Supporting information (SANS, DLS, and UV) for

Aqueous solubilization of hydrophobic supramolecular metal-organic nanocapsules

In this supporting information, dynamic light scattering (DLS) data for zinc-seamed C propylpyrogallol[4]arene $\left(\mathrm{PgC}_{3} \mathrm{Zn}\right)$ dimer $\& \mathrm{PgC}_{3} \mathrm{Cu}$ hexamer and the small-angle neutron scattering (SANS) data for $\mathrm{PgC}_{3} \mathrm{Ni}$ dimer, $\mathrm{PgC}_{3} \mathrm{Co}$ dimer, $\mathrm{PgC}_{3} \mathrm{Cu}$ hexamer (without external ligands) and $\mathrm{PgC}_{3} \mathrm{Ni}$ hexamer (with external ligands) have been reported. (NOTE: The shortened formulae of nanocapsules are used throughout the supporting information, i.e. hexamers and dimers with actual chemical formula of $\left(\mathrm{PgC}_{3}\right)_{\underline{n}} \underline{\mathrm{M}}_{4 n} \underline{\mathrm{~L}_{0}-4 n}$ are represented with $\mathrm{PgC}_{3} \underline{\underline{M}}$ hexamer/dimers with and without ligands.) The dimensions of micelles of aqueous-solubilized pyrogallol-based metal-seamed organic nanocapsules (MONCs) were studied on DLS and SANS to yield the hydrodynamic radius $\left(\mathrm{R}_{\mathrm{h}}\right)$ and the static radius (R), respectively. Both R_{h} and R represent the size of the micelle; however, the R_{h} value for a given MONC is typically larger than $R . R_{h}$ is the radius of a sphere that moves with a measured mobility, as defined in the Stokes-Einstein relation. Thus, DLS reports the radius of a sphere or R_{h} that accounts for the viscosity drag at the surface. The fit to the SANS data as polydisperse core-shell spheres, also reports a radius; however the SANS fit is a "static" fit, that is a snapshot (time-averaged) of the size of scatterers. For the reason of viscous drag, the R_{h} value is usually a little bit larger than the R found from a static measurement.

SANS data was reduced and fitted to elliptical, cylindrical, spherical and polydisperse core-shell hard sphere models. The quality of the fit and physical plausibility of the structural parameters was used to evaluate which structure was the most likely solution structure of the nanocapsules. The scattering length densities (SLDs) for the nanocapsules and solvent were calculated and the analyses were done on Igor software provided by NIST. For the Schulz sphere model, the SLDs for $\mathrm{PgC}_{3} \mathrm{Zn} / \mathrm{Cu} / \mathrm{Ni} / \mathrm{Co}$ nanocapsules and the solvent $\mathrm{D}_{2} \mathrm{O}$ were held fixed at the calculated values and the structural parameters common to each data set were optimized to provide the best fit. For the polydisperse core-shell hard sphere model the SLD of the core was
fixed to that of one nanocapsule plus approximately 50 surfactant molecules, and the shell thickness was free to fit, starting with an initial guess with a mixture of surfactant and $\mathrm{D}_{2} \mathrm{O}$. Solvent SLD was always fixed to the SLD of $\mathrm{D}_{2} \mathrm{O}$. The data for the micelles of surfactant/hexamers and surfactant/dimers fitted best to the polydisperse core-shell hard sphere model indicating the presence of spherical nanoassemblies in solution.

NOTE: The DLS results are summarized below. The low polydispersity and higher intensity signals indicate the monodisperse nature of micelles in aqueous solution. For the tween-60 micellar conditions the dilutions were extremely high resulting in low intensity and poor reproducibility and thus cannot be considered as reliable results. Tween 20/span 80 and tween 80 /span 80 have low intensity as well, and thus poor statistics.

	$0.4 \mathrm{~m}^{3} / \mathrm{m}^{3}$	Radius (nm)	Polyd	Intensity
1	Tween-20	3.66	24.2	94.4
		3.87	27.6	90.6
	Avg	3.77	25.9	92.5
2	Tween-40	3.97	12.50	100
		4.11	19.8	100
	Avg	4.04	16.15	100
4	Tween-80	3.82	15.7	94.8
		3.67	18.2	93.7
	Avg	3.74	16.95	94.25
	0.6 m³ $^{3} / \mathrm{m}^{3}$	Radius (nm)	Polyd	Intensity
1	Tween-20	3.93	20.0	96.7
		3.65	18.2	97.8
		3.92	23.5	95.8
	Avg	3.83	20.57	96.77
2	Tween-40	4.07	9.30	94.2
		4.28	20.9	95.4
		4.14	6.20	91.0
	Avg	4.16	12.13	93.53
4	Tween-80	3.61	10.1	84.2
		3.69	17.8	89.2
		3.59	18.9	86.4
	Avg	3.63	15.6	86.6

Table 1. DLS data for C-propylpyrogallol[4]arene zinc dimer

$0.6 \mathrm{~m}^{3} / \mathrm{m}^{3}$		Radius (nm)	Polyd	Intensity
1	Tween-20	4.22	22.7	88.5
		4.02	11.1	81.3
		4.47	15.9	82.3
	Avg	4.24	16.6	84.0
2	Tween-40	4.39	13.9	97.5
		4.44	12.6	91.9
		4.48	15.9	96.4
	Avg	4.44	14.1	95.3
4	Tween-80	3.67	18	84
		3.89	16.1	85.8
		3.80	16.1	87.0
	Avg	3.79	16.7	85.6
	$0.4 \mathrm{~m}^{3} / \mathrm{m}^{3}$	Radius (nm)	Polyd	Intensity
1	Tween-20	3.68	22.8	85.1
		3.41	21.6	82.2
		3.94	13.3	81.9
	Avg	3.68	19.2	83.1
2	Tween-40	4.01	11.5	84.6
		3.98	12.4	80.8
		4.03	10.6	85.3
		4.19	0	90.5
	Avg	4.05	8.6	85.3
4	Tween-80	3.70	17.7	85.9
		3.77	16.7	84.1
		3.86	19.2	85.2
	Avg	3.77	17.9	85.1

Table 2. DLS data for C-propylpyrogallol[4]arene copper hexamer

SANS RESULT SUMMARY AND DATA FITS:

S.No	Sample	cosurfactant	Core	Shell	Chi-
			Radius (A)	thickness (Å)	sqrt
1	Tween 20 (control)	acetone	12.04	16.35	6.23
2	Tween 20 (control)	acetonitrile	12.29	16.01	6.54
3	Tween 20 (control)	isopropanol	12.06	16.11	5.83
4	$\mathrm{PgC}_{3} \mathrm{Co}$ dimer + Tween 20	isopropanol	17.04	16.62	1.51
5	$\mathrm{PgC}_{3} \mathrm{Ni}$ hexamer + Tween 20	acetonitrile	24.66	12.95	2.48
6	Tween 80 (control)	DMSO	15.42	19.88	9.15
7	$\mathrm{PgC}_{3} \mathrm{Cu}$ hexamer (without ligands) + Tween 80	None	24.09	17.26	2.60
8	$\mathrm{PgC}_{3} \mathrm{Ni}$ dimer + Tween 80	DMSO	19.37	17.00	3.65
9	$\mathrm{PgC}_{3} \mathrm{Ni}$ hexamer (with ligand) + Tween	DMSO	29.021	16.54	5.53
	80		8		

Fit to Smeared Poly Core HS (Hard Sphere) model
Data file: Blank_D2O with Tween_20 surfactant/ acetone cosurfactant

Volume fraction
Avg. core radius (\AA)
$0.0194143 \pm 0.000539073$
core polydisp $(0,1)$
12.0423 ± 0.269235
Shell thickness (\AA)
0.4 ± 0.0098749
SLD core (\AA^{-2})
16.3473 ± 0.233687
SLD shell $\left(\AA^{-2}\right)$
5.94e-07士 0

SLD solvent $\left(\AA^{-2}\right)$
$2.28053 \mathrm{e}-06 \pm \quad 4.33476 \mathrm{e}-08$
bkg $\left(\mathrm{cm}^{-1}\right)$
6.62e-06土 0
$0.00172365 \pm 0.000112919$
chisq $=6846.92$
Npnts $=174 \quad \operatorname{Sqrt}\left(\chi^{\wedge} \mathbf{2 / N}\right)=\mathbf{6 . 2 7 2 9 7}$
Fitted range $=[0,173]=0.009974<\mathrm{Q}<0.4385$

NOTE: The average core radius of tween 20 surfactant/acetone cosurfactant micelles in $\mathrm{D}_{2} \mathrm{O}$ is around $12 \AA$ and the shell thickness is about $16 \AA$. The error bars on all parameters are low but the chi-sqrt value of 6 is little high, indicative of micelle surface roughness. Overall it gives a good approximation of micelle size. Note that the size of control sample micelles is unaffected by the presence of various cosurfactants/cosolvents (see other fits of control sample).

Fit to Smeared Poly Core HS (Hard Sphere) model
Data file: Blank_D2O with Tween 20 surfactant/ acetonitrile cosurfactant

Volume fraction
Avg. core radius (\AA)
$0.0215987 \pm 0.000517061$
core polydisp $(0,1)$
12.2856 ± 0.239013
Shell thickness (\AA)
$0.4 \pm \quad 0.00864722$
SLD core $\left(\AA^{-2}\right)$
16.0086 ± 0.20758
SLD shell $\left(\AA^{-2}\right)$
5.94e-07士 0

SLD solvent $\left(\AA^{-2}\right)$
$2.21137 \mathrm{e}-06 \pm \quad 4.04131 \mathrm{e}-08$
$\mathrm{bkg}\left(\mathrm{cm}^{-1}\right)$
6.62e-06土 0
$\operatorname{bkg}\left(\mathrm{cm}^{-1}\right)$
$0.00280876 \pm 0.000117302$
chisq $=7439.52$
Npnts $=174 \quad \operatorname{Sqrt}\left(\chi^{\wedge} \mathbf{2} / \mathbf{N}\right)=\mathbf{6 . 5 3 8 8}$
Fitted range $=[0,173]=0.009974<\mathrm{Q}<0.4386$

NOTE: The average core radius of tween 20 surfactant/acetonitrile cosurfactant micelles in $\mathrm{D}_{2} \mathrm{O}$ is around $12 \AA$ and the shell thickness is about $16 \AA$. The error bars on all parameters are low but the chi-sqrt value of 6.5 is little high, indicative of micelle surface roughness. Overall it gives a good approximation of micelle size. Note that the size of control sample micelles is unaffected by the presence of various cosurfactants/cosolvents (see other fits of control sample).

Fit to Smeared Poly Core HS (Hard Sphere) model
Data file: Blank_D2O with Tween 20 surfactant/ isopropanol cosurfactant

Volume fraction
Avg. core radius (\AA)
$0.0190125 \pm 0.000513148$
core polydisp $(0,1)$
12.0568 ± 0.295253
Shell thickness (\AA)
0.4 ± 0.0103468
SLD core (\AA^{-2})
$16.1058 \pm \quad 0.270098$
SLD shell $\left(\AA^{-2}\right)$
5.94e-07士 0

SLD solvent $\left(\AA^{-2}\right)$
$1.87864 \mathrm{e}-06 \pm \quad 4.42252 \mathrm{e}-08$
$\mathrm{bkg}\left(\mathrm{cm}^{-1}\right)$
6.62e-06土 0
$0.00240368 \pm 0.000118829$
chisq $=5916.3$
Npnts $=174 \quad \operatorname{Sqrt}\left(\chi^{\wedge} \mathbf{2} / \mathbf{N}\right)=\mathbf{5 . 8 3 1 1}$
Fitted range $=[0,173]=0.009974<\mathrm{Q}<0.4385$

NOTE: The average core radius of tween 20 surfactant/isopropanl cosurfactant micelles in $\mathrm{D}_{2} \mathrm{O}$ is around $12 \AA$ and the shell thickness is about $16 \AA$. The error bars on all parameters are low but the chi-sqrt value of 6 is little high, indicative of micelle surface roughness. Overall it gives a good approximation of micelle size. Note that the size of control sample micelles is unaffected by the presence of various cosurfactants/cosolvents (see other fits of control sample).

Fit to Smeared Poly Core HS (Hard Sphere) model
Data File: $\mathrm{PgC}_{3} \mathrm{Co}$ dimer in D2O with Tween 20 surfactant/ isopropanol cosurfactant

Volume fraction

$$
0.00732613 \pm 0.0016239
$$

Avg. core radius (\AA)
17.0362 ± 2.23863
core polydisp $(0,1)$
0.232474 ± 0.0516247
Shell thickness (\AA)
16.6191 ± 1.20221
SLD core $\left(\AA^{-2}\right)$
$6.53 \mathrm{e}-07 \pm 0$
SLD shell $\left(\AA^{-2}\right)$
$4.74694 \mathrm{e}-06 \pm \quad 3.37988 \mathrm{e}-07$
SLD solvent $\left(\AA^{-2}\right)$
6.62e-06土 0
$\mathrm{bkg}\left(\mathrm{cm}^{-1}\right)$
$0.00561796 \pm 0.000213238$
chisq $=396.234$
Npnts $=174 \quad \operatorname{Sqrt}\left(\chi^{\wedge} \mathbf{2} / \mathbf{N}\right)=\mathbf{1 . 5 0 9 0 4}$
Fitted range $=[0,173]=0.009974<\mathrm{Q}<0.4385$

NOTE: The average core radius of tween $20 \subset \mathrm{PgC}_{3} \mathrm{Co}$ dimeric micelles is around $17 \AA$ and the shell thickness is about $16.6 \AA$. The error bars on all parameters are low and the chi-sqrt value of 1.5 is low, indicative of good statistics and uniformity of micelles. Overall it gives a good approximation of dimer enclosed micelle size. Note that the avg. core radius size of tween $20 \subset \mathrm{PgC}_{3} \mathrm{Co}$ dimeric micelles ($17 \AA$) is larger than that of control (tween 20 in $\mathrm{D}_{2} \mathrm{O}$).

Fit to Smeared Poly Core HS (Hard Sphere) model
Data file: $\mathrm{PgC}_{3} \mathrm{Ni}$ hexamer in D2O with Tween 20 surfactant/ d3-acetonitrile cosurfactant

Volume fraction
$0.0312979 \pm 0.000366214$
Avg. core radius (\AA)
24.6612 ± 0.142746
core polydisp $(0,1)$
0.240584 ± 0.0020484
Shell thickness (\AA)
12.9475 ± 0.10611
SLD core (\AA^{-2})
$6.59 \mathrm{e}-07 \pm 0$
SLD shell $\left(\AA^{-2}\right)$
$6.32271 \mathrm{e}-06 \pm \quad 2.15244 \mathrm{e}-08$
SLD solvent $\left(\AA^{-2}\right)$
$6.62 \mathrm{e}-06 \pm 0$
bkg (cm^{-1})
$0.000397313 \pm 0.000116663$
chisq $=1066.92$
Npnts $=174 \quad \operatorname{Sqrt}\left(\chi^{\wedge} \mathbf{2 / N}\right)=\mathbf{2 . 4 7 6 2 3}$
Fitted range $=[0,173]=0.009974<\mathrm{Q}<0.4385$

NOTE: The average core radius of tween $20 \subset \mathrm{PgC}_{3} \mathrm{Ni}$ hexameric micelles is around $24 \AA$ and the shell thickness is about $13 \AA$. The error bars on all parameters are low and the chi-sqrt value of 2.5 is low, indicative of good statistics and uniformity of micelles. Overall it gives a good approximation of hexamer enclosed micelle size. Note that the avg. core radius size of tween $20 \subset \mathrm{PgC}_{3} \mathrm{Ni}$ hexameric micelles ($24 \AA$) is larger than that of tween $20 \subset \mathrm{PgC}_{3} \mathrm{Co}$ dimeric micelles ($17 \AA$) and control (tween 20 in $\mathrm{D}_{2} \mathrm{O} ; 12 \AA$) samples.

Fit to Smeared Poly Core HS (Hard Sphere) model
Data file: Blank_D2O with Tween 80 surfactant/ d6-DMSO cosurfactant

Volume fraction 0.041305 ± 0.00040501
Avg. core radius $(\AA) \quad 15.4222 \pm 0.098369$
core polydisp $(0,1) \quad 0.39 \pm \quad 0.00363903$
$\begin{array}{lll}\text { Shell thickness }(\AA) & 19.8868 \pm 0.0717118\end{array}$
SLD core $\left(\AA^{-2}\right)$
$5.57 \mathrm{e}-07 \pm \quad 0$
SLD shell $\left(\AA^{-2}\right)$
$2.94299 \mathrm{e}-06 \pm \quad 1.58254 \mathrm{e}-08$
SLD solvent $\left(\AA^{-2}\right)$
6.62e-06土 0
bkg (cm^{-1})
$0.00147511 \pm 0.000105904$
chisq $=14570.9$
Npnts $=174 \quad \operatorname{Sqrt}\left(\chi^{\wedge} \mathbf{2 / N}\right)=\mathbf{9 . 1 5 1}$
Fitted range $=[0,173]=0.009974<\mathrm{Q}<0.4385$

NOTE: The average core radius of tween 80 surfactant/DMSO cosurfactant micelles in $\mathrm{D}_{2} \mathrm{O}$ is around $15 \AA$ and the shell thickness is about $19 \AA$. The error bars on all parameters are low but the chi-sqrt value of 9 is little high, indicative of micelle surface roughness. Overall it gives a good approximation of micelle size.

Fit to Smeared Poly Core HS (Hard Sphere) model
Data file: $\mathrm{PgC}_{3} \mathrm{Cu}$ hexamer in D2O with Tween 80 surfactant

Volume fraction

$$
0.0330463 \pm 0.000997167
$$

Avg. core radius (\AA)
24.0962 ± 0.549751
core polydisp $(0,1)$
0.283912 ± 0.00999678
Shell thickness (\AA)
17.2643 ± 0.156072
SLD core $\left(\AA^{-2}\right)$
$6.9 \mathrm{e}-07 \pm 0$
SLD shell $\left(\AA^{-2}\right)$
$5.6179 \mathrm{e}-06 \pm 4.18476 \mathrm{e}-08$
SLD solvent $\left(\AA^{-2}\right)$
6.62e-06土 0
$\operatorname{bkg}\left(\mathrm{cm}^{-1}\right)$
$-0.00122171 \pm 0.000168092$
chisq $=1176.39$
Npnts $=174 \quad \operatorname{Sqrt}\left(\chi^{\wedge} \mathbf{2 / N}\right)=\mathbf{2 . 6 0 0 1 7}$
Fitted range $=[0,173]=0.009974<\mathrm{Q}<0.4385$

NOTE: The average core radius of tween $80 \subset \mathrm{PgC}_{3} \mathrm{Cu}$ hexameric (no external ligands) micelles is around $24 \AA$ and the shell thickness is about $17 \AA$. The error bars on all parameters are low and the chi-sqrt value of 2.6 is small, indicative of good statistics and uniformity of micelles. Overall it gives a good approximation of hexamer enclosed micelle size.

Fit to Smeared Poly Core HS (Hard Sphere) model
Data File: $\mathrm{PgC}_{3} \mathrm{Ni}$ dimer in D 2 O with Tween 80 surfactant

Volume fraction

$$
0.0346267 \pm 0.00203674
$$

Avg. core radius (\AA)
core polydisp $(0,1)$
Shell thickness (\AA)
19.376 ± 0.948869

SLD core $\left(\AA^{-2}\right)$
0.320975 ± 0.022902

SLD core $\left(\AA^{-2}\right)$
17 ± 0.0978275
SLD shell $\left(\AA^{-2}\right)$
$6.6 \mathrm{e}-07 \pm 0$
SLD solvent $\left(\AA^{-2}\right)$
$5.96101 \mathrm{e}-06 \pm \quad 5.95204 \mathrm{e}-08$
bkg $\left(\mathrm{cm}^{-1}\right)$
6.62e-06士 0
$-0.000369782 \pm 0.000134225$
chisq $=2321.27$
Npnts $=174 \quad \operatorname{Sqrt}\left(\chi^{\wedge} \mathbf{2} / \mathbf{N}\right)=\mathbf{3 . 6 5 2 4 9}$
Fitted range $=[0,173]=0.009974<\mathrm{Q}<0.4385$

NOTE: The average core radius of tween $80 \subset \mathrm{PgC}_{3} \mathrm{Ni}$ dimeric micelles is around $19 \AA$ and the shell thickness is about $17 \AA$. The error bars on all parameters are low but the chi-sqrt value of 3.6 is little high, indicative of micelle surface roughness. Overall it gives a good approximation of dimer enclosed micelle size.

Fit to Smeared Poly Core HS (Hard Sphere) model
Data file: $\mathrm{PgC}_{3} \mathrm{Ni}$ hexamer (with ligands) in $\mathrm{D}_{2} \mathrm{O}$ with Tween 80 surfactant/ DMSO cosurfactant

Volume fraction
Avg. core radius (\AA)
$0.0507419 \pm 0.000287104$
core polydisp $(0,1)$
29.0218 ± 0.0968636
Shell thickness (\AA)
0.224085 ± 0.00158368
Shell thickness (\AA)
16.5438 ± 0.0523239
SLD core (\AA^{-2})
$6 \mathrm{e}-07 \pm 0$
SLD shell $\left(\AA^{-2}\right)$
$5.9026 \mathrm{e}-06 \pm 9.91788 \mathrm{e}-09$
SLD solvent $\left(\AA^{-2}\right)$
$6.6 \mathrm{e}-06 \pm 0$
$\operatorname{bkg}\left(\mathrm{cm}^{-1}\right)$
$0.0790461 \pm 0.000100536$
chisq $=5336.51$
Npnts $=174 \quad \operatorname{Sqrt}\left(\chi^{\wedge} \mathbf{2 / N}\right)=\mathbf{5 . 5 3 8 0 1}$
Fitted range $=[0,173]=0.009974<\mathrm{Q}<0.4385$

NOTE: The average core radius of tween $80 \subset \operatorname{PgC}_{3} \mathrm{Ni}$ hexameric micelles is around $39 \AA$ and the shell thickness is about $16.5 \AA$. The error bars on all parameters are low but the chi-sqrt value of 5.5 is little high, indicative of micelle surface roughness. Overall it gives a good approximation of hexamer enclosed micelle size. Note that the size of tween $80 \subset \mathrm{PgC}_{3} \mathrm{Ni}$ hexameric micelles is larger than that of tween $80 \subset \mathrm{PgC}_{3} \mathrm{Ni}$ dimer and tween $80 \subset \mathrm{PgC}_{3} \mathrm{Cu}$ hexamer due to the presence of external ligands on the $\mathrm{PgC}_{3} \mathrm{Ni}$ hexamer.

UV Spectrum

The UV spectra presented here give direct evidence of the solubilization of the nanocapsules within the micelles. There is little or no UV absorbance from the tweens or from the nanocapsules in water alone, while there is significant UV absorption when the nanocapsules are present with the tween micelles. Thus there is direct evidence that the micelles are solubilizing the colored nanocapsules. These measurements are qualitative, to show proof of solubilization.

Tween 20 in H2O

$\mathrm{PgC3Zn}$ in H 2 O

PgC3Zn dimer in Tween 80

PgC 3 Cu hexamer in H 2 O

$\mathrm{PgC3Cu}$ hexamer in tween 80

$\mathrm{PgC3Cu}$ hexamer in Tween 20

$\mathrm{PgC3Ni}$ in H 2 O

$\mathrm{PgC3Ni}$ hexamer in Tween 80

$\mathrm{PgC3Ni}$ in Tween 20

$\mathrm{PgC3Zn}$ dimer in Tween 20

PgC 3 Zn in H 2 O

Tween 20 in H2O

Tween 80 in H 2 O

