Supporting Information for

Predicted crystal energy landscapes of porous organic cages

Edward O. Pyzer-Knapp, Hugh P. G. Thompson, Florian Schiffmann, Kim E. Jelfs, Samantha Y. Chong, Marc A. Little, Andrew I. Cooper and Graeme M. Day

Details of Z'=2 crystal structure searches for CC1.

To test whether the observed β solvate framework of **CC1** would have been predictable, additional Monte Carlo simulated annealing searches were performed with two independent molecules in the asymmetric unit: one molecule in the most stable *T*-symmetry conformer and one molecule in the second lowest energy *C*₃-symmetry conformer. These searches were performed in space group *P*3₂, a subgroup containing all of the intermolecular symmetry operators of the observed space group (whose full space group symmetry, *R*3, includes intramolecular symmetry). All resulting structures were lattice energy minimised using the same force field + atomic multipoles energy model that was used for the Z`=1 predictions. To compare relative total lattice energies, the relative energy of the C₃ conformer was added to the calculated intermolecular energies from the DMACRYS calculations.

The lowest energy crystal structure resulting from this search reproduces the CC1 framework of the observed β solvate structure very well (RMSD₁₅ = 0.398 Å), see Figure S6.

Figure S1: Low energy conformations of cages CC3. Energies are from structures optimised at B3LYP/6-31G^{**} level of theory. A) lowest energy conformation, B) second lowest energy conformation.

Figure S2: Low energy conformations of cages CC4. Energies are from structures optimised at B3LYP/6-31G^{**} level of theory. A) lowest energy conformation, B) second lowest energy conformation.

Figure S3: Low energy conformations of cages CC5. Energies are from structures optimised at B3LYP/6-31G** level of theory. A) lowest energy conformation, B) second lowest energy conformation.

Figure S4: Crystal energy landscape for CC3 resulting from rigid molecule force field + multipoles lattice energy minimisation of hypothetical crystal structures. perimentally. Red points correspond to racemic crystal structures. Blue points are enantiomerically pure crystal structures. The observed structures correspond to the lowest energy CC3-*R* and CC3-*RS* predicted structures.

Figure S5: Crystal energy landscape CC5 resulting from rigid molecule force field + multipoles lattice energy minimisation of hypothetical crystal structures. Red points correspond to racemic crystal structures. Blue points are enantiomerically pure crystal structures. The observed structure corresponds to the lowest energy CC5-*R* predicted structure.

Figure S6: Overlay of experimental (red) and predicted (blue) CC1- β framework. The predicted framework is the lowest energy structure from a search with an asymmetric unit containing one of each of the two lowest energy predicted conformers. The overlays show the lowest attainable RMS when overlaying a cluster of 15 molecules.

Figure S7: Overlay of experimental (red) and predicted (blue)for (A) CC3-*R* and (B) CC3-*RS* structures. The overlays show the lowest attainable RMS when overlaying a cluster of 15 molecules

Figure S8: Overlay of experimental (red) and predicted (blue) CC5 structure. The overlays show the lowest attainable RMS when overlaying a cluster of 15 molecules

Figure S9: Comparisons of relative energies of CC1, CC3, CC4 and CC5 polymorphs as calculated by a rigid body force field +multipoles approach (DMACRYS) and a solid state DFT-D approach (CP2K). All energies are relative to the global minimum.

Table S1: RMS Deviations in atomic positions of the molecule optimised in the gas phase(Gaussian), and the molecule optimised in the 10 lowest energy condensed phase structures(CP2K)

CC1	RMS (Å)	CC3 -RS	RMS (Å)	CC4 -RS	RMS (Å)
1	0.061	1	0.023	1	0.035
2	0.039	2	0.028	2	0.083
3	0.051	3	0.024	3	0.049
4	0.059	4	0.034	4	0.051
5	0.045	5	0.026	5	0.063
6	0.037	6	0.024	6	0.032
7	0.075	7	0.024	7	0.076
8	0.047	8	0.02	8	0.034
9	0.052	9	0.033	9	0.066
10	0.031	10	0.041	10	0.037
Mean	0.050	Mean	0.028	Mean	0.053
CC3 -R	RMS (Å)	CC4 -R	RMS (Å)	CC5	RMS (Å)
CC3 -R 1	RMS (Å) 0.044	CC4 -R 1	RMS (Å) 0.031	CC5	RMS (Å) 0.046
CC3 -R 1 2	RMS (Å) 0.044 0.028	CC4 -R 1 2	RMS (Å) 0.031 0.061	CC5 1 2	RMS (Å) 0.046 0.101
CC3-R 1 2 3	RMS (Å) 0.044 0.028 0.045	CC4 -R 1 2 3	RMS (Å) 0.031 0.061 0.069	CC5 1 2 3	RMS (Å) 0.046 0.101 0.095
CC3-R 1 2 3 4	RMS (Å) 0.044 0.028 0.045 0.058	CC4-R 1 2 3 4	RMS (Å) 0.031 0.061 0.069 0.067	CC5 1 2 3 4	RMS (Å) 0.046 0.101 0.095 0.101
CC3-R 1 2 3 4 5	RMS (Å) 0.044 0.028 0.045 0.058 0.023	CC4 -R 1 2 3 4 5	RMS (Å) 0.031 0.061 0.069 0.067 0.051	CC5 1 2 3 4 5	RMS (Å) 0.046 0.101 0.095 0.101 0.126
CC3-R 1 2 3 4 5 6	RMS (Å) 0.044 0.028 0.045 0.058 0.023 0.041	CC4-R 1 2 3 4 5 6	RMS (Å) 0.031 0.061 0.069 0.067 0.051 0.055	CC5 1 2 3 4 5 6	RMS (Å) 0.046 0.101 0.095 0.101 0.126 0.084
CC3-R 1 2 3 4 5 6 7	RMS (Å) 0.044 0.028 0.045 0.058 0.023 0.041 0.22	CC4-R 1 2 3 4 5 6 7	RMS (Å) 0.031 0.061 0.069 0.067 0.051 0.055 0.075	CC5 1 2 3 4 5 6 7	RMS (Å) 0.046 0.101 0.095 0.101 0.126 0.084 0.103
CC3-R 1 2 3 4 5 6 7 8	RMS (Å) 0.044 0.028 0.045 0.058 0.023 0.041 0.22 0.043	CC4-R 1 2 3 4 5 6 7 8	RMS (Å) 0.031 0.061 0.069 0.067 0.051 0.055 0.075 0.068	CC5 1 2 3 4 5 6 7 8	RMS (Å) 0.046 0.101 0.095 0.101 0.126 0.084 0.103 0.145
CC3-R 1 2 3 4 5 6 7 8 9	RMS (Å) 0.044 0.028 0.045 0.058 0.023 0.041 0.22 0.043 0.024	CC4-R 1 2 3 4 5 6 7 8 9	RMS (Å) 0.031 0.061 0.069 0.067 0.051 0.055 0.075 0.075 0.068 0.076	CC5 1 2 3 4 5 6 7 8 9	RMS (Å) 0.046 0.101 0.095 0.101 0.126 0.084 0.103 0.145 0.087
CC3-R 1 2 3 4 5 6 7 8 9 10	RMS (Å) 0.044 0.028 0.045 0.058 0.023 0.041 0.22 0.043 0.024 0.023	CC4-R 1 2 3 4 5 6 7 8 9 10	RMS (Å) 0.031 0.061 0.069 0.051 0.055 0.075 0.075 0.068 0.076 0.052	CC5 1 2 3 4 5 6 7 8 9 10	RMS (Å) 0.046 0.101 0.095 0.101 0.126 0.084 0.103 0.145 0.087 0.029

Figure S10: Comparisons of simulated powder patterns from the predicted (blue) and experimentally determined (red) crystal structures of A)CC1 α ' B) CC1 β ' C)CC3*R* D)CC3*RS* E)CC4*RS* and F)CC5*R*, simulated using a wavelength of λ = 1.54056 Å.

Single Crystal X-Ray Diffraction. Data was measured on a Rigaku MicroMax-007 HF rotating anode diffractometer (Mo-K α radiation, $\lambda = 0.71073$ Å, Kappa 4-circle goniometer, Rigaku Saturn724+ detector). An empirical absorption correction using equivalent reflections was performed with the program SADABS.¹ The structure was solved by direct methods using SHELXS,² and refined by full-matrix least squares on F^2 by SHELXL-97,² interfaced through the programme OLEX2.³ All non-H atoms were refined anisotropically; H atoms were fixed in geometrically estimated positions using the riding model.

Single crystal preparation of **CC4**-*R* β ': A solvated single crystal of **CC4**-*R*·3(C₈H₁₀)·2(H₂O) (space group P2₁2₁2₁, CCDC # 991219) isolated from a CH₂Cl₂/*para*-xylene solvent mixture and flash frozen at 100 K was very gradually heated under a dry N₂ gas stream to 350 K. The change in the sample temperature versus time was monitored using the plot shown in **Figure S11**.

Crystal data for **CC4**-*R* β' . Formula C₆₆H₇₂N₁₂; *M* = 1033.36 g·mol⁻¹; cubic space group *F*4₁32, colourless crystal; *a* = 24.242(9) Å; *V* = 14246(9) Å³; ρ = 0.964 g·cm⁻³; μ = 0.058 mm⁻³; *F* (000) = 4416; crystal size = 0.41 x 0.17 x 0.04 mm³; *T* = 350(2) K; 26 833 reflections measured (1.45 < Θ < 18.81°), 480 unique (R_{int} = 0.1241), 408 observed (*I* > 2 σ (*I*)); R_1 = 0.1146 for observed and R_1 = 0.1270 for all reflections; wR_2 = 0.2692 for all reflections; max/min residual electron density = 0.956 and -0.191 e·Å⁻³; data/restraints/parameters = 480/0/60; GOF = 1.338. CCDC # 991218

Refinement Notes for CC4-*R* β' . Desolvation of **CC4**-*R*·3(C₈H₁₀)·2(H₂O) to afford **CC4** β is accompanied by a significant structural transformation. This results in a contraction of the unit cell volume per CC4-R molecule of ~ 14 % which greatly affects the single crystal data quality. The structure of **CC4**-*R* β' was solved and refined in the chiral cubic space group *F*4₁32. Diffuse scatter beyond a resolution limit of 1.1 Å was omitted during refinement. The asymmetric unit for **CC4**-*R* β' is comprised of one twelfth of a **CC4**-*R* fragment. No restraints were used during refinement. For a displacement ellipsoid plot see **Figure S12**.

Figure S12. Displacement ellipsoid plot from the single crystal structure CC4-*R* β ', showing one complete CC4-*R* molecule.

Bulk preparation of CC4-*R* β ' **for PXRD analysis:** To **CC4**-*R* (357 mg, 0.35 mmol) dissolved in CH₂Cl₂ (20 mL) *para*-xylene (30 mL) was carefully layered on top. The solvent mixture was allowed to slowly evaporate until only the last 5 mL remained. The remaining solvent was decanted and the isolated crystalline material was dried in a vacuum oven set at 90 °C for 18 hours. Isolated yield after evacuation 276 mg: 77 %.

Experimental powder X-ray diffraction (PXRD). PXRD data for **CC4**-*R* β' were collected on a Bruker D8 Advance diffractometer producing Ge-monochromated Cu K α_1 radiation equipped with a LynxEye position sensitive detector. The sample was contained in a 1 mm diameter special glass capillary and spun during data collection to improve powder averaging. Data were collected over the range $4 \le 2\theta \le 50^\circ$ with a step size of 0.01° over 11 hrs using a variable counting time strategy.

References

- 1. G. M. Sheldrick, (University of Göttingen, Germany), 2008.
- 2. G. M. Sheldrick, Acta Cryst. Sect. A, 2008, 64, 112-122.
- 3. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Cryst.*, 2009, 42, 339-341.