Phosphorus(V) Tetraazaporphyrins: Porphyrinoids Showing an Exceptionally Strong CT Band between the Soret and Q bands

Taniyuki Furuyama,^a Takuya Yoshida,^a Daisuke Hashizume^b and Nagao Kobayashi^{*a}

^a Department of Chemistry, Graduate School of Science, Tohoku University

nagaok@m.tohoku.ac.jp

^b Materials Characterization Support Unit, RIKEN Center for Emergent Matter Science (CEMS)

Supporting information

Table of Contents

General Comments and Crystallographic data collection	S-1
Additional Experimental Results	S–3
Full Experimental Procedures	S–9
Copies of the NMR Spectra of Studied Compounds	S-18
Full Computational Details	S–28
References	S–39

General Comments

Unless otherwise noted, solvents and reagents were purchased from Tokyo Kasei Co. and Wako Chemicals Co. and were used after appropriate purification (distillation or recrystallization).

Electronic absorption spectra were recorded on a JASCO V-570 spectrophotometer. Magnetic circular dichroism (MCD) spectra were obtained on a JASCO J-725 spectrodichrometer equipped with a JASCO electromagnet capable of producing magnetic fields of up to 1.03 T (1 T = 1 tesla) with both parallel and antiparallel fields. The magnitudes were expressed in terms of molar ellipticity per tesla ($[0]_M$ / deg dm³mol⁻¹cm⁻¹T⁻¹). NMR spectra were obtained on a Bruker AVANCE III 500 spectrometer. Unless otherwise noted, samples were recorded in CDCl₃. Chemical shifts are expressed in δ (ppm) values, and coupling constants are expressed in hertz (Hz). ¹H-NMR and ¹³C-NMR spectra were referenced to the residual solvent as an internal standard. ³¹P-NMR spectra were referenced to external 85% H₃PO₄ solution (0.0 ppm). The following abbreviations are used: s = singlet, d = doublet, and m = multiplet. High-resolution mass spectra (HRMS) were recorded on a Bruker Daltonics Apex-III spectrometer. Cyclic voltammetry (CV) measurements were recorded with a Hokuto Denko HZ5000 potentiostat under a nitrogen atmosphere in solutions with 0.1 M of tetrabutylammonium perchlorate (TBAP) as supporting electrolyte. Measurements were made with a glassy carbon (GC) electrode (area = 0.07 cm²), an Ag/AgCl reference electrode, and a Pt wire counter electrode. The concentration of the solution was fixed at 0.5 mM and the sweep rates were set to 100 mV/s.

Crystallographic data collection

A needle shaped and purple single crystal of **1a** $0.48 \times 0.08 \times 0.07$ mm, was selected for measurements. The diffraction data were collected using a RIGAKU AFC-8 diffractometer equipped with a Saturn70 CCD detector with MoK α radiation by an oscillation method at 90 K. X-rays were monochromated and focused by a confocal mirror. Bragg spots were integrated, scaled and averaged up to $2\theta = 25.354^{\circ}$ by the program HKL2000.ⁱ Lorentz and polarization corrections were applied during the scaling processes. No absorption corrections were applied.

The number of measured and independent reflections, completeness, and R_{int} were 94546, 10853, 0.992 and 0.053, respectively, up to $2\theta = 25.354^{\circ}$.

The initial structure of 1a was solved by a direct method using the programs SIR2004,ⁱⁱ and

refined by a full matrix least-squares method using the program SHELXL2013.ⁱⁱⁱ All non-hydrogen atoms were refined anisotropically. Positions of all hydrogen atoms were calculated geometrically, and refined by applying riding models. CCDC-984631 contains the supplementary crystallographic data for **1a**. Its data can be obtained free of charge from Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Empirical formula	$C_{110}H_{134}Cl_{13}N_8O_6P$		
Formula weight	2156.06		
Temperature	90 K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	<i>C</i> 2/ <i>c</i> (No. 15)		
Unit cell dimensions	a = 43.4252(18) Å	$\alpha = 90^{\circ}$	
	b = 8.3330(4) Å	$\beta = 113.9416(18)^{\circ}$	
	c = 36.214(2) Å	$\gamma = 90^{\circ}$	
Volume	11976.9(11) Å ³		
Ζ	4		
Density (Calcd.)	1.196 Mg/m ³		
Absorption coefficient	0.365 mm^{-1}		
<i>F</i> (000)	4536		
Crystal size	$0.477 \ x \ 0.085 \ x \ 0.070 \ mm^3$		
Theta range for data collection	1.895 to 25.354°		
Index ranges	-52<=h<=52, -9<=k<=9, -43<=	=1<=43	
Reflections collected	94546		
Independent reflections	10853 [$R(int) = 0.0530$]		
Completeness to theta = 25.242°	99.7%		
Refinement method	Full-matrix least-squares on F^2	2	
Data / restraints /parameters	10853 / 1900 / 1133		
Goodness-of-fit on F^2	0.943		
Final <i>R</i> indices $[I > 2 \operatorname{sigma}(I)]$	$R_1 = 0.0689, wR_2 = 0.1951$		
<i>R</i> indices (all data)	$R_1 = 0.1167, wR_2 = 0.2169$		
Largest diff. peak and hole	$0.578 \text{ and } -0.352 \text{ e.}\text{Å}^{-3}$		
CCDC No.	984631		

Table S1. Crystal dat	and structure	e refinement for	1a.
-----------------------	---------------	------------------	-----

Figure S1. UV-vis absorption spectra of 1a (blue line) and the counteranion mixture of $[(4-^{t}BuPh)_{8}TAPP(OMe)_{2}]^{+}$ (mainly $[OH]^{-}$) (red line) in CH₂Cl₂. Concentration ~ 1 x 10⁻⁵ M and concentration of each sample is different for clarity.

Figure S2. UV-vis absorption spectra of 2a (red), 2b (blue), 2c (green) and 2d (purple) in pyridine.

Figure S3. Magnified MCD spectra of 2a (a) and 1a (b) in CH₂Cl₂. Deconvoluted Gaussian curves and the simulated spectra are shown by the black solid lines and broken line with the CT bands denoted by the red colored Gaussian curves.

Figure S4. Calculated stick absorption spectra of **2e** by various levels. The structure was optimized by B3LYP/6-31G*.

Figure S5. Partial molecular energy diagram and orbitals of $[Ph_8PcP(OMe)_2]^+$ (4') (top) and their calculated absorption spectrum (bottom). Blue and red plots indicate occupied and unoccupied MOs, respectively. Calculations were performed at the LC-BLYP/6-31G*//B3LYP/6-31G* level.

Compound	λ (nm)	f	Composition (%)	Assignment
1e	674	0.20	247->265 (5%), 247->266 (2%), 263->265 (6%)	Q
			264->265 (25%), 264->266 (61%)	
	670	0.21	247->265 (2%), 247->266 (5%), 263->266 (6%)	Q
			264->265 (61%), 264->266 (25%)	
	409	0.11	245->266 (3%), 246->265 (4%), 260->265 (9%)	CT, n–>π*
			260->267 (3%), 261->265 (27%), 262->266 (28%)	
			262->267 (3%), 263->265 (2%), 263->266 (12%)	
	403	0.05	245->266 (2%), 246->265 (5%), 260->265 (18%)	CT, n->π*
			261->265 (17%), 262->265 (8%), 262->266 (26%)	
			263->266 (9%), 263->267 (4%)	
	394	0.29	244->266 (2%), 260->265 (3%), 260->266 (35%)	CT, n->π*
			260->267 (3%), 261->265 (4%), 261->266 (4%)	
			262->266 (5%), 263->265 (5%), 263->266 (23%)	
			264->265 (3%)	
	388	0.33	244->265 (3%), 260->265 (11%), 260->266 (5%)	CT, n->π*
			261->265 (23%), 261->267 (3%), 262->265 (8%)	
			262->266 (5%), 263->265 (24%), 263->266 (4%)	
			264->266 (3%)	
	349	0.81	247->265 (3%), 260->265 (16%), 261->265 (6%)	Soret
			262->265 (8%), 263->265 (51%), 264->266 (5%)	
	345	0.71	244->266 (2%), 247->266 (3%), 260->266 (18%)	Soret
			261->266 (20%), 262->265 (5%), 262->266 (10%)	
			263->266 (31%), 264->265 (4%)	
2e	663	0.33	239->248 (2%), 241->248 (5%), 245->248 (5%)	Q
			246->247 (87%)	

Table S2. Calculated excited wavelength (λ) and oscillator strengths (*f*) for components of selected transition energies.

- 660 0.33 239->247 (2%), 241->247 (5%), 245->247 (5%) Q 246->248 (87%)
- 360 0.07 222->248 (3%), 227->247 (5%), 239->248 (4%) CT, n-> π * 241->248 (5%), 242->249 (8%), 244->247 (55%) 245->248 (15%)
- 359 0.14 222->247 (3%), 227->248 (5%), 239->247 (3%) CT, n->π* 241->247 (4%), 243->249 (9%), 244->248 (52%) 245->247 (19%)
- 309 1.74 239->247 (7%), 241->247 (16%), 244->248 (7%) Soret 245->247 (54%), 246->248 (11%)
- 308 1.64 239->248 (9%), 241->248 (13%), 244->247 (4%) Soret 245->248 (59%), 246->247 (12%)

Full Experimental Procedures

Materials

Pyrroline-2, 5-diimine derivatives 6a-d, ^{iv} 4, 5-bis(4-*tert*-butylphenyl)phthalonitrile, ^v and free-base Pc 5^{vi} were synthesized according to published procedures.

$(4-^{t}BuPh)_{8}TAPMg (2a)$

Mg (14.7 mg, 0.600 mmol) and a small crystal of I₂ in 1-butanol (7 ml) were heated to reflux. After Mg was consumed completely, **6a** (281 mg, 0.782 mmol) was added to the resulting Mg(OⁿBu)₂ suspension and the reaction mixture was heated to reflux for an additional 24 h. After solvent was removed, the compound was purified by alumina column chromatography (chloroform-methanol 95:5), followed by recrystallization from CHCl₃/MeOH. **2a** was obtained as a dark green solid. (202 mg, 74%) 500 MHz ¹H NMR (pyridine- d_5) δ (ppm): 8.72 (d, 16H, ^{*i*}BuPh-PhH), 7.77 (d, *J* = 8.5 Hz, 16H, ^{*i*}BuPh-PhH), 1.48 (s, 72H, ^{*i*}BuPh-^{*i*}BuH).

HRMS-MALDI (*m/z*) Calcd for C₉₆H₁₀₅MgN₈ [M+H]⁺: 1393.8313. Found: 1393.8267.

UV-vis (CH₂Cl₂) λ_{max} nm ($\epsilon \ge 10^{-4}$): 641 (10.7), 459 (0.12), 378 (9.1).

(4-^tBuPh)₈TAPH₂ (3a)

2a (59.0 mg, 42.3 µmol) was dissolved in 3 ml of trifluoroacetic acid and stirred for 30 min at room temperature. Then the solvent was neutralized by the addition of sat. NaHCO₃aq and the resulting precipitation was collected by filtration and washed by water. **3a** was obtained as a dark green solid. (50.0 mg, 86%)

500 MHz ¹H NMR (CDCl₃) δ (ppm): 8.33 (d, *J* = 8.2 Hz, 16H, ^{*t*}BuPh-PhH), 7.61 (d, *J* = 8.2 Hz, 16H, ^{*t*}BuPh-PhH), 1.52 (s, 72H, ^{*t*}BuPh-^{*t*}BuH).

HRMS-MALDI (*m/z*) Calcd for C₉₆H₁₀₇N₈ [M+H]⁺: 1371.8619. Found: 1371.8571.

UV-vis $(CH_2Cl_2) \lambda_{max} nm (\epsilon x 10^{-4})$: 671 (7.7), 606 (4.6), 467 (3.0), 370 (7.3).

 $[(4^{-t}BuPh)_{8}TAPP(OMe)_{2}]^{+}[ClO_{4}]^{-}(1a)$

POBr₃ (500 mg, 1.76 mmol) was added to a solution of free-base TAP **3a** (50.0 mg, 36.4 mmol) in 10 mL of pyridine. After the mixture was stirred for 15 h at 90°C, 5 mL of methanol was added and stirred for 18 h at room temperature. Then the solvent was removed and the residue was dissolved in CH_2Cl_2 , and washed with 2 M HClaq and water. The organic layer was collected, dried over MgSO₄,

filtered and concentrated *in vacuo*. To remove byproducts, SiO₂ open column chromatography (CH₂Cl₂-MeOH-trifluoroacetic acid 90:9.5:0.5) was performed and the purple band was collected and concentrated producing crude **1a**. Counteranion exchange was carried out by dissolving crude **1a** in CH₂Cl₂/CH₃CN (1/1 v/v) and sodium perchlorate (80.0 mg, 0.65 mmol) was added to the solution. After the mixture was stirred for 12 h at room temperature, the solvent was removed. The residue was dissolved in CH₂Cl₂/ⁿhexane (1/2 v/v) and the excess amount of insoluble salts was removed by filtration. Then the filtrate was concentrated, and pure **1a** (32.0 mg, 56%) was obtained as purple powder by removing solvent followed by recrystallization from ethyl acetate/ⁿhexane.

500 MHz ¹H-NMR (CDCl₃) δ (ppm): 8.26 (d, 16H, J = 8.0 Hz, ^{*i*}BuPh-PhH), 7.65 (d, 16H, J = 8.0 Hz, ^{*i*}BuPh-PhH), 1.51 (s, 72H, ^{*i*}BuPh-^{*i*}BuH), -1.68 (d, 6H, ³ $J_{PH} = 28.0$ Hz, P–OMe). 125 MHz ¹³C-NMR (CDCl₃) δ (ppm): 153.3, 149.6, 141.6 (d, ² $J_{PC} = 2.5$ Hz), 132.8, 128.2, 125.9, 47.1 (d, ² $J_{PC} = 16.3$ Hz), 35.1, 31.5. 200 MHz ³¹P-NMR (CDCl₃) δ (ppm): -182.

HRMS-ESI (*m/z*) Calcd for C₉₈H₁₁₀N₈O₂P [M–ClO₄]⁺: 1462.8516. Found: 1462.8518.

Anal. Calcd for C₉₈H₁₁₀ClN₈O₆P: C, 75.34; H, 7.10; N, 7.17. Found: C, 75.37; H, 7.38; N, 6.87.

UV-vis (CH₂Cl₂) λ_{max} nm ($\epsilon \ge 10^{-4}$): 342 (4.5), 534 (5.6), 664 (4.7).

$[(4^{-t}BuPh)_{8}PcP(OMe)_{2}]^{+}[ClO_{4}]^{-}(4)$

POBr₃ (400 mg, 1.40 mmol) was added to a solution of free-base Pc **5** (51.2 mg, 32.6 mmol) in 10 mL of pyridine. After the mixture was stirred for 12 h at room temperature, a mixuture of dichloromethane/methanol (3 mL, 1/1 v/v) was added and stirred for 30 min at the same temperature. Then the solvent was removed and the residue was dissolved in CH₂Cl₂, and washed with 2 M HClaq and water. The organic layer was collected, dried over MgSO₄, filtered and concentrated *in vacuo*. To remove

byproducts, SiO₂ open column chromatography (CH₂Cl₂-MeOH 95:5 to 80:20) was performed and the brownish band was collected and concentrated producing crude **4**. Counteranion exchange was carried out by dissolving crude 4 in CH₂Cl₂ and sodium perchlorate (15.0 mg, 123 mmol) was added to the solution. After the mixture was stirred for 18 h at room temperature, the solvent was removed. The residue was dissolved in small amount of CH₂Cl₂ and the excess amount of insoluble salts was removed by filtration. Then the filtrate was concentrated, and pure **4** (17.8 mg, 33%) was obtained as brown powder by removing solvent followed by recrystallization from CH₂Cl₂/ⁿhexane.

400 MHz ¹H-NMR (CDCl₃) δ (ppm): 9.65 (s, 8H, Pc- α H), 7.49 (d, 16H, J = 8.4 Hz, ^{*t*}BuPh-PhH), 7.45 (d, 16H, J = 8.4 Hz, ^{*t*}BuPh-PhH), 1.39 (s, 72H, ^{*t*}BuPh-^{*t*}BuH), -1.06 (d, 6H, ³ $J_{PH} = 28.4$ Hz, P–OMe). 200 MHz ³¹P-NMR (CDCl₃) δ (ppm): -173.

HRMS-ESI (*m/z*) Calcd for C₁₁₄H₁₁₈N₈O₂P [M–ClO₄]⁺: 1662.9142. Found: 1662.9137.

UV-vis $(CH_2Cl_2) \lambda_{max}$ nm ($\epsilon \ge 10^{-4}$): 332 (7.9), 481 (3.3), 671 (3.1), 747 (19.2).

(4-MeOPh)₈TAPMg (2b)

Mg (20.0 mg, 0.823 mmol) and a small crystal of I_2 in 1-butanol (12 ml) were heated to reflux. After Mg was consumed completely, **6b** (281 mg, 0.782 mmol) was added to the resulting Mg(OⁿBu)₂ suspension and the reaction mixture was heated to reflux for an additional 22 h. Methanol was poured to the reaction mixture and precipitation was filtrated and washed with methanol. **2b** was obtained as a dark green solid. (248 mg, 65%)

500 MHz¹H NMR (pyridine- d_5) δ (ppm): 8.68 (d, J = 8.8 Hz, 16H, MeOPh-PhH), 7.39 (d, J = 8.8 Hz, 16H, MeOPh-PhH), 3.90 (s, 24H, MeOPh-OMeH).

HRMS-MALDI (*m/z*) Calcd for C₇₂H₅₆MgN₈O₈ [M]⁺: 1184.4072. Found: 1184.4069.

UV-vis (pyridine) λ_{max} nm: 654, 499, 388.

(4-FPh)₈TAPMg (2c)

Mg (27.0 mg, 1.11 mmol) and a small crystal of I₂ in 1-butanol (15 ml) were heated to reflux. After Mg was consumed completely, **6c** (467 mg, 1.65 mmol) was added to the resulting Mg(OⁿBu)₂ suspension and the reaction mixture was heated to reflux for an additional 24 h. Methanol-water (1:1 v/v) was poured to the reaction mixture and precipitation was collected by filtration and washed with methanol, and a small amount of CHCl₃. **2c** was obtained as a dark green solid. (426 mg, 95%) HRMS-MALDI (m/z) Calcd for C₆₄H₃₂F₈MgN₈ [M]⁺: 1088.2473. Found: 1088.2469.

UV-vis (pyridine) λ_{max} nm: 638, 380.

(4-F₃CPh)₈TAPMg (2d)

Mg (15.0 mg, 0.593 mmol) and a small crystal of I₂ in 1-butanol (7 ml) were heated to reflux.

After Mg was consumed completely, **6d** (290 mg, 0.757 mmol) was added to the resulting Mg(OBu)₂ suspension and the reaction mixture was heated to reflux for an additional 24 h. Methanol-water (1:1 v/v) was poured to the reaction mixture and precipitation was collected by filtration and washed with methanol. **2d** was obtained as a dark green solid. (195 mg, 62%)

500 MHz ¹H NMR (pyridine- d_5) δ (ppm): 8.63 (d, J = 8.3 Hz, 16H, CF₃Ph-PhH), 8.09 (d, J = 8.3 Hz, 16H, CF₃Ph-PhH).

HRMS-MALDI (*m/z*) Calcd for C₇₂H₃₂F₂₄MgN₈ [M]⁺: 1488.2217. Found: 1488.2214.

UV-vis (pyridine) λ_{max} nm: 637, 380.

(4-FPh)8TAPH2 (3c)

2c (50.0 mg, 45.9 µmol) was dissolved in 4 ml of trifluoroacetic acid and a few drop of conc. H₂SO₄ was added. After stirring for 10 min at room temperature, the solvent was neutralized by the addition of sat. NaHCO₃aq and the resulting precipitation was filtrated and washed by water and methanol. 3c was obtained as a dark green solid. (38.0 mg, 78%) Since the solubility of this compound was very low in general organic solvents, it was used for a next reaction without further purification. HRMS-MALDI (*m/z*) Calcd for C₆₄H₃₄F₈N₈ [M]⁺: 1066.2779. Found: 1066.2773.

(4-F₃CPh)₈TAPH₂ (3d)

2d (70.0 mg, 47.0 μ mol) was dissolved in 5 ml of trifluoroacetic acid and a few drop of conc. H₂SO₄ was added. After stirring for 10 min at room temperature, the solvent was neutralized by the addition of sat. NaHCO₃aq and the resulting precipitation was collected by filtration and washed by water/MeOH (1/1 v/v). 3d was obtained as a dark green solid. (56.6 mg, 84%) Since the solubility of this compound was very low in general organic solvents, it was used for a next reaction without further purification.

HRMS-MALDI (m/z) Calcd for C₇₂H₃₅F₂₄N₈ [M+H]⁺: 1467.2601. Found: 1467.2595.

$[(4-MeOPh)_8TAPP(OMe)_2]^+[ClO_4]^- (1b)$

POBr₃ (400 mg, 1.40 mmol) was added to a solution of magnesium TAP **2b** (41.0 mg, 34.6 mmol) in 10 mL of pyridine. After the mixture was stirred for 13 h at 90°C, 5 mL of methanol and dichloromethane was added and stirred for 8 h at room temperature. Then the solvent was removed and the residue was dissolved in dichloromethane, and washed with 2 M HClaq and water. The organic layer was collected, dried over MgSO₄, filtered and concentrated *in vacuo*. To remove byproducts, SiO₂ open

column chromatography (CH₂Cl₂-MeOH 95:5 \rightarrow 80:20) was performed and the blue purple band was collected and concentrated producing crude **1b**. Counteranion exchange was carried out by dissolving crude **1b** in dichloromethane/methanol (1/1 v/v) and sodium perchlorate (20.0 mg, 0.201 mmol) was added to the solution. After the mixture was stirred for 12 h at room temperature, the solvent was removed and the residue was treated with dichloromethane to be filtered. Pure **1b** (5.7 mg, 5.8%) was obtained as a dark purple powder by recrystallization from CH₂Cl₂/ⁿhexane.

500 MHz ¹H-NMR (CD₂Cl₂) δ (ppm): 8.25 (d, 16H, *J* = 8.6 Hz, MeOPh-PhH), 7.21 (d, 16H, *J* = 8.0 Hz, MeOPh-PhH), 4.02 (s, 24H, MeOPh-MeH), -1.65 (d, 6H, ³*J*_{PH} = 24.0 Hz, P-OMe). 200 MHz ³¹P NMR (CD₂Cl₂) δ (ppm): -181.

HRMS-ESI (m/z) Calcd for $C_{74}H_{62}N_8O_{10}P$ [M–ClO₄]⁺: 1253.4321. Found: 1253.4322.

UV-vis (CH₂Cl₂) λ_{max} nm ($\epsilon \ge 10^{-4}$): 343 (5.0), 572 (6.2), 675 (3.8).

$[(4-FPh)_8TAPP(OMe)_2]^+[X]^-(1c)$

POBr₃ (200 mg, 0.70 mmol) was added to a solution of free-base TAP **3c** (15.0 mg, 14.1 mmol) in 4 mL of pyridine. After the mixture was stirred for 6 h under reflux, 2 mL of methanol and dichloromethane was added and stirred for 12 h at room temperature. Then the solvent was removed and the residue was dissolved in dichloromethane, and washed with water twice. The organic layer was collected, dried over MgSO₄, filtered and concentrated *in vacuo*. To remove byproducts, SiO₂ open column chromatography (CH₂Cl₂-MeOH-trifluoroacetic acid 90:9.5:0.5) was performed and the purple band was collected and concentrated producing crude **1c**. Pure **1c** (2.5 mg, 15%) was obtained as a dark purple powder by recrystallization from CH₂Cl₂/ⁿhexane. Since the solubility was severely decreased after a counteranion exchange, measurements were carried out with the counteranion mixture of $[(4-FPh)_8TAPP(OMe)_2]^+$. The purity of chromophore was confirmed with NMR.

500 MHz ¹H NMR (CDCl₃) δ (ppm): 8.27 (br, 16H, FPh-PhH), 7.37 (br, 16H, FPh-PhH), -1.71 (brs, 6H,

J = 28.0 Hz, P-OMe). 200 MHz ³¹P NMR (CDCl₃) δ (ppm): -180.

HRMS-ESI (*m/z*) Calcd for C₆₆H₃₈F₈N₈O₂P [M–ClO₄]⁺: 1157.2722. Found: 1157.2724.

UV-vis (CH₂Cl₂) λ_{max} nm: 342, 360, 512, 650.

$[(4-F_3CPh)_8TAPP(OMe)_2]^+[X]^-(1d)$

POBr₃ (200 mg, 0.70 mmol) was added to a solution of free-base TAP **3d** (20.0 mg, 13.1 mmol) in 4 mL of pyridine. After the mixture was stirred for 15 min under 90°C, 2 mL of methanol and dichloromethane was added and stirred for 12 h at room temperature. Then the solvent was removed and the residue was dissolved in dichloromethane, and washed with water twice. The organic layer was collected, dried over MgSO₄, filtered and concentrated *in vacuo*. To remove byproducts, SiO₂ open column chromatography (CH₂Cl₂-MeOH-trifluoroacetic acid 95:4.5:0.5) was performed and the green band was collected and concentrated producing crude **1d**. Pure **1d** (5.2 mg, 25%) was obtained as a dark green powder by recrystallization from CH₂Cl₂/ⁿhexane. Since the solubility was severely decreased after a counteranion exchange, measurements were carried out with the counteranion mixture of $[(4-F_3CPh)_8TAPP(OMe)_2]^+$. The purity of chromophore was confirmed with NMR.

500 MHz ¹H NMR (CDCl₃-TFA-*d* 95:5) δ (ppm): 8.35 (br, 16H, CF₃Ph-PhH), 7.94 (br, 16H, CF₃Ph-PhH), -1.79 (br, 6H, P-OMe). 200 MHz ³¹P NMR (CDCl₃-TFA-*d* 95:5) δ (ppm): -178. HRMS-ESI (*m/z*) Calcd for C₇₄H₃₈F₂₄N₈O₂P [M–ClO₄]⁺: 1557.2467. Found: 1557.2468. UV-vis (CH₂Cl₂-TFA 99:1) λ_{max} nm: 361, 480, 632.

Copies of the NMR Spectra of Studied Compounds

S-20

S-26

4 beta-(tBuPh)8PcP(OMe)2 31P in CDCl3

--172.95

ير مالارتسان الارتباع مراجع مراجع مالا المستحد والمع المتقاط المتحاط والملاحمة المعارفة والمتحد منابع والمتحد والمحاصر مالم ومعارفته والمحمد والمحاصين والمحاصي
al bangke sector also find har and sector and sector and a sector and a band and a sector band and a sector production of the sector and and a sector and

	100	50	0	-50	-100	-150	ppm

4 beta-(tBuPh)8PcP(OMe)2 1H-31P HMBC in CDCl3

Full Computational Details

Computational Details

Geometry optimization for all molecules was performed at the DFT level, by means of the hybrid Becke3LYP^{vii} (B3LYP) functional as implemented in Gaussian 2009.^{viii} The 6-31G* basis set was used for the all atoms. After the geometry optimization, the time-dependent (TD) DFT calculations^{ix} were performed to evaluate the stick absorption spectrum employing the BLYP functionals with the long-range correction (LC)^x (LC-BLYP) with the same basis set. All stationary points were optimized without any symmetry assumptions and characterized by normal coordinate analysis at the same level of the theory (the number of imaginary frequency, Nimag, 0).

Cartesian Coordinates and Total Electron Energies

SCF Done:	E(RB3LYP)	= -3472.	34273366	A.U.		
Center Number	Atomic Number	Atomic Type	Co X	ordinates (A Y	ngstroms) Z	
1	6	0	-2.787972	0.807504	0.232128	
2	6	0	-3.628076	1.989492	0.221019	
3	6	0	-2.796316	3.059684	-0.064010	
4	6	0	-1.452527	2.525821	-0.167753	
5	7	0	-1.462383	1.148438	0.011874	
6	7	0	-3.276289	-0.413630	0.301624	
7	6	0	-2.515582	-1.471658	0.127123	
8	6	0	-3.056093	-2.815541	0.040746	
9	7	0	-1.136242	-1.489250	-0.033151	
10	6	0	-1.984181	-3.658803	-0.183055	
11	6	0	-0.792829	-2.826646	-0.177717	
12	7	0	0.425381	-3.320549	-0.245027	
13	7	0	-0.386110	3.287860	-0.299721	
14	6	0	1.483735	-2.549889	-0.103442	
15	6	0	2.833903	-3.079249	-0.046186	
16	7	0	1.496861	-1.170247	0.025161	
17	6	0	3.677865	-2.003261	0.122127	
18	6	0	2.828205	-0.820491	0.162938	
19	6	0	0.827857	2.793743	-0.186029	
20	6	0	2.011803	3.630204	-0.163740	
21	7	0	1.167042	1.465268	0.053466	
22	6	0	3.079272	2.800899	0.126080	
23	6	0	2.541998	1.455117	0.210223	
24	7	0	3.315110	0.392729	0.296174	
25	15	0	0.016765	-0.012523	0.014697	
26	8	0	0.144843	0.058316	-1.656810	
27	8	0	-0.037473	-0.146192	1.685930	
28	6	0	-0.897737	-0.193508	-2.596136	
29	1	0	-1.191397	-1.248198	-2.610258	
30	1	0	-1.779955	0.429156	-2.408540	
31	1	0	-0.482126	0.070652	-3.571026	
32	6	0	-0.019102	0.929433	2.621812	
33	1	0	-0.207498	0.472100	3.595607	
34	1	0	-0.805363	1.665568	2.420344	
35	1	0	0.952474	1.433649	2.647682	

$[Ph_8TAPP(OMe)_2]^+$ (1e)

	-	-			
36	6	0	4.511488	3.119113	0.235298
37	6	0	5,110253	4,011944	-0.673678
20	6	0	5 209170	2 525207	1 227162
20	0	0	5.308170	2.333397	1.23/103
39	6	0	6.467107	4.309850	-0.581638
40	1	0	4.511094	4.459869	-1.459567
11	6	0	6 663732	2 8/5586	1 331861
41	1	0	0.003752	2.045500	1 042502
4 Z	l	0	4.862/58	1.843/4/	1.943503
43	6	0	7.247241	3.731549	0.423791
ΛΛ	1	0	6 916742	1 993399	-1 2960/1
47	1	0	0.910742	4.9993999	-1.290041
45	l	0	1.263663	2.393620	2.116332
46	6	0	1.986344	5.091860	-0.340245
17	6	0	1 305116	5 674720	-1 122286
10	0	0	2 (51212	5.074720	-1.422200
48	6	0	2.651313	5.92/802	0.5/4643
49	6	0	1.297776	7.058430	-1.589327
50	1	0	0 796370	5 038996	-2 139367
- 1	I C	0	0.790970	7 210722	-2.133307
21	0	0	2.629830	/.310/33	0.411/08
52	1	0	3.174796	5.490116	1.418846
53	6	0	1 956586	7 880105	-0 672454
55	1	0	1.990900	7.000103	-0.072434
54	T	0	0.779523	7.495383	-2.438185
55	1	0	3.139243	7.944789	1.131551
56	6	0	5,138315	-1.985594	0.297249
50	C C	0	5.150515	2 064206	1 007506
57	0	0	5./58895	-2.964286	1.09/596
58	6	0	5.940120	-1.007184	-0.319483
59	6	0	7 139145	-2 960506	1 277826
22	1	0	7.152145	2 710200	1 500527
60	1	0	5.153495	-3./18209	1.58952/
61	6	0	7.322637	-1.014596	-0.143441
62	1	0	5.480511	-0.247363	-0.939954
62	- -	0	7 026244	1 007026	0 6 5 5 5 5 5 5 1 7 0
03	0	0	7.920344	-1.98/930	0.0001/8
64	1	0	7.600834	-3.716518	1.906367
65	1	0	7,927760	-0.256665	-0.632302
66	-	Ő	2 171070	1 507990	0 106257
00	0	0	3.1/10/9	-4.507889	-0.190357
67	6	0	2.626912	-5.474048	0.664429
68	6	0	4,070678	-4.915108	-1,196318
60	6	0	2 075612	6 917/15	0 520010
09	0	0	2.975012	-0.01/415	0.520919
70	1	0	1.950215	-5.165295	1.455110
71	6	0	4,405888	-6.260316	-1.337901
72	1	0 0	1 108182	1 174654	1 865563
12	1	0	4.490102	-4.174034	-1.005505
73	6	0	3.861276	-7.214540	-0.475072
74	1	0	2.560638	-7.553300	1.212109
75	1	0	5 09/579	-6 563258	_2 121260
75	I C	0	1 0054575	-0.505250	-2.121209
76	6	0	-1.995665	-5.104729	-0.466024
77	6	0	-1.080889	-5.985628	0.134409
78	6	0	-2 941405	-5 622943	_1 371176
70	0	0	-2.941409	-3.022343	-1.071170
79	0	0	-1.11033/	-/.34/952	-0.15838/
80	1	0	-0.346578	-5.601672	0.831257
81	6	0	-2.967011	-6.982842	-1.667503
02	1	Ő	2 649100	1 052097	1 050250
82	1	0	-3.648109	-4.952987	-1.850350
83	6	0	-2.056275	-7.851061	-1.059495
84	1	0	-0.404482	-8.016659	0.316737
85	1	0	3 696819	7 361067	2 275268
05	1	0	-3.090049	-7.304907	-2.375500
86	6	0	-4.476903	-3.148905	0.238390
87	6	0	-4.826706	-4.251595	1.041226
88	6	0	-5 502690	-2 38/665	-0 346623
00	0	0	-5.502090	-2.504005	-0.340023
89	6	0	-6.163310	-4.576510	1.254254
90	1	0	-4.045763	-4.843860	1.506915
91	6	0	-6.839627	-2.720696	-0.138163
00	1	0	5 252627	1 52555	0.100100
92	1	0	-5.252628	-1.532575	-0.96/421
93	6	0	-7.174492	-3.814262	0.662311
94	1	0	-6.416400	-5.424510	1.884025
0 5	- 1	⁰	7 610610	2 12////2	0 602616
20	1 C	U	-1.019010	-2.124442	-0.002010
96	6	0	-5.090605	1.954873	0.378512
97	6	0	-5.694567	1.151477	1.362872
98	6	0	_5 012275	2 722701	-0 468750
00	6	0	-J.JIZZ/J	1 10CE 47	
99	6	U	-/.081392	1.120547	T.200323
100	1	0	-5.076264	0.551933	2.021407
101	6	0	-7.297274	2.686108	-0,333583
102	1	0	5 160000	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 220001
111/		U	-3.400992	3.338381	-1.239001

103 104 105 106 107	6 0 1 0 1 0 6 0 6 0	-7.886 -7.532 -7.918 -3.119 -3.946	265 1. 273 0. 159 3. 989 4. 651 5.	891770 507792 277443 493539 090129	0.654534 2.271277 -1.000376 -0.151981 0.817734
108 109	6 0 6 0	-2.610 -4.251	0776 5.1 .672 6.4	289473 446951	-1.192120 0.748082
110	1 0	-4.339		488643	1.631577
112	1 0	-1.974	345 4.	841275	-1.947425
113	6 0	-3.747	191 7.	227560	-0.295469
114 115	1 0	-4.882	480 7 .	245786	-2.080012
116	1 0	-2.078	802 -8.	912578	-1.288876
117 118	1 0 1 0	4.129	303 -8. 040 -1.	261697 989974	-0.582373
119	1 0	8.304	263 3.9	970929	0.498188
120	1 0	1.946	898 8.9	958567	-0.801800
121	1 0	-8.966	941 1.	870205	0.763146
123	1 0	-8.217	095 - 4.	072552	0.824809
Excited state 247 -> 265 247 -> 266 263 -> 265 264 -> 265 264 -> 266 This state for opti Total Energy, E(T Copying the excited state of t	0.15929 0.10335 -0.16793 -0.35119 0.55138 mization and/or sect 'D-HF/TD-KS) = ed state density for t	ond-order correct -3462.77818693 this state as the 1-	ion.	T=0.1984	<5**2>=0.000
Excited State 2	2: Singlet-A	1.8516 eV	669.59 nm	f=0.2076	<s**2>=0.000</s**2>
$247 \rightarrow 265$	0.10392				
$263 \rightarrow 266$	0.16980				
264 -> 265	0.55244				
264 -> 266	0.35053				
Excited State	S: Singlet-A	3.0369 eV	408.26 nm	f=0.1072	<s**2>=0.000</s**2>
245 -> 266 246 -> 265	-0.11503				
260 -> 265	0.21579				
260 -> 267	0.12775				
261 -> 265 262 -> 266	0.36563				
202 -> 200 262 -> 267	-0 13147				
$263 \rightarrow 267$	-0.10287				
263 -> 266	-0.24691				
Excited State	l: Singlet-A	3.0783 eV	402.76 nm	f=0.0489	<s**2>=0.000</s**2>
245 -> 266	-0.11068				
246 -> 265	-0.15896				
260 -> 265	-0.29701				
261 -> 265	-0.29469				
262 -> 265	0.19405				
$262 \rightarrow 266$	0.36114				
$263 \rightarrow 260$ $263 \rightarrow 267$	0.14082				
Excited State	Sinclet A	2 1112 aV	391 37 nm	f=0.2004	< S **J> <u>−</u> 0 000
244 -> 266	0.10700	J.177J CV	JJT.JZ IIIII	1 0.2704	-6 2/ -0.000
260 -> 265	-0.11236				
260 -> 266	0 41997				

$260 \rightarrow 267$ $261 \rightarrow 265$ $261 \rightarrow 266$ $262 \rightarrow 266$ $263 \rightarrow 265$ $263 \rightarrow 266$ $263 \rightarrow 266$ $264 \rightarrow 265$	0.11503 0.14924 -0.14805 0.15361 0.15382 0.33887 -0.11824				
Excited State $244 \rightarrow 265$ $260 \rightarrow 265$ $260 \rightarrow 266$ $261 \rightarrow 265$ $261 \rightarrow 265$ $261 \rightarrow 267$ $262 \rightarrow 265$ $262 \rightarrow 265$ $263 \rightarrow 265$ $263 \rightarrow 266$ $263 \rightarrow 266$ $264 \rightarrow 266$	Singlet-A -0.12838 -0.23571 -0.15928 0.34062 -0.12883 0.20204 -0.15536 0.34548 -0.13898 0.11986	3.1975 eV	387.76 nm	f=0.3349	<s**2>=0.000</s**2>
Excited State 7: 247 -> 265 260 -> 265 261 -> 265 262 -> 265 263 -> 265 263 -> 265 264 -> 266	Singlet-A -0.12494 0.27911 -0.17827 -0.19389 0.50546 0.16476	3.5513 eV	349.13 nm	f=0.8115	<s**2>=0.000</s**2>
Excited State 8: 244 -> 266 247 -> 266 260 -> 266 261 -> 266 262 -> 265 262 -> 265 263 -> 266 263 -> 266 264 -> 265	Singlet-A -0.10344 -0.11192 -0.29680 0.31509 0.15554 0.22075 0.39102 -0.14402	3.5901 eV	345.35 nm	f=0.7142	<s**2>=0.000</s**2>
Excited State 9: 245 -> 265 246 -> 266 260 -> 265 260 -> 266 261 -> 266 262 -> 265 262 -> 265 262 -> 266	Singlet-A -0.11647 0.10319 0.27456 0.25520 0.23808 0.43599 -0.15414	3.6442 eV	340.22 nm	f=0.1123	<s**2>=0.000</s**2>
Excited State 10: 246 -> 266 260 -> 265 260 -> 266 261 -> 266 262 -> 265	Singlet-A 0.12198 -0.19076 0.19556 0.50726 -0.31356	3.7343 eV	332.01 nm	f=0.0628	<s**2>=0.000</s**2>

Ph₈TAPMg (2e) SCF Done: E(RB3LYP) = -3101.14307862 A.U.

Center	Atomic	Atomic	Coo	ordinates (A	ngstroms)	
Number	Number	туре	Х	Y	Z	
1	6	0	-0.005304	-1.187239	2.752079	
2	6	0	-0.014976	-2.478864	3.458464	
3	6	0	0.005398	-3.457809	2.479115	
4	6	0	0.033726	-2.759657	1.185793	
5	7	0	0.025490	-1.410153	1.405448	
6	7	0	0.00000	0.000000	3.364976	
7	6	0	0.005304	1.187239	2.752079	

8	6	0	0.014976	2.478864	3,458464
ğ	7	Õ	_0 025490	1 410153	1 405448
10	6	0	0 005308	3 /57800	2 /70115
11	6	0	0 033726	2 750657	1 185703
10	0	0	-0.033720	2.739037	1.105795
12	7	0	-0.034991	2.277202	0.000000
13		0	0.034991	-3.3//392	0.000000
14	6	0	-0.033/26	2./5965/	-1.185/93
15	6	0	-0.005398	3.457809	-2.479115
16	7	0	-0.025490	1.410153	-1.405448
17	6	0	0.014976	2.478864	-3.458464
18	6	0	0.005304	1.187239	-2.752079
19	6	0	0.033726	-2.759657	-1.185793
20	6	0	0.005398	-3.457809	-2.479115
21	7	0	0.025490	-1.410153	-1.405448
22	6	0	-0.014976	-2.478864	-3.458464
23	6	0	-0.005304	-1.187239	-2.752079
24	7	0	0.000000	0.000000	-3.364976
25	6	0	0.031225	-2.631189	-4,923027
26	6	Ő	0.848034	-3.614978	-5.512835
27	6	ů 0			-5 766733
27	6	0	0 000720	2 756156	6 907007
20	0	0	1 444225	-3.750150	-0.09/00/
29	1 C	0	1.444323	-4.202195	-4.0/012/
30	0	0	-0.000230	-1.930285	-/.152345
31	l	0	-1.340527	-1.01//41	-5.332051
32	6	0	0.154280	-2.919042	-7.723428
33	1	0	1.550257	-4.518419	-7.331315
34	1	0	-1.243253	-1.276198	-7.785200
35	6	0	-0.069673	-4.922248	-2.634012
36	6	0	0.811529	-5.769503	-1.941684
37	6	0	-1.037162	-5.501584	-3.474434
38	6	0	0.735202	-7.153361	-2.095489
39	1	0	1.559637	-5.335268	-1.287664
40	6	0	-1.117263	-6.884881	-3.619886
41	1	0	-1.732008	-4.859260	-4.006574
42	6	0	-0.229135	-7.716518	-2,933222
43	1	0	1,429891	-7.793066	-1.557537
44	1	Ő	-1.876055	-7.314141	-4.268778
15	6	ů 0		2 631180	_/ 923027
45	6	0	0 848034	3 61/078	5 512835
40	6	0	0 717165	1 700001	-J.JIZ0JJ
47	6	0	0.000720	2 756156	-5.700755
40	0	0	-0.900/20	3.750150	-0.09/00/
49		0	-1.444325	4.262195	-4.8/812/
50	0	0	0.050230	1.930285	-7.152345
51	l	0	1.340527	1.01//41	-5.332051
52	6	0	-0.154280	2.919042	-7.723428
53	1	0	-1.550257	4.518419	-7.331315
54	1	0	1.243253	1.276198	-7.785200
55	6	0	0.069673	4.922248	-2.634012
56	6	0	-0.811529	5.769503	-1.941684
57	6	0	1.037162	5.501584	-3.474434
58	6	0	-0.735202	7.153361	-2.095489
59	1	0	-1.559637	5.335268	-1.287664
60	6	0	1.117263	6.884881	-3.619886
61	1	0	1.732008	4.859260	-4.006574
62	6	0	0.229135	7.716518	-2.933222
63	1	0	-1.429891	7.793066	-1.557537
64	1	0	1,876055	7.314141	-4.268778
65	6	0	0.069673	4,922248	2.634012
66	6	0	-0.811529	5.769503	1.941684
67	6	Ő	1 037162	5 501584	3 474434
68	6	ñ	-0.735202	7,153361	2.095480
60	1	0	-1 550627	5 335361	1 207661
70	1	0	1 117969	6 00/001	2 610006
70	U 1	0	1 722000	0.004001 1 050060	J.019000
/ 1 7 0	1 C	0	1./JZUUØ	4.039200	4.0003/4
12	0	0	0.229133	7 7020CC	2.933222
13	1	U	-1.429891	/./93066	1.55/53/
/4	T	0	1.8/6055	1.314141	4.268//8

$\begin{array}{c} 75\\ 76\\ 77\\ 78\\ 79\\ 80\\ 81\\ 82\\ 83\\ 84\\ 85\\ 86\\ 87\\ 88\\ 89\\ 90\\ 91\\ 92\\ 93\\ 94\\ 95\\ 96\\ 97\\ 98\\ 99\\ 100\\ 101\\ 102\\ 103\\ 104\\ 105\\ 106\\ 107\\ 108 \end{array}$	6 6 6 6 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1		$\begin{array}{c} -0.0312\\ -0.8480\\ 0.7171\\ -0.9087\\ -1.4443\\ 0.6562\\ 1.3405\\ -0.1542\\ -1.5502\\ 1.2432\\ 0.0312\\ -0.7171\\ 0.8480\\ -0.6562\\ -1.3405\\ 0.9087\\ 1.4443\\ 0.1542\\ -1.2432\\ 1.5502\\ -0.0696\\ -1.0371\\ 0.8115\\ -1.1172\\ -1.7320\\ 0.7352\\ 1.5596\\ -0.2291\\ -1.8760\\ 1.4298\\ 0.2905\\ 0.2905\\ -0.2005\\ 0.2005\\ -0.2005\\ 0.200$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31189 14978 89801 56156 62195 36285 17741 19042 18419 76198 31189 89801 14978 36285 17741 56156 62195 19042 76198 18419 22248 01584 69503 84881 59260 53361 35268 16518 14141 93066 95406 95406 30809	4.923027 5.512835 5.766733 6.897007 4.878127 7.152345 5.332051 7.723428 7.331315 7.785200 4.923027 5.766733 5.512835 7.152345 5.332051 6.897007 4.878127 7.723428 7.723428 7.723428 7.723428 7.723428 7.723428 7.723428 7.723428 7.723428 7.723428 7.723428 7.723428 7.723428 7.723428 7.723428 7.723428 7.723428 7.95200 7.331315 2.634012 3.474434 1.941684 3.619886 4.006574 2.095489 1.287664 2.933222 4.268778 1.557537 3.048527 -3.048527 -3.048527 -8.803560	
108 109 110 111	1 1 1	0 0 0	-0.2905	525 - 8.7 525 - 8.7 534 - 3.0	95406 95406 30809	-3.048527 3.048527 8.803560	
112 113	1 12	0 0	-0.2009	934 3.0 900 0.0	30809 00000	8.803560 0.000000	
TD–DFT outpu HOMO: 246 , LU Excited State 239 -> 248 241 -> 248 245 -> 248 246 -> 247 This state for op Total Energy, E Copying the ex	t JMO: 247 1: Si 3 0 3 -0.1 7 0.0 ptimization a E(TD-HF/TD- cited state de	nglet-BU 12004 16167 6381 56326 nd/or second-c -KS) = -3092 nsity for this s	1.8697 eV order correctio 2.13696430 tate as the 1-p	663.11 nm on. particle RhoC	f=0.3337 I density.	<s**2>=0.000</s**2>	
Excited State 239 -> 247 241 -> 247 245 -> 247 246 -> 248	2: Si 7 -0.1 7 -0.1 7 0.1 8 0.0	nglet-AU 2690 6418 16276 56198	1.8788 eV	659.93 nm	f=0.3330	<s**2>=0.000</s**2>	
Excited State 225 -> 248 226 -> 247 242 -> 247 243 -> 248 244 -> 249	3: Si 3 -0.1 7 -0.1 7 0.4 8 0.4 9 0.2	nglet-BG 5497 5502 43798 43444 21971	3.4042 eV	364.20 nm	f=0.0000	<s**2>=0.000</s**2>	
Excited State 222 -> 248	$\begin{array}{ccc} 4: & Si\\ 3 & 0.7 \end{array}$	nglet-BU l 1664	3.4464 eV	359.75 nm	f=0.0703	<s**2>=0.000</s**2>	

227 -> 247 239 -> 248 241 -> 248 242 -> 249 244 -> 247 245 -> 248	-0.16506 0.13897 0.15840 0.20410 0.52219 0.27144				
Excited State 5: 222 -> 247 227 -> 248 239 -> 247 241 -> 247 243 -> 249 244 -> 248 245 -> 247	Singlet-AU 0.11720 -0.16556 0.13078 0.13580 0.20808 0.50891 0.31148	3.4492 eV	359.46 nm	f=0.1421	<s**2>=0.000</s**2>
Excited State 6: 225 -> 247 226 -> 248 242 -> 248 243 -> 247 245 -> 249	Singlet-AG -0.15529 -0.15490 0.42912 0.45152 0.17370	3.4648 eV	357.84 nm	f=0.0000	<s**2>=0.000</s**2>
Excited State 7: 239 -> 247 241 -> 247 244 -> 248 245 -> 247 246 -> 248 246 -> 248 246 <- 248	Singlet-AU -0.18309 -0.28362 -0.18395 0.52029 -0.23776 0.12001	4.0101 eV	309.18 nm	f=1.7414	<s**2>=0.000</s**2>
Excited State 8: 239 -> 248 241 -> 248 244 -> 247 245 -> 248 246 -> 247 246 <- 247	Singlet-BU -0.21097 -0.25664 -0.13933 0.54228 0.24124 -0.11993	4.0280 eV	307.81 nm	f=1.6362	<s**2>=0.000</s**2>
Excited State 9: 224 -> 249 226 -> 247 228 -> 247 236 -> 247 242 -> 247 243 -> 248	Singlet-BG 0.13738 0.10848 0.42338 -0.21041 -0.30768 0.31904	4.1255 eV	300.53 nm	f=0.0000	<s**2>=0.000</s**2>
Excited State 10: 223 -> 249 228 -> 248 236 -> 248 242 -> 248 243 -> 247	Singlet-AG -0.15649 0.47955 -0.22081 -0.25805 0.26159	4.1536 eV	298.50 nm	f=0.0000	<s**2>=0.000</s**2>

 $[Ph_8PcP(OMe)_2]^+$ (4') SCF Done: E(RB3LYP) = -4075.51041298 A.U.

Center Number	Atomic Number	Atomic Type	Coc X	ordinates (A Y	ngstroms) Z	
1	6	0	2.722046	1.086884	0.191679	
2	6	0	4.096373	0.659235	0.132177	
3	6	0	4.086884	-0.715444	-0.140300	
4	6	0	2.706509	-1.124568	-0.196047	
5	7	0	1.884448	-0.013099	-0.002203	
6	7	0	2,362378	2.346263	0.315712	
7	6	Ő	1.109610	2.714905	0.177859	

8	6	0	0.696423	4,095898	0.130914
ğ	7	Õ	0 002088	1 891260	
10	6	0	_0 67/933	1 103183	
11	6	0		2 7261/1	
12	0	0	-1.09/204	2.720141	-0.222707
12	1	0	-2.330001	2.371303	-0.352394
13		0	2.329236	-2.3/9112	-0.316/5/
14	6	0	-2./24210	1.118//5	-0.206864
15	6	0	-4.108841	0.712732	-0.145010
16	7	0	-1.904111	0.013325	0.001290
17	6	0	-4.118654	-0.655346	0.143991
18	6	0	-2.740041	-1.080468	0.208459
19	6	0	1.071652	-2.729984	-0.175181
20	6	0	0.639717	-4.104731	-0.125438
21	7	0	-0.024064	-1.890141	0.045763
22	6	0	-0.731785	-4.092793	0.153877
23	6	0	-1.134967	-2.709832	0.225074
24	7	Ő	_2 389773	-2 337970	0 354235
25	15	0		0 001563	0 000575
25	10	0	-0.012340	0.001303	1 665272
20	0	0	-0.001397	-0.110041	-1.005572
27	8	0	-0.064252	0.135144	1.000480
28	6	0	0.666283	0.65115/	-2.606322
29	1	0	0.421702	1.716863	-2.549503
30	1	0	1.745574	0.516086	-2.480863
31	1	0	0.373748	0.271844	-3.587593
32	6	0	0.616276	-0.693917	2.608294
33	1	0	0.436153	-0.233467	3.581953
34	1	0	1.695730	-0.723531	2.425540
35	1	0	0.218546	-1.713663	2.616726
36	6	0	-5.318177	-1.350644	0.274046
37	1	0	-5.319515	-2.420295	0.453697
38	6	Ő	-6.529814	-0.660029	0.125827
30	6	0	_6 519631	0 752256	_0 135240
10	6	0	5 207565	1 125217	0 270001
40	0	0	-3.29/303	2 404900	-0.270004
41		0	-3.202309	2.494090	-0.436304
42	0	0	-1.3/5828	5.302537	-0.263572
43	l	0	-2.447009	5.300594	-0.433842
44	6	0	-0.689607	6.514501	-0.110069
45	б	0	0.726320	6.507567	0.139724
46	6	0	1.404857	5.288199	0.268553
47	1	0	2.475708	5.276059	0.440538
48	6	0	5.299116	1.355828	0.250993
49	1	0	5.300207	2.428030	0.414979
50	6	0	6.508755	0.664388	0.112354
51	б	0	6.499009	-0.754459	-0.127289
52	6	0	5.279264	-1.429027	-0.261763
53	1	0	5.264515	-2.501262	-0.424719
54	6	0	1.331164	-5.307560	-0.259677
55	1	Ő	2 402153	-5 311527	
56	6	0	0 635368	-6 516542	
57	6	0	0.000000	6 502714	0 121005
50	6	0	-0.700000	-0.J0J/14 5 201627	0.121005
28	0	0	-1.449990	-3.28102/	0.209970
59	l	0	-2.521251	-5.263483	0.438684
60	6	0	1.429611	-7.774967	-0.210235
61	6	0	1.358117	-8.749467	0.799634
62	б	0	2.322429	-7.974774	-1.276245
63	6	0	2.158249	-9.888803	0.742845
64	1	0	0.681547	-8.608075	1.636523
65	6	0	3.114618	-9.121743	-1.337465
66	1	0	2.380215	-7.235619	-2.071148
67	6	0	3.036403	-10.081135	-0.326725
68	1	Ō	2.097176	-10.627564	1.536996
69	1	0	3.790224	-9.265336	-2.176101
70	1	0 0	3.654595	-10,973239	-0.371567
71	6	ñ	_1 601080	<u>-</u> 7 7 <u>4</u> 5002	0 188808
72	6	0	-2 502000	-7 025075	1 2/0100
72	6	0	-2.505040		-U 830300 T•243130
71	U 6	0	2 210560	0 066007	1 207505
14	Ö	U	-2.319209	-9.00009/	1.29/305

75	1	0	_2 5/0161	-7 202380	2 050084
75	I C	0	-2.549101	-7.202300	2.030004
70	0	0	-2.309400	-9.030300	-0.764360
//	l	0	-0.862284	-8.5/9968	-1.661139
78	6	0	-3.256684	-10.018893	0.279445
79	1	0	-4.002260	-9.201981	2.131672
80	1	0	-2.320144	-10.569932	-1.584325
81	1	0	-3.893904	-10.897958	0.314122
82	6	0	-7.785853	-1.458232	0.206963
02	6	õ	9 754716	1 207462	0 000011
0.0	0	0	-0.754710	-1.397402	-0.009011
84	0	0	-7.989113	-2.343546	1.2/85/5
85	6	0	-9.891870	-2.200725	-0.752670
86	1	0	-8.610361	-0.727006	-1.650276
87	6	0	-9.133828	-3.138999	1.339161
88	1	0	-7.254383	-2.393030	2.078146
89	6	0	-10.087664	-3.071351	0.322394
90	1	Õ	_10 626109	-2 1/8155	_1 551612
01	1	0	-10.020109	2 000060	2 101052
91	1	0	-9.2800/4	-3.808860	2.181950
92	1	0	-10.978031	-3.692094	0.366724
93	6	0	-7.763769	1.567630	-0.223723
94	6	0	-8.740858	1.520482	0.785033
95	6	0	-7.947048	2,455686	-1.296910
96	6	Ő	-9 865972	2 339992	0 720702
07	1	0	0 611021	0 0/0120	1 627224
97	1	0	-0.011031	0.040130	1.02/234
98	6	0	-9.079841	3.26/124	-1.365/4/
99	1	0	-7.206337	2.494417	-2.091528
100	6	0	-10.041713	3.213269	-0.355718
101	1	0	-10.606543	2.297709	1.514388
102	1	0	-9.210642	3,938833	-2.209599
103	- 1	0	_10 922789	3 8/6650	_0 106361
101	1 6	0	1 402160	7 760125	0 172700
104	0	0	-1.493100	7.700135	-0.1/3/60
105	6	0	-1.4293//	8./2//36	0.850/61
106	6	0	-2.387400	7.977248	-1.236838
107	6	0	-2.238274	9.861604	0.810872
108	1	0	-0.752506	8.578561	1.686023
109	6	0	-3.188499	9.118738	-1.281001
110	1	0	-2 439753	7 249629	-2 042707
111	5	Õ	3 117662	10 063300	0 2550/1
110	0	0	-3.11/002	10.003390	-0.233941
112	1	0	-2.183269	10.588565	1.6162/2
113	1	0	-3.865363	9.269568	-2.117349
114	1	0	-3.742805	10.951212	-0.287366
115	6	0	1.537595	7.754351	0.229687
116	6	0	1.477128	8.738471	-0.771544
117	6	0	2.435980	7.932866	1.295066
110	6	Ő	2 203/37	0 865001	0 707364
110	0	0	2.295457	9.003901	-0.707304
119	1	0	0./96399	8.013582	-1.60/61/
120	6	0	3.244305	9.067891	1.363835
121	1	0	2.485080	7.186655	2.083917
122	6	0	3.177030	10.036818	0.361379
123	1	0	2.240507	10.612142	-1.495072
124	1	0	3,923989	9,194963	2,201838
125	- 1	Ő	3 807860	10 01071/	0 112010
125	I C	0	7 744241	1 5 6 0 0 0 0	0.412040
120	0	0	7.744241	-1.509000	-0.199401
127	6	0	8./21395	-1.499907	0.808051
128	6	0	7.928550	-2.480596	-1.253196
129	6	0	9.847283	-2.319558	0.761519
130	1	0	8.592296	-0.809212	1.635268
131	6	0	9,061942	-3,292534	-1.304206
132	1	Ő	7 188139	-2 537122	-2 047006
132	5	0	10 000670	2 216020	0 205514
124	0	0	10.0230/9	-3.210039	
134	Ţ	U	10.58/935	-2.259202	1.553943
135	1	0	9.193414	-3.982198	-2.133322
136	1	0	10.905294	-3.849602	-0.332416
137	6	0	7.765246	1.463085	0.180637
138	6	0	7,968512	2.366310	1.237211
139	6	0	8.734130	1.385350	-0.834106
1/0	6	0	0 110005	2 162005	1 20/221
14U	0	0	y.112920	3.103095	1.204221
141	T	0	1.233934	2.429047	2.035976

142	6	0	9.870986	2.189888	-0.791575	
143	1	0	8.590215	0.700590	-1.663975	
144	6	0	10.066567	3.078733	0.268539	
145	1	0	9.259075	3.847051	2.115606	
146	1	0	10.605270	2.123919	-1.589477	
147	1	0	10.956744	3.700384	0.302275	

TD–DFT output

HOMO: 316, LUMO: 317 Singlet-A 1.5855 eV 782.01 nm f=0.5706 <S**2>=0.000 Excited State 1: 299 -> 317 0.13087 316 -> 318 0.68488 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -4075.45214837Copying the excited state density for this state as the 1-particle RhoCI density. 1.5906 eV 779.46 nm f=0.5785 <S**2>=0.000 Excited State 2: Singlet-A 299 -> 318 -0.12824 316 -> 317 0.68556 Excited State 3: Singlet-A 3.4841 eV 355.85 nm f=0.0935 <S**2>=0.000 295 -> 317 0.27081 297 -> 317 0.11021 312 -> 317 0.18355 314 -> 317 0.48260 -0.11116 314 -> 319 315 -> 317 0.23997 3.5857 eV 345.77 nm f=0.0230 <S**2>=0.000 Excited State 4: Singlet-A 294 -> 318 0.28411 298 -> 318 -0.11709 305 -> 318 -0.10130 312 -> 317 0.11022 312 -> 319 0.11114 313 -> 318 0.55798 3.6051 eV 343.91 nm f=0.3723 <S**2>=0.000 Excited State 5: Singlet-A 293 -> 318 -0.16867 295 -> 318 -0.113370.15492 299 -> 318 312 -> 318 313 -> 319 -0.39230 -0.14298 315 -> 318 0.42091 Excited State Singlet-A 3.6900 eV 336.00 nm f=0.3674 <S**2>=0.000 6: 293 -> 317 0.20973 299 -> 317 0.14944 312 -> 317 0.31100 314 -> 317 -0.29820 315 -> 317 0.40191 3.9520 eV 313.73 nm f=1.1123 <S**2>=0.000 Excited State Singlet-A 7: 293 -> 318 0.18312 299 -> 318 0.20049 310 -> 317 -0.11003 312 -> 318 0.38070 314 -> 318 -0.16926 315 -> 318 0.35963 316 -> 319 -0.10672 Excited State 3.9645 eV 312.73 nm f=1.3494 <S**2>=0.000 8: Singlet-A 292 -> 317 0.10013 293 -> 317 0.15202 299 -> 317 -0.22517312 -> 317 0.42972 313 -> 320 -0.12225

315 -> 317	-0.36232				
316 -> 318	0.10474				
Excited State 9:	Singlet-A	3.9676 eV	312.49 nm	f=0.1096	<s**2>=0.000</s**2>
294 -> 317	-0.16103				
295 -> 318	0.17344				
297 -> 318	-0.11985				
298 -> 317	-0.10817				
301 -> 317	-0.10198				
302 -> 318	-0.10921				
309 -> 318	0.19879				
310 -> 317	0.18815				
312 -> 318	0.14397				
313 -> 317	-0.10373				
315 -> 318	0.13750				
316 -> 319	0.42306				
Excited State 10:	Singlet-A	4.0283 eV	307.78 nm	f=0.1157	<s**2>=0.000</s**2>
297 -> 318	0.16425				
298 -> 317	-0.19390				
309 -> 318	-0.14467				
310 -> 317	0.15732				
312 -> 320	-0.11123				
313 -> 317	0.43750				
314 -> 318	0.26753				
315 -> 318	0.15051				

References for Supporting Information

- ⁱ Otwinoski, Z; Minor, W. Methods in Enzymol. 1997, 276, 307.
- ⁱⁱ Burla, M. C.; Caliandro, R.; Camalli, M.; Carrozzini, B.; Cascarano, G. L.; De Caro, L.; Giacovazzo, C.; Polidori, G.; Spagna, R. *J. Appl. Cryst.* **2005**, *38*, 381.
- ⁱⁱⁱ Sheldrick, G. M. Acta Crystallogr. Sect. A, 2008, A64, 112.
- ^{iv} Furuyama, T.; Ogura, Y.; Yoza, K.; Kobayashi, N. Angew. Chem. Int. Ed. 2012, 51, 11110-11114.
- ^v Eu, S.; Katoh, T.; Umeyama, T.; Matano, Y.; Imahori, H. Dalton Trans. 2008, 5476-5483.
- ^{vi} Sugimori, T.; Torikata, M.; Nojima, J.; Tominaka, S.; Tobikawa, K.; Handa, M.; Kasuga, K. *Inorg. Chem. Commun.* **2002**, *5*, 1031.
- ^{vii} (a) Becke, A. D. *Phys. Rev.* **1988**, *A38*, 3098-3100. (b) Becke, A. D. J. Chem. Phys. **1993**, *98*, 1372-1377. (c) Becke, A. D. J. Chem. Phys. **1993**, *98*, 5648-5652. (d) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. **1988**, *B37*, 785-788.
- ^{viii} *Gaussian 09*, Revision C.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M.
 A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato,
 M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara,
 M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.;
 Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.;
 Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J.
 C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.;
 Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi,
 R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador,
 P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski,
- J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.
- ^{ix} (a) Bauernschmitt, R. d.; Ahlrichs, R. Chem. Phys. Lett. **1996**, 256, 454-464. (b) Dreuw, A.; Head-Gordon, M. Chem. Rev. **2005**, 105, 4009-4037.
- ^x Iikura, H.; Tsuneda, T.; Yanai, T.; Hirao, K. J. Chem. Phys. 2001, 115, 3540.