

Electronic Supplementary Information for

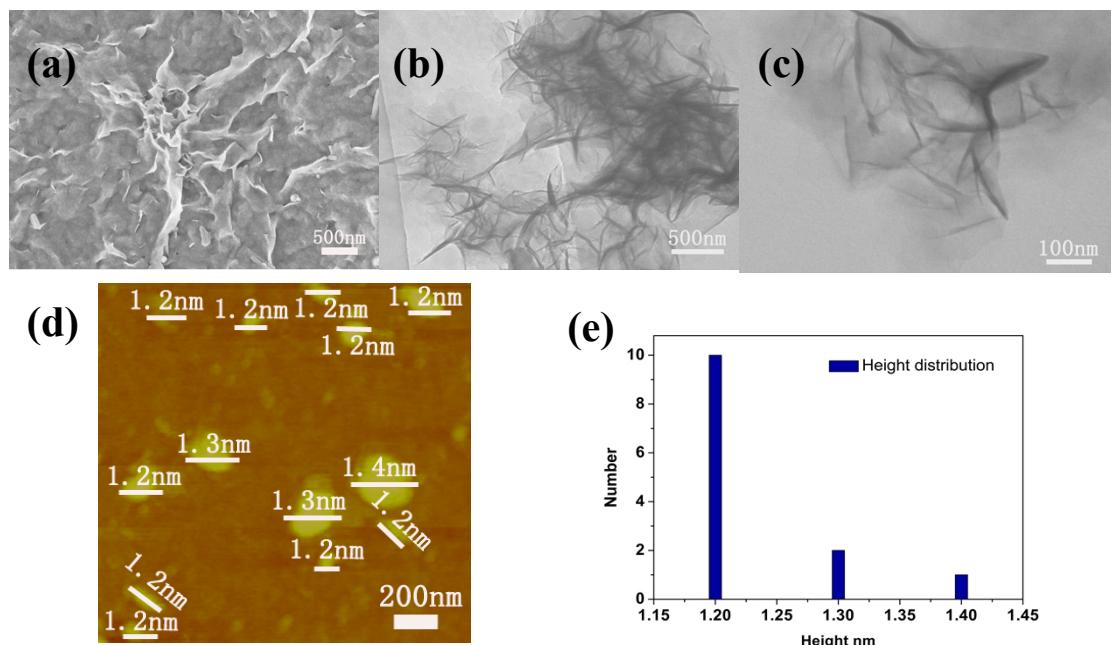
**Ultrathin Nanosheets of Feroxyhyte: A New Two-dimensional  
Material with Robust Ferromagnetic Behavior**

Pengzuo Chen,<sup>†*a*</sup> Kun Xu,<sup>†*a*</sup> Xiuling Li,<sup>*b*</sup> Yuqiao Guo,<sup>*a*</sup> Dan Zhou,<sup>*a*</sup>  
Jiyin Zhao,<sup>*a*</sup> Xiaojun Wu,<sup>*a,b*</sup> Changzheng Wu\*<sup>*a*</sup> and Yi Xie<sup>*a*</sup>

<sup>*a*</sup> Hefei National Laboratory for Physical Sciences at Microscale,

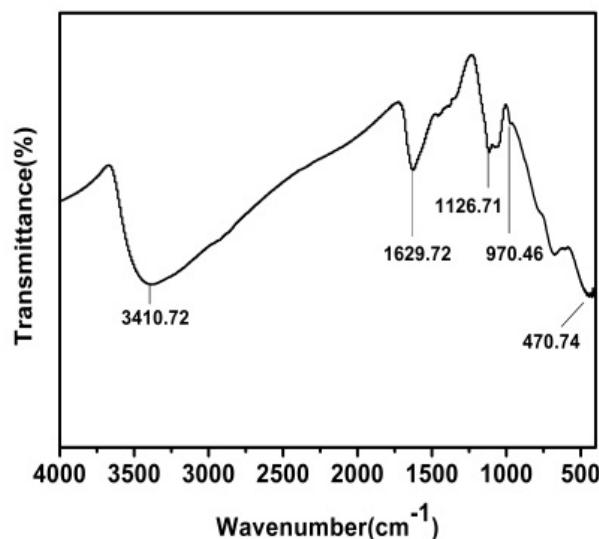
University of Science and Technology of China, Hefei, 230026,

P. R. China. E-mail: czwu@ustc.edu.cn


<sup>*b*</sup> CAS Key Laboratory of Materials for Energy Conversion and Depart of  
Material Science and Engineering, University of Science and Technology  
of China, Hefei, 230026, P. R. China

†These authors contributed equally to this work

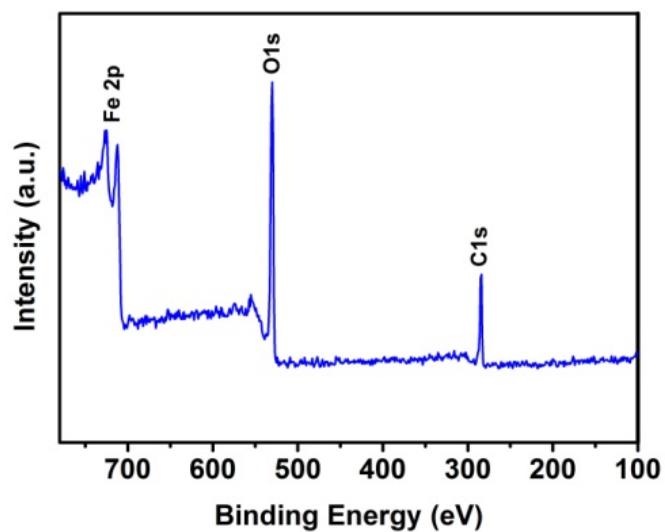
## Table of contents


|                                                                                                                                                  |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| <b>S1. SEM, TEM and AFM images of the synthetic Fe(OH)<sub>2</sub> nanosheets.....</b>                                                           | <b>3</b>  |
| <b>S2. The IR image of the <math>\delta</math>-FeOOH ultrathin nanosheets .....</b>                                                              | <b>4</b>  |
| <b>S3. XPS survey spectrum .....</b>                                                                                                             | <b>5</b>  |
| <b>S4. SEM and TEM images of the synthetic <math>\delta</math>-FeOOH nanosheets .....</b>                                                        | <b>6</b>  |
| <b>S5. The comparision of different TEM images of the <math>\delta</math>-FeOOH nanosheets obtained in the mixture with and without EG .....</b> | <b>7</b>  |
| <b>S6. Elemental Mapping of the as-synthetic <math>\delta</math>-FeOOH ultrathin nanosheets. ....</b>                                            | <b>8</b>  |
| <b>S7. Characterization of <math>\delta</math>-FeOOH nanosheets thin film .....</b>                                                              | <b>9</b>  |
| <b>S8. The UV-Vis spectrum of the <math>\delta</math>-FeOOH ultrathin nanosheets .....</b>                                                       | <b>10</b> |
| <b>Table S1. Comparison of saturation magnetization of the reported ferromagnetic nanosheets .....</b>                                           | <b>11</b> |

## S1. SEM, TEM and AFM images of the synthetic Fe(OH)<sub>2</sub> nanosheets

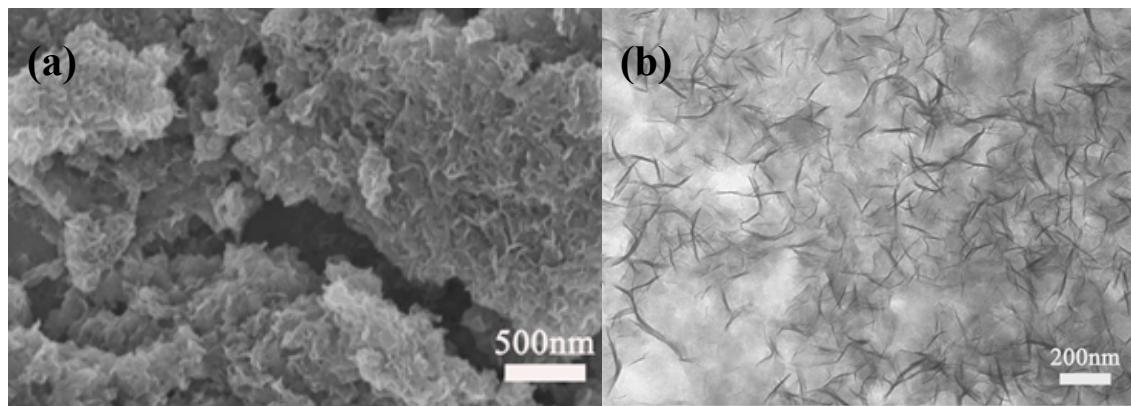


**Figure S1.** (a) SEM image of the Fe(OH)<sub>2</sub> precursor. (b) and (c) TEM images of the Fe(OH)<sub>2</sub> precursor. (d) AFM image of Fe(OH)<sub>2</sub> precursor . (e) the corresponding height distribution.


## S2. The IR image of the $\delta$ -FeOOH ultrathin nanosheets

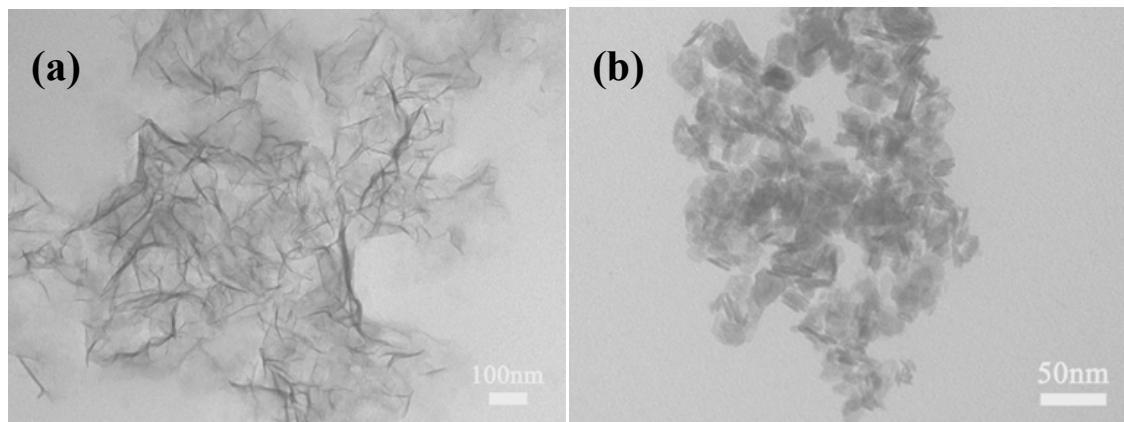


**Figure S2.** The IR image of the synthetic  $\delta$ -FeOOH ultrathin nanosheets.


The IR spectrum is shown in Figure S2, the peaks at  $470.74\text{ cm}^{-1}$  could be ascribed to Fe-O stretching vibration of the  $\delta$ -FeOOH, while the Fe-O-H bending mode is recorded at  $1126.71\text{cm}^{-1}$  and a bridge between two iron ions through the OH group exhibits the bridging OH bending mode at  $970.46\text{cm}^{-1}$ . The band at  $3415.20\text{cm}^{-1}$  was attributed to stretching vibrations of surface  $\text{H}_2\text{O}$  molecules that were adsorbed on the synthetic  $\delta$ -FeOOH ultrathin nanosheets and  $1629.72\text{cm}^{-1}$  was ascribed to  $\text{H}_2\text{O}$ -bending vibration.<sup>1</sup>

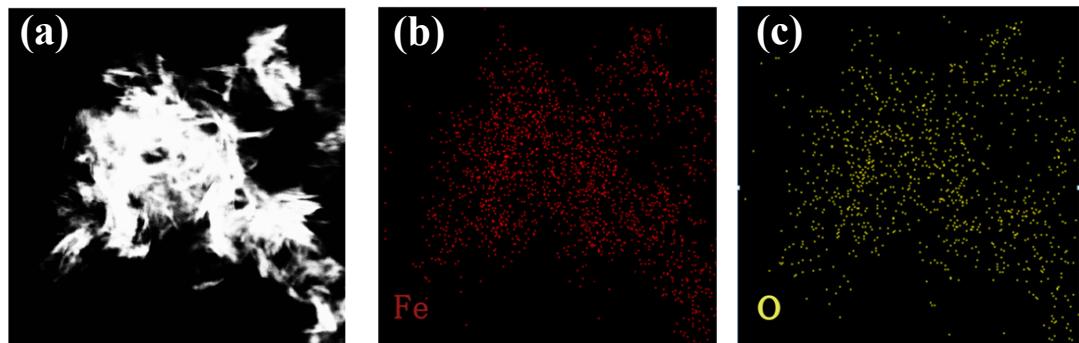
### S3. XPS survey spectrum




**Figure S3.** XPS survey spectrum of the  $\delta$ -FeOOH ultrathin nanosheets.

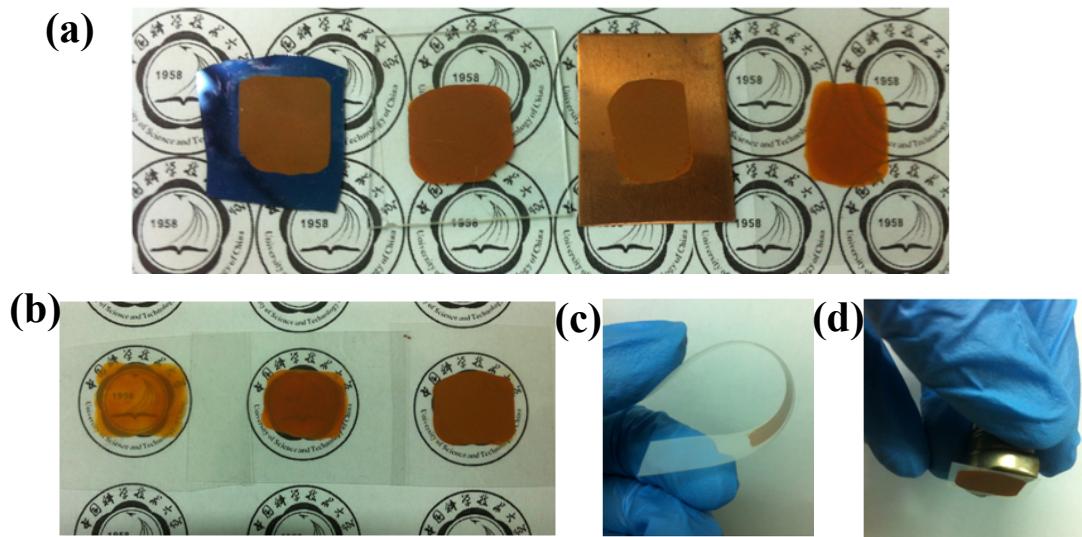
#### S4. SEM and TEM images of the synthetic $\delta$ -FeOOH nanosheets




**Figure S4.** (a) SEM image and (b) TEM image of the as-synthetic ultrathin  $\delta$ -FeOOH nanosheets.

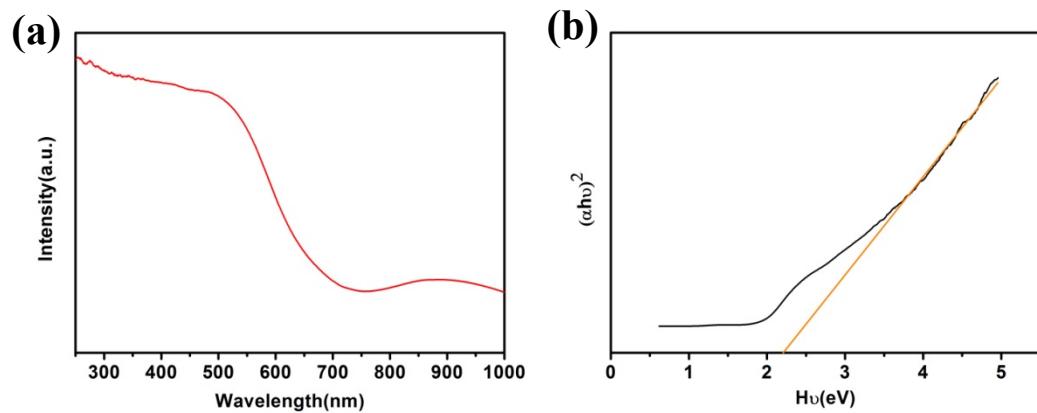
#### S5. The comparision of different TEM images of the $\delta$ -FeOOH nanosheets obtained in the mixture with and without EG




**Figure S5.** (a) TEM image of the ultrathin  $\delta$ -FeOOH nanosheets prepared in EG-H<sub>2</sub>O mixture and (b) TEM image of the  $\delta$ -FeOOH nanoparticles obtained from the pure H<sub>2</sub>O solution.

**S6. Elemental Mapping of the as-synthetic  $\delta$ -FeOOH ultrathin nanosheets.**




**Figure S6.** (a) HAADF-STEM image for typical  $\delta$ -FeOOH ultrathin nanosheets. (b, c) elemental mapping of Fe, O.

## S7. Characterization of $\delta$ -FeOOH nanosheets thin film



**Figure S7.** (a) The as-prepared  $\delta$ -FeOOH thin film could be readily transferred to various substrates (silicon, quartz, copper, and PET respectively). (b) The photograph of  $\delta$ -FeOOH thin film with different thickness transferred onto flexible PET substrates and (c) bend crooked  $\delta$ -FeOOH film/PET, indicating the flexibility. (d) The photograph of  $\delta$ -FeOOH thin film/PET absorbed by a magnet in vertical direction, demonstrating its robust room-temperature ferromagnetism.

## S8. The UV-Vis spectrum of the $\delta$ -FeOOH ultrathin nanosheets



**Figure S8.** (a) UV-Vis absorption spectrum of the synthetic  $\delta$ -FeOOH ultrathin nanosheets. (b) The plots of  $(\alpha h\nu)^2$  versus  $h\nu$ , which was calculated from the UV-Vis diffuse reflectance spectrum.

The UV-Vis absorption spectrum of the synthetic  $\delta$ -FeOOH ultrathin nanosheets was shown in Figure S8a. The broad absorption in the range of 250nm ~600nm of the figure S8a indicates a strong absorption in both the Vis-light and UV region for the as-synthetic  $\delta$ -FeOOH ultrathin nanosheets. The optical absorption near the band was calculated from the Figure S8a by using the following equation :  $\alpha h\nu = A(h\nu - E_g)^{n/2}$ . Where A is a constant,  $\alpha$  is absorption coefficient,  $\nu$  is light frequency,  $E_g$  is band gap, n depends on the kinds of direct-gap (n=1) and indirect gap (n=4) semiconductor in a material. Therefore, based on the detailed calculation of the UV-Vis experimental data, the synthetic  $\delta$ -FeOOH ultrathin nanosheet is a direct-gap semiconductor with a band gap of 2.2eV.<sup>2</sup>

**Table S1. Comparison of saturation magnetization of the reported ferromagnetic nanosheets**

| Materials selection                | Measure temperature                 | Saturation magnetization                          | Ref#         |
|------------------------------------|-------------------------------------|---------------------------------------------------|--------------|
| Mn-Bi <sub>2</sub> Te <sub>3</sub> | 5K                                  | 0.074 emu/g                                       | 3            |
| Graphene                           | 1.8K <sup>a</sup> 300K <sup>b</sup> | 0.007 emu/g <sup>a</sup> 0.013 emu/g <sup>b</sup> | 4,5          |
| Graphene oxide                     | 2K                                  | 0.11 emu/g                                        | 6            |
| N- Graphene oxide                  | 2K                                  | 1.66 emu/g                                        | 6            |
| H-Graphene                         | 300K                                | 0.006 emu/g                                       | 7            |
| SnO <sub>2</sub>                   | 300K                                | 0.0244 emu/g                                      | 8            |
| MoS <sub>2</sub>                   | 300K                                | 2 emu/g                                           | 9            |
| VS <sub>2</sub>                    | 300K                                | 0.09 emu/g                                        | 10           |
| VSe <sub>2</sub>                   | 300K                                | 0.008 emu/g                                       | 11           |
| Co <sub>9</sub> Se <sub>8</sub>    | 300K                                | 1.7 emu/g                                         | 12           |
| $\delta$ -FeOOH                    | 300K                                | 7.5 emu/g                                         | Present work |

## Reference

[1] H. Liu, H. Guo, P. Li and Y. Wei, *J. Phys. Chem. Solids*, 2009, **70**, 186-191.

[2] M. C. Pereira, E. M. Garcia, A. Candido da Silva, E. Lorencon, J. D. Ardisson, E. Murad, J. D. Fabris, T. Matencio, T. de Castro Ramalho and M. V. J. Rocha, *J. Mater. Chem.*, 2011, **21**, 10280-10282.

[3] L. Cheng, Z.-G. Chen, S. Ma, Z.-d. Zhang, Y. Wang, H.-Y. Xu, L. Yang, G. Han, K. Jack, G. Lu and J. Zou, *J. Am. Chem. Soc.*, 2012, **134**, 18920-18923.

[4] R. R. Nair, I. L. Tsai, M. Sepioni, O. Lehtinen, J. Keinonen, A. V. Krasheninnikov, A. H. Castro Neto, M. I. Katsnelson, A. K. Geim and I. V. Grigorieva, *Nat. Commun.*, 2013, **4**, 2010.

[5] L. Chen, L. Guo, Z. Li, H. Zhang, J. Lin, J. Huang, S. Jin and X. Chen, *Sci. Rep.*, 2013, **3**, 2599.

[6] Y. Liu, N. Tang, X. Wan, Q. Feng, M. Li, Q. Xu, F. Liu and Y. Du, *Sci. Rep.*, 2013, **3**, 2566.

[7] A. Y. S. Eng, H. L. Poh, F. Šaněk, M. Maryško, S. Matějková, Z. Sofer and M. Pumera, *ACS Nano*, 2013, **7**, 5930-5939

[8] C. Wang, Q. Wu, H. Ge, T. Shang, J. Jiang, *Nanotechnology*, 2012, **23**, 075704.

[9] J. Zhang, J. M. Soon, K. P. Loh, J. Yin, J. Ding, M. B. Sullivan and P. Wu, *Nano Lett.*, 2007, **7**, 2370-2376.

[10] D. Gao, Q. Xue, X. Mao, W. Wang, Q. Xu and D. Xue, *J. Mater. Chem. C*, 2013, **1**, 5909-5916.

[11] K. Xu, P. Chen, X. Li, C. Wu, Y. Guo, J. Zhao, X. Wu and Y. Xie, *Angew. Chem., Int. Ed.*, 2013, **52**, 10477-10481.

[12] X. Zhang, J. Zhang, J. Zhao, B. Pan, M. Kong, J. Chen and Y. Xie, *J. Am. Chem. Soc.*, 2012, **134**, 11908-11911.