843, found 664.25847.

FT-IR (KBr pellete, cm⁻¹): 2974 (C-H), 2870 (C-H), 2765 (C-H), 1614 (C=N), 1591 (Ar C=C), 1557 (Ar C=C), 1516 (Ar C=C), 1437 (Ar C=C), 1202 (C-O).

UV-vis (DMSO) λ_{max} , nm (log ϵ): 385 (4.46), 429 (4.58).

a8s10

Yellow solid, yield 67%.

¹H NMR (400 MHz, d⁶-DMSO): δ (ppm) 9.31 (1H, s, CH=N), 8.95 (1H, s, CH=N), 8.29 (1H, dd, J₁ = 4.6Hz, J₂ = 1.4 Hz, pyH), 8.23 (1H, m, pyH), 7.34 (2H, m, ArH), 7.28 (1H, d, J = 8.8Hz, pyH), 6.20 (4H, m, ArH), 4.11 (4H, m, 2× PhOCH₂), 3.59 (8H, m, 4× CH₂OCH₂), 2.70 (4H, t, J = 5.6Hz, 2× PhOCH₂CH₂), 2.47 (8H, m, 2× CH₂CH₂OCH₂CH₂).

HR MS (ESI⁺, DMSO, FT-ICR): m/z calcd. for $C_{31}H_{36}N_5O_6Zn$ ([M+H]⁺) 638.19516, found 638.19463.

FT-IR (KBr pellete, cm⁻¹): 2961 (C-H), 2924 (C-H), 2860 (C-H), 2810 (C-H), 1607 (C=N), 1566 (Ar C=C), 1524 (Ar C=C), 1439 (Ar C=C), 1209 (C-O).

UV-vis (DMSO) λ_{max} , nm (log ϵ): 317 (4.38), 407 (4.52), 449 (4.33).

a9s1

Orange solid, yield 61%.

¹H NMR (400 MHz, d⁶-DMSO): δ (ppm) 9.02 (2H, s, 2× CH=N), 8.07 (2H, s, pzH), 7.18 (2H, d, J = 9.1 Hz, ArH), 6.16 (2H, d, J = 9.2 Hz, ArH), 5.85 (2H, s, ArH), 3.43 (8H, m, 4× CH₂), 1.14 (12H, t, J = 6.8Hz, 4× CH₃).

HR MS (ESI⁺, DMSO, FT-ICR): m/z calcd. for $C_{26}H_{31}N_6O_2Zn$ ([M+H]⁺) 523.17945, found 523.17841.

FT-IR (KBr pellete, cm⁻¹): 2970 (C-H), 2926 (C-H), 1605 (C=N), 1578 (Ar C=C), 1491 (Ar C=C), 1427 (Ar C=C), 1198 (C-O).

UV-vis (DMSO) λ_{max} , nm (log ϵ): 383 (4.39), 466 (4.75), 483 (4.77).

a9s3

Orange solid, yield 37%.

¹H NMR (400 MHz, d⁵-Pyr): δ (ppm) 9.03 (2H, s, 2× CH=N), 8.07 (2H, s, pzH), 7.19 (2H, d, J = 9.0 Hz, ArH), 6.08 (2H, dd, J₁ = 2.1 Hz, J₂ = 8.8 Hz, ArH), 5.73 (2H, d, J = 2.1 Hz, ArH), 3.34 (8H, m, 4× NCH₂), 1.97 (8H, m, 4× NCH₂CH₂).

HR MS (ESI⁺, DMSO, FT-ICR): m/z calcd. for $C_{26}H_{27}N_6O_2Zn$ ([M+H]⁺) 519.14815, found 519.14849.

FT-IR (KBr pellete, cm⁻¹): 2966 (C-H), 2855 (C-H), 1616 (C=N), 1576 (Ar C=C), 1506 (Ar C=C),

1477 (Ar C=C), 1456 (Ar C=C), 1434 (Ar C=C), 1200 (C-O). UV-*vis* (DMSO) λ_{max} , nm (log ϵ): 384 (4.40), 469 (4.78), 483 (4.80).

a9s4

Orange solid, yield 24%.

¹H NMR (400 MHz, d⁶-DMSO): δ (ppm) 9.05 (2H, s, 2× CH=N), 8.09 (2H, s, pzH), 7.19 (2H, d, J = 9.1 Hz, ArH), 6.20 (2H, dd, J₁ = 8.9Hz, J₂ = 1.6Hz, ArH), 5.85 (2H, s, ArH), 3.58 (8H, m, ArH), 3.52 (4H, t, J = 6.7 Hz, ArH), 3.02 (6H, s, 2× CH₃), 2.46 (12H, m, 2× N(CH₃)CH₂CH₂ and 2× CH₂CH₂OCH₂CH₂).

HR MS (ESI⁺, DMSO, FT-ICR): m/z calcd. for $C_{32}H_{41}N_8O_4Zn$ ([M+H]⁺) 665.25637, found 665.25402.

FT-IR (KBr pellete, cm⁻¹): 2974 (C-H), 2870 (C-H), 2765 (C-H), 1591 (Ar C=C), 1557 (Ar C=C), 1516 (Ar C=C), 1437 (Ar C=C), 1202 (C-O).

UV-vis (DMSO) λ_{max} , nm (log ϵ): 384 (4.46), 467 (4.82), 482 (4.83).

a9s10

Yellow solid, yield 70%.

¹H NMR (400 MHz, d⁶-DMSO): δ (ppm) 9.26 (2H, s, 2× CH=N), 8.30 (2H, s, pzH), 7.37 (2H, d, J = 8.9Hz, ArH), 6.22 (4H, m, ArH), 4.13 (4H, t, J = 5.7Hz, 2× PhOCH₂), 3.59 (8H, m, 4× CH₂OCH₂), 2.70 (4H, dd, J₁ =11.2Hz, J₂ = 5.5 Hz, 2× PhOCH₂CH₂), 2.52 (8H, m, 2× CH₂CH₂OCH₂CH₂).

HR MS (ESI⁺, DMSO, FT-ICR): m/z calcd. for $C_{30}H_{35}N_6O_6Zn$ ([M+H]⁺) 639.19041, found 639.19107.

FT-IR (KBr pellete, cm⁻¹): 2961 (C-H), 2930(C-H), 2860(C-H), 2808(C-H), 1597 (Ar C=C), 1503 (Ar C=C), 1431 (Ar C=C), 1215 (C-O).

UV-vis (DMSO) λ_{max} , nm (log ϵ): 333 (4.38), 443 (4.57), 457 (4.55).

a10s1

Yellow solid, yield 53%.

¹H NMR (400 MHz, d⁶-DMSO): δ (ppm) 8.90 (1H, s, CH=N), 8.70 (1H, s, CH=N), 8.10 (1H, d, J = 8.4 Hz, pyH), 7.20 (2H, m, ArH and pyH), 7.11 (1H, d, J = 9.0 Hz, ArH), 6.15 (1H, dd, J₁ = 9.1Hz, J₂ = 2.0 Hz, ArH), 6.11 (1H, dd, J₁ = 9.0Hz, J₂ = 2.0 Hz, ArH), 5.84 (2H, s, ArH), 3.38 (8H, m, 4× CH₂), 1.15 (12H, t, 4× CH₃).

HR MS (ESI⁺, DMSO, FT-ICR): m/z calcd. for C₂₇H₃₁ClN₅O₂Zn ([M+H]⁺) 556.14523, found 556.14502.

FT-IR (KBr pellete, cm⁻¹): 2930 (C-H), 2903 (C-H), 2794 (C-H), 1597 (Ar C=C), 1553 (Ar C=C), 1504 (Ar C=C), 1433 (Ar C=C), 1209 (C-O).

UV-vis (DMSO) λ_{max} , nm (log ϵ): 388 (4.50), 457 (4.68).

a10s3

Orange solid, yield 60%.

¹H NMR (400 MHz, d⁶-DMSO): δ (ppm) 8.91 (1H, s, CH=N), 8.71 (1H, s, CH=N), 8.10 (1H, d, J = 8.6 Hz, pyH), 7.20 (2H, m, ArH and pyH), 7.12 (1H, d, J = 8.9 Hz, ArH), 6.07 (1H, dd, J₁ = 8.9Hz, J₂ = 2.2 Hz, ArH), 6.02 (1H, dd, J₁ = 8.8Hz, J₂ = 2.2 Hz, ArH), 5.72 (1H, d, J = 2.2 Hz, ArH), 5.71 (1H, d, J = 2.1 Hz, ArH), 3.33 (8H, m, 4× NCH₂), 1.97 (8H, t, J = 5.8 Hz, 4× NCH₂CH₂).

HR MS (ESI⁺, DMSO, FT-ICR): m/z calcd. for $C_{54}H_{53}Cl_2N_{10}O_4Zn_2$ ([2M+H]⁺) 1103.22058, found 1103.22240.

FT-IR (KBr pellete, cm⁻¹): 2966 (C-H), 2930 (C-H), 2858 (C-H), 1585 (Ar C=C), 1549 (Ar C=C), 1514 (Ar C=C), 1479 (Ar C=C), 1437 (Ar C=C).

UV-vis (DMSO) λ_{max} , nm (log ϵ): 389 (4.52), 451 (4.70).

Orange solid, yield 17%.

¹H NMR (400 MHz, d⁵-Pyr): δ (ppm) 9.52 (1H, s, CH=N), 8.84 (1H, s, CH=N), 7.87 (1H, d, J = 8.2 Hz, pyH), 7.36 (1H, d, J = 8.9 Hz, ArH), 7.31 (1H, d, J = 8.9 Hz, ArH), 7.09 (1H, d, J = 8.3 Hz, pyH), 6.57 (1H, d, J = 1.5 Hz, ArH), 6.49 (1H, d, J = 1.4 Hz, ArH), 6.35 (2H, m, ArH), 3.65(8H, m,

2× CH₂OCH₂), 3.46 (4H, m, 2× N(CH₃)CH₂), 2.96 (3H, s, CH₃), 2.93 (3H, s, CH₃), 2.43 (4H, m, 2× N(CH₃)CH₂CH₂), 2.32 (8H, m, 2× CH₂CH₂OCH₂CH₂).

HR MS (ESI⁺, DMSO, FT-ICR): m/z calcd. for C₃₃H₄₁ClN₇O₄Zn ([M+H]⁺) 698.21945, found 698.22025.

FT-IR (KBr pellete, cm⁻¹): 2953 (C-H), 2922 (C-H), 2857 (C-H), 1589 (Ar C=C), 1551 (Ar C=C), 1514 (Ar C=C), 1435 (Ar C=C), 1204 (C-O).

UV-vis (DMSO) λ_{max} , nm (log ϵ): 390 (4.50), 445 (4.66).

a10s10

Yellow solid, yield 94%.

¹H NMR (400 MHz, d⁶-DMSO): δ (ppm) 9.13 (1H, s, CH=N), 8.94 (1H, s, CH=N), 8.28 (1H, d, J = 8.7 Hz, pyH), 7.39 (2 H, t, J = 8.5 Hz, ArH and pyH), 7.27 (1H, d, J = 8.7 Hz, ArH), 6.20 (4H, m, ArH), 4.11 (4H, m, 2× PhOCH₂), 3.59 (8H, m, 4× CH₂OCH₂), 2.70 (4H, m, 2× PhOCH₂CH₂), 2.48 (8H, m, 2× CH₂CH₂OCH₂CH₂).

HR MS (ESI⁺, DMSO, FT-ICR): m/z calcd. for C₃₁H₃₅ClN₅O₆Zn ([M+H]⁺) 672.15618, found 672.15638.

FT-IR(KBr, cm⁻¹): 2955, 2928, 2862, 1605, 1558, 1518, 1441, 1200.

UV-vis (DMSO) λ_{max} , nm (log ϵ): 321 (4.43), 416 (4.58), 451 (4.45).

a11s1

Dark yellow solid, yield 68%.

¹H NMR (400 MHz, d⁶-DMSO): δ (ppm) 9.04 (1H, s, CH=N), 8.74 (1H, s, CH=N), 8.30 (1H, d, J = 2.1 Hz, pyH), 8.16 (1H, d, J = 2.1 Hz, pyH), 7.14 (2H, m, ArH), 6.15 (1H, d, J = 2.4 Hz, ArH), 6.12 (1H, d, J = 2.4 Hz, ArH), 5.83 (2H, s, ArH), 3.39 (8H, m, 2× CH₂), 1.15 (12H, t, J = 7.0 Hz, 2× CH₃)..

HR MS (ESI⁺, DMSO, FT-ICR): m/z calcd. for C₂₇H₃₁BrN₅O₂Zn ([M+H]⁺) 600.09471, found 600.09507.

FT-IR(KBr, cm⁻¹): 2970 (C-H), 2924 (C-H), 1593 (Ar C=C), 1545 (Ar C=C), 1503 (Ar C=C), 1435 (Ar C=C), 1200 (C-O).

UV-vis (DMSO) λ_{max} , nm (log ϵ): 387 (4.42), 456 (4.64).

Yellow solid, yield 63%.

¹H NMR (400 MHz, d⁵-Pyr): δ (ppm) 9.05 (1H, s, CH=N), 8.74 (1H, s, CH=N), 8.29 (1H, d, J = 1.9 Hz, pyH), 8.17 (1H, d, J = 2.0 Hz, pyH), 7.15 (2H, t, J = 8.6 Hz, ArH), 6.05 (2H, d, J = 8.7Hz, ArH), 5.71 (2H, s, ArH), 3.26 (8H, m, 4× NCH₂), 1.98 (8H, m, 4× NCH₂CH₂).

HR MS (ESI⁺, DMSO, FT-ICR): m/z calcd. for C₂₇H₂₇BrN₅O₂Zn ([M+H]⁺) 596.06341, found 596.06307.

FT-IR (KBr pellete, cm⁻¹): 2945 (C-H), 2914 (C-H), 2857 (C-H), 2814 (C-H), 1585 (Ar C=C), 1545 (Ar C=C), 1499 (Ar C=C), 1491 (Ar C=C), 1443 (Ar C=C), 1433 (Ar C=C), 1198 (C-O). UV-*vis* (DMSO) λ_{max} , nm: 385 (4.44), 457 (4.67).

a11s4

Dark yellow solid, yield 63%.

¹H NMR (400 MHz, d⁵-Pyr): δ (ppm) 9.61 (1H, s, CH=N), 8.86 (1H, s, CH=N), 8.35 (1H, d, J = 2.0 Hz, pyH), 8.16 (1H, d, J = 2.0 Hz, pyH), 7.41 (1H, d, J = 9.0 Hz, ArH), 7.36 (1H, d, J = 9.1 Hz, ArH), 6.56 (1H, d, J = 2.2 Hz, ArH), 6.52 (1H, d, J = 2.2 Hz, ArH), 6.37 (1H, dd, J₁ = 9.0, J₂ = 2.3 Hz, ArH), 6.33 (1H, dd, J₁ = 9.0, J₂ = 2.3 Hz, ArH), 3.64 (8H, m, 2× CH₂OCH₂), 3.47 (4H, m, 2× N(CH₃)CH₂), 2.96 (3H, s, CH₃), 2.94 (3H, s, CH₃), 2.43 (4H, m, 2× N(CH₃)CH₂CH₂), 2.33 (8H, m, 2× CH₂CCH₂OCH₂CH₂).

HR MS (ESI⁺, DMSO, FT-ICR): m/z calcd. for C₃₃H₄₁BrN₇O₄Zn ([M+H]⁺) 742.16894, found 742.16900.

FT-IR (KBr pellete, cm⁻¹): 2958 (C-H), 2929 (C-H), 2855 (C-H), 1587 (Ar C=C), 1548 (Ar C=C), 1512 (Ar C=C), 1200 (C-O).

UV-vis (DMSO) λ_{max} , nm (log ϵ): 391 (4.43), 450 (4.65).

a11s10

Yellow solid, yield 80%.

¹H NMR (400 MHz, d⁶-DMSO): δ (ppm) 9.26 (1H, s, CH=N), 8.99 (1H, s, CH=N), 8.51 (1H, d, J = 2.1Hz, pyH), 8.35 (1 H, d, J = 2.1Hz, pyH), 7.34 (1H, d, J = 8.9Hz, ArH), 7.28 (1H, d, J = 9.1Hz, ArH), 6.19 (4H, m, ArH), 4.11 (4H, t, J = 5.4Hz, 2× PhOCH₂), 3.59 (8 H, m, 4× CH₂OCH₂), 2.70 (4H, t, J = 5.7Hz, 2× PhOCH₂CH₂), 2.45 (8H, m, 2× CH₂CH₂OCH₂CH₂).

HR MS (ESI⁺, DMSO, FT-ICR): m/z calcd. for C₃₁H₃₅BrN₅O₆Zn ([M+H]⁺) 716.10567, found 716.10520.

FT-IR (KBr pellete, cm⁻¹): 2953 (C-H), 2928 (C-H), 2862 (C-H), 2826 (C-H), 1605 (C=N), 1553 (Ar C=C), 1518 (Ar C=C), 1439 (Ar C=C), 1209 (C-O).

UV-vis (DMSO) λ_{max}, nm (log ε): 323 (4.45), 421 (4.58), 454 (4.46).

2.4.3 ¹H NMR Spectra of ZnSalen/Salophens

Unless specially mentioned, the ¹H NMR spectra were recorded in d⁶⁻DMSO and the peaks for residue solvent (DMSO, $\delta = 3.33$ ppm), water ($\delta = 2.50$ ppm) and TMS ($\delta = 0$ ppm) were omitted for clarity.

a1s3

a1s5

33

a1s9

a1s8

a3s1

a4s1

a5s1

a5s4

a6s1

a6s4

a8s1

a8s4

a8s3

a9s1

a9s4

a10s1

a10s4

a11s1

a11s4

2.4.4 HR ESI MS Spectra of ZnSalen/Salophens

a1s7

 Meas. m/z
 # Formula
 Score
 m/z
 err [mDa]
 err [ppm]
 mSigma
 rdb
 e⁻ Conf
 N-Rule

 669.22128
 1
 C 32 H 41 N 6 O 4 S Zn
 100.00
 669.221960
 -1.7
 -2.5
 20.6
 15.5
 even
 ok

 Meas. m/z
 # Formula
 Score
 m/z
 err [mDa]
 err [ppm]
 mSigma
 rdb
 e⁻ Conf
 N-Rule

 687.18950
 1
 C 34 H 35 N 6 O 6 Zn
 100.00
 687.19041
 0.9
 1.3
 321.3
 20.5
 even
 ok

a5s3

a7s4

a9s3

3 Photophysical properties

3.1 Determination of the fluorescence quantum yield of ZnSalen/Salophens

Quantum yields of one-photon emission of synthesized ZnSalen/Salophens were measured with Rhodamine B (RhB, dissolved in ethanol, for λ_{emi} of ZnSalen/Salophen above 600nm) or fluorescein (FLS, dissolved in 0.1M NaOH aqueous solution, for λ_{emi} of ZnSalen/Salophen from 490nm to 560nm) as reference. The one photon fluorescence measurements were performed in 1cm quartz cells with 1 μ M compound in DMSO or DCM on a fluorescence lifetime and steady state spectrophotometer (Edinburgh Instrument FLS920) equipped 450 W Xenon light, slits 2.5×2.5. The values of fluorescence quantum yield, Φ (sample), were calculated according to equation as following⁴:

$$\Phi_{sample} = \Phi_{ref} \cdot \frac{OD_{ref} \cdot I_{sample} \cdot d_{sample}^2}{OD_{sample} \cdot I_{ref} \cdot d_{ref}^2}$$
(1)

 Φ_{ref} : The values of fluorescence quantum yield of the reference. $\Phi_{RhB} = 0.65$, $\Phi_{FLS} = 0.92.5$

I: integrated emission intensity.

OD: optical density at the excitation wavelength.

d: the refractive index of solvents. $d_{\text{DMSO}} = 1.478$, $d_{\text{DCM}} = 1.444$, $d_{\text{H}_{\text{O}}} = 1.333$, $d_{\text{EtOH}} = 1.361$.

3.2 Determination of the two-photon absorption cross section of a1s1, a3s1-a11s1 and a1s10.

The two-photon absorption spectra of **a1s1, a3s1-a11s1** and **a1s10** were determined over a broad spectral region (740nm to 860nm) by the typical two-photon induced fluorescence method relative to Rhodamine B as standard. The two-photon fluorescence data were acquired using a Tsunami femtosecond Ti: Sapphire laser (pulse width ≤ 100 fs, 80 MHz repetition rate, tuning range 710–880 nm Spectra Physics Inc., USA). The two-photon fluorescence measurements were performed in a 1cm quartz cell with 1×10^{-4} mol/L sample dissolved in DMSO and the excitation power density is set to be 100 mW. The two-photon absorption cross section of **a1s1, a3s1-a11s1** and **a1s10** (δ_{sample}) was calculated at every 10nm wavelength from 740nm to 860nm according to equation as following:

$$\delta_{sample} = \delta_{ref} \cdot \frac{\Phi_{ref} \cdot C_{ref} \cdot I_{sample} \cdot d_{sample}}{\Phi_{sample} \cdot C_{sample} \cdot I_{ref} \cdot d_{ref}}$$
(2)

 $\delta_{\it ref}$: Two-photon absorption cross section of the reference (Rhodamine B), which was read out

from the previous literature⁶.

 $\boldsymbol{\Phi}$: Quantum yield of sample and reference.

I: Integrated emission intensity.

C: Concentration of each sample.

d: The refractive index of solvents. $d_{\text{DMSO}} = 1.478$, $d_{\text{EtOH}} = 1.361$.

3.3 Simulation of the two-photon absorption cross section according to the two-state model **3.3.1** Estimation the transition dipole moment, μ_{g-e}^{7} The transition dipole moment, μ_{g-e} , was calculated from the area under the UV–*vis* absorption band through equation

$$S = \int \varepsilon M d\omega = \frac{2\pi \omega_{ge} n N_0 \mu_{g-e}^2 M}{3(2.303) \varepsilon_0 ch}$$
(3)

where M is the concentration of the chromophore, n is the refractive index of the solvent, ε is the molar absorption coefficient, N₀ is Avogadro's constant, ε_0 is the permittivity of a vacuum, c is speed of light in a vacuum, h is Planck's constant, and ω_{ge} can be found simply from the band maximum of the UV–*vis* absorption spectrum of the chromophore. The UV-*vis* spectra for the selected ZnSalen/Salophens were recorded in DMSO.

3.3.2 Determination of the magnitude of the change in the dipole moment on excitation from the ground state to the excited state, $\Delta \mu_{ge}$.⁸⁻¹¹

 $\Delta \mu_{ge}$ was determined *via* Lippert-Mataga plot using the equation:

$$\Delta \tilde{\nu} = \frac{2\Delta \mu_{ge}^2}{4\pi \varepsilon_0 h c a^3} \left[\frac{\varepsilon - 1}{2\varepsilon + 1} - \frac{n^2 - 1}{2n^2 + 1}\right]$$

where $\Delta_{\tilde{V}}^{\tilde{V}}$ refers to the Stokes shift (in cm⁻¹), n and ε are refractive index and dielectric constant of the solvent, respectively. The other terms in Equation (2) are Planck's constant (h), speed of light (c), Onsager cavity radius of the solute molecule (a) and the permittivity of a vacuum (ε_0).

 $\Delta \mu_{ge}$ can be obtained from the slope of the plot of $\Delta \tilde{\nu} v.s. \left[\frac{\varepsilon - 1}{2\varepsilon + 1} - \frac{n^2 - 1}{2n^2 + 1}\right]$.

In our experiment, the absorptive and emissive wavelengths were respectively recorded in the following solvent: (1) toluene, (2) dichloromethane, (3) chloroform, (4) 1, 2-dichloroethane, (5) tertiary butanol, (6) isopropanol, (7) ethanol and (8) acetonitrile. Linear fit were carried out after precluding the obviously deviating points. The Onsager cavity radius of the ZnSalen/Salophens are approximated from the optimized ground state geometry and set as 40% of the long axis of transition arm of one side of ZnSalen/Salophen molecule, as suggested by Lippert⁸ for elongated nonspherical molecules.

3.3.3 Fitting the dipole moment properties to the two-state $model^{12}$

The two-state model can be expressed as following:

$$\delta^{\infty} rac{\Delta \mu_{ge}^2 \mu_{g-e}^2}{E_{ge}^2 \Gamma}$$

where E_{ge} corresponds to the vertical transition energy, Γ refers to the damping which we assumed to be identical for all exited states of selected ZnSalen/Salophens and δ at 790nm was chosen for comparison among the six ZnSalen/Salophen complexes. Therefore, the simulation was carried out on

$$\delta_{790\mathrm{nm}} \propto \frac{\Delta \mu_{ge}^2 \mu_{g-e}^2}{E_{ge}^2}$$

3.4 Cyclic voltammetry of a1s1-a11s1 and a1s10
Cyclic voltammetry experiments were recorded on a Shanghai Chenhua CHI660C electrochemical workstation at room temperature under N₂ atmosphere. A glassy carbon electrode was selected as working electrode while SCE (saturated calomel electrode) served as reference electrode; the auxiliary electrode was a platinum wire. All samples were 10 mM in complex with 0.1 M tetrabutylammonium fluoroborate (Bu₄NBF₄) supporting electrolyte in dry dimethyl formamide solution. The scan rate was set to be 20 mV/s and the reduction potential calibration was performed at the end of each data collection cycle using the ferrocene/ferrocenium couple $[(C_5H_5)_2Fe]^{+/0}$ as an internal standard.

3.5 Computational studies of a1s1-a11s1 and a1s10.

For the theoretical study of excited state photophysics of **a1s1-a11s1** and **a1s10**, density functional theory (DFT) and time-dependent density functional theory (TD-DFT) methods^{13,14} were performed and the Becke's three–parameter hybrid exchange functional with Lee-Yang-Parr gradient-corrected correlation (B3LYP functional¹⁵) was used with Lanl2dz pseudopotential^{16,17} basis set for Zn, 6-31G** for main group elements, as implemented in the Gaussian 09 package. Geometries for **a1s1-a11s1** and **a1s10** were fully optimized without symmetry constraints. The solvent effect was involved through the PCM approach¹⁸ (DMSO, ε =46.826). The vibration frequency calculations at the same level were carried out to confirm each stationary point to be either a minimum. Then we calculated the vertical excitation energies based on the optimized geometries of the ZnSalen/Salophen molecules.

3.6 Supporting Tables and Figures

ZnSalen/Salophen	$\lambda_{abs}, nm(\log \epsilon)^{[b]}$	$\lambda_{emi}, nm(\lambda_{ex}, nm)^{[c]}$	$\Phi_{\text{lum}}{}^{[d]}$
a1s1	387 (4.79), 439 (4.39), 593(4.93)	632 (593)	0.65
a1s2	377 (4.69), 420 (4.33), 578 (4.78)	621 (578)	0.52
a1s3	387 (4.70), 439 (4.33), 593 (4.81)	635 (593)	0.60
a1s4	387 (4.75), 437 (4.45), 593 (4.82)	633 (593)	0.69
a1s5	387(4.74), 439(4.37), 594(4.89)	637 (594)	0.68
a1s6	387(4.67), 439(4.30), 595(4.78)	634 (595)	0.67
a1s7	387(3.03), 413(3.08), 593(2.97)	630 (593)	0.34
a1s8	384(4.40),589 (4.44)	626 (589)	0.23
a1s9	400(4.95), 458(4.44), 621 (5.04)	659 (621)	0.29
o1c10	341(4.50), 367(4.40), 383 (4.43),	610 (553)	0.074
a1810	445 (4.11),553(4.57)	019 (555)	0.074
a1s1	387 (4.79), 439 (4.39), 593(4.93)	632 (593)	0.65
a2s1	413 (4.57), 445 (4.48)	478, 499 (445)	< 0.001
a3s1	390 (4.65), 449 (4.48)	501, 520 (449)	0.021
a4s1	403 (4.70), 466 (4.60)	524 (466)	0.054
a5s1	428 (4.68), 504 (4.51)	553 (504)	0.089
a6s1	389 (4.85), 452 (4.51)	511 (452)	0.090
a7s1	395 (4.67), 458 (4.48)	544 (458)	0.032
a8s1	382 (4.46), 432 (4.60)	507, 525 (432)	0.069
a9s1	383 (4.39), 466 (4.75), 483 (4.77)	518 (483)	0.036
a10s1	388 (4.50), 457 (4.68)	540 (457)	0.059
a11s1	387 (4.42), 456 (4.64)	515 (456)	0.029
a1s3	387 (4.70), 439 (4.33), 593 (4.81)	635 (593)	0.60
a3s3	390 (4.63), 448 (4.56)	502, 524 (448)	0.017
a4s3	402 (4.71), 468 (4.60)	529 (468)	0.053
a5s3	427 (4.68), 509 (4.52)	552 (509)	0.060
a6s3	390 (4.80), 451 (4.47)	510 (451)	0.083
a7s3	396 (4.64), 456 (4.46)	542 (456)	0.033
a8s3	385 (4.46), 433 (4.61)	508, 530 (433)	0.062
a9s3	384 (4.40), 469 (4.78), 483 (4.80)	515 (483)	0.023
a10s3	389 (4.52), 451 (4.70)	524 (451)	0.053
a11s3	385 (4.44), 457 (4.67)	516, 542 (457)	0.027
a1s4	387 (4.75), 437 (4.45), 593 (4.82)	633 (593)	0.69
a2s4	413 (4.51), 444 (4.40)	471, 498 (444)	< 0.001

 Table S1. Absorptive and emissive properties of ZnSalen/Salophens^[a]

a3s4	391 (4.64), 446 (4.47)	501, 519 (446)	0.017
a4s4	403 (4.67), 467 (4.56)	529 (467)	0.048
a5s4	428 (4.67), 508 (4.52)	554 (508)	0.045
a6s4	388 (4.82), 450 (4.49)	512 (450)	0.075
a7s4	396 (4.65), 457 (4.46)	511, 528 (457)	0.036
a8s4	385 (4.46), 429 (4.58)	505, 532 (429)	0.051
a9s4	384 (4.46), 467 (4.82), 482 (4.83)	517, 539 (482)	0.021
a10s4	390 (4.50), 445 (4.66)	531 (445)	0.054
a11s4	391 (4.43), 450 (4.65)	514, 543 (450)	0.030
91610	341 (4.50), 367(4.40), 383 (4.43),	619 (553)	0 074
a1510	445 (4.11),553(4.57)	019 (555)	0.074
a3s10	311 (4.47), 389 (4.55), 429 (4.33)	489 (429)	0.002
a4s10	320 (4.51), 404 (4.58), 445 (4.40)	514 (445)	0.014
a5s10	333 (4.52), 422 (4.62) ,470 (4.42)	540 (470)	0.015
a6s10	312 (4.51), 386 (4.47) , 426 (4.26)	502 (426)	0.011
a7s10	316 (4.49), 395 (4.53) , 436 (4.32)	512 (436)	0.006
a8s10	317 (4.38), 407 (4.52) , 449 (4.33)	493, 510 (449)	0.005
a9s10	333 (4.38), 443 (4.57), 457 (4.55)	510 (457)	0.004
a10s10	321 (4.43), 416 (4.58) , 451 (4.45)	506, 528 (451)	0.009
a11s10	323 (4.45), 421 (4.58) , 454 (4.46)	500 (454)	0.002

^[a]: All data was determined in DMSO at a concentration of 20 μ M

^[b]: Wavelength of absorptive peaks and the corresponding extinction coefficient.

^[c]: Wavelength of emissive peaks and the related excitation wavelength.

^[d]: Fluorescence quantum yield, the uncertainty is $\pm 15\%$.

Table S2. Fluorescence lifetime (τ_{fl}) , radiative (k_{fl}) and nonradiative rate constant (k_{nr}) of **a1s1-a1s10** and **a3s1-a11s1**^[a]

ZnSalen/Salophens	$\tau_{\mathrm{fl}}\left(ns\right)\left(\lambda_{\mathrm{emi}}\right)$	$k_{fl} (ns^{-1})$	$k_{nr} (ns^{-1})$
a1s1	3.8 (632)	1.6×10 ⁸	1.1×10^{8}
a1s2	4.1 (621)	1.3×10 ⁸	1.2×10^{8}
a1s3	3.8 (635)	1.6×10 ⁸	1.1×10^{8}
a1s4	3.6 (633)	1.9×10 ⁸	8.6×10^{7}
a1s5	4.1 (637)	1.7×10 ⁸	7.8×10^{7}
a1s6	3.6 (634)	1.9×10 ⁸	9.2×10^{7}
a1s7	3.9 (630)	8.7×10 ⁷	1.7×10^{8}
a1s8	4.1 (626)	5.6×10 ⁷	1.9×10^{8}
a1s9	4.0 (659)	7.3×10 ⁷	1.8×10^{8}

a1s10	1.4 (619)	4.6×10^{8}	2.5×10^{8}			
a2s1	0.82 (478), 0.91(499)	/	/			
a3s1	0.16 (501), 0.21 (520)	1.3×10^8 , 9.9×10^7	6.1×10 ⁹ , 4.6×10 ⁹			
a4s1	0.72 (524)	7.5×10^{7}	1.3×10^{9}			
a5s1	0.85 (533)	1.0×10^{8}	1.1×10^{9}			
a6s1	0.36 (511)	2.5×10^{8}	2.5×10^{9}			
a7s1	0.49 (544)	6.5×10^{7}	2.0×10 ⁹			
a8s1	0.47 (507), 0.84 (525)	1.5×10^8 , 8.4×10^7	2.0×10 ⁹ , 1.1×10 ⁹			
a9s1	0.61 (518)	5.9×10 ⁷	1.6×10 ⁹			
a10s1	0.81 (540)	7.3×10^{7}	1.2×10^{9}			
a11s1	0.28 (515)	1.0×10^{8}	3.5×10 ⁹			
^[a] : The data was all determined in DMSO. The uncertainty for the lifetime is $\pm 15\%$.						

Table S3. Two-photon absorption cross-section (GM) of **a1s1**, **a3s1-a11s1** and **a1s10** at differentwavelength (nm)

Wavelength (nm)	a1s1	a3s1	a4s1	a5s1	a6s1	a7s1	a8s1	a9s1	a10s1	a11s1	a1s10
740	61	104	117	94	39	173	61	41	54	43	87
750	55	95	177	92	46	165	65	87	70	51	110
760	56	100	163	36	18	60	25	31	67	53	102
770	61	83	163	87	43	165	41	86	65	47	91
780	68	56	167	78	28	95	23	50	52	37	66
790	82	56	157	105	27	116	33	81	43	36	47
800	105	38	138	134	20	91	25	59	29	29	30
810	130	30	151	113	17	87	24	31	29	34	23
820	146	30	118	158	13	59	19	48	24	26	20
830	173	26	88	171	12	52	20	39	21	23	18
840	215	27	72	191	11	39	22	41	18	28	27
850	161	14	40	139	5	26	14	32	12	19	23
860	122	13	3	81	4	15	9	17	7	12	14

ZnSalen/ Salophens	Band area (cm^{-1})	μ _{g-e} (D)	a (Á)	$\frac{2\Delta\mu_{ge}^2}{4\pi\varepsilon_0 hca^3}$ (cm^{-1})	$\Delta \mu_{ge}$ (D)
a1s1	108735579.5	35.5	9.027	1736	0.285
a3s1	103944301	30.2	9.962	1470	0.304
a5s1	51754770	22.8	11.42	2032	0.439
a6s1	91218790	28.4	10.72	1211	0.308
a9s1	90081373	29.2	9.768	1629	0.311
a1s10	52953992.0	23.9	8.973	2589	0.345

Table S4. Estimation of the μ_{g-e} and $\Delta \mu_{ge}$ of a1s1, a3s1, a5s1, a6s1, a9s1 and a1s10.

Table S5. Experimental HOMO and LUMO energy level of a1s1-a11s1 and a1s10

ZnSalen/Salophen	$E_{onset}^{red}(V)$	LUMO (eV)	$E_{g}(eV)^{[b]}$	HOMO $(eV)^{[c]}$
als1	-1.10	-3.16	1.84	-5.00
a1s10	-0.89	-3.37	1.94	-5.31
a2s1			2.26	—
a3s1			2.37	—
a4s1	-1.57	-2.69	2.20	-4.89
a5s1	-1.48	-2.78	2.17	-4.95
a6s1	-1.67	-2.59	2.30	-4.89
a7s1	-1.68	-2.58	2.25	-4.83
a8s1	-1.84	-2.42	2.33	-4.75
a9s1	-1.55	-2.71	2.17	-4.88
a10s1	-1.66	-2.60	2.20	-4.80
a11s1	-1.65	-2.61	2.19	-4.80

^[a] Determined from the onset of the reduction voltages.

^[b] Calculated from the edges of the absorption spectra.

^[c] Determined from the onset of the reduction voltages.

ZnSalen/Salophen	LUMO (eV)	HOMO $(eV)^{[b]}$	$E_{g}(eV)^{[c]}$
als1	-2.59	-5.08	2.49
a1s10	-2.86	-5.56	2.70
a2s1	-1.57	-4.99	3.42
a3s1	-1.59	-4.93	3.34
a4s1	-1.95	-5.06	3.11
a5s1	-2.28	-5.18	2.90
a6s1	-1.74	-5.07	3.33
a7s1	-1.80	-5.06	3.26
a8s1	-1.69	-4.99	3.30
a9s1	-1.93	-5.08	3.15
a10s1	-1.80	-5.04	3.24
a11s1	-1.80	-5.04	3.24

 Table S6. Calculated HOMO and LUMO energy level of a1s1-a11s1 and a1s10

 Table S7. Distributions of HOMO and LUMO levels on the phenoixde and diamine-imine units of als1-alls1 and als10

ZnSalen/	HOMO Dis	tributions (%)	LOMO Distributions (%)		
Salophen	Phenoixde	Diamine-imine	Phenoixde	Diamine-imine	
a1s1	58	28	30	67	
a2s1	55	36	26	70	
a3s1	57	34	36	59	
a4s1	58	32	28	69	
a5s1	58	32	21	76	
a6s1	58	32	34	62	
a7s1	59	30	34	61	
a8s1	57	33	37	58	
a9s1	57	34	22	75	
a10s1	56	34	33	62	
a11s1	56	34	32	60	
a1s10	60	37	29	70	

ZnSalen/Salophen	Transitions	$\lambda_{calcd} \left(nm \right)$	$\lambda_{exptl} (nm)$	f	Major contribution
als1	$S_0 - S_1$	556	593	1.0948	HOMO→LUMO (100%)
~) ~1	C C	106	115	0.4500	HOMO→LUMO (36%)
a281	$s_0 - s_1$	400	443	0.4399	HOMO→LUMO ₊₁ (57%)
a3s1	$S_0 - S_1$	434	449	0.7970	HOMO→LUMO (100%)
a4s1	$S_0 - S_1$	460	466	0.6611	HOMO→LUMO (100%)
a5s1	$S_0 - S_1$	493	504	0.7005	HOMO→LUMO (100%)
a6s1	$S_0 - S_1$	434	452	0.7489	HOMO→LUMO (100%)
a7s1	$S_0 - S_1$	442	458	0.6871	HOMO→LUMO (100%)
a8s1	$S_0 - S_1$	438	432	0.8259	HOMO→LUMO (100%)
a9s1	$S_0 - S_1$	438	483	0.3745	HOMO→LUMO (87%)
a10s1	$S_0 - S_1$	444	457	0.8486	HOMO→LUMO (88%)
a11s1	$S_0 - S_1$	444	456	0.8556	HOMO→LUMO (96%)
a1s10	$S_0 - S_1$	521	553	0.7028	HOMO→LUMO (97%)

Table S8. Calculated electronic transitions properties for **a1s1-a11s1** and **a1s10** obtained from TD-DFT calculations with PCM solvation model.

Figure S2 (a) Normalized UV-vis spectra of a1s1-a1s10 in DMSO at 298K

Figure S2 (b) Normalized UV-vis spectra of a1s1-a11s1 in DMSO at 298K

Figure S2 (c) Normalized UV-vis spectra of a1s3-a11s3 in DMSO at 298K

Figure S2 (d) Normalized UV-vis spectra of a1s4-a11s4 in DMSO at 298K

Figure S2 (e) Normalized UV-vis spectra of a1s10-a11s10 in DMSO at 298K

Figure S3 (a) Normalized emission spectra of a1s1-a1s10 in DMSO at 298K. The excitation wavelength for each complex is referred to Table S1.

Figure S3 (b) Normalized emission spectra of a1s1-a11s1 in DMSO at 298K. The excitation wavelength for each complex is referred to Table S1.

Figure S3 (c) Normalized emission spectra of a3s3-a11s3 in DMSO at 298K. The excitation wavelength for each complex is referred to Table S1.

Figure S3 (d) Normalized emission spectra of a2s4-a11s4 in DMSO at 298K. The excitation wavelength for each complex is referred to Table S1.

Figure S3 (e) Normalized emission spectra of a3s10-a11s10 in DMSO at 298K. The excitation wavelength for each complex is referred to Table S1.

Figure S4 Two-photon induced absorption cross section of **a1s1-a11s1** and **a1s10** from 740nm to 860nm with Rhodamine B as reference.

Figure S5 Comparison of the calculated and experimental FOMO energy levels of a1s1-a1s11 and a1s10

ZnSalen/	Optimized	FOMOs of ZnSalen/Salophens				
Salophens	Structures	HOMO-1	НОМО	LUMO	LUMO+1	
a1s1	and the second s	-5.60 eV	-5.07 eV	-2.59 eV	-1.35 eV	
a2s1	and the second s	-5.16 eV	-4.99 eV	-1.56 eV	-1.44 eV	
a3s1		-5.28 eV	-4.93 eV	-1.59 eV	-1.38 eV	
a4s1	and the second s	-5.40 eV	-5.06 eV	-1.95 eV	-1.63 eV	
a5s1		-5.49 eV	-5.18 eV	-2.27 eV	-1.93 eV	
a6s1		-5.35 eV	-5.07 eV	-1.74 eV	-1.46 eV	
a7s1						

	. Strate and star	-5.39 eV	-5.06 eV	-1.80 eV	-1.54 eV
a8s1	244 244 244 244 244 244 244 244 244 244	-5.37 eV	-4.99 eV	-1.69 eV	-1.62 eV
a9s1	200 - 200 -	-5.44 eV	-5.08 eV	-1.93 eV	-1.77 eV
a10s1	and the second s	-5.41 eV	-5.04 eV	-1.80 eV	-1.76 eV
allsl	A State and a state	-5.41 eV	-5.04 eV	-1.80 eV	-1.77 eV
a1s10	**************************************	-5.89 eV	-5.56 eV	-2.85 eV	-1.59 eV

Figure S6 Optimized structures, FOMOs and energy levels of a1s1-a11s1 and a1s10

4 Determination of the octanol-water partition coefficients (log P)

4.1 Methods

Equal volume (2000mL) of n-octanol and water were thoroughly mixed by an oscillator and separated after 24 h. **a1s1-a1s10** and **a2s4-a11s4** (0.50mg each) was then dissolved in 40mL of the separated n-octanol and the solution was allowed to equilibrate for further 24 h. The extinction coefficient was then calculated and 40mL of water (previously separated from the mixture) was added. The new water-octanol system was allowed to equilibrate for additional 24h. After separating, both fractions were analyzed by UV-*vis* spectra. The log P values were calculated by the following equation

$$\log P = \log \frac{C_{\text{octanol}}}{C_{\text{water}}}$$

where C_{octanol} and C_{water} refer to the concentration of ZnSalen/Salophen compound in the n-octanol and water, respectively.

5 Live Cell imaging

5.1 Cell culture

All cells were incubated in complete medium (Dulbecco's modified Eagle's Medium, supplemented with 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin) at 37 °C in atmosphere containing 5% CO₂.For imaging, HeLa cells were grown in poly-D-lysine-coated dishes and incubated in 2mL of complete medium for 24 h. Cells were washed with PBS, and stocked dyes (2 mM in DMSO) were added to obtain a final concentration of 2 μ M. The treated cells were incubated for another hour in dark at 37 °C. A few minutes prior to confocal imaging cells were washed twice with PBS. A confocal laser scanning microscope (A1R-si, Nikon, Japan) was used to obtain images. Cells were imaged via the fluorescence mode with a 60× immersion lens with the following parameters: laser power 100%, pinhole 1.0 A.U., excitation wavelength 405nm or 488nm or 543 nm, detector slit 552-617 nm, resolution 1024×1024, and a scan speed 0.5 frames per second.

5.2 CCK-8 assay

The cytotoxicity assays were conducted according to the literature¹⁹. HeLa cells were seeded in flat-bottomed 96-well plates, 10^4 cells per well, with 200 µL complete culture media in the dark for 24h. After washed with PBS for three times (200µL*3), the cells were incubated with appropriate concentrations of ZnSalen/Salophens (5µM for **a9s3, a10s3, a7s4**, 10 µM for **a8s1**, and 20 µM for the rest). All stock solutions were prepared in DMSO and diluted with complete media, and the final DMSO concentrations were less than 0.1%. After cultured for 24 h, the cells were washed with PBS three times (200µL*3). 10 µL Cell Counting Kit-8 (CCK-8) solution and 90µL PBS were added per well simultaneously. After 2 hours, the absorbance at 450nm was read by 96-well plate reader. The viability of HeLa cells was calculated by the following equation:

$CV = (As-Ab) / (Ac-Ab) \times 100\%$

where CV stands for the viability of cells, As, Ac and Ab stand for the absorbance of cells containing ZnSalen/Salophens, cell control (0 µM ZnSalen/Salophens) and blank control (wells containing no cells or ZnSalen/Salophens).

5.3 Colocalization assay

HeLa cells were placed onto 0.1mM poly-D-lysine coated glasses in complete media and the cells were incubated for 24 h. A stock solution of ZnSalen/Salophens in chromatographic grade, anhydrous DMSO was prepared as 2 mM. The solution was diluted to a final concentration of 2 μ M by complete growth medium. Stock solutions of Lyso Tracker Green DND-26, Lyso Tracker Red DND-99, ER Tracker Blue-White DPX, ER Tracker Green dye, Hoechst 33528 were prepared as 1mM, and the stock solution was diluted to the working concentrations in complete medium (For Lyso Tracker Green DND-26: 72nM; for others: 1 μ M). After incubating for an hour, cells were washed with PBS buffer twice before confocal experiments. Images were taken under conditions as follows: 60× immersion lens with a resolution of 1024×1024 and a speed of 0.5 frame per second, suitable excitation wavelength and detector slit for ZnSalen/Salophens in respect to their fluorescence wavelength, 100% laser power for ZnSalen/Salophen samples, and 80% laser power for Lyso Tracker, ER Tracker and Hoechst 33528. Differential interference contrast (DIC) and fluorescent images were processed and analyzed using Image J. The Pearson's Coefficient was calculated by Image J.

5.4 Emission spectra in living cells

The emission spectra of ZnSalen/Salophens in living cells were recorded by Laser Scanning Confocal Microscope (A1R-si, Nikon, Japan) at three channels. For the channel No.1, the excitation wavelength was set to be 405nm and detector slit 425-460nm. For the channel No.2, the excitation wavelength and the detector slit were 488nm and 505-560nm, respectively. And for channel No.3, the excitation wavelength was 543nm and detector slit 552 to 617 nm. Camera settings were the same as described above with the exception of spectral detector mode with a scan resolution of 2.5 nm.

5.5 One-photon multicolour imaging

HeLa cells were placed onto 0.1mM poly-D-lysine coated glasses in complete media and the cells were incubated for 24 h. A stock solution of ZnSalen in chromatographic grade, anhydrous DMSO was prepared as 2 mM. The solution was diluted to a final concentration of 2 μ M by complete growth medium. Stock solution of Hoechst 33528 (a commercial nucleus tracker) was prepared as 1mM, and was diluted to the working concentrations, 1 μ M, in complete medium. After incubated for an hour, cells were washed with PBS buffer twice before confocal experiments. Images were taken under conditions as follows: 60× immersion lens with a resolution of 1024×1024 and a speed of 0.5 frame per second, 100% laser power for ZnSalen/Salophens, and 80% laser power for the nucleus tracker. To obtain multicolour images, lasers and detector slits of different wavelengths are used. For the channel No.1, the excitation wavelength was set to be 405 nm and detector slit 425-460 nm. For the channel No.2, the excitation wavelength and the detector slit wavelength and detector slit 552 to 617 nm. Differential interference contrast (DIC) and fluorescent images were processed and analyzed using Image J.

5.6 Two-photon confocal microscopy imaging

Two photon fluorescence microscopy images were performed on a modified Olympus Fluoview FV1000MPE microscope system equipped with an excitation light laser provided by a

modelocked Ti: sapphire laser, (Mai Tai, Spectra-Physics Inc., USA). The microscopy settings were as follows: $60 \times$ immersion water objective, a resolution of 512×512 , 840 nm excitation wavelength, red slit for **a1s2**, yellow silt for **a5s4**, green slit for **a10s4**, blue slit for **a4s4**, 30 % laser power (10 mW). HeLa cells were treated with 5 μ M of ZnSalen/Salophens for 24 h and washed with prewarmed PBS buffer before photoirradiation at 840 nm.

5.7 Multicolour two-photon confocal microscopy imaging

HeLa cells were placed onto 0.1mM poly-D-lysine coated glasses in complete media and the cells were incubated for 24 h. A stock solution of ZnSalen in chromatographic grade, anhydrous DMSO was prepared as 2 mM. The solution was diluted to a final concentration of 2 μ M by complete growth medium. After incubated for an hour, cells were washed with PBS buffer twice before confocal experiments. Images were taken under conditions as follows: 60× immersion lens with a resolution of 1024×1024 and a speed of 0.5 frames per second, 100% laser power for ZnSalen/Salophens. To obtain multi-colour images, lasers and detector slits of different wavelengths are used. For both channels, the excitation wavelength was set to be 800nm. For channel No.1, red slit was used. For the channel No.2, green slit was used. Differential interference contrast (DIC) and fluorescent images were processed and analyzed using Image J.

5.8 Supporting Tables and Figures

ZnSalen/Salophens	Colocalized Organelle	Pearson's coefficient
a1s1	Lysosome	0.52
a1s2	ER	0.89
a1s3	ER	0.74
a1s4	Lysosome	0.71
a1s5	Lysosome	0.77
a1s6	Lysosome	0.54
a1s7	Lysosome (Endosome)	0.66
a1s8	Lysosome	0.73
a1s9	ER	0.82
a1s10	Lysosome	0.91
a4s3	ER	0.92
a5s3	ER	0.61
a6s3	ER	0.51
a8s3	ER	0.52
a10s3	ER	0.92
a4s4	Lysosome	0.32
a5s4	Lysosome	0.71
a6s4	Lysosome	0.69
a8s4	Lysosome	0.85
a10s4	Lysosome	0.78

 Table S9.
 Colocalized Organelles and the corresponding Pearson's coefficient of selected

 ZnSalen/Salophens (ER stands for endoplasmic reticulum)

Figure S7 CCK-8 assay result of ZnSalen/Salophens. Cells were incubated with 20 μ M of ZnSalen/Salophens under dark. Exceptionally for **a9s3**, **a10s3**, **a7s4**, the incubating concentration is 5 μ M and for **a8s1**, the incubating concentration is 10 μ M.

Figure S8 One-photon fluorescence colocalization images of HeLa cells incubated with 2μM probes and commercial dyes. (a) Image of ZnSalen/Salophens; (b) image of ER Tracker Blue (for Row A-E) and ER Tracker Green (for Row F); (c) merged images of (a) and (b); (d) differential interference contrast (DIC) image. Row A-F: colocalization study of (A) **a4s3**; (B) **a8s3**; (C) **a6s3**; (D) **a10s3**; (E) **a5s3** and (F) **a1s3**.

Fig. S9 Two-photon images of HeLa cells incubated with 5μ M probes. (a) Image of ZnSalen/Salophens; (b) merged images of ZnSalen/Salophens and differential interference contrast (DIC); (c) DIC image. Row A-D: two-photon live cell image of (A) **a1s2** for ER, red; (B) **a5s4** for lysosome, orange; (C) **a10s4** for lysosome, green and (D) **a4s4** for lysosome, cyan.

6 Reference

- 1 A. Heaton, M. Hill and F. Drakesmith, J. Fluorine Chem., 1997, 81, 133-138.
- 2 Y. Hai, J.-J. Chen, P. Zhao, H. Lv, Y. Yu, P. Xu and J.-L. Zhang, *Chem. Commun.*, 2011, **47**, 2435-2437.
- 3 J.-J. Chen, J. Jing, H. Chang, Y. Rong, Y. Hai, J. Tang, J.-L. Zhang and P. Xu, *Autophagy*, 2013, **9**, 894-904.
- 4 T. Karstens and K. Kobs, J. Phys. Chem., 1980, 84, 1871-1872.
- 5 G. A. Crosby and J. N. Demas, J. Phys. Chem., 1971, 75, 991-1024.
- 6 C. Xu and W. W. Webb, J. Opt. Soc. Am. B, 1996, 13, 481-491.
- 7 M. S. Paley, J. M. Harris, H. Looser, J. C. Baumert, G. C. Bjorklund, D. Jundt and R. J. Twieg, *J. Org. Chem.*, 1989, **54**, 3774-3778.
- 8 E. Lippert, Z. Naturforsch., A: Phys. Sci., 1955, 10, 541-545.
- 9 E. Lippert, Zeitschrift Fur Elektrochemie, 1957, **61**, 962-975.
- 10 N. Mataga, Y. Kaifu and M. Koizumi, Bull. Chem. Soc. Jpn., 1955, 28, 690-691.
- 11 N. Mataga, Y. Kaifu and M. Koizumi, Bull. Chem. Soc. Jpn., 1956, 29, 465-470.
- 12 D. Q. Li, M. A. Ratner and T. J. Marks, J. Am. Chem. Soc., 1988, 110, 1707-1715.
- 13 A. D. Laurent and D. Jacquemin, Int. J. Quantum Chem, 2013, 113, 2019-2039.
- 14 E. Runge and E. K. U. Gross, *Phys. Rev. Lett.*, 1984, **52**, 997-1000.
- 15 A. D. Becke, J. Chem. Phys., 1993, 98, 5648-5652.
- 16 P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 270-283.
- 17 P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 299-310.
- 18 G. Scalmani and M. J. Frisch, J. Chem. Phys., 2010, 132, -.
- 19 M. Ishiyama, Y. Miyazono, K. Sasamoto, Y. Ohkura and K. Ueno, Talanta, 1997, 44, 1299-1305.