Electronic Supplementary Information (ESI) for:

## Reversible CO<sub>2</sub> Binding Triggered by Metal-Ligand Cooperation in a Rhenium(I) PNP Pincer-Type Complex and the Reaction with Dihydrogen.

Matthias Vogt,<sup>a</sup> Alexander Nerush,<sup>a</sup> Yael Diskin-Posner,<sup>b</sup> Yehoshoa Ben-David,<sup>a</sup> and David Milstein<sup>a</sup>\*

<sup>a</sup>Department of Organic Chemistry and <sup>b</sup>Department of Chemical Research Support, The Weizmann Institute of Science, Rehovot 76100, Israel.

## INDEX

1. NMR Spectra

S3-S18

#### 1. NMR Spectra



1.1 NMR spectra of [Re(PNP<sup>tBu</sup>-COO)(CO)<sub>2</sub>] (**3**).

Figure S1: <sup>1</sup>H NMR spectrum (400.36 MHz C<sub>6</sub>D<sub>6</sub>, 25°C) of complex **3**.



Figure S2:  ${}^{31}P{}^{1}H$  NMR spectrum (121.5 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 25°C) of complex **3**.



Figure S3:  $^{13}C{^{1}H}$  QDEPT NMR spectrum (100.7 MHz C<sub>6</sub>D<sub>6</sub>, 25°C) of complex **3**.



### 1.2 NMR spectra of $[Re(PNP^{tBu_13}COO)(CO)_2]$ (3a).

Figure S4: <sup>1</sup>H NMR spectrum (400.36 MHz C<sub>6</sub>D<sub>6</sub>, 25°C) of complex **3a**.



Figure S5: Magnification of <sup>1</sup>H NMR spectrum (400.36 MHz  $C_6D_6$ , 25°C, methylene CH<sub>2</sub> arm) of complex **3a**.



Figure S6:  ${}^{31}P{}^{1}H$  NMR spectrum (121.5 MHz, C<sub>6</sub>D<sub>6</sub>, 25°C) of complex **3a**.



Figure S7:  $^{13}C{^1H}$  NMR spectrum (100.7 MHz  $C_6D_6$ , 25°C) of complex **3a**.



Figure S8: Section of <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (100.7 MHz C<sub>6</sub>D<sub>6</sub>, 25°C, *C*H-<sup>13</sup>COO moiety) of complex **3a**.



## 1.3 NMR spectra of $[Re(PNP^{tBu})(CO)_2H]$ (4).

Figure S9: <sup>1</sup>H NMR spectrum (400.36 MHz  $C_6D_6$ , 25°C) of complex 4.



Figure S10:  ${}^{31}P{}^{1}H$  NMR spectrum (162.1 MHz, C<sub>6</sub>D<sub>6</sub>, 25°C) of complex **4**.



Figure S11:  $^{13}C{^{1}H}$  NMR spectrum (100.7 MHz C<sub>6</sub>D<sub>6</sub>, 25°C) of complex **4**.



1.4 NMR spectra of [Re(PNP<sup>tBu</sup>)(CO)<sub>2</sub>(D)] (**4a**).

Figure S12: <sup>1</sup>H NMR spectrum (500.13 MHz, toluene-d<sub>8</sub>, 25°C) of complex **4a**.



Figure S13: Section of the <sup>1</sup>H NMR spectrum (500.13 MHz, toluene- $d_8$ , 25°C, CH<sub>2</sub>(D) methylene resonance) of complex **4a**.



Figure S14: <sup>31</sup>P{<sup>1</sup>H} NMR spectrum (202.5 MHz,toluene-d<sub>8</sub>, 25°C) of complex **4a**.



Figure S15: Magnification of  ${}^{31}P{}^{1}H$  NMR spectrum (202.5 MHz,toluene-d<sub>8</sub>, 25°C) of complex **4a**.



Figure S16: <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (125.8 MHz, toluene-d<sub>8</sub>, 25°C) of complex **4a**.



Figure S17: Section of <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (125.8 MHz, toluene-d<sub>8</sub>, 25°C) of complex **4a**.



Figure S18: Stacked <sup>1</sup>H NMR spectra (500.13 MHz, toluene- $d_8$ ) of complex **4a** under variable H<sub>2</sub> pressure and temperature conditions to form **4**. H/D exchange occurs only in Re–D/H moiety at lower temperatures, while CHD is exchanged exclusively at elevated temperature.



Figure S19: Section of stacked <sup>1</sup>H NMR spectra (500.13 MHz, toluene- $d_8$ ) of the hydride resonance of complex **4a** under variable H<sub>2</sub> pressure and temperature.



Figure S20: Section of stacked <sup>1</sup>H NMR spectra (500.13 MHz, toluene- $d_8$ ) of the pincer arm methylene resonances of complex **4a** under variable H<sub>2</sub> pressure and temperature.



Figure S21: Section of stacked <sup>1</sup>H NMR spectra (500.13 MHz, toluene-d<sub>8</sub>) of the P–(C $H_3$ )<sub>3</sub> resonances of complex **4a** under variable H<sub>2</sub> pressure and temperature.



Figure S22: Section of the  ${}^{1}H$   ${}^{1}H$  NOESY NMR spectrum (400 MHz, toluene-d<sub>8</sub>) of complex **4b**.



Figure S23: Section of the <sup>1</sup>H NMR spectrum of the *exo*-cyclic  $CH_2$  moiety (bottom, blue) and <sup>1</sup>H{<sup>31</sup>P} NMR spectrum (top, red) of complex **4a** (400 MHz, toluene-d<sub>8</sub>).



Figure S24: The <sup>1</sup>H NMR (400 MHz, toluene-d<sub>8</sub>) spectrum of Complex **4b** (10 mg in 0.5 mL toluene-d<sub>8</sub>) pressurized with 1 bar H<sub>2</sub> after heating at 100°C for 24h – Formation of **4** in 43% yield.



Figure S25: The <sup>1</sup>H NMR (400 MHz, toluene-d<sub>8</sub>) spectrum of Complex **4b** (10 mg in 0.5 mL toluene-d<sub>8</sub>) pressurized with 1 bar H<sub>2</sub> after heating at 100°C for 48h – Formation of **4** in 52% yield.



# 1.5. NMR spectra of $[Re(PNP^{tBu})(CO)_2(OOCH)]$ (5).

Figure S26: <sup>1</sup>H NMR spectrum (500.13 MHz C<sub>6</sub>D<sub>6</sub>, 25°C, sparsely soluble) of complex **5**.



Figure S27:  ${}^{31}P{}^{1}H$  NMR spectrum (202.5 MHz, C<sub>6</sub>D<sub>6</sub>, 25°C, sparsely soluble) of complex **5**.



Figure S28:  $^{13}C{^{1}H}$  QDEPT NMR spectrum (125.8 MHz,  $C_6D_6$ , 25°C, sparsely soluble) of complex **5**.