# **Supporting Information**

# A bacterial DNA quadruplex with exceptional K<sup>+</sup> selectivity and unique structural polymorphism

Charlotte Rehm, Isabelle T. Holder, Andreas Groß, Filip Wojciechowski, Maximilian Urban, Malte Sinn, Malte Drescher, Jörg S. Hartig\*

Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany

## **Content:**

**Fig. S1:** Additional CD spectra of  $d[(G_4CT)_3G_4]$  and  $d[(C_4AG)C_4]$ 

Fig. S2: Additional CD spectra of d[(G<sub>4</sub>CT)<sub>3</sub>G<sub>4</sub>] in presence of different anions

Fig. S3: Additional CD spectra and melting profiles of d[(G<sub>4</sub>CT)<sub>3</sub>G<sub>4</sub>] in presence of high concentrations of K<sup>+</sup>

Fig. S4: UV melting profiles of d[(G<sub>4</sub>CT)<sub>3</sub>G<sub>4</sub>] in presence of of Li<sup>+</sup>, Na<sup>+</sup> and K<sup>+</sup>

Fig. S5: NMR spectra of d[(G<sub>4</sub>CT)<sub>3</sub>G<sub>4</sub>] in the presence of Na<sup>+</sup>

Fig. S6: CD spectra of  $d[(G_4CT)_3G_4]$  folded with different cooling rates

Fig. S7: Melting profiles of d[(G<sub>4</sub>CT)<sub>3</sub>G<sub>4</sub>] in presence of low concentrations of K<sup>+</sup>

Fig. S8: CD spectra of spin-labeled d[(G<sub>4</sub>CT)<sub>3</sub>G<sub>4</sub>] in presence of K<sup>+</sup>

**Fig. S9:** Analysis of  $d[(G_4CT)_3G_4]$  in presence of K<sup>+</sup> by EMSA

Fig. S10: Analysis of d[(G<sub>4</sub>CT)<sub>3</sub>G<sub>4</sub>] by AUC

Fig. S11: NMR spectra of  $d[(G_4CT)_3G_4]$  in the presence of  $K^+$ 

Fig. S12: CD-spectra of quadruplex sequences with varying T-loop length

Fig. S13: CD-spectra of quadruplex sequences with varying G-tract length

Fig. S14: CD-spectra of all oligonucleotides used in this study in the presence of NaCl

Table S1. GGGGCT repeat sequences within protein encoding sequences

Table S2. GGGGCT repeat sequences complementary to coding regions

Table S3. GGGGCT repeat sequences within untranslated regions

Table S4. GGGGCT repeat sequences within the human genome

Experimental



Fig. S1: Additional CD spectra of d[(G<sub>4</sub>CT)<sub>3</sub>G<sub>4</sub>] and d[(C<sub>4</sub>AG)C<sub>4</sub>]

(a): CD spectra of 5  $\mu$ M d[(G<sub>4</sub>CT)<sub>3</sub>G<sub>4</sub>] in the presence of KCl, concentrations ranging from 0 to 1 M KCl. (b): CD spectra of 5  $\mu$ M d[(G<sub>4</sub>CT)<sub>3</sub>G<sub>4</sub>] in the presence of MgCl<sub>2</sub>, concentrations ranging from 0 mM (gray), 1 mM (red), 25 to 200 mM (blue) MgCl<sub>2</sub>. With increasing concentrations MgCl<sub>2</sub> stabilizes a secondary structure, presumably a quadruplex with parallel topology. (c): CD Spectra of 5  $\mu$ M d[(C<sub>4</sub>AG)C<sub>4</sub>] in the presence of 0 mM (gray), 1 mM (red) to 500 mM (green) KCl.



Fig. S2: Additional CD spectra of d[(G<sub>4</sub>CT)<sub>3</sub>G<sub>4</sub>] in presence of different anions

(a): CD spectra of 5  $\mu$ M d[(G<sub>4</sub>CT)<sub>3</sub>G<sub>4</sub>] in the presence 1 mM (red), 200 mM (violet) and 500 mM (green) KF. Structural transition from the antiparallel to the parallel conformation occurs with increasing concentration of KF. (b): CD spectra of buffer solution contraining 10 mM tris-HCl, pH 7.2 with 1 mM (red), 200 mM (violet) and 500 mM (green) KF. (c): CD spectra of 5  $\mu$ M d[(G<sub>4</sub>CT)<sub>3</sub>G<sub>4</sub>] in the presence 1 mM (red), 200 mM (violet) and 500 mM (green) KBr. Structural transition from the antiparallel to the parallel conformation occurs with increasing concentration of KBr. (d): CD spectra of buffer solution contraining 10 mM tris-HCl, pH 7.2 with 1 mM (red), 200 mM (violet) and 500 mM (red), 200 mM (violet) and 500 mM (green) KBr. KBr interferes with ellipticity signal below 230 nm. (e): CD spectra of 5  $\mu$ M d[(G<sub>4</sub>CT)<sub>3</sub>G<sub>4</sub>] in the presence 1 mM (red), 200 mM (green) KI. Although KI disturbs with the recorded ellipticity, the signal at 290 nm can still be used to monitor the change in topology from the antiparallel to the parallel conformation of KI. (f): CD spectra of buffer solution contraining 10 mM tris-HCl, pH 7.2 with 1 mM (red), 200 mM (violet) and 500 mM (green) KI. KI interferes with ellipticity signal below 230 nm. (f): CD spectra of buffer solution contraining 10 mM tris-HCl, pH 7.2 with 1 mM (red), 200 mM (green) KI. (f): CD spectra of buffer solution contraining 10 mM tris-HCl, pH 7.2 with 1 mM (red), 200 mM (violet) and 500 mM (green) KI. KI interferes with ellipticity signal below 250 nm for 1 mM KI and 260 nm for 200 and 500 mM KI.



Fig. S3: Additional CD spectra and melting profiles of d[(G<sub>4</sub>CT)<sub>3</sub>G<sub>4</sub>] in presence of high concentrations of K<sup>+</sup>

(a): CD spectra of 5  $\mu$ M d(G<sub>4</sub>CT)<sub>3</sub>G<sub>4</sub> in the presence of KCl, concentrations ranging from 250 mM (black), 300 mM (red), 350 mM (blue), 400 mM (green) to 450 mM (violet). A mixture of antiparallel and parallel conformations is detected at 250 mM KCl. With further increasing concentrations of KCl the remaining signal for the antiparallel conformer at 290 nm decreases, signal for the parallel conformer at 260 nm increases. (b): Ellipticity at 260 nm during thermal denaturation of d(G<sub>4</sub>CT)<sub>3</sub>G<sub>4</sub>. The signals only start to decrease above 85 °C and higher. (c): Ellipticity at 290 nm during thermal denaturation of d(G<sub>4</sub>CT)<sub>3</sub>G<sub>4</sub> in the presence of 500 mM KCl and varying oligo concentrations 2  $\mu$ M (black), 5  $\mu$ M (red), 10  $\mu$ M (blue) and 15  $\mu$ M (green). The signals only start to decrease above 90 °C and the oligo is not fully denatured.



 T<sub>1/2</sub> [°C]
 32.7
 38.6
 46.3
 50.8
 79.8
 50.8

Fig. S4: UV melting profiles of d[(G<sub>4</sub>CT)<sub>3</sub>G<sub>4</sub>] in presence of Li<sup>+</sup>, Na<sup>+</sup> and K<sup>+</sup>

(a) UV spectra of 6  $\mu$ M d(G<sub>4</sub>CT)<sub>3</sub>G<sub>4</sub> in the presence of tris buffer only (gray), 1 mM LiCl (green), 500 mM LiCl (dark green), 1 mM NaCl (red), 500 mM NaCl (dark red), 1 mM KCl (blue) and 500 mM KCl (dark blue). (b) UV melting curves of 6  $\mu$ M d(G<sub>4</sub>CT)<sub>3</sub>G<sub>4</sub> in the presence of tris buffer only (gray), 1 mM LiCl (green), 500 mM LiCl (dark green), 1 mM NaCl (red), 500 mM NaCl (dark red), 1 mM KCl (blue) and 500 mM KCl (dark blue). Temperatures corresponding to the half-maximal decay of absorbance T<sub>1/2</sub> were determined as shown in table.



Fig. S5: NMR spectra of d[(G<sub>4</sub>CT)<sub>3</sub>G<sub>4</sub>] in the presence of Na<sup>+</sup>

NMR was measured on a Bruker advanced III 600 spectrometer. (a) <sup>1</sup>H-NMR spectra of 65  $\mu$ M d(G<sub>4</sub>CT)<sub>3</sub>G<sub>4</sub> folded without (blue) and in the presence of 1 mM (red) NaCl. (b) <sup>1</sup>H-NMR spectra of 65  $\mu$ M d(G<sub>4</sub>CT)<sub>3</sub>G<sub>4</sub> folded in the presence of 1 mM (blue) NaCl., 200 mM (red), 500 mM (green) NaCl. (c) Comparison of <sup>1</sup>H-NMR spectra of 65  $\mu$ M d(G<sub>4</sub>CT)<sub>3</sub>G<sub>4</sub> folded in the presence of 1 mM (red) NaCl or 1 mM KCl (blue). (d) Comparison of <sup>1</sup>H-NMR spectra of 65  $\mu$ M d(G<sub>4</sub>CT)<sub>3</sub>G<sub>4</sub> folded in the presence of 500 mM (red) NaCl or 500 mM KCl (blue).



Fig. S6: CD spectra of d[(G<sub>4</sub>CT)<sub>3</sub>G<sub>4</sub>] folded with different cooling rates

 $d[(G_4CT)_3G_4]$  was denatured with 1 mM (blues) or 500 mM (greens) KCl present, cooled to room temperature over night or immediately transferred to room temperature or ice. At 500 mM KCl the parallel conformations forms under all conditions, the antiparallel conformation at 1 mM KCl requires slow renaturation.



Fig. S7: Melting profiles of d[(G4CT)3G4] in presence of low concentrations of K+

(a): Normalized CD melting curves of the antiparallel conformer of  $d(G_4CT)_3G_4$  using 2.5  $\mu$ M (black), 5  $\mu$ M (red), 10  $\mu$ M (blue) and 20  $\mu$ M (green) oligo in the presence of 1 mM KCl. Temperatures corresponding to the half-maximal decay of ellipticity  $T_{1/2}$  were determined as shown in table. **'(b)**: Normalized CD melting curves of the antiparallel conformer of  $d(G_4CT)_3G_4$  using 5  $\mu$ M (black), 10  $\mu$ M (red), 15  $\mu$ M (blue) and 20  $\mu$ M (green) oligo in the presence of 25 mM KCl. Temperatures corresponding to the half-maximal decay of ellipticity  $T_{1/2}$  were determined as shown in table.



Fig. S8: CD spectra of spin-labeled d[(G<sub>4</sub>CT)<sub>3</sub>G<sub>4</sub>] in presence of K<sup>+</sup>

CD spectra of 5  $\mu$ M spin-labeled d(G<sub>4</sub>CT)<sub>3</sub>G<sub>4</sub> in 10 mM tris-HCl, pH 7.2 with 0 mM (gray), 1 mM (red) and 500 mM (green) KCl, total volume 200  $\mu$ L measured in a 1 mm pathlength cell.



Fig. S9: Analysis of d[(G<sub>4</sub>CT)<sub>3</sub>G<sub>4</sub>] in presence of K<sup>+</sup> by EMSA

(a): CD spectra of  $5 \mu M d[(G_4CT)_3G_4]$  in 1xTBE pH 8.5 with 0 mM (gray), 1 mM (red) and 500 mM (green) KCl. (b): EMSA of 5'-radiolabeled d[(G\_4CT)\_3G\_4] in the presence of increasing KCl concentrations. Samples were subjected to electrophoresis directly after folding. The band for the parallel GQP increases with increasing K<sup>+</sup> concentrations, simultaneously the band for the antiparallel conformer decreases.





(a): Sedimentation coefficient distribution of  $d[(G_4CT)_3G_4]$  folded in the presence of 1 mM (red), 100 mM (violet), 500 mM (green) KCl as determined by analytical ultracentrifugation. 500 mM KCl sample was diluted to 100 mM KCl before centrifugation to adjust density of the solution to 100 mM sample. (b): Sedimentation coefficient distribution of  $d[(G_4CT)_3G_4]$  folded in the presence of 1 mM (red), 100 mM (blue), 500 mM (green) KCl using a partial-specific volume of 0.55 mL/g for all GQP species. (c): Sedimentation coefficient distribution of  $d[(G_4CT)_3G_4]$  folded in the presence of 1 mM KCl and immediate transfer to ice after denaturation (blue) and 500 mM KCl and slow renaturation (green). A partial-specific volume of 0.55 mL/g was used for determination of c(s) for all GQP species.



Fig. S11: NMR spectra of d[(G<sub>4</sub>CT)<sub>3</sub>G<sub>4</sub>] in the presence of K<sup>+</sup>

<sup>1</sup>H-NMR spectra of 65  $\mu$ M d(G<sub>4</sub>CT)<sub>3</sub>G<sub>4</sub> folded in the presence of 1 mM (blue), 200 mM (red), 500 mM (green) KCl. NMR was measured on a Bruker advanced III 600 spectrometer.



Fig. S12: CD-spectra of quadruplex sequences with varying T-loop length

(a):  $d[(G_4T_3)_3G_4]$ , (b):  $d[(G_4T_2)_3G_4]$ , (c):  $d[(G_4T_3)_3G_4]$ , (d):  $d[(G_4T_4)_3G_4]$ . Spectra were acquired in the presence of increasing concentrations of KCl from 0 mM (gray), 1 mM (red), 25 to 200 mM (blue) to 500 mM (green).



Fig. S13: CD-spectra of quadruplex sequences with varying G-tract length

(a):  $d[(G_3CT)_3G_3]$ , (b):  $d[(G_5CT)_3G_5]$ . Spectra were acquired in the presence of in increasing concentrations of KCl from 0 mM (gray), 1 mM (red), 25 to 200 mM (blues) to 500 mM (green).



Fig. S14: CD-spectra of all oligonucleotides used in this study in the presence of NaCl

(a):  $d[(G_4CT)_3G_4]$ , (b):  $d[(G_4TC)_3G_4]$ , (c):  $d[(G_4TA)_3G_4]$ , (d):  $d[(G_4AT)_3G_4]$ , (e):  $d[(G_4A_2)G_4]$ , (f):  $d[(G_4C_2)_3G_4]$ , (g):  $d[(G_4T)_3G_4]$ , (h):  $d[(G_4T_2)G_4]$ , (i):  $d[(G_4T_3)_3G_4]$ , (j):  $d[(G_4T_4)_3G_4]$ , (k):  $d[(G_3CT)_3G_3]$ , (l):  $d[(G_5CT)_3G_5]$ . All spectra were acquired in the presence of increasing concentrations of NaCl ranging from 0 mM (gray), 1 mM (red), 25 to 200 mM (blues) and 500 mM (green).

| Strain                                                                          | protein    | protein description                                           | position<br>start | end     | sequence                   | strand | amino acid sequence |
|---------------------------------------------------------------------------------|------------|---------------------------------------------------------------|-------------------|---------|----------------------------|--------|---------------------|
| Bacillus infantis NRRL B-14911                                                  | AGX04358.1 | hypothetical protein                                          | 2289827           | 2289806 | (GGGGCT)₃GGGG              | neg    | GWGWG               |
| Burkholderia ambifaria AMMD chromosome 2                                        | ABI90376.1 | heavy metal translocating P-type ATPase                       | 1822405           | 1822426 | (GGGGCT)₃ GGGG             | pos    | GAGAGAG             |
| Burkholderia cenocepacia MC0-3 chromosome 2                                     | ACA93829.1 | hypothetical protein                                          | 1705109           | 1705130 | (GGGGCT) <sub>3</sub> GGGG | pos    | GLGLGLG             |
| Frankia alni str. ACN14A chromosome                                             | CAJ60943.1 | hypothetical protein putative HNH endonuclease<br>domain      | 2501669           | 2501690 | (GGGGCT)₃ GGGG             | pos    | WGWGWGWG            |
| Frankia symbiont of Datisca glomerata                                           | AEH10209.1 | FAD dependent oxidoreductase                                  | 3421555           | 3421516 | (GGGGCT)6GGGG              | neg    | GAGAGAGAGAGAG       |
| Gloeobacter kilaueensis JS1                                                     | AGY58131.1 | glycosyl transferase family 39                                | 1987505           | 1987484 | (GGGGCT)₃ GGGG             | neg    | GLGLGLG             |
| Gluconacetobacter xylinus NBRC 3288 DNA                                         | BAK83422.1 | hypothetical protein                                          | 1165429           | 1165450 | (GGGGCT) <sub>3</sub> GGGG | pos    | WGWGWGWG            |
| Phycisphaera mikurensis NBRC 102666 DNA                                         | BAM04236.1 | hypothetical protein                                          | 2452916           | 2452895 | (GGGGCT)₃ GGGG             | neg    | GLGLGLG             |
| Ralstonia solanacearum CFBP2957 plasmid RCFBPv3_mp                              | CBJ53914.1 | protein of unknown function                                   | 1336019           | 1335998 | (GGGGCT)₃ GGGG             | neg    | WGWGWGWG            |
| Ralstonia solanacearum str. PSI07 chromosome                                    | CBM10292.1 | hypothetical protein                                          | 3425125           | 3425146 | (GGGGCT)₃ GGGG             | pos    | GLGLGLG             |
| Salmonella enterica subsp. enterica serovar Gallinarum str. 287/91              | CAR35995.1 | glutathione-regulated potassium-efflux system protein<br>KefC | 100073            | 100094  | (GGGGCT)₃ GGGG             | pos    | GLGLGLG             |
| Salmonella enterica subsp. enterica serovar Gallinarum str. 287/91              | CAR36596.1 | sensor protein KdpD                                           | 757600            | 757573  | (GGGGCT)₅                  | neg    | GLGLGLGLG           |
| Salmonella enterica subsp. enterica serovar Gallinarum/pullorum str. CDC1983-67 | AGU63044.1 | glutathione-regulated potassium-efflux system protein<br>KefC | 100108            | 100129  | (GGGGCT)₃ GGGG             | pos    | GLGLGLG             |
| Salmonella enterica subsp. enterica serovar Gallinarum/pullorum str. RKS5078    | AET52547.1 | glutathione-regulated potassium-efflux system protein<br>KefC | 100109            | 100130  | (GGGGCT)₃ GGGG             | pos    | GLGLGLG             |
| Shigella flexneri 2002017                                                       | ADA75072.1 | Membrane-spanning protein of hydrogenase 3                    | 2855294           | 2855253 | (GGGGCT)7                  | neg    | GLGLGLGLGLGLG       |
| Shigella flexneri 2a str. 301                                                   | AAN44231.2 | membrane-spanning protein of hydrogenase 3                    | 2816692           | 2816653 | (GGGGCT)6GGGG              | neg    | GLGLGLGLGLGLG       |
| Stackebrandtia nassauensis DSM 44728                                            | ADD41590.1 | YD repeat protein                                             | 2008682           | 2008723 | (GGGGCT)7                  | pos    | GAGAGAGAGAGAGA      |
| Stigmatella aurantiaca DW4/3-1                                                  | ADO75292.1 | uncharacterized protein                                       | 9222581           | 9222602 | (GGGGCT) <sub>3</sub> GGGG | pos    | GLGLGLG             |
| Xanthomonas oryzae pv. oryzae PXO99A                                            | ACD60711.1 | acetylxylan esterase                                          | 4273877           | 4273856 | (GGGGCT) <sub>3</sub> GGGG | neg    | RGWGWGWG            |

#### Table S1. GGGGCT repeat sequences within protein encoding sequences

Table shows the occurrence of potential quadruplex forming sequences in bacterial genomes within protein encoding regions. Only complete sequences of bacterial genomes were taken into account. Start and end point of the sequence as well as location on plus (pos) or minus (neg) strand is given. Amino acid sequence, which a repeat sequence encodes, and Genbank accession number of the respective protein are given.

| Strain                                                   | protein    | protein description                            | p <b>osition</b><br>start | end     | sequence                   |     |
|----------------------------------------------------------|------------|------------------------------------------------|---------------------------|---------|----------------------------|-----|
|                                                          |            |                                                | otart                     | ond     |                            |     |
| Acidothermus cellulolyticus 11B                          | ABK52391.1 | cellulose-binding, family II                   | 668279                    | 668258  | (GGGGCT)₃GGGG              | neg |
| Actinosynnema mirum DSM 43827                            | ACU36234.1 | hypothetical protein                           | 2552254                   | 2552281 | (GGGGCT) <sub>4</sub> GGGG | pos |
| Adlercreutzia equolifaciens DSM 19450 DNA                | BAN76597.1 | polysaccharide deacetylase                     | 842549                    | 842528  | (GGGGCT)₃GGGG              | neg |
| Azospirillum lipoferum 4B plasmid AZO_p1                 | CBS88380.1 | putative hybrid sensor histidine kinase        | 63134                     | 63167   | (GGGGCT)6GGGG              | pos |
| Azotobacter vinelandii CA                                | AGK13378.1 | D-Alanyl-D-Alanine carboxypeptidase            | 800884                    | 800863  | (GGGGCT)₃GGGG              | neg |
| Azotobacter vinelandii CA6                               | AGK17736.1 | D-Alanyl-D-Alanine carboxypeptidase            | 800876                    | 800855  | (GGGGCT)₃GGGG              | neg |
| Azotobacter vinelandii DJ                                | ACO77088.1 | D-Alanyl-D-Alanine carboxypeptidase            | 800864                    | 800843  | (GGGGCT)₃GGGG              | neg |
| Bdellovibrio bacteriovorus complete genome, strain HD100 | CAE77747.1 | conserved hypothetical protein                 | 61375                     | 61402   | (GGGGCT)₅GGGG              | pos |
| Burkholderia phenoliruptrix BR3459a chromosome 1         | AFT85453.1 | exodeoxyribonuclease V alpha subunit           | 1572212                   | 1572191 | (GGGGCT)₃GGGG              | neg |
| Burkholderia sp. CCGE1001 chromosome 1                   | ADX54801.1 | exodeoxyribonuclease V, alpha subunit          | 1558469                   | 1558404 | (GGGGCT) <sub>11</sub>     | neg |
| Burkholderia vietnamiensis G4 chromosome 1               | ABO54384.1 | protein of unknown function DUF1228            | 1473363                   | 1473342 | (GGGGCT) <sub>3</sub> GGGG | neg |
| Deinococcus gobiensis I-0 plasmid P2                     | AFD27512.1 | hypothetical protein                           | 197513                    | 197492  | (GGGGCT)₃GGGG              | neg |
| Delftia sp. Cs1-4                                        | AEF89628.1 | cytochrome c class I                           | 2987497                   | 2987476 | (GGGGCT) <sub>3</sub> GGGG | neg |
| Desulfitobacterium hafniense DCB-2                       | ACL20815.1 | hypothetical protein                           | 2996050                   | 2996071 | (GGGGCT)₃GGGG              | pos |
| Frankia sp. Ccl3                                         | ABD11955.1 | hypothetical protein                           | 3060256                   | 3060235 | (GGGGCT)₃GGGG              | neg |
| Pelotomaculum thermopropionicum SI DNA                   | BAF58268.1 | hypothetical membrane protein                  | 82967                     | 82938   | (GGGGCT) <sub>5</sub>      | neg |
| Ralstonia solanacearum CFBP2957 plasmid RCFBPv3_mp       | CBJ53915.1 | conserved exported protein of unknown function | 1336019                   | 1335998 | (GGGGCT)₃GGGG              | neg |
| Salinispora arenicola CNS-205                            | ABV97463.1 | hypothetical protein                           | 1802368                   | 1802389 | (GGGGCT)₃GGGG              | pos |
| Sanguibacter keddieii DSM 10542                          | ACZ22171.1 | ATP-dependent DNA helicase RecQ                | 2508401                   | 2508342 | (GGGGCT) <sub>10</sub>     | neg |
| Shigella dysenteriae Sd197                               | hycC Gene  | hycC                                           | 2702838                   | 2702793 | (GGGGCT) <sub>8</sub>      | neg |
| Streptomyces collinus Tu 365                             | AGS72154.1 | hypothetical protein                           | 6159803                   | 6159824 | (GGGGCT) <sub>3</sub> GGGG | pos |
| Streptomyces davawensis strain JCM 4913                  | CCK29538.1 | hypothetical protein                           | 5737369                   | 5737390 | (GGGGCT)₃GGGG              | pos |
| Streptomyces rochei plasmid pSLA2-L DNA                  | BAC76555.1 | probable plasmid partitioning protein, ParB    | 161471                    | 161498  | (GGGGCT)₅GGGG              | pos |

#### Table S2. GGGGCT repeat sequences complementary to coding regions

Table shows the occurrence of potential quadruplex forming sequences in bacterial genomes that are located complementary to protein coding regions. Only complete sequences of bacterial genomes were taken into account. Start and end point of the sequence as well as location on plus (pos) or minus (neg) strand is given, as well as Genbank accession number of the respective protein.

| strain                                             | position<br>start | end     | sequence                                        | strand | 5' gene      | protein description                                                        | orient | dis.<br>5'<br>[bp] | 3' gene    | protein description                         | orient | dis.<br>3'<br>[bp] |
|----------------------------------------------------|-------------------|---------|-------------------------------------------------|--------|--------------|----------------------------------------------------------------------------|--------|--------------------|------------|---------------------------------------------|--------|--------------------|
| Amycolatopsis mediterranei<br>RB                   | 6108902           | 6108923 | (GGGGCT)₃GGGG                                   | pos    | AGT86094.1   | two-component system<br>response regulator                                 | pos    | 41                 | AGT86095.1 | cupin domain-containing protein             | neg    | 195                |
| Amycolatopsis mediterranei<br>S699                 | 6108967           | 6108988 | (GGGGCT)₃GGGG                                   | pos    | AFO78966.1   | two-component system<br>response regulator                                 | pos    | 38                 | AFO78967.1 | cupin domain-containing protein             | neg    | 195                |
| Amycolatopsis mediterranei<br>S699                 | 6099040           | 6099061 | (GGGGCT)₃GGGG                                   | pos    | AEK44080.1   | two-component system<br>response regulator                                 | pos    | 41                 | AEK44081.1 | cupin domain-containing<br>protein          | neg    | 195                |
| Delftia acidovorans SPH-1,                         | 2403406           | 2403439 | (GGGGCT)₅GGGG                                   | pos    | ABX34829.1   | 2-amino-4-hydroxy-6-<br>hydroxymethyldihydropteridine<br>pyrophosphokinase | pos    | 123                | ABX34830.1 | glycolsyl transerase family 39              | pos    | 26                 |
| Frankia sp. Ccl3                                   | 1296252           | 1296231 | (GGGGCT)₃GGGG                                   | neg    | ABD10466.1   | conserved hypothetical protein                                             | pos    | 805                | ABD10467.1 | FAD linked-oxidase like                     | neg    | 10                 |
| Geobacter sp. M18                                  | 4943641           | 4943608 | (GGGGCT)6GGGG                                   | neg    | ADW15616.1   | conserved hypothetical protein                                             | neg    | 200                | ADW15617.1 | helicase c2                                 | pos    | 93                 |
| Geobacter sp. M21                                  | 1968533           | 1968554 | (GGGGCT)₃GGGG                                   | pos    | ACT17742.1   | hypothetical protein                                                       | neg    | 270                | ACT17743.1 | thioesterase superfamily<br>protein (275bp) | neg    | 275                |
| Geobacter sp. M21                                  | 4437666           | 4437761 | (GGGGCT) <sub>10</sub> GGGACT-<br>(GGGGCT)₄GGGG | pos    | ACT19869.1   | FRG domain protein                                                         | neg    | 116                | ACT19869.1 | conserved hypothetical protein              | neg    | 33                 |
| Pseudomonas denitrificans<br>ATCC 13867            | 3371781           | 3371760 | (GGGGCT)₃GGGG                                   | neg    | AGI24854.1   | hypothetical protein                                                       | neg    | 123                | AGI24855.1 | hypothetical protein                        | neg    | 238                |
| Streptomyces avermitilis MA-<br>4680 DNA           | 2499489           | 2499547 | (GGGGCT)₀GGGG                                   | pos    | BAC69758.1   | hypothetical protein                                                       | pos    | 31                 | BAC69759.1 | hypothetical protein                        | neg    | 16                 |
| Treponema pallidum subsp.<br>pallidum DAL-1        | 150542            | 150563  | (GGGGCT)₃GGGG                                   | pos    | AEZ60452.1   | hypothetical protein                                                       | pos    | 48                 | AEZ60453.1 | hypothetical protein                        | pos    | 120                |
| Treponema pallidum subsp.<br>pallidum str. Chicago | 150548            | 150569  | (GGGGCT)₃GGGG                                   | pos    | TPChic_0127a | TPChic_0127a gene                                                          | pos    | 48                 | ADD72282.1 | conserved hypothetical protein              | pos    | 189                |
| Treponema pallidum subsp.<br>pallidum str. Nichols | 149332            | 149353  | (GGGGCT)₃GGGG                                   | pos    | AAC65119.1   | predicted coding region<br>TP0127                                          | pos    | 48                 | AAC65120.1 | predicted coding region<br>TP0128           | pos    | 120                |
| Treponema pallidum subsp.<br>pallidum str. Nichols | 150545            | 150566  | (GGGGCT)₃GGGG                                   | pos    | AGN75349.1   | hypothetical protein                                                       | pos    | 68                 | AGN75350.1 | hypothetical protein                        | pos    | 120                |
| Verrucosispora maris AB-18-<br>032                 | 6353913           | 6353824 | (GGGGCT) <sub>15</sub>                          | neg    | AEB47716.1   | diguanylate cyclase with gaf<br>sensor                                     | pos    | 9                  | AEQ94537.1 | aspartate-semialdehyde<br>dehydrogenase     | neg    | 109                |
| Xanthomonas oryzae pv. oryzicola BLS256,           | 295882            | 295903  | (GGGGCT)₃GGGG                                   | pos    | AEQ94536.1   | two-component system<br>response regulator protein<br>ntrC                 | pos    | 187                | AEQ94537.1 | superoxide dismutase                        | pos    | 299                |

#### Table S3. GGGGCT repeat sequences within untranslated regions

Table shows the occurrence of potential quadruplex forming sequences in bacterial genomes that are located in untranslated regions between two genes. Only complete sequences of bacterial genomes were taken into account. Start and end point of the repetitive sequence as well as location on plus (pos) or minus (neg) strand is given. The proteins encoded by the next genes located 5' and 3' of the repeat sequence, their location on the geneome as well as the distance between the genes and the repeat sequence, and Genbank accession numbers of the proteins are listed.

| Human genome, GRCh38 Primary<br>Assembly | Accession<br>Number | Gene/RNA                |            | strand   | position<br>start | end       | sequence                                          | strand   |
|------------------------------------------|---------------------|-------------------------|------------|----------|-------------------|-----------|---------------------------------------------------|----------|
| Homo sapiens chromosome 1                | NC_000001.11        | PEX14                   |            | positive | 10630209          | 10630188  | (G <sub>4</sub> CT) <sub>3</sub> G <sub>4</sub>   | negative |
|                                          |                     | CASZ1                   |            | negative | 10656809          | 10656786  | (G <sub>4</sub> CT) <sub>4</sub>                  | negative |
|                                          |                     |                         |            | 0        | 90547895          | 90547916  | (G <sub>4</sub> CT) <sub>3</sub> G <sub>4</sub>   | positive |
|                                          |                     | SLC44A3                 |            | positive | 94820362          | 94820341  | (G <sub>4</sub> CT) <sub>3</sub> G <sub>4</sub>   | negative |
|                                          |                     | SLC44A3                 |            | positive | 94854900          | 94854877  | (G <sub>4</sub> CT) <sub>4</sub>                  | negative |
|                                          |                     | KIAA0907                |            | negative | 155917585         | 155917612 | (G4CT)5G4                                         | positive |
|                                          |                     |                         |            |          | 224865257         | 224865228 | (G <sub>4</sub> CT) <sub>5</sub>                  | negative |
| Homo sapiens chromosome 2                | NC_000002.12        | NCOA1                   |            | positive | 24597500          | 24597521  |                                                   | positive |
|                                          |                     |                         |            | ·        | 42810131          | 42810108  | (G <sub>4</sub> CT) <sub>4</sub>                  | negative |
|                                          |                     | GPR1 antisense RNA      |            | positive | 206229916         | 206229937 |                                                   | positive |
|                                          |                     | Tensin 1                |            | positive | 217858985         | 217858962 | (G <sub>4</sub> CT) <sub>4</sub>                  | negative |
|                                          |                     |                         |            |          | 234260112         | 234260087 | TC(G <sub>4</sub> CT) <sub>4</sub>                | negative |
| Homo sapiens chromosome 3                | NC_000003.12        |                         |            |          | 40791360          | 40791401  | (G <sub>4</sub> CT) <sub>7</sub>                  | positive |
|                                          |                     | CACNA2D2                |            | negative | 50489619          | 50489654  | (G <sub>4</sub> CT) <sub>6</sub>                  | positive |
|                                          |                     | PLXNA1                  |            | positive | 127003141         | 127003174 | (G <sub>4</sub> CT) <sub>5</sub> G <sub>4</sub>   | positive |
|                                          |                     |                         |            |          | 127392119         | 127392142 | $(G_4CT)_4$                                       | positive |
| Homo sapiens chromosome 5                | NC_000005.10        | uncharact. LOC101929505 |            | negative | 16428163          | 16428138  | CT(G <sub>4</sub> CT) <sub>4</sub>                | negative |
|                                          |                     | SSBP2                   |            | negative | 81750273          | 81750252  | (G4CT)3G4                                         | negative |
|                                          |                     | CXXC5                   |            | positive | 139682352         | 139682325 | (G4CT)4G4                                         | negative |
|                                          |                     | KCNIP1                  |            | positive | 170485812         | 170485789 | CT(G <sub>4</sub> CT) <sub>3</sub> G <sub>4</sub> | negative |
|                                          | NC_000006.12        |                         |            |          | 71886633          | 71886610  | (G <sub>4</sub> CT) <sub>4</sub>                  | negative |
|                                          |                     |                         |            |          | 168851680         | 168851703 | (G <sub>4</sub> CT) <sub>4</sub>                  | positive |
| Homo sapiens chromosome 7                | NC_000007.14        |                         |            |          | 128739101         | 128739124 | (G <sub>4</sub> CT) <sub>4</sub>                  | positive |
|                                          |                     |                         |            |          | 129122728         | 129122749 | (G <sub>4</sub> CT) <sub>3</sub> G <sub>4</sub>   | positive |
|                                          |                     | KRBA1                   |            | positive | 149730262         | 149730241 | (G <sub>4</sub> CT) <sub>3</sub> G <sub>4</sub>   | negative |
|                                          |                     |                         |            |          | 151880833         | 151880858 | CT(G <sub>4</sub> CT) <sub>4</sub>                | positive |
|                                          |                     | DPP6                    |            | positive | 154305082         | 154305019 | (G4CT)10G4                                        | negative |
|                                          |                     |                         |            |          | 155467865         | 155467836 | (G4CT)5                                           | negative |
| Homo sapiens chromosome 8                | NC_00008.11         | SDCBP                   |            | positive | 58553559          | 58553590  | CT(G₄CT)₅                                         | positive |
|                                          |                     |                         |            |          | 66379273          | 66379300  | (G4CT)4G4                                         | positive |
| Homo sapiens chromosome 9                | NC_000009.12        |                         |            |          | 41647291          | 41647266  | CT(G <sub>4</sub> CT) <sub>4</sub>                | negative |
|                                          |                     |                         |            |          | 61668692          | 61668696  | (G <sub>4</sub> CT) <sub>4</sub>                  | negative |
|                                          |                     |                         |            |          | 61674981          | 61674952  | (G <sub>4</sub> CT) <sub>5</sub>                  | negative |
|                                          |                     |                         |            |          | 61861242          | 61861217  | CT(G <sub>4</sub> CT) <sub>4</sub>                | negative |
|                                          |                     |                         |            |          | 65390307          | 65390276  | CT(G <sub>4</sub> CT) <sub>4</sub>                | negative |
|                                          |                     |                         |            |          | 67719561          | 67719586  | CT(G <sub>4</sub> CT) <sub>4</sub>                | positive |
|                                          |                     | DAB2IP                  |            | positive | 121731667         | 121731696 | (G4CT)4                                           | positive |
|                                          |                     | TOR1A                   |            | Negative | 129823518         | 129823491 | (G4CT)4G4                                         | negative |
|                                          |                     | IUR1A                   |            | negative | 129823720         | 129823699 | (G <sub>4</sub> CT) <sub>3</sub> G <sub>4</sub>   | negative |
| 11                                       |                     | ABCA2                   |            | negative | 137017955         | 137017932 | (G4CT)4                                           | negative |
| Homo sapiens chromosome 10               | NC_000010.11        | CONY                    |            | positive | 35357216          | 35357189  | (G <sub>4</sub> CT) <sub>4</sub> G <sub>4</sub>   | negative |
|                                          |                     | ANKRD30BP3              |            | positive | 45180318          | 45180351  | (G4CT)5G4                                         | positive |
|                                          |                     | C100ff11                |            | positive | 75972870          | 75972891  | (G <sub>4</sub> CT) <sub>3</sub> G <sub>4</sub>   | positive |
|                                          |                     |                         |            |          | 129191495         | 129191468 | (G4CT)5                                           | negative |
|                                          | NO 000044 40        | NIGT DUCDO              |            | negative | 133402253         | 133402276 | $(G_4 C_1)_4$                                     | positive |
| Homo sapiens chromosome 11               | NC_000011.10        | DUSP8                   |            | negative | 1563802           | 1563781   | (G4CT)3G4                                         | negative |
|                                          |                     | CISD                    |            | negative | 1753983           | 1753960   | (G4CT)4                                           | negative |
|                                          |                     | NAV2                    |            | positive | 19555868          | 19555843  | CT(G <sub>4</sub> CT) <sub>4</sub>                | negative |
|                                          |                     | CD82                    |            | positive | 44594416          | 44594391  | CT(G <sub>4</sub> CT) <sub>4</sub>                | negative |
|                                          |                     |                         |            |          | 69471960          | 69471937  | (G <sub>4</sub> CT) <sub>4</sub>                  | negative |
|                                          |                     |                         |            |          | 116526305         | 116526282 | (G <sub>4</sub> CT) <sub>4</sub>                  | negative |
| Homo sapiens chromosome 12               | NC_000012.1         | CD27 antisense RNA 1    | <u>S14</u> | negative | 6448967           | 6448946   | (G4CT)3G4                                         | negative |

|                             |               | A                                                    |          |           |           |                                                   |          |
|-----------------------------|---------------|------------------------------------------------------|----------|-----------|-----------|---------------------------------------------------|----------|
|                             |               | CD27                                                 | positive |           |           |                                                   |          |
|                             |               |                                                      |          | 45611265  | 45611308  | CT(G <sub>4</sub> CT) <sub>7</sub>                | positive |
|                             |               | ASIC1                                                | positive | 50074323  | 50074346  | (G4CT)4                                           | positive |
|                             |               | LOC102724030                                         | positive | 54159175  | 54159150  | CT(G <sub>4</sub> CT) <sub>4</sub>                | negative |
|                             |               | -                                                    |          | 82686971  | 82686996  | CT(G <sub>4</sub> CT) <sub>4</sub>                | positive |
| Homo sapiens chromosome 13  | NC 000013.11  |                                                      |          | 18249046  | 18249021  | CT(G₄CT)₄                                         | negative |
|                             |               |                                                      |          | 28819787  | 28819832  | (G4CT)7G4                                         | positive |
|                             |               | long intergenic non-protein coding RNA 1070          | positive | 112197836 | 112197813 | (G4CT)4                                           | negative |
| Homo saniens chromosome 14  | NC 000014.9   |                                                      | positive | 75812850  | 75812884  |                                                   | nogitive |
| nome supiens enromesome 14  | 140_000014.9  | EOVN2                                                | positive | 90177541  | 00177660  |                                                   | positivo |
|                             |               | PCI 11P                                              | negative | 00100520  | 00100505  |                                                   | positive |
| 11                          |               | BCLIIB                                               | negative | 99188538  | 99188383  |                                                   | positive |
| Homo sapiens chromosome 15  | NC_000015.10  |                                                      |          | 69470248  | 69470279  |                                                   | positive |
|                             |               | ZNF710                                               | positive | 90001660  | 90001639  | (G4CT)3G4                                         | negative |
|                             |               | ADAMTS17                                             |          | 100005977 | 100005952 | CT(G4CT)4                                         | negative |
| Homo sapiens chromosome 16  | NC_000016.10  |                                                      |          | 769266    | 769237    | (CTG4)5                                           | negative |
|                             |               |                                                      |          | 1004382   | 1004361   | (G4CT)3G4                                         | negative |
|                             |               | SBK1                                                 | positive | 28307068  | 28307037  | CT(G <sub>4</sub> CT) <sub>4</sub> G <sub>4</sub> | negative |
|                             |               | STX1B                                                | negative | 31001489  | 31001510  | (G <sub>4</sub> CT) <sub>3</sub> G <sub>4</sub>   | positive |
|                             |               | -                                                    |          | 83951197  | 83951174  | (G <sub>4</sub> CT) <sub>4</sub>                  | negative |
|                             |               | GSE1                                                 | positive | 85236028  | 85236049  | CT(G <sub>4</sub> CT) <sub>4</sub>                | positive |
|                             |               | ZFPM1                                                | positive | 88497286  | 88497259  | (G <sub>4</sub> CT) <sub>4</sub> G <sub>4</sub>   | negative |
| Homo sapiens chromosome 17  | NC 000017 11  | NUP88                                                | negative | 5394652   | 5394675   | (CTG <sub>4</sub> ) <sub>4</sub>                  | positive |
|                             |               | ASGR1                                                | negative | 7176964   | 7176937   | (G <sub>4</sub> CT) <sub>4</sub> G <sub>4</sub>   | negative |
|                             |               | mRNA-phosphoipositide-3-kinase, regulatory subunit 6 | negative | 8860458   | 8860437   | (G4CT)2G4                                         | negative |
|                             |               |                                                      | noganvo  | 1750/22/  | 1750/2/5  | (G(CT))G(                                         | nogativo |
|                             |               | 100100420851                                         | nositivo | 36178060  | 3617811   | (G4CT)4                                           | positivo |
|                             |               |                                                      | positive | 364/1000  | 364/1023  | (G <sub>4</sub> CT) <sub>4</sub>                  | positive |
|                             |               |                                                      |          | 27022075  | 37022050  | $(G_4 G_7)_4$                                     | positivo |
|                             |               |                                                      | nogativo | 38256720  | 38256700  | (G4CT)5                                           | negative |
|                             |               | DDV                                                  | negative | 42044265  | 42044296  | $(G_4CT)_6G_4$                                    | negative |
|                             |               |                                                      | negative | 43941300  | 43941380  | $(G_4 C_1)_3 G_4$                                 | positive |
|                             |               | UBF4D                                                | positive | 44749287  | 44749200  | $(G_4 C T)_3 G_4$                                 | negative |
|                             |               | NPEPPS                                               | positive | 47531714  | 4/531/41  | (G4CT)3G4                                         | positive |
|                             |               | mRNA-transmembrane protein 105                       | negative | 81313145  | 81313168  | (G4CT)4                                           | positive |
|                             |               | HGS                                                  | positive | 81700665  | 81700636  | (G <sub>4</sub> CT) <sub>4</sub>                  | negative |
|                             |               | FOXK2                                                | positive | 82556560  | 82556591  | CT(G <sub>4</sub> CT) <sub>4</sub>                | positive |
| Homo sapiens chromosome 18  | NC_000018.10  |                                                      |          | 37779372  | 37779351  | (G <sub>4</sub> CT) <sub>3</sub> G <sub>4</sub>   | negative |
|                             |               | CTIF                                                 | positive | 48699394  | 48699435  | (G₄CT)7                                           | positive |
|                             |               |                                                      |          | 63610584  | 63610605  | (G4CT)3G4                                         | positive |
| Homo sapiens chromosome 19  | NC_000019.10  | MED16                                                | negative | 877797    | 877768    | (G <sub>4</sub> CT) <sub>5</sub>                  | negative |
|                             |               | MED16                                                | negative | 877977    | 877954    | (G <sub>4</sub> CT) <sub>4</sub>                  | negative |
|                             |               | MED16                                                | negative | 878257    | 878236    | (G <sub>4</sub> CT) <sub>3</sub> G <sub>4</sub>   | negative |
|                             |               | MED16                                                | negative | 878381    | 878358    | $(G_4CT)_4$                                       | negative |
|                             |               | MED16                                                | negative | 878871    | 878848    | (G <sub>4</sub> CT) <sub>4</sub>                  | negative |
|                             |               | MED16                                                | negative | 879149    | 879122    | (G₄CT)₄G₄                                         | negative |
|                             |               | DOT1                                                 | positive | 2181797   | 2181766   | CT(G <sub>4</sub> CT) <sub>5</sub>                | negative |
|                             |               | mRNA-cytochrome c oxidase subunit VIIa polypeptide   | negative | 36152531  | 36152552  | (G <sub>4</sub> CT) <sub>2</sub> G <sub>4</sub>   | positive |
|                             |               | 1                                                    | nogunto  | 00102001  | 00102002  | (0401)304                                         | poolito  |
|                             |               | SIPA1L3                                              | positive | 37929180  | 37929205  | CT(G <sub>4</sub> CT) <sub>4</sub>                | positive |
|                             |               |                                                      | poolitio | 557811//  | 55781171  | (G(CT))G                                          | positivo |
| Homo saniens chromosome 20  | NC 000020 11  |                                                      |          | 4489603   | 4489626   | (G <sub>4</sub> CT) <sub>4</sub>                  | positive |
| nomo supiens en ontosome zo | 110_000020.11 | MMP24 antisense RNA 1                                | negative | 35277785  | 35277818  | $(G_4 O T)_4$                                     | positive |
|                             |               |                                                      | negative | 50217617  | 50217506  | (G4CT):G4                                         | positivo |
|                             |               |                                                      | nocitivo | 50597754  | 50597775  | $(G_4 CT)_3 G_4$                                  | negative |
|                             |               |                                                      | positive | 59567754  | 09007770  | $(G_{4}C_{1})_{3}G_{4}$                           | positive |
|                             |               |                                                      | positive | 01011200  | 01011100  | $(G_4 C_1)_3 G_4$                                 | negative |
|                             |               | OGER antiannas DNA 4                                 | positive | 62805395  | 62805428  | (6401)564                                         | positive |
|                             |               | OGER antisense RNA 1                                 | negative |           |           |                                                   |          |

| Homo sapiens chromosome 22 | NC_000022.11 | LOC388849 | negative | 20150427  | 20150448  | (G4CT)3G4                                       | positive |
|----------------------------|--------------|-----------|----------|-----------|-----------|-------------------------------------------------|----------|
|                            |              | ZDHHC8P1  | negative | 23393126  | 23393105  | (G4CT)3G4                                       | negative |
|                            |              | ATXN10    | positive | 45752567  | 45752596  | (G4CT)4                                         | positive |
|                            |              |           |          | 49748986  | 49748953  | $(G_4CT)_5G_4$                                  | negetive |
|                            |              |           |          | 49929463  | 49929490  | (G <sub>4</sub> CT) <sub>4</sub> G <sub>4</sub> | positive |
| Homo sapiens chromosome X  | NC_000023.11 | AVPR2     | positive | 153905331 | 153905352 | $(G_4CT)_3G_4$                                  | positive |

 Table S4. GGGGCT repeat sequences the human genome (Description at the end of table)

#### Table S4. GGGGCT repeat sequences in the human genome

Table shows the occurrence of potential quadruplex forming sequences in the human genome. Only sequences of Human genome, GRCh38 Primary Assembly were taken into account. Start and end point of the repetitive sequence as well as location on positive or complement (negative) strand is given (last column). In case a repeat occurred within or complementary to a protein coding region or non-coding RNA, the gene or RNA as well as its location on the on positive or complement (negative) strand is listed (fourth column).

### **Experimental Section**

**Materials.** Oligonucleotides (Table 1) for CD measurements and melting assays were synthesized by Sigma Aldrich (Steinheim, Germany) at the 1 µmol scale with HPLC purification. Prior to use in native Polyacrylamide gel electrophoresis (PAGE) oligonucleotides were purified by denaturating polyacrylamide-urea gel electrophoresis.

| Table 1. List of oligonucleotides used in this study |                                  |  |  |  |  |  |  |
|------------------------------------------------------|----------------------------------|--|--|--|--|--|--|
| Name                                                 | Sequence (5'3')                  |  |  |  |  |  |  |
| $d[(G_4CT)_3G_4]$                                    | d (GGGGCTGGGGCTGGGGG)            |  |  |  |  |  |  |
| $d[(G_4TC)_3G_4]$                                    | d (GGGGTCGGGGTCGGGGG)            |  |  |  |  |  |  |
| $d[(G_4T)_3G_4]$                                     | d (GGGGTGGGGTGGGGGGGGG)          |  |  |  |  |  |  |
| $d[(G_4T_2)_3G_4]$                                   | d (GGGGTTGGGGTTGGGGTTGGGG)       |  |  |  |  |  |  |
| $d[(G_4T_3)_3G_4]$                                   | d (GGGGTTTGGGGTTTGGGGTTTGGGG)    |  |  |  |  |  |  |
| $d[(G_4T_4)_3G_4]$                                   | d (GGGGTTTTGGGGTTTTGGGGTTTTGGGG) |  |  |  |  |  |  |
| $d[(G_3CT)_3G_3]$                                    | d (GGGCTGGGCTGGGCTGGG)           |  |  |  |  |  |  |
| $d[(G_5CT)_3G_5]$                                    | d (GGGGGCTGGGGGCTGGGGGG)         |  |  |  |  |  |  |
| $d[(G_4C_2)_3G_4]$                                   | d (GGGGCCGGGGCCGGGG)             |  |  |  |  |  |  |
| $d[(G_4AT)_3G_4]$                                    | d (GGGGATGGGGATGGGGG)            |  |  |  |  |  |  |
| $d[(G_4TA)_3G_4]$                                    | d (GGGGTAGGGGTAGGGGG)            |  |  |  |  |  |  |
| $d[(G_4A_2)_3G_4]$                                   | d (GGGGAAGGGGAAGGGGAAGGGG)       |  |  |  |  |  |  |
| $d[(C_4AG)_3C_4]$                                    | d (CCCCAGCCCCAGCCCCC)            |  |  |  |  |  |  |

**Circular dichroism (CD) measurements.** CD spectra were recorded on a JASCO-J815 spectropolarimeter equipped with a MPTC-490S/15 multicell temperature unit using a 1 cm optical path and a reaction volume of 600  $\mu$ L. Oligonucleotides were prepared as a 5  $\mu$ M solution in 10 mM Tris-HCl pH 7.5 buffer unless otherwise noted, supplemented with either KCl, NaCl, LiCl or MgCl<sub>2</sub> as noted and denatured by heating to 98 °C for 5 min, followed by slow cooling to 20 °C over night. Scans were performed at 20 °C over a wavelength range of 220–320 nm (5 accumulations) with a scanning speed of 500 nm/min, 0.5 s response time, 0.5 nm data pitch and 1 nm bandwidth. The buffer spectrum was subtracted and all spectra zero-corrected at 320 nm.

**Thermal denaturation.** For thermal denaturation oligonucleotides were prepared as previously described. Samples were heated from 20 °C to 100 °C with a heating rate of 0.5 °Cmin<sup>-1</sup>. The CD signal at 260 nm or 290 nm was recorded every 0.5 °C. The temperature of the half-maximal decay of ellipticity  $T_{1/2}$  was obtained from the normalized ellipticity decrease.

UV thermal denaturation. 6  $\mu$ M oligonucleotides were prepared as previously described. Thermal denaturation was performed with a Cary 100 Bio UV-Visible Spectrophotometer. UV spectra from 220 nm to 300 nm were recorded prior to melting. Samples were heated from 20 °C to 95 °C with a heating rate of 0.5 °Cmin<sup>-1</sup>. UV absorbance at 295 nm was recorded every 1.0 °C. The temperature of the half-maximal decrease in absorbance  $T_{1/2}$  was obtained from the normalized absorbance decrease.

**Radioactive labeling.** Prior to use in native PAGE oligonucleotides were 5'-end-labeled with  $\gamma$ -<sup>32</sup>P-ATP by phosphate exchange reaction through T4-polynucleotide kinase (NEB), as described in the manufacturer's protocol. The products were purified by gel filtration (Sephadex G-25 column). After purification the DNA concentration was adjusted to 5  $\mu$ M with unlabeled oligonucleotide.

**Electrophoretic Mobility Shift Assay (EMSA).** To investigate the influence of the potassium concentration on secondary structure formation of  $d(G_4CT)_3G_4$  analytical native polyacrylamide gels were run. 5 µM radioactively labeled quadruplex DNA in 10 mM Tris-HCl was folded by heating up to 95 °C for 5 min and cooling down within 12 hours in the presence of different KCl concentrations as indicated. Polyacrylamide gels containing 16% acrylamide 40 (19:1) with a thickness of 0.4 mm were poured in 1xTBE supplemented with 100 mM KCl. The folded oligonucleotide was mixed 1:1 with native PAGE loading buffer (40% (v/v) glycerol, 0.25% (w/v) bromphenolblue, 0.25% (w/v) xylencyanol), 4 µL of the samples were loaded on the gel. Separation was carried out at a voltage of 300-400 V in 1xTBE buffer supplemented with 100 mM KCl. The running time was 6 h at 4 °C. Gels were analyzed by autoradiography.

**Synthesis of spin-labeled d**[(G<sub>4</sub>**CT**)<sub>3</sub>G<sub>4</sub>]. The syntheses of DNA oligomers were performed on an ABI 394 DNA/RNA synthesizer with commercially available reagents. The spin-labeled DNA was synthesized using an extended coupling time for the spin-labeled phosphoramidite (10 min total in several pushes). 5-(ethylthio)-1H-tetrazole (0.25 M in CH<sub>3</sub>CN) was used as the activator, 0.02 M iodine in THF/Pyridine/Water as the oxidizer, and 3% (v/v) dichloroacetic acid in CH<sub>2</sub>Cl<sub>2</sub> as the deblock solution. The DNA oligomers were cleaved from the solid support and with concentrated aqueous ammonia at 55 °C for 12 h. The crude oligomers were lyophilized and then purified twice by HPLC. First by ion-exchange chromatography (DNAPac® PA100) under denaturing conditions; eluent A: 25 mM NaOH pH 12.0, eluent B: 25 mM NaOH, 1 M NaCl, pH 12.0 with a gradient of 0 to 40% B in 35 minutes. The oligomers were lyophilized, and desalted using a Sep-Pak C18 Classic Cartridge using standard conditions and purified by RP-HPLC using A = 0.05 M triethylammonium acetate in H<sub>2</sub>O, pH 7.0 and B = methanol. ESI-MS calculated for 7146.3, found 7146.3.

**ERP measurements**. G-quadruplex samples containing 80  $\mu$ M DNA oligomers were folded as described earlier without KCl or in the presence of 1 mM and 500 mM KCl, by heating up to 98 °C and slowly cooling down to room temperature. 20% (v/v) glycerol was added and samples were filled into Bruker Q-band capillaries and shock frozen in liquid nitrogen. Q-band DEER measurements were performed at T = 50 K on a Bruker ELEXSYS E580 spectrometer equipped with an EN 5107D2 Q-band probehead (Bruker Biospin) and a helium gas flow system (CF935, Oxford Instruments) using the following pulse sequence:

 $\left(\frac{\pi}{2}\right)_{obs}\cdots\tau_1\cdots(\pi)_{obs}\cdots t\cdots(\pi)_{pump}\cdots(\tau_1+\tau_2-t)\cdots(\pi)_{obs}\cdots\tau_2\cdots echo.$ 

The pump pulse (length 28 ns) was set to the maximum of the nitroxide spectrum and the observer pulses (length 24/48/48 ns) were shifted 49 MHz higher. All samples were measured at  $\tau_1 = 256$  ns and  $\tau_2 = 2.6 \,\mu$ s. Shot repetition time was set to 4  $\mu$ s. Accumulation time per sample was 10 hours.

**EPR data analysis.** The DEER curves were analysed using the DeerAnalysis2013.2 software package (G. Jeschke, V. Chechik, P. Ionita, A. Godt, H. Zimmermann, J. Banham,C. R. Timmel, D. Hilger, H. Jung, DeerAnalysis2006—a comprehensive software package for analyzing pulsed ELDOR data, Appl. Magn. Reson. 2006, 30, 473–498). As a reference for the calculation of the number of coupled spins a 100% doubly labeled oligo(para-phenylenethinylen) was used.

**NMR measurements.** NMR spectra were acquired at 278 K on a Bruker Avance III 600 MHz spectrometer equipped with a TCI-H/C/N triple resonance cryoprobe. 65  $\mu$ M d(G<sub>4</sub>CT)<sub>3</sub>G<sub>4</sub> was dissolved in Tris buffer supplemented with different concentrations of KCl or NaCl and containing 5 % Vol. D<sub>2</sub>O as field lock. Gquadruplexes were folded as described earlier, by heating up to 98 °C and slowly cooling down to room temperature. Because high salt concentration disturbed the NMR measurements, 325  $\mu$ M d(G<sub>4</sub>CT)<sub>3</sub>G<sub>4</sub> folded with 500 mM KCl or NaCl was diluted to 200 mM KCl or NaCl prior to the measurement with the final oligo concentration being 65  $\mu$ M, because of the high stability of the parallel conformer formed in the presence of KCl dilution should not interfere with the structure formed.1D-proton spectra were acquired with 32'000 data points using 10k accumulated scans due to low sample concentration, and processed with an exponential line broadening window function. Solvent suppression was achieved by excitation sculpting (Hwang TL, Shaka AJ, Water suppression that works. Excitation sculpting using arbitrary waveforms and pulsed field gradients. J. Magn. Reson. Series A, 1995, 112, 275-279.). Acquired data was processed and analyzed using Bruker Topspin and MestReNova software.

Analytical Ultracentrifugation (AUC). Sedimentation velocity profiles were recorded using a Beckman Optima XLA ultracentrifuge equipped with absorbance optical system and An-60-Ti rotor. All samples were PAGE-purified before folding. Samples were prepared with  $5 \,\mu$ M oligonucleotide and folded as previously described. Except samples folded in 500 mM KCl, here samples were prepared using 25 µM oligonucleotide as the sample was diluted to 100 mM KCl before measurement resulting in the same oligonucleotide concentration and comparable solution viscosity and density to samples folded directly in 100 mM KCl. Dilution should not interfere with the structure formed because of the high stability of the parallel conformer. Sedimentation velocity profiles were recorded at 25 °C and 50,000 rpm. Primary data were processed using Sedfit fit to appropriate physical models (Schuck, P. (2000). "Size-Distribution Analysis of Macromolecules by Sedimentation Velocity Ultracentrifugation and Lamm Equation Modeling." Biophysical Journal 78(3): 1606-1619.). A value of 0.55 g/ml was used for v. Buffer viscosity and density was calculated with Ultrascan 3 (Demeler B, UltraScan version 3. A Comprehensive Data Analysis Software Package for Analytical Ultracentrifugation Experiments. The University of Texas Health Science Center at San Antonio, Department of Biochemistry. http://www.ultrascan.uthscsa.edu). The partial specific volume used for determination of c(s) for all GQP species is 0.55 mL/g (Hellman LM, Rodgers DW, Fried MG, Phenomenological partial-specific volumes for Gquadruplexes, Eur Biophys J, 2010, 39(3):389-96).

**nBLAST search**. Bacterial genomes were searched for the quadruplex motif using the nBLAST web server (http://blast.ncbi.nlm.nih.gov) (Stephen F. Altschul, Thomas L. Madden, Alejandro A. Schäffer, Jinghui Zhang, Zheng Zhang, Webb Miller, and David J. Lipman (1997), "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs", Nucleic Acids Res. 25:3389-3402.) and the following parameters: query

sequence "GGGGCTGGGGCTGGGGCTGGGGC, database "nucleotide collection (nr/nt)", organism "bacteria (taxid:2)". The search included 20,755,639 sequences and an effective sequence space used of 52,298,456,252 nt. Only hits from fully sequenced bacterial genomes with 100% identity were taken in account, all showing a bit score = 44.1 (bit score = 40.06 required) and an E-value = 0.003. Hits were then divided into groups according to their occurrence within protein coding sequences, being complementary to protein coding sequences or occurrence in untranslated regions. Similarly, the human genome were searched for the quadruplex motif using the following parameters: query sequence "GGGGCTGGGGCTGGGGCTGGGGC,", database "Human genomic plus transcript (Human G + T)". The search included 102,358 sequences and an effective sequence space used of 37,516,328,584 nt. Only hits from GRCh38 Primary Assembly with 100% identity were taken in account, all showing a bit score = 44.1 and an E-value = 0.002.