Mateusz Woźny, Joanna Pawłowska, Agnieszka Osior, Paweł Świder, Renata Bilewicz and Bohdan Korybut-Daszkiewicz **"Electrochemically switchable foldamer –** surprising feature of rotaxane with equivalent stations"

Supporting Information – Table of Contents

1. Synthesis

- 1.1 Monoaldehydes 2Ni and 2Cu
- 1.2 Intermediates **3Ni** and **3Cu**
- 1.3 Axles 4M₂ and 4'Ni₂
- 1.4 Rotaxanes $5M_2$ and $5'Ni_2$
- 1.5 Complex 6Ni

2. Reprints of NMR spectra

- 2.1 ¹H NMR spectra of $4Ni_2$ and $5Ni_2$ (500 MHz, CD₃CN, 298 K)
- 2.2 ¹H NMR spectra of **4'Ni**₂ and **5'Ni**₂ (600 MHz, (CD₃)₂CO, 298 K)
- 2.3 ¹H NMR spectra of $4Cu_2$ and $5Cu_2$ (500 MHz, CD₃CN, 298 K)
- 2.4 ¹³C NMR spectra of **4Ni**₂, **5Ni**₂ (125 MHz, CD₃CN, 298 K)
- 2.5 ¹³C NMR spectra of **4'Ni**₂, **5'Ni**₂ (150 MHz, (CD₃)₂CO, 298 K)
- 2.6 Variable temperature ¹H NMR spectra of $4Ni_2$ (600 MHz, (CD₃)₂CO)
- 2.7 Variable temperature ¹H NMR spectra of $5Ni_2$ (600 MHz, (CD₃)₂CO)
- 2.8 Variable temperature ¹H NMR spectra of 4'Ni₂ (600 MHz, (CD₃)₂CO)
- 2.9 Variable temperature ¹H NMR spectra of $5^{\circ}Ni_2$ (600 MHz, (CD₃)₂CO)
- 2.10 Variable temperature ¹H NMR spectra of $5^{\circ}Ni_{2}$ (600 MHz, DMF-d₇)
- 2.11 ¹H-¹H ROESY spectra of **5'Ni**₂ (600 MHz, (CD₃)₂CO, 298 K)

3. Electroanalytical measurements

1. Synthesis

All solvents and reagents used in these studies were reagent grade or better (used without purification), excluding acetonitrile (dried over P_2O_5 and distilled under argon) and dibenzo-24-crown-8 (dried and kept over P_2O_5 *in vacuo*). Complexes **1Ni** and **1Cu** were synthesized according to known procedures (*J. Am. Chem. Soc.* **2001**, *123*, 9356-9366; and *J. Phys. Org. Chem.* **2001**, *14*, 63-73).

1.1. Monoaldehydes 2Ni and 2Cu

2Ni: 356.1 mg (0.570 mmol) of **1Ni** was dissolved in 12 ml of anhydrous CH_3CN , and a solution of 1 eq (73.7 mg) of dibutylamine in 1 ml of CH_3CN was added. The mixture was left for 5 minutes, followed by the addition of 1.5 g of silanized silica gel 60 (Merck). The suspension was evaporated to dryness and solids transferred to the top of the silanized silica gel column. Chromatography was performed by means of elution with 10 g NH_4PF_6 : 650 ml H_2O : 350 ml CH_3CN mixture. CH_3CN was evaporated from the main fraction, resulting in secretion of an orange-colored oil, which was filtered, washed with 50 ml H_2O , dissolved in CH_2Cl_2 , separated from excessive water in separatory funnel, and dried over MgSO₄. After 1 h the organic phase was filtered and evaporated to dryness. The oil obtained

was again dissolved in 10 ml CH_2Cl_2 and 10 ml of hexane was added. Evaporation of solvents left the product in form of non-crystalline film. Yield 137.8 mg (43%). Melting point 83-87 °C.

Anal. Calc. for C₂₀H₃₂N₅NiO·PF₆ (562.2): C 42.73, H 5.74, N 12.46%; found C 42.67, H 5.55, N 12.43%. TOF MS ES⁺ (CH₃CN, *m/z*): 416.20 [C₂₀H₃₂N₅NiO]⁺. ¹H NMR (500 MHz, CD₃CN) δ 0.95 (m, 6 H, CH₃), 1.33 (m, 2 H, C<u>H</u>₂CH₃), 1.40 (m, 2 H, C<u>H</u>₂CH₃), 1.68 (m, 4 H, C<u>H</u>₂CH₂CH₂), 3.42-3.56 (comp, 12 H, NCH₂), 7.43 (s, 1 H, =CHN), 7.49 (bs, 2 H, CH=N), 7.85 (bs, 2 H, CH=N), 9.20 (s, 1 H, CHO). ¹³C NMR (125 MHz, CD₃CN) δ 12.88 and 12.91 (CH₃), 19.1 and 19.5 (CH₂CH₃), 28.3 and 30.4 (CH₂CH₂CH₃), 51.5 (NCH₂CH₂N at the side of NBu₂), 57.6 and 58.0 (NCH₂ within NBu₂), 60.2 (NCH₂CH₂CH₂N at the side of CHO), 103.0 (C=CHN), 113.2 (C-CHO), 153.7 and 159.2 (bs, CH=N), 160.8 (=CHN), 186.3 (CHO). Redox (CV, 50 mVs⁻¹, 0.1 M TBAHFP/CH₂Cl₂, $E^{\circ}_{Fe/Fe+} = 0.425$ V, Ag/AgCl reference and GC working electrode): 1.125 V.

2Cu: This compound was synthesized from **1Cu** following the procedure for **2Ni**. Yield 42%. Mp 82-86 °C. *Anal.* Calc. for $C_{20}H_{32}CuN_5O \cdot PF_6$ (567.0): C 42.36, H 5.69, N 12.35%; found C 42.32, H 5.49, N 12.23%. TOF MS ES⁺ (CH₃CN, *m/z*): 421.19 [C₂₀H₃₂CuN₅O]⁺. Redox (CV, 50 mVs⁻¹, 0.1 M TBAHFP/CH₂Cl₂, $E^{\circ}_{Fc/Fc^+} = 0.425$ V, Ag/AgCl reference and GC working electrode): 0.847 V.

1.2. Intermediates 3Ni and 3Cu

Although isolation and purification of hydrolytically unstable intermediates 3Ni and 3Cu seems impossible, it turned out to be unnecessary because of the selectivity and quantitative yield of *O*-methylation. Both enolethers 3Ni and 3Cu were prepared right before subsequent syntheses of axles or rotaxanes in a following way: 362.3 mg of 2Ni (0.644 mmol) was dissolved in 1.8 ml of anhydrous CH_2Cl_2 and 106 µl of methyl trifluoromethanesulfonate (1.5 eq) was added; the mixture was left overnight, evaporated to dryness, and immediately used in the subsequent reaction with putrescine and DB24C8.

In case of **3Ni** a controlling NMR spectra were measured: ¹H NMR (400 MHz, CD₃CN) δ 0.96 (m, 6 H, CH₂CH₃); 1.34 (m, 2 H, CH₂CH₃); 1.42 (m, 2 H, CH₂CH₃); 1.71 (m, 4 H, CH₂CH₂CH₃); 3.48-3.64 (comp, 12 H, NCH₂); 4.25 (s, 3 H, OCH₃); 7.63 m, 7.69 bs, 7.79 m, 7.97 s, 8.18 s and 8.25 m (Σ 6 H, CH=N and =CHN). ¹³C NMR (100 MHz, CD₃CN) δ 13.77 and 13.80 (CH₂CH₃); 20.0 and 20.3 (CH₂CH₃); 29.1 and 31.2 (CH₂CH₂CH₃); 52.6, 59.9, 60.2, 60.5, 60.8 and 61.3 (NCH₂); 66.9 (OCH₃); 103.8 (C=CHN); 113.9 (C=CHO); 156.9 and 163.0 (CH=N); 161.5 (=CHN); 179.9 (=CHO).

1.3. Axles $4M_2$ and $4'Ni_2$

4Ni₂: Intermediate **3Ni**, freshly prepared by methylation of 61.1 mg (0.109 mmol) of **2Ni**, was dissolved in 0.5 ml of anhydrous CH₃CN. The solution of 0.51 eq of putrescine (4.9 mg) in 0.5 ml CH₃CN was added. After 10 minutes the mixture was poured to the solution of 150 mg of NH₄PF₆ in 20 ml of H₂O. CH₃CN was evaporated and the suspension filtered. The precipitate was washed with 15 ml of H₂O and dissolved in 4 ml CH₃CN. 1.5 g of silanized silica gel 60 was added and the suspension was evaporated. The solid was transferred to the top of silanized silica gel column and eluted with 2 g NH₄PF₆ : 200 ml H₂O : 300 ml CH₃CN solution. The first, main fraction was collected and evaporated. The precipitate formed was filtered, washed with 5 × 10 ml H₂O and dried *in vacuo* over P₂O₅. Yield 55.1 mg (67%).

Anal. Calc. for C₄₄H₇₄N₁₂Ni₂·4PF₆·CH₃CN (1509.4): C 36.60, H 5.14, N 12.06%; found C 36.59, H 4.96, N 12.11%. TOF MS ES⁺ (CH₃CN, *m/z*): 221.61 [C₄₄H₇₄N₁₂Ni₂]⁴⁺, 295.14 [C₄₄H₇₃N₁₂Ni₂]³⁺, 442.19 [C₄₄H₇₂N₁₂Ni₂]²⁺, 515.17 [C₄₄H₇₃N₁₂Ni₂·PF₆]²⁺, 588.15 [C₄₄H₇₄N₁₂Ni₂·2PF₆]²⁺, 1321.27 [C₄₄H₇₄N₁₂Ni₂·3PF₆]⁺. ¹H NMR (500 MHz, CD₃CN) δ 0.97 (comp, 12 H, CH₃); 1.35 (m, 4 H, CH₂CH₃); 1.42 (m, 4 H, CH₂CH₃); 1.69 (comp, 12 H, CH₂ β to N); 3.47-3.62 (comp, 28 H, NCH₂); 7.52 s, 7.66 bs and 8.00 bs (14 H, =CHN, CH=N, NH). ¹³C NMR (125 MHz, CD₃CN) δ 13.8 and 13.9 (CH₃); 20.1 and 20.4 (CH₂CH₃); 27.2 (CH₂ β to N in the linker); 29.2 and 31.3 (CH₂ β to N in NBu₂); 51.1 and 52.6 (NCH₂CH₂N); 59.4, 60.4 and 61.3 (NCH₂ in the linker and NBu₂); 103.9 and 104.3

(<u>C</u>=CHN); 155.1 and 160.7 (br, CH=N); 162.5 and 164.0 (=CHN). The assignment of the signals supported by 1 H- 13 C HSQC spectrum.

4Cu₂: This compound was synthesized from **3Cu** following the procedure for **4Ni₂**. Yield 65%. *Anal*. Calc. for C₄₄H₇₄Cu₂N₁₂·4PF₆·3H₂O (1532.1): C 34.49, H 5.26, N 10.97%; found C 34.43, H 5.04, N 10.95%. TOF MS ES⁺ (CH₃CN, *m/z*): 447.19 [C₄₄H₇₂Cu₂N₁₂]²⁺, 1331.19 [C₄₄H₇₄Cu₂N₁₂·3PF₆]⁺, 1185.26 [C₄₄H₇₃Cu₂N₁₂·2PF₆]⁺, 1039.42 [C₄₄H₇₂Cu₂N₁₂·PF₆]⁺. ¹H NMR (500 MHz, CD₃CN) δ 0.88 (br, 6H, CH₃), 1.08 (br, 6H, CH₃), 1.19 and 1.30 (br, 2 × 4H, CH₂CH₃), 1.46 and 1.65 (br, 2 × 4H, CH₂β to N in NBu₂); 8.75-11.00 br.

4'Ni₂: This compound was synthesized from **3Ni** and *p*-xylylenediamine (instead of putrescine), following the procedure for **4Ni**₂. Yield 64%. *Anal.* Calc. for C₄₈H₇₄N₁₂Ni₂·4PF₆ (1516.4): C 38.02, H 4.92, N 11.08%; found C 38.06, H 4.93, N 10.85%. TOF MS ES⁺ (CH₃CN, *m/z*): 233.60 [C₄₈H₇₄N₁₂Ni₂]⁴⁺, 311.13 [C₄₈H₇₃N₁₂Ni₂]³⁺, 466.20 [C₄₈H₇₂N₁₂Ni₂]²⁺, 612.16 [C₄₈H₇₄N₁₂Ni₂·2PF₆]²⁺, 1369.32 [C₄₈H₇₄N₁₂Ni₂·3PF₆]^{+.} ¹H NMR (600 MHz, (CD₃)₂CO) δ 0.94 (t, *J* = 7.4 Hz, 6 H, CH₃); 0.99 (t, *J* = 7.4 Hz, 6 H, CH₃); 1.38 and 1.49 (m, 2 × 4 H, CH₂CH₃); 1.77-1.88 (comp, 8 H, CH₂ β to N); 3.65-3.88 (comp, 24 H, NCH₂CH₂N and NCH₂(CH₂)₂CH₃); 4.85 (s, 4 H, NCH₂Ar); 7.48 (s, 4 H, H_{Ar}); 7.96 and 8.22 (s, 4 H, =CHN); 8.02 and 8.12 (bs, 8 H, CH=N). ¹³C NMR (150 MHz, (CD₃)₂CO) δ 13.9 and 14.0 (CH₃); 20.2 and 20.5 (CH₂CH₃); 29.7, 31.6 (CH₂ β to N in NBu₂); 52.6, 59.9, 60.5 and 61.5 (NCH₂ but NCH₂Ar); 54.8 (NCH₂Ar); 104.4 and 105.2 (C=CHN); 129.7 (C_{sp2}H in benzene ring); 137.2 (C_{sp2}C in benzene ring); 162.9 and 164.5 (=CHN); expected broad CH=N signals unobserved. The assignment of the signals supported by ¹H-¹³C HSQC spectrum.

1.4. Rotaxanes $5M_2$ and $5'Ni_2$

5Ni₂: Intermediate **3Ni**, freshly prepared by methylation of 362.3 mg (0.644 mmol) of **2Ni**, was dissolved in 45.5 ml of anhydrous CH₃CN. Molecular sieves 3Å (1 g), followed by 10 eq of dibenzo-24-crown-8 (2.889 g) were added. The system was degassed and filled with argon, then heated until all crown ether dissolved. After cooling to room temperature, a solution of 0.52 eq (30.1 mg) of putrescine in 1 ml of CH₃CN was added dropwise over the period of 3 h. From time to time the flask was gently heated in order to dissolve DB24C8 which crystallizes from the supersaturated solution. When the addition of putrescine was complete, the mixture was left for 5 h, followed by evaporation to dryness. Solids were washed by shaking with 5 × 15 ml of anhydrous benzene (extracted DB24C8 was afterwards recovered by crystallization). The orange-colored oil remaining in the flask was dried *in vacuo*, dissolved in 10 ml CH₃CN and poured to the solution of 1 g of NH₄PF₆ in 50 ml H₂O. The immediately formed precipitate was filtered, washed with 15 ml of H₂O and dissolved in 8 ml CH₃CN, adsorbed on 3 g of silanized silica gel and evaporated to dryness. The solid was transferred to the top of silanized silica gel column. Solutions of 150 µl 60% HPF_{6aq} in 1 l of distilled water (A), and 15 g of NH₄PF₆ in 1 l CH₃CN (B) were prepared. The product was isolated by means of gradient elution with 20, 30, 40 and 50% B in A. The main fraction was collected. The precipitate formed during evaporation of CH₃CN was filtered, washed with 5 × 10 ml H₂O, 2 × 3 ml CH₃OH and 2 × 3 ml Et₂O, and dried *in vacuo* over P₂O₅. Yield 147.4 mg (22%).

Anal. Calc. for C₆₈H₁₀₆N₁₂O₈Ni₂·4PF₆·H₃OPF₆ (2080.9): C 39.25, H 5.28, N 8.08%; found C 39.29, H 5.12, N 8.08%. TOF MS ES⁺ (CH₃CN, *m/z*): 333.68 [C₆₈H₁₀₆N₁₂Ni₂O₈]⁴⁺, 444.56 [C₆₈H₁₀₅N₁₂Ni₂O₈]³⁺, 666.34 [C₆₈H₁₀₄N₁₂Ni₂O₈]²⁺, 739.34 [C₆₈H₁₀₅N₁₂Ni₂O₈·PF₆]²⁺. ¹H NMR (500 MHz, CD₃CN) δ 0.98 (comp, 12 H, CH₃); 1.35 (m, 4H, CH₂CH₃); 1.42 (m, 4H, CH₂CH₃); 1.71 (m, 8 H, CH₂ β to N in NBu₂); 1.83 (br, 4 H, CH₂ β to N in the linker); 3.10 br, 3.36 br, 3.44 br, 3.55 m, 3.61 br (28 H, NCH₂); 3.78 (s, 8 H, ArO(CH₂)₂OCH₂); 3.85 (m, 8 H, ArOCH₂CH₂); 3.97 (m, 8 H, ArOCH₂); 6.84 (comp, 8 H, H_{ar}); 6.97 br, 7.48 br, 7.59 br, 7.76 br, 7.91 br and 8.43 br (14 H, =CHN, CH=N, NH). ¹³C NMR (125 MHz, CD₃CN) δ 13.8 and 13.9 (CH₃); 20.1 and 20.4 (CH₂CH₃); 27.8 (CH₂ β to N in the linker); 29.2 and 31.3 (CH₂ β to N in NBu₂); 50.9, 52.5, 61.3 and 58.3-60.2 – a set of broad signals (NCH₂); 68.4 (ArOCH₂); 71.0 (ArOCH₂CH₂); 71.4 (ArO(CH₂)₂OCH₂); 103.8 and 104.3 (C=CHN); 112.9 (C *meta* to O); 148.8 (C_{sp2}O); 154.7 and 159.6 (bs, CH=N); 162.2 and 165.5 (=CHN). The assignment of the signals supported by ¹H-¹³C HSQC spectrum.

5Cu₂: This compound was synthesized from **3**Cu following the procedure for **5**Ni₂. Yield 13%. *Anal.* Calc. for $C_{68}H_{106}Cu_2N_{12}O_8 \cdot 4PF_6$ (1926.6): C 42.39, H 5.55, N 8.72%; found C 42.39, H 5.40, N 8.71%. TOF MS ES⁺ (CH₃CN, *m/z*): 336.15 [C₆₈H₁₀₆Cu₂N₁₂O₈]⁴⁺, 447.85 [C₆₈H₁₀₅Cu₂N₁₂O₈]³⁺, 744.24 [C₆₈H₁₀₅Cu₂N₁₂O₈ $\cdot PF_6$]²⁺, 817.22 [C₆₈H₁₀₆Cu₂N₁₂O₈ $\cdot 2PF_6$]²⁺. ¹H NMR (500 MHz, CD₃CN) δ 0.89 br, 1.10 br, 1.21 br, 1.32 br, 1.66 br (CH₂CH₃, CH₂ β to N); 3.20-4.75 – a set of broad signals with discernible maxima at 3.73 and 3.86 (OCH₂); 6.75-8.50 br (H_{ar}); 8.75-11.00 br.

5'Ni₂: This compound was synthesized from 3Ni and p-xylylenediamine (instead of putrescine), following the procedure for 5Ni₂. Yield 25%. Anal. Calc. for C₇₂H₁₀₆N₁₂O₈Ni₂·4PF₆ (1964.9): C 44.01, H 5.44, N 8.55%; found C 44.00, H 5.37, N 8.48%. TOF MS ES⁺ (CH₃CN, m/z): 345.64 [C₇₂H₁₀₆N₁₂O₈Ni₂]⁴⁺, 460.52 [C₇₂H₁₀₅N₁₂O₈Ni₂]³⁺, 763.28 [C₇₂H₁₀₅N₁₂O₈Ni₂·PF₆]²⁺, 836.26 [C₇₂H₁₀₆N₁₂O₈Ni₂·2PF₆]²⁺. ¹H NMR (600 MHz, (CD₃)₂CO) δ 0.92-1.02 (comp, 12 H, CH₃); 1.39 and 1.48 (m, 2 × 4 H, CH₂CH₃); 1.76-1.87 (comp, 8 H, CH₂ β to N); 3.09 (t, J = 6.5 Hz, 2 H, NCH₂CH₂N in TAM²⁺ unit enclosed by DB24C8, in ethylenediamine bridge related *trans* to xylyl linker); 3.35-4.30 [comp, 46 H = 22 H in NCH₂ (without CH₂ of the xylyl linker and without CH₂ corresponding to 3.09 ppm signal) + 3 × 8 H from OCH₂ groups in DB24C8]; 4.90 (s, 2 H, NCH₂Ar at the side of DB24C8); 5.04 (m, 2 H, NCH₂Ar at the opposite side of DB24C8); 6.85, 7.81, 7.85 and 7.96 (s, 4×1 H, CH=N at the side of xylyl linker); 6.87-6.91 (m, 4 H, H_{ar} meta to O in DB24C8); 6.94-6.98 (m, 4 H, H_{ar} ortho to O in DB24C8); 7.54 (d, J = 8.1 Hz, 2 H, H_{ar} in xylyl linker, at the opposite side of DB24C8); 7.83 (d, J = 8.1 Hz, 2 H, H_{ar} in xylyl linker, at the side of DB24C8); 8.26 and 8.48 (2 × 1 H, =CHN at the side of xylyl linker); 7.70-8.30 (br, 6 H, =CHN and CH=N at the sides of NBu₂ groups); 9.12 (m, 1 H, NH at the side of DB24C8); 9.51 (bs, 1 H, NH at the opposite side of DB24C8). ¹³C NMR (150 MHz, (CD₃)₂CO) δ 13.95, 13.98, 14.03 and 14.07 (CH₃); 20.22, 20.25, 20.54 (<u>CH</u>₂CH₃); 29.41, 31.61, 31.68 (CH₂ β to N in NBu₂); 52.52, 52.63, 54.41, 55.07, 58.69, 59.73, 59.98, 60.54, 61.44 and 61.53 (NCH₂); 68.34 (ArOCH₂); 70.95 (ArOCH₂CH₂); 71.11 (ArO(CH₂)₂OCH₂); 104.36, 104.39, 104.68, 105.19 (C=CHN); 112.76 (C ortho to O); 121.04 (C meta to O); 129.03 (C_{sp2} C in xylyl at the opposite side of DB24C8); 130.18 ($\underline{C}_{sp2}C$ in xylyl at the side of DB24C8); 136.71 ($\underline{C}_{sp2}H$ in xylyl at the opposite side of DB24C8); 138.50 (C_{sp2}H in xylyl at the side of DB24C8); 149.21 (C_{sp2}O); 155.05, 158.92, 162.41, 162.89, 164.65 and 167.26 (CH=N and =CHN). The assignment of the signals supported by ¹H-¹³C HMBC spectrum.

1.5. Complex 6Ni

Intermediate **3Ni**, freshly prepared by methylation of 41.0 mg (0.073 mmol) of **2Ni**, was dissolved in 0.5 ml of anhydrous CH₃CN and 7.2 μ l (0.073 mmol) of *n*-butylamine was added. The mixture was left for 10 minutes. Then 3 ml of CH₃CN and 0.3 g of silanized silica gel were added and the suspension was evaporated to dryness. The solid was transferred to the top of silanized silica gel column and eluted with 10 g NH₄PF₆ : 550 ml H₂O : 450 ml CH₃CN mixture. The main fraction was collected and concentrated. The precipitate formed during evaporation of CH₃CN was filtered, washed with 5 × 3 ml H₂O and dried *in vacuo* over P₂O₅. Yield 25.4 mg (46%).

Anal. Calc. for C₂₄H₄₂N₆Ni·2PF₆·H₂O (780.3): C 36.94, H 5.56, N 10.77%; found C 37.14, H 5.59, N 10.72%. TOF MS ES⁺ (CH₃CN, *m/z*): 236.14 [C₂₄H₄₂N₆Ni]²⁺, 471.27 [C₂₄H₄₁N₆Ni]⁺. ¹H NMR (400 MHz, CD₃CN) δ 0.93-1.00 (comp, 9 H, CH₃); 1.30-1.47 (comp, 6 H, CH₂CH₃); 1.60-1.75 (comp, 6 H, CH₂ β to N); 3.48 (t, *J* = 7 Hz, 2 H, NCH₂ in NHBu); 3.51-3.60 (comp, 12 H, other NCH₂); 7.52 s, 7.66 s, 7.67 bs, 8.06 bs (6 H, =CHN, CH=N). ¹³C NMR (100 MHz, CD₃CN) δ 13.76, 13.83 and 13.86 (CH₃); 20.07, 20.11 and 20.45 (<u>C</u>H₂CH₃); 29.23, 31.34 and 32.39 (CH₂ β to N); 51.4, 52.6, 61.3 (NCH₂ in NHBu and NBu₂); 60.4 br (NCH₂ in NCH₂CH₂N); 103.9 and 104.2 (<u>C</u>=CHN); 155.1 br and 160.6 br (CH=N); 162.5 and 164.0 (=CHN). Redox (CV, *v* = 50 mVs⁻¹, in 0.1 M TBAHFP/AN): +1.30 V vs. Ag/AgCl.

2. Reprints of NMR spectra

2.1.¹H NMR spectra of 4Ni₂ and 5Ni₂ (500 MHz, CD₃CN, 298 K)

2.4 ¹³C NMR spectra of 4Ni₂, 5Ni₂ (125 MHz, CD₃CN, 298 K)

2.6 Variable temperature ¹H NMR spectra of $4Ni_2$ (600 MHz, (CD₃)₂CO).

2.7 Variable temperature ¹H NMR spectra of $5Ni_2$ (600 MHz, (CD₃)₂CO).

2.8 Variable temperature ¹H NMR spectra of $4^{\circ}Ni_2$ (600 MHz, (CD₃)₂CO).

2.9 Variable temperature ¹H NMR spectra of $5^{\circ}Ni_2$ (600 MHz, (CD₃)₂CO).

3. Electroanalytical measurements

Square wave voltammetry (SWV) and cyclic voltammetry (CV) experiments were carried out using the Autolab potentiostat (ECO Chemie, Netherlands) in a three electrode arrangement, with a silver/silver chloride (Ag/AgCl) electrode as the reference, platinum foil as the counter and the glassy carbon electrode (GCE, BAS, 3 mm diameter) as the working electrode. The reference electrode were separated from the working solution by an electrolytic bridge filled with 0.1 M tetrabutylammonium hexafluorophosphate/acetonitryl (TBAHFP/AN) solution. The reference potential electrode was calibrated by using the ferrocene oxidation process in the same TBAHFP/AN solution. 0.1 M TBAHFP/AN was used as the supporting electrolyte solution. Argon was used to deaerate solution and an argon blanket was maintained over the solution during the experiments. All experiments were carried out at 25 °C. The GC electrode was polished mechanically with 1.0, 0.3 and 0.05 µm alumina powder on a Buehler polishing cloth to a mirror-like surface. Finally, it was rinsed with acetonitrile and sonificated in pure acetonitrile.

Fig. 1. Cyclic voltammograms of axles $4M_2$, $4'Ni_2$, molecular switches $5M_2$ and molecular shuttle $5'Ni_2$ in 0.1 M TBAHFP/AN.

Table 1. Peak potentials	of all investigated compounds	from CV ($v = 50 \text{ mV}$	$/s^{-1}$).
1	\mathcal{O} 1		

	1	U	1	(
Compoun	Epa	Epc	Epa crown	Epc crown
d	[V]	[V]	[V]	[V]
4Ni ₂	1.377	1.303	-	-
5Ni ₂	1.405	1.252	1.708	1.581
4Cu ₂	1.067	0.990	-	-
5Cu ₂	1.054	0.957	1.661	-
4'Ni ₂	1.344	1.269	-	-
5'Ni ₂	1.333	1.251	1.627	-
6Ni	1.338	1.253	-	-

Fig. 2. Structures of macrocyclic compounds $7\text{-}9Ni_2$ and the catenane $10Ni_2$ (see ref. 7, 12).

Compoun	E°'	ref
d	[V]	101.
7Ni ₂	1.485 and 1.585	
8Ni ₂	1.383	7 12
9Ni ₂	1.326	
10Ni ₂	1.250 and 1.391	

Table 2. Redox potentials of macrocyclic compounds $7-9Ni_2$ and the catenane $10Ni_2$.