Supplementary Information

Photo-Induced Uncaging of a Specific Re(I)

Organometallic Complex in Living Cells

Anna Leonidova,^a Vanessa Pierroz,^{a,b} Riccardo Rubbiani,^a Yanjun Lan,^a Anita G. Schmitz,^a

Andres Kaech,^c Roland K. O. Sigel, ^a Stefano Ferrari^b and Gilles Gasser^{a,*}

^[a] Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; ^[b] Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; ^[c] Center of Microscopy and Image Analysis, University of Zurich Winterthurerstrasse 190, CH-8057 Zurich, Switzerland

* Corresponding author: email: <u>gilles.gasser@chem.uzh.ch;</u> Fax : +41 44 635 68 03; Tel: +41 44 635 46 30; WWW: <u>www.gassergroup.com</u>.

Table of Contents

Figure S1-8: : ESI-MS, HR ESI-MS, LC-MS and ¹ H- ¹³ C-NMR spectra of Re-PLPG .	S2-6
Figure S9-12: ESI-MS, HR ESI-MS and LC-MS spectra of Re-PLPG-NLS.	S7-9
Figure S13-16: ESI-MS, HR ESI-MS and LC-MS spectra of Re-PLPG-Bombesin.	S10-12
Figure S17-18: LC-MS spectra of photolysis products.	S13-14
Figure S19: Photolysis by-products of Dmochowski PLPG.	S14
Figure S20-21: Photolysis quantum yield measurement for Re-PLPG-NLS.	S15
Table S1: Singlet oxygen quantum yields.	S16
Figure S22: UVA toxicity on MRC-5 cells	S16
Figure S23: Nucleoli isolation and ICP-MS uptake measurements.	S17
Figure S24-25: DNA control gel electrophoresis.	S17
Figure S26-28: RNA denatured gel electrophoresis.	S18-19
Figure S29-30: TEM imaging .	S20-21
Figure S31: Apoptosis/Necrosis Annexin V / PI assay.	S22

Figure S1. ESI-MS spectrum of Re-PLPG.

Figure S2. HR ESI-MS spectrum of Re-PLPG.

Figure S3. Recordered (above) and simulated (below) isotopic pattern of Re-PLPG.

Figure S4. LC-MS spectrum of Re-PLPG.

Figure S5. ¹H-NMR spectrum of PLPG in chloroform.

Figure S6. ¹H-NMR spectrum of **Re-NH₂** in MeOH.

Figure S7. ¹H-NMR spectrum of **Re-PLPG** in chloroform.

Figure S8. ¹³C-NMR spectrum of **Re-PLPG** in chloroform.

Figure S9. ESI-MS spectrum of Re-PLPG-NLS.

Figure S10. HR ESI-MS spectrum of Re-PLPG-NLS.

Figure S11. Recordered (above) and simulated (below) isotopic pattern of Re-PLPG-NLS.

Figure S12. LC-MS spectrum of Re-PLPG-NLS.

Figure S13. ESI-MS spectrum of Re-PLPG-Bombesin.

Figure S14. HR ESI-MS spectrum of Re-PLPG-Bombesin.

Figure S15. Recordered (above) and simulated (below) isotopic pattern of **Re-PLPG-Bombesin**.

Figure S16. LC-MS spectrum of Re-PLPG-Bombesin.

Figure S17. Photolysis of Re-PLPG-NLS followed by LC-MS.

Figure S18. Photolysis of Re-PLPG-Bombesin followed by LC-MS.

Figure S19. UVA-induced decomposition of PLPG and its products.

Figure S20. Laser photolysis of Re-PLPG-NLS.

Figure S21. Photo-conversion of trans-azobenzene to cis-azobenzene followed by UV/vis.

Compound	Water	Acetonitrile
Re-NH ₂	24% ^a , 26% ^b	77% ^a , 75% ^b
Re-NLS	23% ^a , 26% ^b	79% ^a , 76% ^b
Re-PLPG-NLS	24% ^a , 25% ^b	75% ^a , 76% ^b
Re-Bombesin	25% ^b	73% ^b
Re-PLPG-Bombesin	27% ^b	75% ^b

Table S1: Singlet oxygen generation quantum yields.

^a measured by RNO/histidine assay (can not be used on bombesin derivatives, as bombesin sequence contains histidine); ^b measured by near-IR luminescence.

Figure S22. Resazurin assay determining the viability of MRC-5 cells irradiated with UVA $(350 \text{ nm}, 42 \text{ W/m}^2)$.

Figure S23. Left panel: phase contrast image of nucleoli isolated from HeLa cells; Right panel: uptake in HeLa cells treated with 20 μM of complex **Re-NH₂**, **Re-NLS** or **Re-PLPG-NLS** for 2 h, in whole cell extract and in nucleoli, determined by ICP-MS.

Figure S24. Electrophoretic resolution of pcDNA3 on 0.8% agarose gel upon treatment at different incubation temperature and in presence of BstXI (left) or treated with **NLS** at increasing concentration (right).

Figure S25. Electrophoretic resolution of pcDNA3 on 0.8% agarose gel upon treatment for 20 minutes at increasing concentration of RE-PLPG or Re-PLPG-NLS in the dark.

1 2 3 4 5 6 7 8 9

Figure S26. Denaturing polyacrylamide gel electrophoresis of D135-L14 ribozyme sequence from *Sc*.ai5 γ intron of *S. cerevisiae* visualized by UV shading (A) and ethidium bromide (B). 1) RNA, 2) RNA irradiated for 5 min with UVA, 3) RNA incubated at r.t. for 30 min, 4-6) RNA incubated with 10, 50 or 100 μ M of **Re-PLPG-NLS** for 30 min at r.t., 7-9) RNA incubated with 10, 50 or 100 μ M of **Re-PLPG-NLS** for 30 min at r.t. and irradiated for 5 min with UVA.

Figure S27. Denaturing polyacrylamide gel electrophoresis of D135-L14 ribozyme sequence from *Sc*.ai5 γ intron of *S. cerevisiae* visualized by UV shading 1) and 10) RNA, 2) RNA irradiated for 5 min with UVA, 3) RNA incubated at r.t. for 30 min, 4-6) RNA incubated with 10, 50 or 100 μ M of **Re-PLPG** for 30 min at r.t., 7-9) RNA incubated with 10, 50 and 100 μ M of **Re-PLPG** for 30 min at r.t. and irradiated for 5 min with UVA.

Figure S28. Denaturing polyacrylamide gel electrophoresis of D135-L14 ribozyme sequence from *Sc*.ai5 γ intron of *S. cerevisiae* visualized by UV shading 1) RNA, 2) RNA irradiated, 3) RNA incubated at r.t. for 30 min, 4) and 5) RNA incubated with 10 or 100 μ M of **Re-NH**₂ for 30 min at r.t., 6) and 7) RNA incubated with 10 or 100 μ M of **Re-NH**₂ for 30 min at r.t. and irradiated for 5 min with UVA.

Figure S29. Cellular morphology study of HeLa cells treated for 2 h with 20 μM **Re-PLPG-NLS**; 1-2A) untreated cells (dark control); 1-2B) untreated cells (control irradiated at 350 nm for 10 minutes); 1-2C) HeLa cells treated with **Re-PLPG-NLS** in the dark; 1-2D) HeLa cells treated with **Re-PLPG-NLS** and irradiated at 350 nm for 10 minutes.

Figure S30. Nucleolar morphology study of HeLa cells treated for 2 h with 20 μ M **Re-PLPG-NLS** and irradiated for 10 minutes at 350 nm; A) nucleolar component in the control; B) formation of nuclear caps around the nucleolar remnant; C) separation of fibrillar and granular center, migration and unraveling of fibrillar center at the peripheral part of the nucleolar body; D) migration of the whole nucleolar body to the peripheral part of the nucleus.

Figure S31. HeLa cells treated with 20 μM **Re-PLPG-NLS** and irradiated at 350 nm for 10 minutes, analyzed by flow cytometry with the Annexin V / PI staining; white/channel R7: viable cells, Annexin V negative, PI negative; green/channel R8: early apoptotic cells, Annexin V positive, PI negative; dark yellow/channel R6: late apoptotic cells, Annexin V positive; red/channel R5: necrotic cells, Annexin V negative, PI positive.