Electronic Supplementary Information

Bioinspired Polydopamine Nanospheres: a Superquencher for Fluorescence Sensing of Biomolecules

Weibing Qiang, Wei Li, Xiaoqing Li, Xiang Chen, Danke Xu*

State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China

Preparation of PDANSs

PDANSs were synthesized according to a previous report with some modifications. Briefly, dopamine hydrochloride was added to the mixture of Tris-buffer (10 mM) and isopropyl alcohol with stirring. After stirred for some hours in dark, PDANSs was obtained. The suspension was centrifuged and washed/resuspended with water for several times. The precipitate was dried for the following experiment. By tuning the dopamine's concentration, the molar ratio of Tris-buffer to isopropyl alcohol and the polymerization time, the different sizes of PDANSs were obtained. When 100 mg dopamine hydrochloride was added to 100 mL Tris-buffer and 40 mL isopropyl alcohol, NS-1was obtained with stirring for 72 h. With the condition of 50 mg dopamine hydrochloride, 100 mL Tris-buffer and 50 mL isopropyl alcohol, NS-2 and NS-3 were obtained respectively, by controlling the reaction time as 2 h and 6 h. With the condition of 100 mg dopamine hydrochloride, 100 mL Tris-buffer and 50 mL isopropyl alcohol, NS-4 were obtained by controlling the reaction time as 24 h.

Optimization of the incubation time

The fluorescence recovery has a relationship with the incubation time of P-FAM/NS-1 with the target. Hence, the incubation time was investigated. The result was shown in Figure S9. The fluorescent recovery was conducted at 37 °C under shaking. Upon increasing incubation time, more adsorbed P-FAM is released from NS-1, resulting in the restore of fluorescence gradually. When the incubation time was longer than 60 minutes, the intensity was no longer increased, showing that a balance is reached. Thus, 60 minutes was chosen as the incubation time.

Fluorophores	Excitation wavelength (nm)	Emission wavelength (nm)	Emission spectra range (nm)			
AMCA	355	448	420 - 570			
FAM	470	518	500 - 650			
TAMRA	535	575	560 - 710			
Cy5	625	660	650 - 800			

T 11 04		• •	1	• •	-	1.1	- C	. 1	C1	1
	Tho	AVAITATION	ond	000100100	TTIOTIO	lonath	ot.	tho	thingrou	ahoroa
I ALLE ST	1116	EXCHAIIOH	<u>анс</u>	CHHSSIOH	WAVE	епуп		I I I E		HICHES
	1110	ononunon	unu	ombolon	man cur cu	i vii sui		une .	114010	5110105

Fig. S1 Fluorescence intensity of P-FAM (25 nM) upon the introduction of different concentration of NS-1.

Fig. S2 (A) Fluorescence emission spectra of probe DNA (a) P-A and (b) P-A in the presence of NS-1. The quenching efficiency is 94.22%. (B) Fluorescence emission spectra of probe DNA (a) P-T and (b) P-T in the presence of NS-1. The quenching efficiency is 98.01%. (C) Fluorescence emission spectra of probe DNA (a) P-C and (b) P-C in the presence of NS-1. The quenching efficiency is 98.71%. (D) Fluorescence emission spectra of probe DNA (a) P-C and (b) The quenching efficiency is 98.71%. (D) Fluorescence emission spectra of probe DNA (a) P-3FAM in the presence of NS-1. The quenching efficiency is 99.07%.

Fig. S3 Fluorescence quenching of P-FAM in Tris-HCl buffer by NS-1 as a function of

time.

Fig. S4 Stern-Volmer plots for 25 nM (A) P-Cy5 and (B) P-FAM. F_0 and F are the fluorescence intensity of the fluorophore in the absence and presence of NS-1, respectively.

Fig. S5 (A) Fluorescence emission spectra of probe DNA (a) P-AMCA and (b) P-AMCA in the presence of dopamine. (B) Fluorescence emission spectra of probe DNA (a) P-FAM and (b) P-FAM in the presence of dopamine. (C) Fluorescence emission spectra of probe DNA (a) P-TAMRA and (b) P-TAMRA in the presence of dopamine. (D) Fluorescence emission spectra of probe DNA (a) P-Cy5 and (b) P-Cy5 in the presence of NS-1. The peak at about 625 nm of curve b in (C) is from dopamine.

Fig. S6 Fluorescence intensity of P-FAM (25 nM) upon the introduction of different concentration of NS-2.

Fig. S7 (A) SEM image of NS-3, the diameter is 85.8 ± 10.1 nm. (B) Fluorescence emission spectra of probe DNA (a) P-FAM and (b) P-FAM in the presence of NS-3. (C) SEM image of NS-4, the diameter is 176.7 ± 22.6 nm. (D) Fluorescence emission spectra of probe DNA (a) P-FAM and (b) P-FAM in the presence of NS-4.

Fig. S8 (A) Fluorescence intensity of P-A/NS-1 in the absence (F_0) and presence (F_T) of target DNA T-T. (B) Fluorescence intensity of P-T/NS-1 in the absence (F_0) and presence (F_T) of target DNA T-A. (C) Fluorescence intensity of P-3FAM/NS-1 in the absence (F_0) and presence (F_T) of target DNA T1.

Fig. S9 The influence of the incubation time between the P-FAM/NS-1 and target DNA

T1 on the fluorescence intensity.

Fig. S10 Fluorescence intensity of P-FAM/NS-1 towards target DNA T1 (25 nM) and triple-base mismatched DNA T2 (250 nM).

Fig. S11 Stern-Volmer plots for 25 nM (A) free FAM and (B) free TAMRA. F_0 and F are the fluorescence intensity of the fluorophore in the absence and presence of NS-1, respectively.