## **Electronic Supporting Information**

## Photoinduced electron transfer in a carbon nanohorn-C<sub>60</sub>

## conjugate

María Vizuete,<sup>a</sup> Maria José Gómez-Escalonilla,<sup>a</sup> José Luis G. Fierro,<sup>b</sup> Kei Ohkubo,<sup>c</sup>

Shunichi Fukuzumi,<sup>\*c,d</sup> Masako Yudasaka,<sup>e</sup> Sumio Iijima,<sup>f</sup> Jean-François Nierengarten<sup>g</sup>

and Fernando Langa<sup>\*a</sup>

<sup>a</sup> Instituto de Nanociencia, Nanotecnología y Materiales Moleculares (INAMOL), Universidad de Castilla-La Mancha, 45071, Toledo, Spain

<sup>b</sup> Instituto de Catálisis y Petroleoquímica, Cantoblanco, 28049, Madrid, Spain

<sup>c</sup> Department of Material and Life Science, Graduate School of Engineering, ALCA,

Japan Science and Technology Agency (JST), Osaka University, Suita, Osaka 565-0871, Japan

 <sup>d</sup> Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea
<sup>e</sup> Nanotube Research Center, National Institute of Advanced Industrial and Technology, Higashi, Tsukuba, Ibaraki 305-8565, Japan

<sup>f</sup> Department of Physics, Meijo University, Shiogamaguchi, Tenpaku-ku, Nagoya 468-8502, Japan

<sup>g</sup> Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg et CNRS, Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087 Strasbourg Cedex 2, France

| Table of Contents                                                               | <u>Page</u> |
|---------------------------------------------------------------------------------|-------------|
| XPS spectra Figure S1                                                           | S1          |
| Uv-Visible experiments Figure S2-S3                                             | S2          |
| TGA curves Figure S4                                                            | S3          |
| XPS spectra Figure S5                                                           | S4          |
| UV-vis-NIR absorption spectrum of CNH-sp-NH <sub>3</sub> <sup>+</sup> Figure S6 | S5          |
| Time profile of absorbance Figure S7                                            | S6          |
| XPS data Tables S1-S2                                                           | S7          |



Fig. S1 N 1s and F 1s core-level spectra of CNH-sp-NH<sub>3</sub><sup>+</sup>F<sup>-</sup>



**Fig. S2** Absorption spectral changes of crown- $C_{60}$  (black line: 7.15x10<sup>-6</sup> M in benzonitrile) on addition of increasing amounts of **CNH-sp-NH<sub>3</sub><sup>+</sup>** (concentration 1 mg/100 mL; from 100 µL to 1500 µL, in 2mL benzonitrile).



**Fig. S3** Control experimental: Absorption spectral changes of **crown-C**<sub>60</sub> (black line:  $3.75 \times 10^{-6}$  M in dichloromethane) on addition of increasing amounts of *pristine* **CNH** (concentration 1 mg/100 mL; from 10 µL to 1700 µL, in 2mL dichloromethane); in the inset, spectra of wavelength expansion.



Fig. S4 Thermograhs of CNH-COOH (black), CNH-sp-NH<sub>3</sub><sup>+</sup>(red), [CNH-sp-NH<sub>3</sub><sup>+</sup>;crown-C<sub>60</sub>] (blue) and crown-C<sub>60</sub> (olive). The temperature interval (200-500  $^{\circ}$ C) represents the steepest weight loss due to organic decompositions.



Fig. S5 C 1s, O 1s and N 1s core-level spectra of  $[CNH-sp-NH_3^+;crown-C_{60}]$  nanohybrid.



**Fig. S6** UV-vis-NIR absorption spectrum of CNH-sp- $NH_3^+$  (0.01 mg mL<sup>-1</sup>) in  $CH_2CI_2$ .



**Fig. S7** Time profile of absorbance at 860 nm up to 100 ps for the transient absorption spectra observed upon femtosecond laser excitation at 393 nm of a PhCN solution of CNH-sp-NH<sub>3</sub><sup>+</sup> (0.5 mg mL<sup>-1</sup>) and crown-C<sub>60</sub> ( $2.0 \times 10^{-4}$  M).

| Table | <b>S1</b> . | Binding               | Energies  | (eV)  | of  | $\text{Crown-C}_{60},$ | CNH-COOH, | CNH-sp-NH <sub>3</sub> <sup>+</sup> F- | and | [CNH-sp- |
|-------|-------------|-----------------------|-----------|-------|-----|------------------------|-----------|----------------------------------------|-----|----------|
| NH₃⁺; | crov        | vn-C <sub>60</sub> ]. | In parent | heses | are | e peak perce           | ntages.   |                                        |     |          |

|                                       | BE (eV) C 1s (%) |              |               |              |              |              |                 | BE (eV)<br>O 1s (%) |               | BE (eV)<br>N 1s (%)            |
|---------------------------------------|------------------|--------------|---------------|--------------|--------------|--------------|-----------------|---------------------|---------------|--------------------------------|
| Sample                                | sp² C            | sp³ C        | C-0           | C=O          | соо          | ππ*          | C-N*            | 0-C                 | O=C           |                                |
| crown-C <sub>60</sub>                 | 284.8<br>(66)    | 285.3<br>(4) | 286.3<br>(21) | 287.5<br>(5) | 289.2<br>(4) | -            | 286.3<br>(21)** | 533.8<br>(49)       | 532.5<br>(51) | 399.7                          |
| СИН-СООН                              | 284.8<br>(65)    | -            | 286.2<br>(18) | 287.5<br>(6) | 289.1<br>(7) | 291.3<br>(4) | -               | 533.9<br>(49)       | 532.5<br>(51) |                                |
| CNH-sp-NH₃⁺F <sup>-*</sup>            | 284.8<br>(65)    | -            | 286.3<br>(20) | 287.6<br>(7) | 289.3<br>(7) | -            | 286.3<br>(20)** | 533.8<br>(52)       | 532.4<br>(48) | 401.5<br>(50)<br>399.7<br>(50) |
| CNH-sp-<br>NH₃⁺;crown-C <sub>60</sub> | 284.8<br>(78)    | 285.3<br>(4) | 286.3<br>(18) | -            | -            | -            | 286.3<br>(18)** | 533.1<br>(69)       | 531.9<br>(31) | 400.0<br>(32)<br>399.0<br>(68) |

\* This sample shows an additional F 1s Peak at a BE of 688.1 eV

\*\* As the binding energies of C 1s (C-O) and N 1s (N-C) are similar, BEs and peak percentages are common for the same peak component.

| Table S2. Surface Atom | ic Composition of <b>Cro</b> | wn-C <sub>60</sub> , CNH-COOH, | , <b>CNH-sp-NH</b> ₃ <sup>+</sup> F <sup>-</sup> and |
|------------------------|------------------------------|--------------------------------|------------------------------------------------------|
|------------------------|------------------------------|--------------------------------|------------------------------------------------------|

[CNH-sp-NH<sub>3</sub><sup>+</sup>;crown-C<sub>60</sub>]

| sample                                 | C (%at) | O (%at) | N (%at) | F (%at) |
|----------------------------------------|---------|---------|---------|---------|
| crown-C <sub>60</sub>                  | 87.5    | 11.5    | 1.0     | -       |
| CNH-COOH                               | 91.0    | 9.0     | -       | -       |
| CNH-sp-NH₃ <sup>+</sup> F <sup>-</sup> | 88.0    | 10.75   | 0.8     | 0.45    |
| CNH-sp-NH₃⁺;crown-C <sub>60</sub>      | 94.3    | 5.0     | 0.7     | -       |