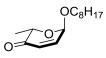
De Novo asymetric synthesis of the mezzettiaside family of natural products via the iterative use of a dual B-/Pd-catalyzed glycosylation

Sumit O. Bajaj,[†] Ehesan U. Sharif,^{*,†} Novruz G. Akhmedov^{*,§} and George A. O'Doherty^{*,†}

[†] Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, 02115 [§] Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506

Corresponding author e-mail: g.odoherty@neu.edu

Supporting Information


Section A: General Information	S2
Section B: Experimental Procedures	S3
Section C: Optical rotation for the isolated mezzettiasides	S46
Section D: ¹ H, ¹³ C NMR Spectra and Correlation Studies	S47

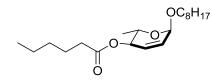
Section A: General Information

¹H and ¹³C NMR spectra were recorded on a 400, 500 or 600 MHz spectrometer. Chemical shifts were reported relative to internal tetramethylsilane (δ 0.00 ppm) or CDCl₃ (δ 7.26 ppm) or CD₃OD (δ 4.90 ppm) or benzene-*d*₆ (δ 7.44 ppm) for ¹H NMR and CDCl₃ (δ 7.00/77.23 ppm) or CD₃OD (δ 49.0 ppm) or benzene-*d*₆ (δ 128 ppm) for ¹³C NMR. Infrared (IR) spectra were obtained on a FT-IR spectrometer. Optical rotations were measured with a digital polarimeter in the solvent specified. Flash column chromatography was performed on 60-200 or 230-400 mesh silica gel. Analytical thin-layer chromatography was performed with precoated glass backed plates and visualized by quenching of fluorescence and by charring after treatment with *p*anisaldehyde or potassium permanganate stain. R_f values were obtained by elution in the stated solvent ratios. Acetonitrile, diethyl ether, tetrahydrofuran, methylene dichloride and triethylamine were dried by passing through activated alumina column with argon gas pressure. Commercial reagents were used without purification unless otherwise noted. Air- and/or moisture-sensitive reactions were carried out under an atmosphere of argon/nitrogen using ovenor flame-dried glassware and standard syringe/septa techniques.

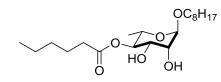
Section B: Experimental Procedures

1-Octyloxy-2,3-didehydro-5-methyl-oxo-pyran (15):

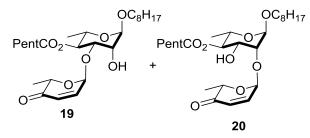
To a solution of Boc-pyranone **14** (5.0 g, 21.91 mmol) and octan-1-ol (4.28 g, 32.9 mmol) in 30 mL of CH₂Cl₂ at 0 °C was added 4 Å molecular sieves (1.3 g) To this mixture was added Pd₂(dba)₃•CHCl₃ (567 mg, 2.5 mol %) and PPh₃ (576 mg, 10 mol %) solution in CH₂Cl₂. The reaction was stirred and warmed from 0 °C to rt. After 2 h the reaction was quenched by adding 30 mL saturated NaHCO₃, followed by extraction with Et₂O (3 x 300 mL). The organic layers were combined, washed by 30 mL saturated brine solution, dried over Na₂SO₄ and concentrated under reduced pressure. The crude product was purified using silica gel flash chromatography eluting with 3-5% EtOAc/hexane to give pyranone **15** (4.9 g, 20.39 mmol, 93%): *F*₄ (30% EtOAc/hexane) = 0.65; $[\alpha]^{25}{}_{D}$ = + 33.8 (*c* = 0.39, CH₂Cl₂); IR (thin film, cm⁻¹) 2928, 2857, 1733, 1702, 1467, 1375, 1158, 1086, 1041, 749; ¹H NMR (400 MHz, CDCl₃) δ 6.80 (dd, *J* = 10.4, 3.6 Hz, 1H), 6.01 (d, *J* = 10.0 Hz, 1H), 5.11 (d, *J* = 2.8 Hz, 1H), 4.52 (q, *J* = 6.4 Hz, 1H), 3.80 (ddd, *J* = 9.6, 7.2, 6.8 Hz, 1H), 3.54 (ddd, *J* = 9.6, 7.2, 6.8 Hz, 1H), 1.57 (m, 2H) 1.33 (d, *J* = 6.4 Hz, 3H), 1.26 (m, 10H), 0.87 (dd, *J* = 6.0, 6.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 197.3, 143.8, 127.4, 93.2, 70.4, 69.7, 32.0, 29.8, 29.5, 29.4, 26.3, 22.8, 15.4, 14.3; HRMS (ESI) calcd for [C₁₄H₂₄O₃ + H]⁺: 241.1745, Found: 241.1732.


1-Octyloxy-2,3-didehydro- α -L-rhamnopyranoside (16):

To a solution of enone **15** (4.9 g, 20.40 mmol) in CH_2Cl_2 (20 mL) at -78 °C was added CeCl₃/MeOH solution (0.4 M in MeOH, 21 mL) and NaBH₄ (926 mg, 24.5 mmol). The reaction mixture was stirred at -78 °C for 3 h and quenched with 20 mL of saturated NaHCO₃ solution,


extracted with Et₂O (2 x 50 mL) at 0 °C, dried over Na₂SO₄, and concentrated under reduced pressure. The crude product was purified using silica gel flash chromatography eluting with 10-12% EtOAc/hexane to give allylic alcohol **16** (3.94 g, 16.3 mmol, 80%): P_{f} (30% EtOAc/hexane) = 0.4; $[\alpha]^{25}_{D} = -62.5$ (c = 1.51, CH₂Cl₂); IR (thin film, cm⁻¹) 3391, 2926, 2857, 1459, 1379,1102, 1048, 1002, 887, 748, 724; ¹H NMR (400 MHz, CDCl₃) δ 5.90 (d, J = 10.4 Hz, 1H), 5.73 (ddd, J = 10.4, 3.6, 2.0 Hz, 1H), 4.89 (s, 1H), 3.79 (m, 1H), 3.75 (q, J = 6.0 Hz, 1H), 3.67 (ddd, J = 9.6, 7.2, 6.8 Hz, 1H), 3.48 (ddd, J = 9.6, 7.2, 6.8 Hz, 1H), 2.19 (m,1H), 1.59 (dd, J = 7.3, 6.4 Hz, 1H), 1.57 (dd, J = 7.2, 6.4 Hz, 1H), 1.30 (d, 3H), 1.26 (m, 9H), 0.87 (dd, J = 6.0, 6.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 133.7, 126.8, 94.5, 68.8, 69.9, 68.1, 32.0, 30.0, 29.6, 29.5, 26.4, 22.9, 18.2, 14.3; HRMS–MALDI–TOF (CCA) (m/z): [M + Na]⁺ calcd for [C₁₄H₂₆O₃ + Na]⁺: 265.1774, Found: 265.1783.

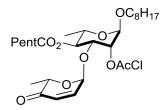
1-Octyloxy-2,3-didehydro-4-*O*-hexanoyl- α -L-rhamnopyranoside (16a):


To a stirred solution of allylic alcohol **16** (4.41g, 18.2 mmol) in CH₂Cl₂ was added hexanoic acid (4.23g, 36.45 mmol) then added DCC (8.273g, 40.1 mmol) and DMAP (0.225g, 1.90 mmol). Stirred from 0 °C to rt for 3 h, Reaction was completed, filtered to remove DCU. The filterate was washed with NaOH (0.5 N), concentrated under reduced pressure. The crude product was purified by using flash chromatography, eluting with 5% EtOAc/hexane to give ester **16a** (5.26 g, 15.47 mmol, 85%); P_f (10% EtOAc/hexane) = 0.7; $[\alpha]^{25}_{D} = -60.9$ (c = 1.22, CH₂Cl₂); IR (thin film, cm⁻¹) 2957, 2859, 1742, 1711, 1466, 1243, 1168, 1107, 1051, 1027, 749; ¹H NMR (400 MHz, CDCl₃) δ 5.78 (d, J = 10.0 Hz, 1H), 5.74 (dd, J = 10.0, 10.0 Hz, 1H), 5.00 (d, J = 8.8 Hz, 1H) 4.88 (s, 1H), 3.94 (dq, J = 9.6, 6.6 Hz, 1H), 3.72 (ddd, J = 9.6, 7.2, 6.8 Hz, 1H), 3.44 (ddd, J = 9.6, 7.2, 6.8 Hz, 1H), 2.27 (dd, J = 7.2, 7.2 Hz, 1H), 1.60 (m, 4H), 1.25 (m, 14H), 1.16 (d, J = 6.8 Hz, 3H), 0.83 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 173.3, 129.8, 128.0, 94.5, 70.7, 68.8, 64.8, 34.5, 31.9, 31.4, 29.9, 29.5, 29.4, 26.3, 24.8, 22.8, 22.4, 18.1, 14.2, 14.0; HRMS–MALDI–TOF (CCA) (m/z): [M + Na]⁺ calcd for [C₂₀H₃₆O₄ + Na]⁺: 363.2506, Found: 363.2510.

1-Octyloxy-4-O-hexanoyl- α -L-rhamnopyranoside (17a):

To a stirred solution of ester **16a** (5.5 g, 16.20 mmol) in *t*-butanol/acetone (1:1, 16.1 mL) at 0 °C was added a solution of *N*-methyl morpholine *N*-oxide/water (50% w/v) (8.1 mL) and OsO₄ (206 mg, 5 mol%). The reaction mixture was stirred at rt for 12 h and then concentrated. The residue was pipetted directly on to a silica gel column; the product was eluted with 10-15% EtOAc/hexane. Pure fractions were combined and concentrated to afford ester diol **17a** (5.3, 14.20 mmol, 88%); *P_t* (20% EtOAc/hexane) = 0.28; $[\alpha]^{25}_{D} = -56$ (*c* = 1.6, CH₂Cl₂); IR (thin film, cm⁻¹) 3321, 2956, 2925, 2857, 1732, 1459, 1379, 1246, 1178, 1104, 1085, 984, 835, 794, 645; ¹H NMR (400 MHz, CDCl₃) δ 4.80 (s, 1H), 4.77 (dd, *J* = 9.6, 9.6 Hz, 1H), 3.92 (d, *J* = 1.6 Hz, 1H), 3.88 (dd, *J* = 9.2, 3.2 Hz, 1H), 3.81 (dq, *J* = 9.6, 6.4 Hz, 1H), 3.68 (ddd, *J* = 9.6, 7.2, 6.8 Hz, 1H), 3.43 (ddd, *J* = 9.4, 6.4, 6.4 Hz, 1H), 2.39 (dd, *J* = 7.2, 7.6 Hz, 1H), 2.37 (dd, *J* = 7.2, 7.2 Hz, 1H) 1.66 (m, 2H), 1.56 (m, 2H) 1.33 (m, 14H), 1.21 (d, *J* = 6.0 Hz, 3H), 0.91 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 175.4, 99.3, 75.6, 71.2, 70.6, 68.1, 65.5, 34.6, 32.0, 31.4, 29.6, 29.5, 29.5, 26.3, 24.8, 22.9, 22.5, 17.7, 14.4, 14.1; HRMS-MALDI-TOF (CCA) (m/z): [M + Na]⁺ calcd for [C₂₀H₃₈O₆ + Na]⁺: 397.2561, Found: 397.2594.

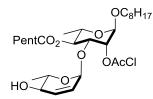
1-Octyloxy-2,3-didehydro-5-methyl-4-oxopyranosyl- $(1\rightarrow 3)$ -4-*O*-hexanoyl-2-hydroxy- α -L-rhamnopyranoside (19 and 20):


To a solution of diol **17a** (100 mg, 0.267 mmol) in toluene was added dibutyltinoxide (73 mg, 0.32 mmol, 1.1 eq.) and the reaction was refluxed for 4 h. After 4h, the toluene was evaporated and added dry CH_2Cl_2 (4 mL), stirred at 0 °C for 15 min and then added Boc-pyranone **14** (68

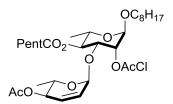
mg, 0.29 mmol) followed by addition of Pd₂(dba)₃•CHCl₃ (7 mg, 2.5 mol%) and PPh₃ (7.1 mg, 10 mol%) solution in CH₂Cl₂. After 2 h the reaction was guenched by adding 1.5 mL saturated NaHCO₃, followed by extraction with EtOAc (3 x 10 mL). The organic layers were combined, washed by 2 mL saturated brine solution, dried over Na₂SO₄ and concentrated under reduced pressure. The crude product was purified using silica gel flash chromatography eluting with 10-15% EtOAc/hexane to give inseparable mixture of glycosylated product 19 and 20 as C-3 and C-2 regioisomer in the ratio (5:1) (88 mg, 0.18 mmol, 68%); $P_{f}(20\% \text{ EtOAc/hexane}) = 0.5; [\alpha]^{25} D_{D}$ = -31.3 (c = 0.5, CH₂Cl₂); IR (thin film, cm⁻¹) 3433, 2954, 2931, 2858, 1710, 1613, 1514, 1360, 1248, 1221, 1175, 1035, 819, 735, 529; Major Product **19**: ¹H NMR (400 MHz, CDCl₃) δ 6.69 (dd, J = 10.4, 3.6 Hz, 1H), 6.10 (d, J = 10.4 Hz, 1H), 5.32 (d, J = 2.8 Hz, 1H), 5.11 (dd, J = 9.6),9.6 Hz, 1H), 4.80 (s, 1H), 4.60 (q, J = 6.8 Hz, 1H), 4.10 (dd, J = 9.6, 2.8 Hz, 1H), 4.05 (br, 1H), 3.82 (dq, J = 9.6, 5.6 Hz, 1H), 3.69 (ddd, J = 9.6, 6.4, 6.4 Hz, 1H), 3.47 (ddd, J = 9.6, 6.4, 6.4)Hz, 1H), 2.37 (m, 2H), 1.66 (m, 4H) 1.40 (d, J= 6.8 Hz, 3H), 1.32-1.25 (m, 14H), 1.19 (d, J= 6.0 Hz, 3H), 0.90-0.88 (m, 6H); ¹³C NMR (100MHz,CDCl₃) δ 196.3, 173.3, 142.5, 127.8, 99.3, 94.8, 77.9, 72.8, 71.3, 70.9, 68.2, 66.3, 34.6, 32.0, 31.5, 29.6, 29.5, 29.4, 26.3, 24.9, 22.8, 22.5, 17.6, 15.4, 14.3, 14.1; HRMS-MALDI-TOF (CCA) (m/z): $[M + Na]^+$ calcd for $[C_{26}H_{44}O_8 +$ Na]⁺: 507.2928, Found: 507.2934.

Alternative procedure for regioselective glycosylation at C-3 position:

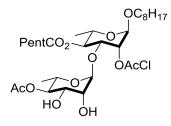
To a stirred solution of diol **17a** (50 mg, 0.135 mmol) in CH₃CN/THF (1:0.1) (2.7 mL, 0.05M), was added boron catalyst (Ph₂BOCH₂CH₂NH₂) (4.5 mg, 30 mol%) at 0 °C. After 15 min, was added Boc-pyranone (**14**) (37 mg, 0.16 mmol) followed by addition of previously mixed solution of Pd₂(dba)₃•CHCl₃ (3.5 mg, 2.5 mol%) and PPh₃ (3.6 mg, 10 mol%) solution in CH₃CN/THF. Reaction was monitored by TLC, completed in 4 h. Diluted with EtOAc, quenched with water and extracted. The organic layers were combined and evaporated under reduced pressure. The crude product was purified using silica gel to elute the desired product with 12-14% EtOAc/hexane to give inseparable mixture of glycosylated product as C-3 and C-2 regioisomer in the ratio (7.5:1) of **19** and **20** (48 mg, 0.10 mmol, 74%).


1-Octyloxy-2,3-didehydro-5-methyl-4-oxo-pyranosyl- $(1 \rightarrow 3)$ -2-*O*-chloroacetyl-4-*O*-hexanoyl- α -L-rhamnopyranoside (21):

To a mixture of enone 19 and 20 (80 mg, 0.16 mmol) in pyridine (0.33 mL) was added chloroacetic anhydride (98.8 mg, 0.58 mmol), 10% DMAP (2 mg, 0.016 mmol) at 0 °C. Reaction was monitored by TLC, completed in 2 h. Diluted with EtOAc and quenched with dil. HCl (0.5N). Extracted the aqueous layer with ether $(3 \times 30 \text{ mL})$ and concentrated under reduced pressure. The crude product was subjected to column chromatography using silica gel eluting with 8-10% EtOAc/hexane to afford mixture 21 and its C-2 regioisomer (83.3 mg, 0.15 mmol, 90%); $R_f(30\% \text{ EtOAc/hexane}) = 0.8 [\alpha]^{25} = -4.1 (c = 0.75, CH_2Cl_2)$; IR (thin film, cm⁻¹) 2956, 2926, 2856, 1747, 1704, 1463, 1377, 1238, 1166, 1133, 1088, 1040, 1007, 784; Major Product **21**: ¹H NMR (400 MHz, CDCl₃) δ 6.61 (dd, J = 10.4, 2.8 Hz, 1H), 6.06 (d, J = 10.4 Hz, 1H), 5.32 (dd, J = 2.8, 1.2 Hz, 1H), 5.28 (d, J = 2.8 Hz, 1H), 5.08 (dd, J = 10.4, 9.6 Hz, 1H), 4.74 (d, J= 1.6 Hz, 1H), 4.52 (q, J = 6.4 Hz, 1H), 4.24 (dd, J = 9.6, 2.8 Hz, 1H), 4.14 (s, 2H), 3.84 (dq, J = 9.6, 6.4 Hz, 1H), 3.68 (ddd, J = 9.6, 7.2, 6.8 Hz, 1H), 3.47 (ddd, J = 9.6, 7.2, 6.8 Hz, 1H), 2.34 (m, 2H), 1.65 (m, 4H), 1.37-1.19 (m, 20H), 0.90 (brs, 3H), 0.88 (d, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) & 196.5, 172.8, 167.2, 141.9, 127.9, 97.1, 95.5, 75.5, 73.8, 72.6, 70.8, 68.6, 66.7, 41.0, 34.5, 31.5, 29.9, 29.5, 29.4, 26.3, 24.9, 22.9, 22.5, 17.7, 15.1, 14.3, 14.1; HRMS-MALDI-TOF (CCA) (m/z): $[M + Na]^+$ calcd for $[C_{28}H_{45}O_9Cl + Na]^+$: 583.2644, Found: 583.2642.


⁽A MnO₂ oxidation was performed on compound **12** to provide pure enone **21**, which was fully characterized and the data is mentioned above in the supporting information). The assignment of the C-3 glycosylation was confirmed by using chloroacylation which in addition to serving as a protecting group, is also used to assign regioselectivity. The ¹H NMR for the chloroacylated major product **21** has a signal for the C-2 position (assigned by coupling constants, dd, J = 2.8, 1.2 Hz, 1H) that has moved downfield (5.32 ppm (**21**) from 4.05 ppm (**19**)) from the starting material (i.e., C-2 position of compound **19**). Further proof of the regioselectivity is provided by the conversion of **19** into the natural products, Mezzettiasides **2-11**).

1-Octyloxy-2,3-didehydro- α -L-rhamnopyranosyl-(1 \rightarrow 3)-2-*O*-chloroacetyl-4-*O*-hexanoyl- α -L-rhamnopyranoside (12):


To a solution of enone **21** and its regioisomer (80 mg, 0.14 mmol) in CH₂Cl₂ (1.4 mL) at -78 °C was added CeCl₃/MeOH solution (0.4 M in MeOH, 0.3 mL) and NaBH₄ (6.7 mg, 0.17 mmol). The reaction mixture was stirred at -78 °C for 2 h and guenched with 2 mL of saturated aqueous NaHCO₃ solution, extracted with Et₂O (2 x 50 mL), dried over Na₂SO₄, and concentrated under reduced pressure. The crude product was purified using silica gel flash chromatography eluting with 18-20% EtOAc/hexane to give allylic alcohol 12 (68 mg, 0.12 mmol, 85%), the desired product was obtained in the pure form at this step; $P_{f}(30\% \text{ EtOAc/hexane}) = 0.4$; $[\alpha]_{D}^{25} = -28.5$ (*c* = 1.0, CH₂Cl₂); IR (thin film, cm⁻¹) 3454, 2928, 2859, 1744, 1275, 1260, 746; ¹H NMR (400 MHz, CDCl₃) δ 5.91 (d, J = 10.4 Hz, 1H), 5.56 (ddd, J = 9.6, 6.6, 6.4 Hz, 1H), 5.26 (d, J = 3.2, 1.6 Hz, 1H), 5.02 (dd, $\not=$ 10.4, 9.6 Hz, 2H), 4.72 (d, J = 1.6 Hz, 1H), 4.19 (d, J = 5.2 Hz, 2H), 4.14 (dd, J = 9.6, 2.8 Hz, 1H), 3.82 (dq, J = 9.6, 6.4 Hz, 2H), 3.69 (ddd, J = 9.6, 7.2, 6.8 Hz, 1H), 3.63 (m, 1H), 3.46 (ddd, J = 9.6, 7.2, 6.8 Hz, 1H), 2.33 (m, 2H), 1.65 (m, 4H), 1.37-1.25 (m, 19H), 1.19 (d, J = 6.4 Hz, 3H), 0.90 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 172.9, 167.4, 134.3, 125.8, 97.2, 96.7, 74.8, 74.6, 72.7, 69.7, 68.54, 68.54, 66.8, 41.2, 34.5, 32.1, 31.5, 29.6, 29.5, 26.3, 24.9, 22.90, 22.5, 18.0, 17.7, 14.4, 14.1; HRMS-MALDI-TOF (CCA) (m/z): [M + Na^{+}_{1} calcd for $[C_{28}H_{47}O_{9}Cl + Na^{+}_{1}: 585.2801$, Found: 585.2830.

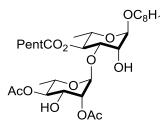
1-Octyloxy-2,3-didehydro-4-*O*-acetyl- α -L-rhamnopyranosyl-(1 \rightarrow 3)-2-*O*-chloroacetyl-4-*O*-hexanoyl- α -L-rhamnopyranoside (12a):

To a solution of allylic alcohol **12** (75 mg, 0.13 mmol) in pyridine (22 µL, 0.27 mmol) at 0 °C was added acetic anhydride (25.2 µL, 0.27 mmol) and a catalytic amount of 4dimethylaminopyridine (2.0 mg, 10 mol%). After being stirred for 2 h, the mixture was diluted with ether, washed with dil. HCl solution (1 mL) and the solvent was evaporated under reduced pressure. The crude product was purified by silica gel flash chromatography eluting with 5-7% EtOAc/hexane to give acetate **12a** (73 mg, 0.12 mmol, 91%) as oil: R_{f} (20% EtOAc/hexane) = 0.8; $[\alpha]_{D}^{25} = -28$ (c = 1.06, CH₂Cl₂); IR (thin film, cm⁻¹) 3591, 2928, 2857, 1746, 1376, 1234, 1165, 1133, 1083, 1039, 1001; ¹H NMR (400 MHz, CDCl₃) δ 5.83 (d, J = 9.6 Hz, 1H), 5.61 (dd, J = 10.4, 2.0 Hz, 1H), 5.26 (d, J = 1.2 Hz, 1H), 5.04 (br, 1H), 5.02 (dd, J = 9.6, 9.6 Hz, 1H), 5.01 (dd, J = 9.6, 9.6 Hz, 1H), 4.72 (s, 1H), 4.21 (d, J = 6.4 Hz, 2H), 4.15 (dd, J = 10.4, 2.8 Hz, 1H), 3.83 (dq, J = 9.6, 6.4 Hz, 2H), 3.68 (ddd, J = 9.6, 6.8, 6.8 Hz, 1H), 3.45 (ddd, J = 9.6, 6.8, 6.8 Hz, 1H), 2.33 (m, 2H), 2.08 (s, 3H) 1.65 (m, 4H), 1.32-1.25 (m, 14H), 1.20 (d, J = 6.4 Hz, 3H), 1.19 (d, J = 6.4 Hz, 3H), 0.91 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 172.9, 170.8, 167.3, 130.8, 126.8, 97.2, 96.8, 75.1, 74.5, 72.6, 70.8, 68.5, 66.7, 65.4, 41.2, 34.5, 32.0, 31.5, 29.5, 29.4, 26.3, 24.9, 22.9, 22.5, 21.3, 17.97, 17.69, 14.3, 14.0; HRMS (ESI) calcd for $[C_{30}H_{49}O_{10}Cl +$ Na]⁺: 627.2912, Found: 627.2918.

1-Octyloxy-4-*O*-acetyl- α -L-rhamnopyranosyl-(1 \rightarrow 3)-2-*O*-chloroacetyl-4-*O*-hexanoyl- α -L-rhamnopyranoside (12b):

To a stirred solution of acetate **12a** (70 mg, 0.12 mmol) in *t*-butanol/acetone (1:1, 0.6 mL) at 0 °C was added a solution of *N*-methyl morpholine *N*-oxide/water (50% w/v) (50 µL) and OsO₄ (1.5 mg, 5 mol%). The reaction mixture was stirred at rt for 8 h and then concentrated. The crude product was purified using silica gel chromatography, eluting with 22-25% EtOAc/hexane. Pure fractions were combined and concentrated to afford desired diol **12b** (65.1 mg, 0.10 mmol, 88%); $R_f(10\% \text{ MeOH/CH}_2\text{Cl}_2) = 0.45$; $[\alpha]^{25}_{\text{D}} = -26.7$ (c = 2.4, CH₂Cl₂); IR (thin film, cm⁻¹)

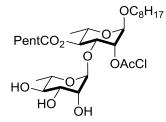
3493, 3394, 2955, 2928, 2858, 1742, 1454, 1376, 1235, 1164, 1132, 1084, 1036; ¹H NMR (400 MHz, CDCl₃) δ 5.19 (br, 1H), 5.06 (dd, J = 10.4, 10.4 Hz, 1H), 4.93 (s, 1H), 4.76 (dd, J = 9.6, 9.6 Hz, 1H), 4.72 (s, 1H), 4.17 (s, 2H), 4.15 (dd, J = 9.6, 2.4 Hz, 1H), 3.80 (m, 3H), 3.67 (ddd, J = 9.6, 6.8, 6.8 Hz, 1H), 3.44 (ddd, J = 9.6, 6.8, 6.8 Hz, 1H), 2.31 (m, 2H), 2.13 (s, 3H), 1.62 (m, 4H), 1.30-1.24 (m, 14H), 1.19 (d, J = 5.6 Hz, 3H), 1.17 (d, J = 5.6 Hz, 3H), 0.90 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 173.0, 172.7, 167.2, 101.4, 97.0, 75.5, 74.7, 73.8, 72.7, 71.1, 70.1, 68.6, 66.7, 66.6, 41.0, 34.5, 32.0, 31.5, 29.5, 29.4, 26.3, 24.8, 22.9, 22.5, 21.3, 17.6, 17.5, 14.3, 14.1; HRMS–MALDI-TOF (CCA) (m/z): [M + Na]⁺ calcd for [C₃₀H₅₁O₁₂Cl + Na]⁺: 661.2961, Found: 661.2994.


1-Octyloxy-2,4-*O*-diacetyl- α -L-rhamnopyranosyl-(1 \rightarrow 3)-2-*O*-chloroacetyl-4-*O*-hexanoyl- α -L-rhamnopyranoside (22):

To a solution of diol **12b** (60mg, 0.09 mmol) in CH₂Cl₂ (0.45 mL) at 0 °C was added triethylorthoacetate (51µL, 0.28 mmol) and *p*-TsOH·H₂O (3.0 mg). The reaction was stirred at 0 °C for 1 h and then acetic acid (aq) (90%, 0.2 mL) was added, stirred for another 20 min. The reaction mixture was diluted with 10 mL EtOAc and washed with saturated aqueous NaHCO₃ solution, extracted with EtOAc (2 x 10 mL), dried Na₂SO₄, and concentrated under reduced pressure. The crude product was purified using silica gel flash chromatography eluting with 20-22% EtOAc/hexane to give C-2 acetate **22** (54.5 mg, 0.08 mmol, 85%) as a thick oily liquid: R_{*f*} (20% EtOAc/hexane) = 0.8; $[\alpha]^{25}_{D} = -30.8$ (*c* = 2.3, CH₂Cl₂); IR (thin film, cm⁻¹) 3476, 2956, 2931, 2958, 1744, 1453, 1375, 1237, 1228, 1163, 1134, 1087, 1042, 986; ¹H NMR (400 MHz, CDCl₃) δ 5.16 (dd, *J* = 2.8, 1.2Hz, 1H), 5.07 (dd, *J* = 9.6, 9.6 Hz, 1H), 4.91 (s, 1H) 4.85 (dd, *J* = 3.6, 1.2 Hz, 1H), 4.83 (dd, *J* = 9.6, 9.6 Hz, 1H), 4.72 (s, 1H), 4.18 (d, 2H), 4.10 (dd, *J* = 10.4, 2.8 Hz, 1H), 3.88 (dd, *J* = 10.4, 3.2 Hz, 1H), 3.79 (dq, *J* = 10.4, 6.0 Hz, 2H) 3.64 (ddd, *J* = 9.6, 6.4, 6.4 Hz, 1H), 2.45 (m, 1H), 2.35 (m, 1H), 2.12 (s, 6H), 1.64

(m, 4H), 1.32-1.28 (m, 14H), 1.17 (m, 6H), 0.90 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 173.3, 171.8, 170.4, 167.2, 99.4, 96.9, 75.4, 74.5, 73.7, 72.9, 72.1, 68.5, 68.2, 66.9, 66.8, 40.9, 34.1, 32.0, 31.47, 29.5, 29.4, 26.2, 24.7, 22.8, 22.5, 21.2, 21.1, 17.6, 17.4, 14.3, 14.1; HRMS (ESI) calcd for [C₃₂H₅₃O₁₃Cl + H]⁺: 681.3253, Found: 681.3248.

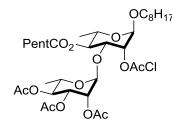
Mezzettiaside-10(10):



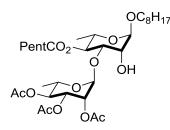
To a solution of diacetate alcohol **22** (30 mg, 0.04 mmol) in THF (0.4 mL) was added thiourea (21 mg, 0.264 mmol), NaHCO₃ (13 mg, 0.15 mmol) and *n*-Bu₄NI (8.2 mg, 0.02 mmol). The reaction mixture was stirred at 60 °C for 3 h. The reaction solution was pipetted directly on to a silica gel column and eluted with 30-35% EtOAc/hexane to afford Mezzettiaside-**10** (**10**) (23 mg, 0.04 mmol, 86%) as a gum; R₁(50% EtOAc/hexane) = 0.3; $[\alpha]^{25}_{D} = -48.1$ (*c* = 0.10, CHCl₃); IR (thin film, cm⁻¹) 3515, 2922, 1740, 1378, 1325, 1266,845, 829, 721; ¹H NMR (400 MHz, CDCl₃) δ 5.07 (dd, *J* = 9.6, 9.6 Hz, 1H), 4.94 (s, 1H), 4.91 (d, *J* = 1.6 Hz, 1H), 4.88 (dd, *J* = 9.6 9.6 Hz, 1H), 4.76 (s, 1H), 4.04 (dd, *J* = 9.6, 3.6 Hz, 1H), 3.96 (m, 3H), 3.77 (dq, *J* = 9.6, 6.0 Hz, 1H), 3.66 (ddd, *J* = 10.4, 6.8, 6.8 Hz, 1H), 3.41 (ddd, *J* = 10.4, 6.4, 6.4 Hz, 1H), 2.44 (m, 1H), 2.36 (m, 1H), 2.13 (s, 3H), 2.12 (s, 3H), 1.65 (m, 4H), 1.32-1.27 (m, 14H), 1.21 (d, *J* = 6.0 Hz, 3H), 1.18 (d, *J* = 6.0 Hz, 3H), 0.93 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 173.5, 171.6, 170.5, 99.4, 99.2, 78.5, 74.5, 73.0, 72.0, 71.2, 68.3, 68.2, 67.0, 66.4, 34.3, 32.0, 31.5, 29.6, 29.5, 29.4, 26.3, 24.8, 22.9, 22.5, 21.20, 21.17, 17.6, 17.6, 14.3, 14.1; HRMS–MALDI–TOF (CCA) (m/z): [M + Na]⁺ calcd for [C₃₀H₃₂O₁₂ + Na]⁺: 627.3351, Found: 627.3378.

NMR Data: ¹H NMR (400 MHz, $C_6D_6 + CD_3OD$ (4:1)) δ 5.46 (dd, J = 10.4 Hz, 1H), 5.27 (dd, J = 10.0, 10.0 Hz, 1H), 5.21 (dd, J = 1.6 Hz, 1H), 5.01 (s, 1H), 4.86 (s, 1H), 4.40 (dd, J = 9.6, 3.6 Hz, 1H), 4.21 (m, 3H), 3.94 (dq, J = 10.6, 6.4 Hz, 1H), 3.62 (ddd, J = 9.6, 7.6, 7.8 Hz, 1H), 3.28 (ddd, J = 9.6, 6.8, 6.8 Hz, 1H), 2.59 (m, 1H), 2.37 (m, 1H), 1.88 (s, 3H), 1.83 (s, 3H), 1.27 (m, 24H), 0.85 (m, 6H); ¹³C NMR (100 MHz, $C_6D_6 + CD_3OD$ (4:1)) δ 174.1, 171.3, 170.9, 100.6,

¹100.2, 78.4, 74.6, 73.4, 73.0, 71.5, 68.2, 67.4 (2C), 67.2, 34.4, 32.2, 31.7, 29.8, 29.7, 29.6, 26.5, 24.9, 23.0, 22.7, 20.6, 20.4, 17.67, 17.51, 14.2, 14.0.


1-Octyloxy- α -L-rhamnopyranosyl-(1 \rightarrow 3)-2-*O*-chloroacetyl-4-*O*-hexanoyl- α -L-rhamnopyranoside (12c):

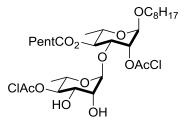
To a stirred solution of allylic alcohol **12** (50 mg, 0.08 mmol) in *t*-butanol/acetone (1:1, 0.8 mL) at 0 °C was added a solution of *N*-methyl morpholine *N*-oxide/water (50% w/v) (45 µL) and OsO₄ (1.2 mg, 5 mol%). The reaction mixture was stirred at rt for 12 h and then concentrated. The residue was pipetted directly on to a silica gel column and the product was eluted with 2-3 % MeOH/ CH₂Cl₂. Pure fractions were combined and concentrated to afford triol **12c** (42.5 mg, 0.07 mmol, 86%); $R_f(10\%$ MeOH/ CH₂Cl₂) = 0.45; $[\alpha]^{25}_{D} = -32.4$ (*c* = 2.1, CH₂Cl₂); IR (thin film, cm⁻¹) 3464, 3414, 2956, 2929, 2858, 1748, 1457, 1378, 1167, 1134, 1087, 1044, 987, 818; ¹H NMR (400 MHz, CDCl₃) δ 5.21 (br, 1H), 5.04 (dd, *J* = 10.4, 10.4 Hz, 1H), 4.87 (s, 1H), 4.72 (s, 1H), 4.26 (d, *J* = 11.6 Hz, 2H), 4.15 (dd, *J* = 10.4, 3.6 Hz, 1H), 3.81 (m, 2H), 3.67 (m, 3H), 3.44 (ddd, *J* = 9.6, 6.8, 6.8 Hz, 2H), 2.33 (m, 2H), 1.62 (m, 4H), 1.37-1.25 (m, 17H), 1.17 (d, *J* = 6.4 Hz, 3H), 0.90 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 173.4, 167.6, 101.7, 97.2, 74.2, 74.0, 73.4, 73.0, 71.6, 71.3, 69.3, 68.7, 66.7, 41.2, 34.7, 32.15, 31.6, 29.64, 29.55, 26.4, 25.0, 23.0, 22.6, 17.72, 17.70, 14.4, 14.2; HRMS–MALDI–TOF (CCA) (m/z): [M + Na]⁺ calcd for [C₂₈H₄₉O₁₁Cl + Na]⁺: 619.2856, Found: 619.2852.


¹Optical rotation for the isolated **Mezzettiaside-10**: $[\alpha]_D = -54.4$ (c = 0.10, CHCl₃) (Ref. 2).

1-Octyloxy-2,3,4-*O*-triacetyl- α -L-rhamnopyranosyl-(1 \rightarrow 3)-2-*O*-chloroacetyl-4-*O*-hexanoyl- α -L-rhamnopyranoside (12d):

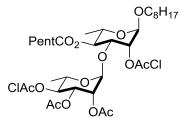
To a solution of triol **12c** (30 mg, 0.05 mmol) in CH₂Cl₂ (0.5 mL) was added pyridine (24.3 μ L, 0.30 mmol) and acetic anhydride (19 µL, 0.20 mmol) at 0 °C followed by addition of DMAP (0.7 mg, 10 mol%). Reaction was continued to stir for 3 h. Monitored by TLC and diluted with ether, quenched with dil. HCl (1 mL, 0.5N), dried over Na₂SO₄ and the crude product was purified using column chromatography eluting with 15-20% EtOAc/hexane to give triacetate product **12d** (34.2 mg, 0.05 mmol, 94%): R_f (30% EtOAc/hexane) = 0.8; $[\alpha]_{D}^{25} = -17.8$ (c = 2.3, CH₂Cl₂); IR (thin film, cm⁻¹) 2956, 2925, 2855, 1749, 1453, 1372, 1228, 1087, 1047, 749; ¹H NMR (400 MHz, CDCl₃) δ 5.20 (dd, J = 4.0, 2.4 Hz, 1H), 5.14 (dd, J = 9.6, 3.2 Hz, 1H), 5.09 (dd, J = 10.4, 10.4 Hz, 1H), 5.04 (dd, J = 9.6, 9.6 Hz, 1H), 5.01 (dd, J = 2.8, 1.2 Hz, 1H), 4.86 (s, 10.4 Hz, 1H), 5.04 (dd, J = 9.6, 9.6 Hz, 1H), 5.01 (dd, J = 2.8, 1.2 Hz, 1H), 5.04 (dd, J = 9.6, 9.6 Hz, 1H), 5.01 (dd, J = 2.8, 1.2 Hz, 1H), 5.04 (dd, J = 9.6, 9.6 Hz, 1H), 5.01 (dd, J = 2.8, 1.2 Hz, 1H), 5.04 (dd, J = 9.6, 9.6 Hz, 1H), 5.01 (dd, J = 2.8, 1.2 Hz, 1H), 5.04 (dd, J = 9.6, 9.6 Hz, 1H), 5.01 (dd, J = 2.8, 1.2 Hz, 1H), 5.04 (dd, J = 9.6, 9.6 Hz, 1H), 5.01 (dd, J = 2.8, 1.2 Hz, 1H), 5.01 (dd, J = 9.6, 9.6 Hz, 1H), 5.01 (dd1H), 4.72 (s, 1H), 4.27 (dd, J = 15.6, 9.6 Hz, 2H), 4.14 (dd, J = 9.6, 3.6 Hz, 1H), 3.88 (dq, J =9.6, 6.4 Hz, 1H), 3.78 (dq, J = 9.6, 6.2 Hz, 1H), 3.68 (ddd, J = 9.6, 6.8, 6.8 Hz, 1H), 3.43 (ddd, J= 9.6, 6.8, 6.8 Hz, 1H), 2.43 (m, 2H), 2.10 (s, 3H), 2.03 (s, 3H), 1.95 (s, 3H), 1.63 (m, 4H), 1.28 (m, 14H), 1.18 (m, 6H), 0.90 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 173.0, 170.3, 170.1, 169.7, 167.4, 99.2, 96.9, 75.0, 73.4, 72.2, 70.9, 70.2, 68.6, 68.4, 67.5, 66.8, 41.0, 34.2, 32.0, 31.5, 29.5, 29.4, 26.2, 24.7, 22.8, 22.4, 21.0, 20.8, 17.6, 17.5, 14.3, 14.1; HRMS-MALDI-TOF $(CCA) (m/z): [M + Na]^+$ calcd for $[C_{34}H_{55}O_{14}Cl + Na]^+$: 745.3173, Found: 745.3188.

Mezzettiaside-11 (11):

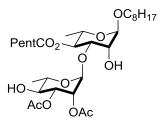


To a solution of the triacetate **12d** (20 mg, 0.028 mmol) in THF (0.28 mL) was added thiourea (6.4 mg, 0.083mmol), NaHCO₃ (9.3 mg, 0.11 mmol) and *n*-Bu₄NI (2.01 mg, 0.006 mmol). The reaction mixture was stirred at 60 °C for 4 h. The reaction mixture was pipetted directly to a silica gel column and eluted with 20-25% EtOAc/hexane to afford Mezzettiaside-**11** (**11**) (14.7 mg, 0.023 mmol, 82%) as a gum: *P*₄ (40% EtOAc/hexane) = 0.4; $[\alpha]^{25}_{D} = -54.2$ (*c* = 0.1, CHCl₃); IR (thin film, cm⁻¹) 3490, 2952, 2927, 1752, 1371, 1258, 1226, 1137, 1077, 764, 750; ¹H NMR (400 MHz, CDCl₃) δ 5.26 (dd, *J* = 10.4, 2.6 Hz, 1H), 5.10 (dd, *J* = 3.6, 1.6 Hz, 1H), 5.08 (dd, *J* = 10.4, 10.4 Hz, 1H), 5.05 (dd, *J* = 10.4, 10.4 Hz, 1H), 4.91 (s, 1H), 4.77 (s, 1H), 4.06 (dd, *J* = 9.6, 2.6 Hz, 1H), 3.96 (m, 2H), 3.78 (dq, *J* = 9.6, 6.4 Hz, 1H), 3.65 (ddd, *J* = 10.4, 7.2, 7.2 Hz, 1H), 3.42 (ddd, *J* = 10.4, 7.2, 7.2 Hz, 1H), 1.22 (d, *J* = 6.0 Hz, 3H), 1.19 (d, *J* = 5.6 Hz, 3H), 1.98 (s, 3H), 1.65 (m, 4H), 1.30-1.25 (m, 14H), 1.22 (d, *J* = 6.0 Hz, 3H), 1.19 (d, *J* = 5.6 Hz, 3H), 0.88 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 173.1, 170.3, 170.1, 169.8, 99.3, 98.9, 78.3, 71.9, 71.2, 71.0, 70.2, 68.9, 68.2, 67.4, 66.6, 34.3, 32.0, 31.5, 29.59, 29.54, 29.45, 26.3, 24.7, 22.9, 22.5, 21.1, 21.0, 20.9, 17.7, 17.6, 14.3, 14.1; HRMS–MALDI–TOF (CCA) (m/z): [M + Na]⁺ calcd for [C₃₂H₅₄O₁₃ + Na]⁺: 669.3457, Found: 669.3454.

NMR Data:¹H NMR (400 MHz, $C_6D_6 + CD_3OD$ (4:1)) δ 5.65 (dd, J = 10.4, 2.8 Hz, 1H), 5.53 (dd, J = 10.4, 10.4 Hz, 1H), 5.40 (t, J = 9.6, 9.6 Hz, 1H), 5.38 (m, 1H), 4.96 (s, 1H), 4.89 (s, 1H), 4.37 (dq, J = 8.8, 6.4 Hz, 1H), 4.19 (m, 2H), 3.95 (dq, J = 9.6, 6.0 Hz, 1H), 3.63 (m, 1H), 3.29 (m, 1H), 2.51 (m, 1H), 2.33 (m, 1H), 1.72 (s, 3H), 1.68 (s, 6H), 1.50 (m, 2H), 1.30-1.20 (m, 22H), 0.88 (m, 6H); ¹³C NMR (100 MHz, $C_6D_6 + CD_3OD$ (4:1)) δ 173.7, 170.3, 170.29, 100.6, 99.8, 78.9, 72.7, 71.6, 71.3, 70.8, 69.6, 68.2, 67.5, 67.3, 34.4, 32.2, 31.7, 29.8, 29.7, 29.7, 26.6, 24.9, 23.0, 22.6, 20.23 (2C), 20.2, 17.7, 17.4, 14.2, 14.0.


² Optical rotation for the isolated **Mezzettiaside-11**: $[\alpha]_D = -48.6$ (c = 0.10, CHCl₃) (Ref. 2).

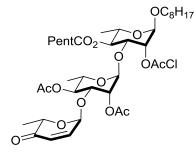
1-Octyloxy-4-*O*-chloroacetyl- α -L-rhamnopyranosyl-(1 \rightarrow 3)-2-*O*-chloroacetyl-4-*O*-hexanoyl- α -L-rhamnopyranoside (12e):


To a stirred solution of allylic alcohol 12 (80 mg, 0.14 mmol) in pyridine (40 µL) was added chloroacetic anhydride (73 mg, 0.43 mmol) and 4-dimethylaminopyridine (1.8 mg, 10 mol%). After stirring for 1 h, the mixture was diluted with ether, quenched with dil. HCl solution and the solvent was evaporated under reduced pressure. The crude product was directly used for carrying out dihydroxylation reaction. To a stirred solution of di-chloroacetate (74 mg, 0.12 mmol) in tbutanol/acetone (1:1, 1.1 mL) at 0 °C was added a solution of N-methyl morpholine Noxide/water (50% w/v) (115 μ L) and OsO₄ (1.5 mg, 5 mol%). The reaction mixture was stirred at rt for 10 h and then concentrated under reduced pressure. The crude product was subjected to column chromatography with 22-25% EtOAc/hexane elution. Pure fractions were combined and concentrated to afford desired diol **12e** (73.7 mg, 0.11 mmol, 77%); $[\alpha]^{25}_{D} = -48.4$ (c = 0.32, CH₂Cl₂); IR (thin film, cm⁻¹) 3413, 2956, 2928, 2858, 1748, 1277, 1168, 1135, 1087, 1029, 764, 749; ¹H NMR (400 MHz, CDCl₃) δ 5.20 (dd, *J* = 2.8, 1.2 Hz, 1H), 5.06 (dd, *J* = 9.6, 9.6 Hz, 1H), 4.93 (s, 1H), 4.87 (dd, J = 10.4, 10.4 Hz, 1H), 4.72 (s, 1H), 4.16 (s, 2H), 4.13 (d, J = 1.6 Hz, 2H), 3.82 (m, 5H), 3.67 (ddd, J = 9.6, 6.8, 6.8 Hz, 1H), 3.45 (ddd, J = 9.6, 6.8, 6.8 Hz, 1H), 2.33 (dd, J = 9.6, 6.8, 6.8 Hz, 1H), 2.33 (dd, J = 9.6, 6.8, 6.8 Hz, 1H), 2.33 (dd, J = 9.6, 6.8, 6.8 Hz, 1H), 2.33 (dd, J = 9.6, 6.8, 6.8 Hz, 1H), 2.33 (dd, J = 9.6, 6.8, 6.8 Hz, 1H), 3.45 (ddd, J = 9.6, 6.8, 6J = 7.6, 7.2 Hz, 2H), 1.64 (m, 4H), 1.31-1.25 (m, 14H), 1.21 (m, 6H), 0.91 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 173.0, 168.3, 167.2, 101.4, 97.0, 76.8, 74.8, 73.7, 72.7, 71.2, 69.8, 68.6, 66.6, 66.5, 41.0, 41.0, 34.5, 32.0, 31.5, 31.2, 29.5, 29.4, 26.3, 24.8, 22.9, 22.5, 17.6, 17.5, 14.3, 14.1; HRMS-MALDI-TOF (CCA) (m/z): $[M + Na]^+$ calcd for $[C_{30}H_{50}O_{12}Cl_2 + Na]^+$: 695.2572, Found: 695.2589.

$\label{eq:a-L-rhamnopyranosyl-(1 \rightarrow 3)-2-O-chloroacetyl-\alpha-L-rhamnopyranosyl-(1 \rightarrow 3)-2-O-chloroacetyl-4-O-hexanoyl-\alpha-L-rhamnopyranoside (12f):$

To a solution of diol **12e** (60 mg, 0.089 mmol) in pyridine (0.1 mL) at 0 °C was added acetic anhydride (34 µL) and a catalytic amount of 4-dimethylaminopyridine (1.2 mg, 10 mol%). After stirring for 3 h the mixture was diluted with ether, washed with 1N dil. HCl solution (0.5 mL) and the solvent was evaporated. The crude product was purified by silica gel flash chromatography eluting with 12-14% EtOAc/hexane to give diacetate **12f** (63.9 mg, 0.084 mmol, 95%) as oil: $R_f (20\% \text{ EtOAc/hexane}) = 0.6$; $[\alpha]^{25}_{D} = -45.6$ (c = 0.9, CH_2Cl_2); IR (thin film, cm⁻ ¹) 2956, 2930, 2858, 1751, 1371, 1280, 1239, 1164, 1137, 1088, 1045, 749; ¹H NMR (400 MHz, CDCl₃) δ 5.22 (d, J = 1.6 Hz, 1H), 5.18 (dd, J = 9.6, 2.8 Hz, 1H), 5.10-5.04 (m, 3H), 4.89 (s, 1H), 4.73 (s, 1H), 4.23 (dd, J = 10.4, 2.0 Hz, 2H), 4.14 (dd, J = 9.6, 2.8 Hz, 1H), 4.03 (s, 2H), 3.94 (dq, J=9.6, 6.4 Hz, 1H), 3.79 (dq, J=9.6, 6.4 Hz, 1H), 3.67 (ddd, J=9.6, 6.4, 6.4 Hz, 1H), 3.44 (ddd, J = 9.6, 6.4, 6.4 Hz, 1 H), 2.42 (m, 2H), 2.13 (d, J = 2.0 Hz, 3 H), 1.97 (d, J = 2.0 Hz, 3 H)3H), 1.61 (m, 4H), 1.30 (m,14H), 1.21 (d, J = 6.0 Hz, 3H), 1.91 (d, J = 6.0 Hz, 3H), 0.88 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 173.0, 170.1, 169.8, 167.5, 167.0, 99.1, 97.0, 75.2, 73.4, 72.9, 72.2, 70.2, 68.5, 68.4, 67.1, 66.8, 41.0, 40.8, 34.2, 32.0, 31.5, 29.5, 29.5, 29.4, 26.3, 24.7, 22.9, 22.5, 21.0, 20.9, 17.6, 17.5, 14.3, 14.1; HRMS (ESI) calcd for $[C_{34}H_{54}O_{14}Cl_2 + H]^+$: 757.2969, Found: 757.3000.

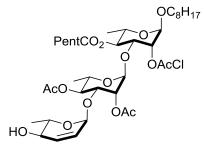
Mezzettiaside-9(9):


To a solution of diacetate **12f** (25 mg, 0.033 mmol) in THF (0.3 mL) was added thiourea (31 mg, 0.40 mmol), NaHCO₃ (17 mg, 0.20 mmol) and n-Bu₄NI (12.2 mg, 0.03 mmol). The reaction mixture was stirred at 60 °C for 3 h and then mixture was pipetted directly on to a silica gel column, eluting with 25-35% EtOAc/hexane to afford product Mezzettiaside-9 (9) (17.4 mg, 0.03 mmol, 87%) as a gummy oil: $R_f(50\% \text{ EtOAc/hexane}) = 0.4$; $[\alpha]_{D}^{25} = -47$ (c = 1.0, CHCl₃); IR (thin film, cm⁻¹) 3477, 2925, 2859, 1745, 1377, 1275, 1260, 1232, 1138, 1076, 1051, 764, 750; ¹H NMR (400 MHz, CDCl₃) δ 5.15 (dd, J = 10.0, 1.2 Hz, 1H), 5.10 (dd, J = 9.6, 9.6 Hz, 1H), 5.02 (dd, J = 2.8, 1.2 Hz, 1H), 4.87 (s, 1H), 4.78 (s, 1H), 3.98 (m, 1H), 3.93 (dd, J = 10.4, 2.8 Hz, 1H), 3.90 (dq, J = 9.6, 6.4 Hz, 1H), 3.77 (dq, J = 9.6, 6.4 Hz, 1H), 3.67 (m, 2H), 3.43 (ddd, J = 8.8, 6.8, 6.8 Hz, 1H), 2.45 (m, 1H), 2.34 (m, 1H), 2.11 (s, 3H), 2.08 (s, 3H), 1.62 (m, 1H), 2.11 (s, 3H), 2.08 (s, 3H), 1.62 (m, 1H), 2.11 (s, 3H), 2.08 (s, 3H), 1.62 (m, 1H), 2.11 (s, 3H), 2.08 (s, 3H), 1.62 (m, 1H), 2.11 (s, 3H), 2.08 (s, 3H), 1.62 (m, 1H), 2.11 (s, 3H), 2.08 (s, 3H), 1.62 (m, 1H), 2.11 (s, 3H), 2.08 (s, 3H), 1.62 (m, 1H), 2.11 (s, 3H), 2.08 (s, 3H), 1.62 (m, 1H), 2.11 (s, 3H), 2.08 (s, 3H), 1.62 (m, 1H), 2.11 (s, 3H), 2.08 (s, 3H), 1.62 (m, 1H), 2.11 (s, 3H), 2.08 (s, 3H), 1.62 (m, 1H), 2.11 (s, 3H), 2.08 (s, 3H), 1.62 (m, 1H), 2.11 (s, 3H), 2.08 (s, 3H), 1.62 (m, 1H), 2.11 (s, 3H), 2.08 (s, 3H), 1.62 (m, 1H), 2.11 (s, 3H), 2.08 (s, 3H), 1.62 (m, 1H), 2.11 (s, 3H), 2.11 (s, 3H), 2.08 (s, 3H), 1.62 (m, 1H), 2.11 (s, 3H), 2.11 (s, 3H), 2.08 (s, 3H), 1.62 (m, 1H), 2.11 (s, 3H), 2.11 (s,4H), 1.37-125 (m, 17H), 1.18 (d, J = 6.0 Hz, 3H), 0.90 (m, 6H); ¹³CNMR(400MHz, CDCl₃) δ 173.3, 171.6, 170.1, 99.4, 99.1, 78.1, 72.1, 72.0, 71.6, 71.0, 70.5, 69.7, 68.1, 66.5, 34.3, 32.0, 31.5, 29.6, 29.6, 29.5, 26.3, 24.8, 22.9, 22.5, 21.1, 21.1, 17.8, 17.7, 14.3, 14.1; HRMS-MALDI-TOF (CCA) (m/z): $[M + Na]^+$ calcd for $[C_{30}H_{52}O_{12} + Na]^+$: 627.3351, Found: 627.3387. NMR Data: ¹H NMR (400 MHz, $C_6D_6 + CD_3OD$ (4:1)) δ 5.52 (dd, J = 9.6, 2.8 Hz, 1H), 5.50 (dd, J = 10.4, 10.4 Hz, 1H), 5.36 (d, J = 2.4 Hz, 1H), 5.00 (s, 1H), 4.88 (s, 1H), 4.21 (m, 4H),3.93 (m, 1H), 3.83 (dd, J = 9.6, 9.6 Hz, 1H), 3.61 (m, 1H), 2.51 (m, 2H), 1.83 (s, 3H), 1.73 (s, 3H), 1.3H), 1.47 (d, J = 6.0 Hz, 6H), 1.29 (m, 18H), 0.87 (m, 6H); ¹³C NMR (100 MHz, C₆D₆ + CD₃OD (4:1)) 8 173.7, 171.1, 170.3, 100.6, 100.0, 78.4, 72.9, 71.9, 71.4, 71.3, 71.1, 69.9, 68.2, 67.3, 34.4, 32.2, 31.6, 29.8, 29.7, 29.7, 26.6, 24.9, 23.1, 22.7, 20.5, 20.3, 17.8, 17.7, 14.2, 14.0.

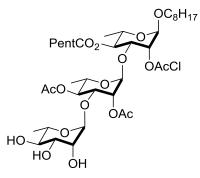
3

³ Optical rotation for the isolated **Mezzettiaside-9**: $[\alpha]_D = -56.4$ (c = 0.10, CHCl₃) (Ref. 2).

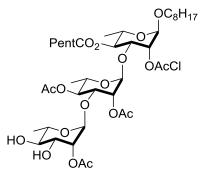
1-Octyloxy-2,3-didehydro-5-methyl-4-oxopyranosyl- $(1 \rightarrow 3)$ -2,4-O-diacetyl- α -L-


rhamnopyranosyl- $(1 \rightarrow 3)$ -2-O-chloroacetyl-4-O-hexanoyl- α -L-rhamnopyranoside (13):

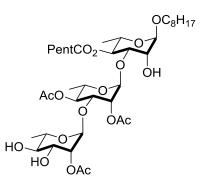
To a stirred solution of alcohol 22 (250 mg, 0.37 mmol) in CH₂Cl₂ (1.8 mL, 0.2M) at 0 °C was added Boc-pyranone **14** (251.3 mg, 1.10 mmol) followed by addition of Pd₂(dba)₃•CHCl₃ (10.0 mg, 2.5 mol%) and PPh₃ (10.2 mg, 10 mol%) solution in CH₂Cl₂. The reaction was stirred and warmed from 0 °C to rt. After 5 h, reaction was quenched by 10 mL saturated NaHCO₃ solution, followed by extraction with Et₂O (3 x 300 mL). The organic layers were combined, washed with 5 mL saturated brine, dried over Na₂SO₄ and concentrated under reduced pressure. The crude product was purified using silica gel flash chromatography eluting with 15-18% EtOAc/hexane to give trisaccharide enone **13** (198 mg, 0.25 mmol, 68%): R_f (30% EtOAc/hexane) = 0.8; $[\alpha]_D^{25}$ = -34.4 (c = 0.3, CH₂Cl₂); IR (thin film, cm⁻¹) 3487, 2927, 2856, 1792, 1746, 1457, 1375, 1239, 1135, 1088, 1045, 987; ¹H NMR (400 MHz, CDCl₃) δ 6.65 (dd, J = 10.4, 3.6 Hz, 1H), 6.05 (d, J= 10.4 Hz, 1H), 5.24 (d, J = 3.6 Hz, 1H), 5.20 (d, J = 1.2 Hz, 1H), 5.09 (m, 2H), 5.04 (dd, J = 9.6, 9.6 Hz, 1H), 4.87 (s, 1H), 4.72 (s, 1H), 4.41 (q, J = 6.8 Hz, 1H), 4.21 (d, J = 8.0 Hz, 2H), 4.12 (dd, J = 10.4, 3.6 Hz, 1H), 4.09 (dd, J = 10.4, 2.8 Hz, 1H), 3.81 (dq, J = 9.6, 5.6 Hz, 2H), 3.67 (ddd, J = 9.6, 6.8, 6.8 Hz, 1H), 3.43 (ddd, J = 9.6, 5.6, 5.6 Hz, 1H), 2.45 (m, 1H), 2.35 (m, 1H), 2.09 (s, 6H), 1.64 (m, 4H), 1.33-1.16 (m, 17H), 1.19 (m, 6H), 0.89 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) & 196.7, 173.2, 170.4, 170.1, 167.3, 142.2, 127.8, 99.4, 97.0, 95.5, 75.5, 75.4, 73.6, 72.4, 72.1, 71.9, 70.8, 68.5, 67.6, 66.7, 41.0, 34.2, 32.0, 31.5, 29.5, 29.4, 26.3, 24.7, 22.9, 22.5, 21.2, 21.1, 17.59, 17.57, 15.0, 14.3, 14.1; HRMS (ESI) calcd for $[C_{38}H_{59}O_{15}Cl + H]^+$: 791.3621, Found: 791.3656.


1-Octyloxy-2,3-didehydro- α -L-rhamnopyranosyl-(1 \rightarrow 3)-2,4-O-diacetyl- α -L-

rhamnopyranosyl- $(1\rightarrow 3)$ -2-O-chloroacetyl-4-O-hexanoyl- α -L-rhamnopyranoside (13a):


To a solution of trisaccharide enone **13** (150 mg, 0.19 mmol) in CH₂Cl₂ (1.5 mL) at - 78 °C was added CeCl₃/MeOH solution (0.4 M in MeOH, 0.38 mL) and NaBH₄ (15 mg, 0.38 mmol). The reaction mixture was stirred at -78 °C for 3 h. The reaction mixture was guenched with 3 mL saturated NaHCO₃ solution, extracted with Et₂O (3 x 30 mL), dried over Na₂SO₄, and concentrated under reduced pressure. The crude product was purified using silica gel chromatography eluting with 22-25% EtOAc/hexane to give trisaccharide allylic alcohol **13a** (131mg, 0.17 mmol, 87%): R_f (30% EtOAc/hexane) = 0.4; $[\alpha]_D^{25} = -36.6$ (c = 1.8, CH₂Cl₂); IR (thin film, cm⁻¹) 3503, 2929, 2858, 1745, 1375, 1292, 1135, 1088, 1044, 986; ¹H NMR (400 MHz, CDCl₃) δ 5.90 (d, J = 10.4 Hz, 1H), 6.05 (ddd, J = 10.4, 3.0, 2.4 Hz, 1H), 5.20 (d, J = 1.2Hz, 1H), 5.09 (dd, J = 9.6, 9.6 Hz, 1H), 5.02 (d, J = 1.2 Hz, 1H), 5.00 (dd, J = 9.6, 9.6 Hz, 1H), 4.96 (s, 1H), 4.86 (s, 1H), 4.72 (s, 1H), 4.21 (d, J = 9.6 Hz, 2H), 4.11 (dd, J = 9.6, 3.2 Hz, 1H), 3.95 (dd, J = 10.0, 3.6 Hz, 1H), 3.80 (m, 3H), 3.67 (ddd, J = 9.6, 7.2, 7.2 Hz, 1H), 3.56 (dq, J = 10.0, 3.6 Hz, 1H), 3.56 (dq, J8.8, 6.0 Hz, 1H), 3.43 (ddd, J = 9.6, 6.4, 6.4 Hz, 1H), 2.49-2.28 (m, 2H), 2.11 (s, 3H), 2.07 (s, 3H), 1.64 (m, 4H), 1.32-1.24 (m, 17H), 1.18 (m, 6H), 0.89 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) § 173.2, 170.6, 170.2, 167.3, 134.0, 126.0, 99.4, 97.0, 96.7, 75.2, 74.7, 73.7, 72.6, 72.5, 72.1, 69.7, 68.5, 68.4, 67.7, 66.7, 41.0, 34.2, 32.0, 31.5, 29.5, 29.4, 26.3, 24.7, 22.9, 22.5, 21.3, 21.10, 17.8, 17.6, 14.3, 14.1; HRMS-MALDI-TOF (CCA) (m/z): [M + Na]⁺ calcd for $[C_{38}H_{61}O_{15}Cl + Na]^+$: 815.3591, Found: 815.3575.

1-Octyloxy- α -L-rhamnopyranosyl-(1 \rightarrow 3)-2,4-*O*-diacetyl- α -L-rhamnopyranosyl-(1 \rightarrow 3)-2-*O*-chloroacetyl-4-*O*-hexanoyl- α -L-rhamnopyranoside (13b):


To a solution of allylic alcohol 13a (120 mg, 0.15 mmol) in t-BuOH/acetone (1.5 mL) at 0 °C was added a solution of (50% w/v) of *N*-methyl morpholine *N*-oxide / water (75 μ L) followed by addition of crystalline OsO₄ (2 mg, 5 mol%), stirred for 8 h. The reaction mixture was concentrated and was pipetted directly on to a silica gel column using CH₂Cl₂, the crude product was purified using silica gel column chromatography eluting with 95% EtoAc/hexane to get triol **13b** (113.9 mg, 0.14 mmol, 91%) R_f (10% MeOH/DCM) = 0.55; $[\alpha]_{D}^{25} = -52.1$ (c = 1.17, CH₂Cl₂); IR (thin film, cm⁻¹) 3433, 3309, 2930, 2859, 1746, 1375, 1229, 1138, 1088, 1045, 987; ¹H NMR (400 MHz, CDCl₃) δ 5.18 (d, J = 2.4 Hz, 1H), 5.06 (dd, J = 10.4, 10.4 Hz, 1H), 4.98 (dd, J = 10.4, 10.4 Hz, 1H), 4.94 (s, 1H), 4.85 (brs, 1H), 4.82 (s, 1H), 4.71 (s, 1H), 4.26 (d, J = 10.4, 10.4 Hz, 1H), 4.94 (s, 1H), 4.85 (brs, 1H), 4.82 (s, 1H), 4.71 (s, 1H), 4.94 (s, 1H), 4.94 (s, 1H), 4.95 (brs, 1H), 4.92 (s, 1H), 4.91 (s, 1H), 4.94 (s, 1H), 4.95 (s, 1H), 4.92 (s, 1H), 4.91 (s, 1H), 4.94 (s, 1H), 4.95 (s, 1H), 4.92 (s, 1H), 4.91 (s, 1H), 4.95 (s, 1H), 4.91 (s, 1H), 4.12.4 Hz, 2H), 4.10 (dd, J = 10.4, 2.8 Hz, 1H), 3.92 (dd, J = 9.6, 3.2 Hz, 1H), 3.78 (m, 3H), 3.66 (dq, J = 9.6, 6.4 Hz, 2H), 3.55 (dq, J = 8.8, 6.8 Hz, 1H), 3.42 (ddd, J = 9.6, 6.8, 6.8 Hz, 2H), 3.31(brs, 1H), 3.21 (brs, 1H), 2.48-2.34 (m, 2H), 2.11 (s, 3H), 2.08 (s, 3H), 1.63 (m, 4H), 1.29-1.22 (m, 17H), 1.20 (m, 6H), 0.88 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 173.2, 170.6, 170.5, 167.4, 102.0, 99.4, 97.0, 75.4, 74.8, 73.7, 73.07, 72.6, 72.2, 71.9, 71.6, 71.2, 69.1, 68.5, 67.4, 66.7, 41.0, 34.2, 31.99, 31.47, 31.11, 29.48, 29.38, 26.2, 24.7, 22.82, 22.44, 21.1, 17.58, 17.47, 17.39, 14.2, 14.1; HRMS (ESI) calcd for $[C_{38}H_{63}O_{17}Cl + H]^+$: 827.3832, Found: 827.3837.

 $1-Octyloxy-2-O-acetyl-\alpha-L-rhamnopyranosyl-(1\rightarrow 3)-2, 4-O-diacetyl-\alpha-L-rhamnopyranosyl-(1\rightarrow 3)-2-O-chloroacetyl-4-O-hexanoyl-\alpha-L-rhamnopyranoside (13c):$

To a solution of triol **13b** (32 mg, 0.04 mmol) in 1.0 mL CH₂Cl₂ was added *p*-TsOH·H₂O (2 mg) and triethylorthoacetate (22 µL, 0.12 mmol) at 0 °C. After stirring at 0 °C for 30 min, 0.1 mL 90% AcOH (aq.) was added and the reaction mixture was stirred for another 30 min at 0 °C. The reaction mixture was diluted with 5 mL EtOAc and washed with 2 mL saturated NaHCO₃ solution, followed by washing with 3 mL saturated brine, dried over Na₂SO₄. The combined organic layers were concentrated under reduced pressure to give crude product. The crude product was purified by flash chromatography on silica gel eluting with 50-55% EtOAc/hexane to give diol **13c** (26.6 mg, 0.031 mmol, 79%): R_f (70% EtOAc/hexane) = 0.4; $[\alpha]_D^{25} = -33.7$ (c =0.42, CH₂Cl₂); IR (thin film, cm⁻¹) 3462, 2955, 2927, 2858, 1745, 1479, 1376, 1235, 1138, 1046, 978, 749; ¹H NMR (400 MHz, CDCl₃) δ 5.18 (d, J = 2.4 Hz, 1H), 5.08 (dd, J = 10.4, 10.4 Hz, 1H), 5.03 (dd, J = 9.6, 9.6 Hz, 1H), 4.93 (d, J = 3.2 Hz, 1H), 4.89 (d, J = 2.0 Hz, 1H), 4.85 (s, 1H), 4.84 (s, 1H), 4.72 (s, 1H), 4.20 (d, J = 7.2 Hz, 2H), 4.10 (dd, J = 10.4, 2.8 Hz, 1H), 3.93 (dd, J = 10.4, 2.8 Hz, 1H), 3.78 (dq, J = 9.6, 6.0 Hz, 3H), 3.67 (ddd, J = 9.6, 6.4, 6.4 Hz, 1H),3.61 (dd, J = 9.6, 2.8 Hz, 1H), 3.44 (ddd, J = 9.6, 6.4, 6.4 Hz, 1H), 3.40 (m, 1H), 2.47-2.27 (m, 2H), 2.14 (s, 9H), 1.64 (m, 4H), 1.31-1.25 (m, 17H), 1.19 (m, 6H), 0.91 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 173.1, 170.71, 170.42, 167.3, 99.57, 99.54, 97.0, 75.6, 74.7, 73.73, 73.48, 72.51, 72.27, 72.14, 71.9, 70.1, 68.98, 68.53, 67.6, 66.7, 41.0, 34.2, 32.0, 31.5, 29.92, 29.5, 29.43, 26.3, 24.7, 22.87, 22.51, 21.17, 21.07, 17.62, 17.51, 17.44, 14.3, 14.1; HRMS (ESI) calcd for $[C_{40}H_{65}O_{18}Cl + H]^+$: 869.3936, Found: 869.3936.

Mezzettiaside-8 (8):

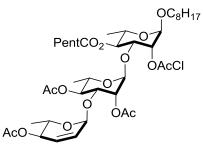
To a stirred solution of diol 13c (20 mg, 0.023 mmol) in THF (0.1 mL) was added thiourea (10.5 mg, 0.138 mmol), NaHCO₃ (6.8 mg, 0.08 mmol) and *n*-Bu₄NI (4.2 mg, 0.01 mmol). The reaction mixture was stirred at 60 °C for 6 h. The reaction mixture was pipetted directly to a silica gel column and eluted with 65-70% EtOAc/hexane to afford Mezzettiaside-8 (8) (15.5 mg, 0.019 mmol, 85%) as a gum: $R_f (100\% \text{ EtOAc/hexane}) = 0.5$; $[\alpha]^{25}_D = -40$ (c = 0.1, CHCl₃); IR (thin film, cm⁻¹) 3454, 2925, 2854, 1741, 1459, 1376, 1264, 1236, 1076, 1046, 736, 704; ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3) \delta 5.06 \text{ (dd}, J = 9.6, 9.6 \text{ Hz}, 1\text{H}), 5.04 \text{ (dd}, J = 10.0, 10.0 \text{ Hz}, 1\text{H}), 4.99 \text{ (dd}, J = 10.0, 10.0 \text{ Hz}, 1\text{H})$ = 3.2, 2.4 Hz, 1H), 4.88 (s, 3H), 4.76 (s, 1H), 4.06 (dd, J = 10.4, 3.6 Hz, 1H), 3.94 (m, 3H), 3.80 (m, 2H), 3.66-3.60 (2H), 3.45 (m, 2H), 2.42 (m, 1H), 2.34 (1H), 2.14 (s, 3H), 2.13 (s, 3H), 2.12 (s, 3H), 1.62 (m, 4H), 1.29 (m, 24H), 1.19 (m, 6H), 0.88 (brs, 6H);¹³C NMR (100 MHz, CDCl₃) δ 173.3, 170.8, 170.7, 170.5, 99.5, 99.4 (2C), 78.9, 74.9, 73.4, 72.5, 72.4, 71.9, 71.9, 71.2, 69.9, 69.1, 68.2, 67.5, 66.4, 34.3, 32.0, 31.5, 29.9, 29.9, 29.5, 29.4, 26.3, 24.7, 22.9, 22.5, 21.2, 21.0, 17.6, 17.4, 14.3, 14.1; HRMS (ESI) calcd for $[C_{38}H_{64}O_{17} + H]^+$: 793.4222, Found: 793.4253. (¹H NMR (600 MHz, CDCl₃) δ 5.04 (dd, J = 9.7, 9.7 Hz, 1H), 5.04 (dd, J = 9.7, 9.7 Hz, 1H), 4.98 (dd, J = 3.4, 1.8 Hz, 1H), 4.89 (dd, J = 3.6, 1.6 Hz, 1H), 4.87 (d, J = 1.8 Hz, 1H), 4.87 (d, J = 1.6 Hz, 1H), 4.75 (d, J = 1.8 Hz, 1H), 4.04 (dd, J = 9.7, 3.4 Hz, 1H), 3.94 (dd, J = 9.9, 3.3 Hz, 1H), 3.93 (dd, J = 3.3, 1.5 Hz, 1H), 3.92 (dq, J = 9.7, 6.3 Hz, 1H), 3.78 (dd, J = 9.4, 3.5 Hz, 1H), 3.76 (dq, J = 9.7, 6.3 Hz, 1H), 3.65 (ddd, J = 9.6, 6.8, 6.8 Hz, 1H), 3.60 (dq, J = 9.6, 6.2 Hz, 1H),3.43 (dd, J = 9.6, 9.4 Hz, 1H), 3.40 (ddd, J = 10.4, 6.8, 6.8 Hz, 1H), 2.42 (m, 1H), 2.36 (m, 1H),2.14 (s, 6H), 2.12 (s, 3H), 1.62 (m, 4H), 1.29 (m, 24H), 1.19 (m, 6H), 0.88 (brs, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 173.0, 170.5, 170.4, 170.2, 99.3, 99.2, 99.2, 78.7, 74.7, 73.3, 72.5, 72.3, 71.9, 71.9, 71.0, 69.8, 69.1, 68.2, 67.3, 66.2, 34.1, 31.8, 31.3, 29.4, 29.3, 29.2, 28.1, 24.5, 22.6, 22.3, 21.0, 20.9, 20.8, 17.4, 17.2, 17.4, 14.1, 14.9.

NMR Data: (¹H NMR, CD₃OD + C₆D₆ (6:1)) δ 5.34 (dd, *J* = 9.6, 9.6 Hz, 1H), 5.22 (br, 1H), 5.19 (dd, *J* = 9.6 9.6 Hz, 1H), 5.07 (s, 1H) 4.98 (s, 1H), 4.97 (s, 1H), 4.85 (s, 1H), 4.42 (dd, *J* = 9.6 Hz, 1H), 4.24 (dq, *J* = 8.8, 6.8 Hz, 1H), 4.07 (m, 1H), 4.04 (d, *J* = 9.6 Hz, 1H), 3.94 (dq, *J* = 9.6, 6.0 Hz, 2H), 3.81 (ddd, *J* = 9.6, 6.8, 6.8 Hz, 1H), 3.74 (dq, *J* = 8.8, 6.0 Hz, 1H), 3.56 (ddd, *J* = 9.6, 6.4, 6.4 Hz, 1H), 2.67 (m, 1H), 2.51 (m, 1H), 2.25 (s, 3H), 2.19 (s, 3H), 2.18 (s, 3H), 1.76 (m, 4H), 1.41 (m, 17H), 1.31 (brm, 6H), 1.02 (m, 6H); (¹³C NMR, CD₃OD + C₆D₆ (6:1)) δ 173.9, 171.4, 171.0, 100.6, 100.3, 100.1, 78.7, 75.6, 73.3, 73.04, 72.98, 72.65, 72.57, 71.3, 69.8, 69.4, 68.1, 67.3, 67.1, 34.2, 32.2, 31.6, 30.0, 29.7, 29.6, 26.5, 24.8, 22.9, 22.6, 20.2, 20.1, 20.0, 17.2, 17.0, 13.8, 13.6.

4

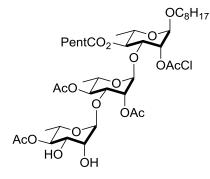
⁴ Optical rotation for the isolated **Mezzettiaside-8**: $[\alpha]_D = -66.4$ (c = 0.10, CHCl₃) (Ref. 1).

δ/ppm Natural CD ₃ OD+C ₆ D ₆ (6:1)	δ/ppm Synthetic in CD ₃ OD+C ₆ D ₆ (6:1) (100 MHz)	Difference (ppm)	δ/ppm Synthetic CDCl ₃ (150 MHz)
173.1	174.6	-1.5	173.0
172.1	172.1	0.0	170.5
172.1	172.1	0.0	170.4
171.6	171.7	-0.1	170.2
101.3	101.3	0.0	99.3
101.0	101.1	-0.1	99.2
100.8	100.8	0.0	99.2
79.4	79.5	-0.1	78.7
76.3	76.3	0.0	74.7
74.1	74.1	0.0	73.3
73.8	73.8	0.0	72.5
73.7	73.7	0.0	72.3
73.4	73.4	0.0	71.9
73.3	73.3	0.0	71.9
72.0	72.0	0.0	71.0
70.5	70.5	0.0	69.8
70.1	70.1	0.0	69.1
68.0	68.8	-0.8	68.2
67.9	68.0	-0.1	67.3
67.8	67.8	0.0	66.2
34.1	34.9	-0.8	34.1
31.8	32.9	-1.1	31.8
31.3	32.4	-1.1	31.3
29.3	30.4	-1.1	29.4
29.1	30.4	-1.3	29.3
29.0	30.4	-1.4	29.2
26.1	27.3	-1.2	28.1
24.5	25.5	-1.0	24.5
22.7	23.7	-1.0	22.6
22.3	23.4	-1.1	22.3
21.0	20.9	0.1	21.0
21.0	20.9	0.1	20.9
20.8	20.8	0.0	20.8
17.4	17.9	-0.5	17.4
17.4	17.9	-0.5	17.2
17.2	17.7	-0.5	17.4
14.1	14.5	-0.4	14.1
13.9	14.3	-0.4	14.9

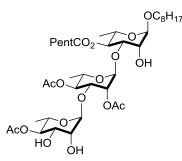

Mezzettiaside-8: Comparison of ¹³C NMR spectra of isolated vs synthetic material

Note:- If we add (+ 0.7 ppm) to the above difference row, then everything falls within the range of +/-0.8 ppm. We think the difference is due to the solvent ratio of the NMR used for the isolated material.

Natural Data δ/J ppm in C ₆ D ₆ +CD ₃ OD (1:6)	Synthetic data (δ/J ppm in C ₆ D ₆ +CD ₃ OD (1:6))	Synthetic data (ð/J ppm in 600 CDCl ₃)
5.16 t, J = 9.7	5.34 (dd, J = 9.6, 9.6 Hz, 1H)	5.04 (dd, J = 9.7, 9.7 Hz, 1H)
5.05	5.22 (br, 1H)	5.04 (dd, J = 9.7, 9.7 Hz, 1H)
5.04 t, J = 9.9	5.19 (dd, J = 9.6 9.6 Hz, 1H)	4.98 (dd, J = 3.4, 1.8 Hz, 1H)
4.84 brs	5.07 (s, 1H)	4.89 (dd, J = 3.6, 1.6 Hz, 1H)
4.84 brs	4.98 (s, 1H)	4.87 (d, J = 1.8 Hz, 1H)
4.89 dd, J = 3.2, 1.5	4.97 (s, 1H)	4.87 (d, J = 1.6 Hz, 1H)
4.71 brs	4.85 (s, 1H)	4.75 (d, J = 1.8 Hz, 1H)
4.26 dd, $J = 9.6, 3.4$	4.42 (dd, J = 9.6 Hz, 1H)	4.04 (dd, J = 9.7, 3.4 Hz, 1H)
4.07 dq, J = 9.9, 6.2	4.24 (dq, J = 8.8, 6.8 Hz, 1H)	3.94 (dd, J = 9.9, 3.3 Hz, 1H)
3.92	4.07 (m, 1H)	3.93 (dd, J = 3.3 , 1.5 Hz, $1H$)
3.90	4.04 (d, J = 9.6 Hz, 1H)	3.92 (dq, J = 9.7, 6.3 Hz, 1H)
3.78 dq, J = 9.6, 6.3	3.94 (dq, J = 9.6, 6.0 Hz, 2H)	3.78 (dd, J = 9.4, 3.5 Hz, 1H)
3.74 dd, J = 9.6, 3.2	3.81 (ddd, J = 9.6, 6.8, 6.8 Hz, 1H)	3.76 (dq, J = 9.7, 6.3 Hz, 1H)
3.57 dq, J = 9.6, 6.2	3.74 (dq, J = 8.8, 6.0 Hz, 1H)	3.65 (ddd, J = 9.6, 6.8, 6.8 Hz, 1H)
3.39 t, $J = 9.6$	3.56 (ddd, J = 9.6, 6.4, 6.4 Hz, 1H)	3.60 (dq, J = 9.6, 6.2 Hz, 1H)
1.27 d, $J = 6.2$	2.67 (m, 1H)	3.43 (dd, J = 9.6, 9.4 Hz, 1H)
1.16 d, $J = 6.2$	2.51 (m, 1H)	3.40 (ddd, J = 10.4, 6.8, 6.8 Hz, 1H
1.15 d, $J = 6.2$	2.25 (s, 3H)	2.42 (m, 1H)
3.66 m	2.19 (s, 3H)	2.36 (m, 2H)
2.52 m	2.18 (s, 3H)	2.14 (s, 6H)
2.12 s	1.76 (m, 4H)	2.12 (s, 3H)
2.08 s	1.41 (m, 17H)	1.62 (m, 4H)
2.06 s	1.31 (brm, 6H)	1.29 (m, 24H)
1.68-1.15	1.02 (m, 6H)	1.19 (d, J = 5.2 Hz, 6H)
0.89 m		0.88 (brs, 6H)


Mezzettiaside-8: Comparison of ¹H NMR spectra of isolated material vs synthetic.

1-Octyloxy-2,3-didehydro-4-*O*-acetyl- α -L-rhamnopyranosyl-(1 \rightarrow 3)-2,4-*O*-diacetyl- α -L-rhamnopyranosyl-(1 \rightarrow 3)-2-*O*-chloroacetyl-4-*O*-hexanoyl- α -L-rhamnopyranoside (13d):


To a solution of allylic alcohol **13a** (60 mg, 0. 076 mmol) in CH₂Cl₂ (0.5 mL), added pyridine (15 µL), acetic anhydride (10.8 µL, 0.11 mmol) and 4-dimethylaminopyridine (1.0 mg, 10 mol%) at 0 °C. After stirring for 2 h, the mixture was diluted with ether, washed with 1N dil. HCl solution (1 mL) and the solvent was evaporated under reduced pressure. The crude product was purified by silica gel flash chromatography eluting with 8-10% EtOAc/hexane to give allylic acetate **13d** (51.3 mg, 0.06 mmol 81%) as oil: $R_f(30\% \text{ EtOAc/hexane}) = 0.75$; $[\alpha]^{25}_{D} = -54.2$ (*c* = 0.67, CH₂Cl₂); IR (thin film, cm⁻¹) 2955, 2856, 1744, 1376, 1228, 1159, 1137, 1087, 1041, 1003; ¹H NMR (400 MHz, CDCl₃) δ 5.81 (d, J = 10.0 Hz, 1H), 5.62 (d, J = 10.0 Hz, 1H), 5.20 (d, J = 1.2 Hz, 1H), 5.10 (dd, J = 9.6, 9.6 Hz, 1H), 5.02 (dd, J = 9.6, 9.6 Hz, 1H), 4.99 (br, 2H),4.96 (dd, J = 10.4, 10.4 Hz, 1H), 4.85 (s, 1H), 4.72 (s, 1H), 4.24 (d, J = 7.2 Hz, 2H), 4.12 (dd, J= 9.6, 3.6 Hz, 1H), 3.95 (dq, J= 10.4, 2.8 Hz 1H), 3.81 (dq, J= 10.4, 6.8 Hz, 3H), 3.67 (ddd, J= 9.6, 6.4, 6.4 Hz, 1H), 3.43 (9.6, 6.8, 6.8 Hz, 1H), 2.43-2.34 (m, 2H), 2.13 (s, 3H), 2.07 (s, 6H), 2.07 (s, 3H), 1.64 (m, 4H), 1.32-1.24 (m, 14H), 1.19 (m, 9H), 0.90 (br, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 173.1, 170.7, 170.6, 170.1, 167.3, 130.5, 127.0, 99.3, 97.0, 96.9, 75.2, 74.9, 73.6, 72.5, 72.5, 72.1, 70.9, 68.5, 67.7, 66.7, 65.2, 41.0, 34.2, 32.0, 31.5, 29.9, 29.5, 29.4, 26.3, 24.7, 22.9, 22.5, 21.3, 21.1, 17.8, 17.6, 14.3, 14.1; HRMS (ESI) calcd for $[C_{40}H_{63}O_{16} + H]^+$: 835.3883, Found: 835.3919.

 $1-Octyloxy-4-O-acetyl-\alpha-L-rhamnopyranosyl-(1\rightarrow 3)-2, 4-O-diacetyl-\alpha-L-rhamnopyranosyl-(1\rightarrow 3)-2-O-chloroacetyl-4-O-hexanoyl-\alpha-L-rhamnopyranoside (23):$

To a solution of allylic acetate **13d** (50 mg, 0.06 mmol) in *t*-BuOH/acetone (0.5 mL) at 0 °C was added a solution of (50% w/v) of N-methyl morpholine N-oxide/water (60 µL) and crystalline OsO_4 (0.8 mg, 5 mol%). The reaction was stirred for 6 h. The reaction mixture was quenched with saturated sodium sulfite solution (0.1 mL), concentrated under reduce pressure and pipetted directly on to a silica gel column. The crude product was purified using silica gel column chromatography eluting with 40-45% EtOAc/hexane to get diol 23 (44.2 mg, 0.051 mmol, 85%) as liquid; R_f (70% EtOAc/hexane) = 0.5; $[\alpha]^{25}_D = -53.3$ (c = 0.8, CH_2Cl_2); IR (thin film, cm⁻¹) 3441, 2931, 2927, 1745, 1727, 1264, 1235, 749, 731, 702; ¹H NMR (400 MHz, CDCl₃) δ 5.15 (d, J = 1.6 Hz, 1H), 5.03 (dd, J = 9.6, 9.6 Hz, 1H), 4.98 (dd, J = 9.6, 9.6 Hz, 1H), 4.89 (d, J = 2.4 Hz)Hz, 1H), 4.83 (s, 1H), 4.82 (s, 1H), 4.77 (dd, J = 10.4, 10.4 Hz, 1H), 4.68 (s, 1H), 4.18 (d, J = 9.6Hz, 2H), 4.07 (dd, J=10.4, 2.8 Hz, 1H), 3.91 (dd, J=9.6, 3.2Hz, 1H), 3.75 (m, 2H), 3.74 (dd, J = 10.4 Hz, 1H), 3.67 (d, J = 2.8 Hz, 1H), 3.65 (m, 1H), 3.62 (ddd, J = 9.6, 6.8, 6.8 Hz, 1H), 3.38 (ddd, J=9.6, 6.8, 6.8 Hz, 1H), 3.07 (brs, 1H), 2.44 -2.22 (m, 2H), 2.09 (s, 3H), 2.07 (s, 3H), 2.04 (s, 3H), 1.60 (m, 4H), 1.28-1.24 (m, 14H), 1.15 (m, 9H), 0.86 (brs, 6H); ¹³C NMR (100 MHz, CDCl₃) & 172.1, 170.34, 170.31, 167.3, 101.7, 99.3, 96.9, 75.4, 74.8, 74.6, 73.5, 72.4, 72.1, 71.8, 71.1, 69.9, 68.4, 67.4, 66.7, 66.6, 40.9, 34.1, 31.9, 31.4, 29.4, 29.3, 26.2, 24.6, 22.8, 22.4, 21.2, 21.1, 21.0, 17.5, 17.4, 17.2, 14.2, 14.0; HRMS (ESI) calcd for $[C_{40}H_{65}O_{18}Cl + H]^+$: 869.3936, Found: 869.3936.

Mezzettiaside-4 (4):

To a solution of diol 23 (30 mg, 0.035 mmol) in THF (1.5 mL) was added thiourea (15.7 mg, 0.21 mmol), NaHCO₃ (10.1 mg, 0.12 mmol) and *n*-Bu₄NI (12.7 mg, 0.035 mmol) and the mixture was stirred at 60 °C for 2 h. The reaction mixture was pipetted directly to a silica gel column and eluted with 55-60% EtOAc/hexane to afford Mezzettiaside-4 (4) (22.5 mg, 0.028 mmol, 82%) as a gum: $R_f(70\% \text{ EtOAc/hexane}) = 0.3$; $[\alpha]^{25}_D = -56.9$ (c = 0.46, CHCl₃); IR (thin film, cm⁻¹) 3414, 3231, 2928, 2856, 1742, 1457, 1375, 1231, 1137, 1076, 1045, 980; ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3) 5.06 \text{ (dd}, J = 9.6, 9.6 \text{ Hz}, 1\text{H}), 5.03 \text{ (s}, 1\text{H}), 5.02 \text{ (dd}, J = 9.6, 9.6 \text{ Hz}, 1\text{H}),$ 4.97 (dd, J = 3.6, 1.2 Hz, 1H), 4.85 (s, 1H), 4.79 (s, 1H), 4.78 (dd, J = 9.6, 9.6 Hz, 1H), 4.18 (dd, J = 10.4, 3.6 Hz, 1H), 3.98 (m, 2H), 3.90 (dd, J = 9.6, 3.6 Hz, 1H), 3.85 (d, J = 2.0 Hz, 1H), 3.79 (dq, J = 9.6, 6.2 Hz, 1H), 3.73 (dd, J = 9.6, 3.2 Hz, 1H), 3.70 (dq, J = 9.6, 6.2 Hz, 1H), 3.65(ddd, J = 9.6, 6.2, 6.2 Hz, 1H), 3.42(ddd, J = 9.6, 6.2, 6.2 Hz, 1H), 2.44-2.35 (m, 2H), 2.12 (s, 1H), 2.12 (s,3H), 2.11 (s, 3H), 2.07 (s, 3H), 1.63 (m, 4H), 1.31 (m, 14H), 1.24 (m, 6H), 1.14 (d, J = 6.8 Hz, 3H), 0.89 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 174.1, 172.3, 170.5, 170.3, 101.8, 99.7, 99.5, 79.4, 75.3, 75.2, 72.5, 72.3, 72.0, 71.2, 71.1, 69.9, 68.2, 67.4, 66.7, 66.4, 34.3, 32.0, 31.5, 29.6, 29.5, 29.4, 26.3, 24.7, 22.9, 22.5, 21.3, 21.2, 21.1, 17.62, 17.63, 17.3, 14.3, 14.1; HRMS (ESI) calcd for $[C_{38}H_{64}O_{17} + H]^+$: 793.4222, Found: 793.4226.

NMR Data: ¹H NMR (600 MHz, CDCl₃) δ 5.04 (dd, J = 9.9, 9.8 Hz, 1H), 5.03 (dd, J = 9.9, 9.8 Hz, 1H), 5.01 (d, J = 1.6 Hz, 1H), 4.99 (dd, J = 3.4, 1.8 Hz, 1H), 4.86 (d, J = 1.8 Hz, 1H), 4.78 (d, J = 1.6 Hz, 1H), 4.75 (dd, J = 9.7, 9.7 Hz, 1H), 4.14 (dd, J = 9.9, 3.4 Hz, 1H), 3.96 (dd, J = 3.3, 1.6 Hz, 1H), 3.95 (dq, J = 9.8, 6.3 Hz, 1H), 3.90 (dd, J = 9.8, 3.3 Hz, 1H), 3.84 (dd, J = 3.5, 1.6 Hz, 1H), 3.77 (dq, J = 9.9, 6.3 Hz, 1H), 3.73 (dd, J = 9.7, 3.5 Hz, 1H), 3.70 (dq, J = 9.7, 6.3 Hz, 1H), 3.65 (ddd, J = 9.6, 6.8, 6.8 Hz, 1H), 3.41(ddd, J = 9.6, 6.8, 6.8 Hz, 1H), 2.44-2.35 (m, 2H), 2.12 (s, 3H), 2.11 (s, 3H), 2.07 (s, 3H), 1.63 (m, 4H), 1.31 (m, 14H), 1.24 (m, 6H), 1.14 (d, J = 6.8 Hz, 3H), 0.89 (m, 6H); ¹H NMR (150 MHz, CDCl₃) δ 173.5, 172.1, 170.2, 170.0, 101.4,

99.4, 99.3, 79.1, 75.1, 74.9, 72.3, 71.9, 71.7, 71.0, 71.0, 69.8, 67.2, 66.5, 66.2, 34.1, 31.8, 31.3, 29.4, 29.3, 29.2, 26.1, 24.5, 22.6, 22.3, 21.1, 21.0, 20.8, 17.4, 17.4, 17.3, 14.1, 13.9.

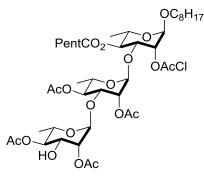
¹H NMR (500 MHz, CD₃OD + C₆D₆ (6:1)) δ 5.67 (dd, *J* = 10.0, 10.0 Hz, 1H), 5.58 (dd, *J* = 1.5, 1.5 Hz, 1H), 5.55 (dd, *J* = 10.0, 10.0 Hz, 1H), 5.47 (dd, *J* = 10.0, 10.0 Hz, 1H), 5.38 (s, 1H), 5.32 (s, 1H), 5.21 (s, 1H), 4.81 (dd, *J* = 9.5, 3.5 Hz, 1H), 4.61 (dq, *J* = 9.5, 6.0 Hz, 1H), 4.43 (m, 2H), 4.29 (m, 2H), 4.26-4.22 (dq, *J* = 9.5, 6.0 Hz, 2H) 4.15 (m, 1H), 3.89 (m, 1H), 2.94 (m, 1H), 2.84 (m, 1H), 2.54 (s, 3H), 2.51 (s, 6H), 2.12-2.03 (m, 4H), 1.84 (m, 14H), 1.66 (m, 9 H), 1.39 (m, 6H); ¹³C NMR (100 MHz, CD₃OD + C₆D₆ (6:1)) δ 173.9, 171.7, 171.0, 170.9, 103.0, 100.7, 100.2, 78.9, 75.0, 74.6, 73.4 72.7, 72.5, 71.7, 71.4, 69.8, 68.1, 67.7, 67.4, 67.2, 34.3, 32.3, 31.7, 29.8, 29.7, 26.7, 24.9, 23.0, 22.7, 20.4, 20.2, 20.1, 17.4, 17.3, 17.1, 13.9, 13.7.

5

⁵ Optical rotation for the isolated **Mezzettiaside-4**: $[\alpha]_D = -54$ (c = 0.46, CHCl₃) (Ref. 1).

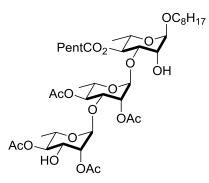
δ/ppm Natural CD ₃ OD+C ₆ D ₆ (~ 6:1)	δ/ppm Synthetic in CD ₃ OD+C ₆ D ₆ (6:1)	Difference (ppm)	δ/ppm Synthetic in (150 MHz CDCl ₃)
173.9	173.9	0.0	173.5
171.8	171.7	0.1	172.1
170.9	171.0	-0.1	170.2
170.8	170.9	-0.1	170.0
103.1	103.0	0.1	101.4
100.8	100.7	0.1	99.4
100.4	100.2	0.2	99.3
79.4	78.9	0.5	79.1
75.4	75.0	0.4	75.1
75.1	74.5	0.5	74.9
73.6	73.4	0.2	72.3
73.1	72.7	0.4	71.9
72.8	72.5	0.3	71.7
72.0	71.7	0.3	71.0
71.9	71.4	0.5	71.0
70.3	69.4	0.5	69.8
68.3	68.1	0.2	67.2
67.9	67.7	0.2	66.5
67.9	67.4	0.5	66.2
67.4	67.2	0.2	34.1
34.8	34.3	0.5	31.8
32.4	32.3	0.1	31.3
31.9	31.7	0.2	29.4
30.1	29.8	0.3	29.3
29.9	29.7	0.2	29.2
29.8	29.7	0.1	26.1
26.8	26.6	0.2	24.5
25.2	24.9	0.3	22.6
23.2	23.0	0.2	22.3
22.9	22.7	0.2	21.1
20.9	20.3	0.5	21.0
20.7	20.1	0.5	20.8
20.4	20.1	0.3	17.4
17.9	17.3	0.5	17.4
17.8	17.1	0.5	17.3
17.6	17.1	0.5	14.1
14.4	13.9	0.5	13.9
14.2	13.7	0.5	

Mezzettiaside-4: Comparison of ¹³C NMR spectra of natural vs synthetic


Note:- Here, if we substract 0.2 ppm from the above difference, the everything falls within a range of +/-0.3 ppm.

Mezzettiaside-4 : Comparison of ¹ H NMR spectra of natural vs synthetic
Mezzettiaside-4 : Comparison of ¹ H NMR spectra of natural vs synthetic

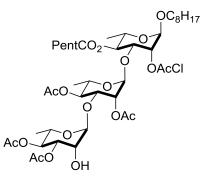
	Natural Data δ/J ppm in D ₆ +CD ₃ OD (1:6)	Synthetic data C ₆ D ₆ +CD ₃ OD (1:6)	Synthetic data (8/J ppm in CDCl ₃) (600 MHz)
5.67	9.8-9.9, 9.7-9.9	5.67 (dd, J = 10.0, 10.0 Hz, 1H)	5.04 (dd, $J = 9.9, 9.8$ Hz, 1H)
5.59	9.8-9.9, 9.7-9.9	5.58 (dd, J = 1.5, 1.5 Hz, 1H)	5.03 (dd, $J = 9.9, 9.8 Hz, 1H$)
5.53	3.0-3.5, 1.0-2.02	5.55 (dd, J = 10.0, 10.0 Hz, 1H)	5.01 (d, $J = 1.6$ Hz, 1H)
5.44	9.8-9.9, 9.7-9.9	5.47 (dd, J = 10.0, 10.0 Hz, 1H)	4.99 (dd, J = 3.4, 1.8 Hz, 1H
5.38	1.0-2.02	5.38 (s, 1H)	4.86 (d, $J = 1.8$ Hz, 1H)
5.21	1.0-2.02	5.32 (s, 1H)	4.78 (d, $J = 1.6$ Hz, 1H)
5.13	1.0-2.02	5.21 (s, 1H)	4.75 (dd, $J = 9.7, 9.7 Hz, 1H$)
4.75	9.7-9.9, 3.0-3.5	4.81 (dd, J = 9.5, 3.5 Hz, 1H)	4.14 (dd, $J = 9.9, 3.4 Hz, 1H$)
4.49	9.8-9.9, 6.1-6.4	4.61 (dq, J = 9.5, 6.0 Hz, 1H)	3.96 (dd, J = 3.3, 1.6 Hz, 1H)
4.40	3.0-3.5, 1.0-2.02	4.43 (m, 2H)	3.95 (dq, J = 9.8, 6.3 Hz, 1H)
4.38	9.7-9.9, 3.0-3.5	4.29 (m, 2H)	3.90 (dd, J = 9.8, 3.3 Hz, 1H)
4.27	3.0-3.5, 1.0-2.02	4.26-4.22 (dq, J = 9.5, 6.0 Hz, 2H	
4.26	9.7-9.9, 3.0-3.5	4.15 (m, 1H)	3.77 (dq, J = 9.9, 6.3 Hz, 1H)
4.23	9.8-9.9, 6.1-6.4	3.89 (m, 1H)	3.73 (dd, J = 9.7, 3.5 Hz, 1H)
4.17	9.8-9.9, 6.1-6.4	2.94 (m, 1H)	3.70 (dq, J = 9.7, 6.3 Hz, 1H)
3.84		2.84 (m, 1H)	3.65 (ddd, J = 9.6, 6.2, 6.2 Hz,
3.53		2.54 (s, 3H)	3.42(ddd, J = 9.6, 6.2, 6.2 Hz,
2.78		2.51 (s, 6H)	2.44-2.35 (m, 2H)
2.57		2.12-2.03 (m, 4H)	2.13 (s, 3H)
1.09		1.84 (m, 14H)	2.11 (s, 3H)
1.06		1.66 (m, 9 H)	2.08 (s, 3H)
2.18	s, 3H	1.39 (m, 6H)	1.63 (m, 4H)
2.06	s, 3H		1.31 (m, 14H)
1.96	s, 3H		1.24 (m, 6H)
1.57	6.1-6.4		1.14 (d, J = 6.8 Hz, 3H)
1.51	6.1-6.4		0.89 (m, 6H)


1-Octyloxy-2,4-O-diacetyl- α -L-rhamnopyranosyl-(1 \rightarrow 3)-2,4-O-diacetyl- α -L-

rhamnopyranosyl- $(1\rightarrow 3)$ -2-O-chloroacetyl-4-O-hexanoyl- α -L-rhamnopyranoside (23a):

To a stirred solution of diol 23 (15mg, 0.017 mmol) in CH₂Cl₂ (0.2 mL) at 0 °C was added triethylorthoacetate (9.5 µL, 0.052 mmol) and p-TsOH·H₂O (2 mg). The reaction was stirred at 0 °C for 45 min and then aqueous acetic acid (90%, 0.15 mL) was added, stirred for another 20 min. The reaction mixture was diluted with 10 mL EtOAc and washed with saturated NaHCO₃ solution, extracted with EtOAc (2 x 10 mL), dried over Na₂SO₄, and concentrated under reduced pressure. The crude product was purified using silica gel flash chromatography eluting with 30-35% EtOAc/hexane to give desired acetate 23a (13.0 mg, 0.014 mmol, 84%) as oily liquid: Rf $(70\% \text{ EtOAc/hexane}) = 0.7; [\alpha]^{25}_{D} = -43.5 (c = 2.0, CH_2Cl_2); IR (thin film, cm⁻¹) 3470, 2937,$ 1754, 1745, 1612, 1584, 1231, 1139, 1093, 1042; ¹H NMR (400 MHz, CDCl₃) δ 5.17 (d, J= 2.0 Hz, 1H), 5.07 (dd, J = 9.2, 9.2 Hz, 1H), 5.02 (dd, J = 9.2, 9.2 Hz, 1H), 4.91 (d, J = 1.6 Hz, 1H), 4.86 (br, 2H), 4.83 (br, 1H), 4.79 (dd, J = 10.6, 10.6 Hz, 1H), 4.71 (s, 1H), 4.19 (d, J = 8.8 Hz, 2H), 4.09 (dd, J = 9.6, 2.8 Hz, 1H), 3.93 (dd, J = 10.4, 2.8 Hz, 1H), 3.85 (dd, J = 10.4, 3.2 Hz, 1H), 3.78 (dq, J = 9.6, 6.8 Hz, 3H) 3.65 (ddd, J = 8.8, 6.4, 6.4 Hz, 1H), 3.41 (ddd, J = 9.6, 6.4, 6.4 Hz, 1H), 2.45 (m, 1H), 2.35 (m, 1H), 2.14 (s, 3H), 2.13 (brs, 6H), 2.11 (s, 3H), 1.63 (m, 4H), 1.28-1.15 (m, 23 H), 0.88 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 173.0, 171.8, 170.7, 170.5, 170.4, 167.3, 99.5, 99.2, 96.9, 75.5, 74.7, 74.5, 73.6, 72.9, 72.2, 72.2, 71.8, 68.5, 68.4, 67.7, 66.9, 66.7, 40.9, 34.2, 32.0, 31.5, 29.49, 29.41, 26.2, 24.7, 22.8, 22.5, 21.2, 21.1, 21.0, 17.6, 17.5, 17.3, 14.3, 14.1; HRMS (ESI) calcd for $[C_{42}H_{67}O_{19}Cl + H]^+$: 911.4043, Found: 911.4037.

Mezzettiaside-2(2):

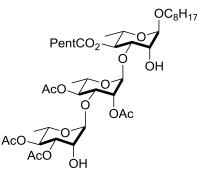


To a stirred solution of chloroacetate 23a (10 mg, 0.011 mmol) in THF (0.1 mL) was added thiourea (5.0 mg, 0.0654 mmol), NaHCO₃ (3.2 mg, 0.038 mmol) and *n*-Bu₄NI (2.01 mg, 0.006 mmol). The mixture was stirred at 60 °C for 4 h. The reaction solution was pipetted directly to a silica gel column and eluted with 38-40% EtOAc/hexane to afford Mezzettiaside-2 (2) (7.1 mg, 0.009 mmol, 77%) as a gum: R_f (70% EtOAc/hexane) = 0.65; $[\alpha]_{D}^{25} = -30.2$ (c = 0.25, CHCl₃); IR (thin film, cm⁻¹) 3453, 2956, 2927, 2859, 1745, 1462, 1452, 1378, 1234, 1137, 1076, 986, 832, 764; ¹H NMR (400 MHz, CDCl₃) δ 5.08 (dd, *J*=9.6, 9.6 Hz, 1H), 5.06 (dd, *J*=9.6, 9.6 Hz, 1H), 4.97 (dd, J = 3.2, 1.6 Hz, 1H), 4.93 (s, 1H), 4.87 (dd, J = 3.6, 1.6 Hz, 1H), 4.86 (s, 1H), 4.83 (dd, J = 10.4, 9.6 Hz, 1H), 4.75 (s, 1H), 4.06 (dd, J = 9.6, 3.2 Hz, 1H), 3.93 (m, 2H), 3.91 (dd, J = 8.0, 3.6 Hz, 1H), 3.87 (dd, J = 10.4, 3.6 Hz, 1H), 3.78 (dq, J = 9.6, 6.4 Hz, 2H), 3.67(ddd, J = 9.2, 6.4, 6.4 Hz, 1H), 3.42 (ddd, J = 9.2, 6.4, 6.4 Hz, 1H), 2.41 (m, 1H), 2.36 (m, 1H),2.15 (s, 6H), 2.14 (brs, 3H), 2.13 (s, 3H), 1.64 (m, 4H), 1.32 (m, 23H), 0.88 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 173.2, 171.8, 170.6, 170.5, 170.4, 99.4, 99.2, 78.9, 74.9, 74.5, 73.0, 72.3, 71.9, 71.8, 71.2, 68.4, 68.2, 67.6, 66.9, 66.4, 34.3, 32.0, 31.5, 29.6, 29.5, 29.4, 26.3, 24.7, 22.9, 22.5, 21.2, 21.2, 21.0, 17.6, 17.3, 14.3, 14.1; HRMS (ESI) calcd for $[C_{40}H_{66}O_{18} + H]^+$: 835.4327, Found: 835.4338.

NMR Data: ¹H NMR (400 MHz, $C_6D_6 + CD_3OD$ (1:6)) δ 5.31 (dd, J = 9.6, 9.6 Hz, 2H), 5.21 (br, 2H), 4.95 (s, 1H), 4.85 (s, 1H), 4.81 (s, 1H), 4.47 (d, J = 10.0 Hz, 1H), 4.23 (m, 1H), 4.10 (br, 3H), 3.93 (dq, J = 7.2 Hz, 2H), 3.78 (m, 1H), 3.51 (m, 1H), 2.60 (m, 1H), 2.49 (m, 1H), 2.26 (s, 3H), 2.20 (s, 3H), 2.17 (s, 6H), 1.75 (m, 4H), 1.40 (brm, 17H), 1.30 (m, 6H), 1.02 (br, 6H); ¹³C NMR (100 MHz, $C_6D_6 + CD_3OD$ (1:6)) δ 174.5, 172.2, 172.1, 172.0, 171.5, 101.3, 101.0, 100.6,

79.7, 75.7, 75.0, 74.0, 73.8, 73.4, 73.1, 72.0, 68.8, 68.2, 68.1, 68.0, 67.8, 35.0, 32.9, 32.4, 30.41, 30.35, 27.3, 25.6, 23.7, 23.4, 20.9, 20.8, 20.7, 17.9, 17.7, 17.7, 14.5, 14.3.⁶

1-Octyloxy-3,4-*O*-diacetyl- α -L-rhamnopyranosyl-(1 \rightarrow 3)-2,4-*O*-diacetyl- α -Lrhamnopyranosyl-(1 \rightarrow 3)-2-*O*-chloroacetyl-4-*O*-hexanoyl- α -L-rhamnopyranoside (23b):



To a solution of trisaccharide diol **23** (19 mg, 0.02 mmol) in CH₃CN/THF (1:0.1, 0.1 mL), added boron catalyst (Ph₂BOCH₂CH₂NH₂) (0.7 mg, 15 mol%), the reaction was stirred at 0 °C for 20 min. To the reaction then added acetyl chloride (2.3 μ L, 0.033 mmol) followed by addition of DIPEA (5.7 μ L, 0.033 mmol). The reaction mixture was stirred at at 0 °C for 2 h then diluted with ethyl acetate and washed with water. The organic layers were combined, dried over Na₂SO₄ and concentrated under reduced pressure. The crude product was purified using silica gel flash chromatography eluting with 30-32% EtOAc/hexane to give alcohol as oil **23b** (14.2 mg, 0.016 mmol, 71%): *P*₁(70% EtOAc/hexane) = 0.8; $[\alpha]^{25}_{D}= - 45.4$ (*c* = 0.32, CH₂Cl₂); IR (thin film, cm⁻¹) 3491, 2955, 2856, 1744, 1373, 1226, 1136, 1088, 1042, 987; ¹H NMR (400 MHz, CDCl₃) δ 5.18 (br, 1H), 5.08 (m, 2H), 5.03 (dd, *J* = 9.6, 9.6 Hz, 3H), 5.04 (br, 1H), 4.96 (br, 1H), 4.87 (brs, 2H), 4.72 (s, 1H), 4.20 (d, *J* = 7.2 Hz, 2H), 4.10 (dd, *J* = 9.6, 2.8 Hz, 1H), 3.98 (dd, *J* = 10.4, 2.8 Hz, 1H), 3.91 (d, *J* = 1.2 Hz, 1H), 3.80 (dq, *J* = 8.8, 6.8 Hz, 3H), 3.67 (ddd, *J* = 8.8, 6.4, 6.4 Hz, 1H), 3.43 (ddd, *J* = 8.8, 6.4, 6.4 Hz, 1H), 2.45 (m, 1H), 2.34 (m, 1H), 2.15 (s, 3H), 2.08 (s, 3H), 2.05 (s, 3H), 2.03 (s, 3H), 1.64 (m, 4H), 1.29 (m, 17H), 1.19 (m, 6H), 0.88 (br, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 173.2, 170.5, 170.4, 170.3, 169.9, 167.4, 101.0, 99.4, 97.0, 75.5,

⁶ Optical rotation for the isolated **Mezzettiaside-2**: $[\alpha]_D = -31$ (c = 0.25, CHCl₃) (Ref. 1).

74.6, 73.7, 72.5, 72.2, 71.6, 71.2, 69.8, 68.5, 67.6, 67.3, 66.7, 41.0, 34.3, 32.0, 31.5, 29.5, 29.4, 26.3, 24.7, 22.9, 22.5, 21.2, 21.14, 21.1, 21.06, 17.6, 17.5, 17.4, 14.3, 14.3; HRMS–MALDI–TOF (CCA) (m/z): $[M + Na]^+$ calcd for $[C_{42}H_{67}O_{19}Cl + Na]^+$; 933.3857, Found: 933.3839.

Mezzettiaside-3 (3):

To a stirred solution of alcohol **23b** (11 mg, 0.012 mmol) in THF (0.5 mL) was added thiourea (5.51 mg, 0.072 mmol), NaHCO₃ (3.55 mg, 0.042 mmol) and *n*-Bu₄NI (2.2 mg, 0.006 mmol). The reaction mixture was stirred at 60 °C for 1 h, then the mixture was diluted with ethyl acetate and extracted (3 x 5mL). The combined organic layers were concentrated and the crude product was purified using column chromatography, eluting with 40-42% EtOAc/hexane to afford Mezzettiaside-**3** (**3**) (8.3 mg, 0.01 mmol, 82%) as a gum: $R_f(70\% \text{ EtOAc/hexane}) = 0.6$; $[\alpha]^{25}_{D} =$ -56.7 (c = 0.44, CHCl₃); IR (thin film, cm⁻¹) 3492, 3278, 2925, 2855, 1740, 1372, 1165, 1136, 1074, 1044, 987; ¹H NMR (500 MHz CDCl₃) δ 5.08 (m, 5H), 4.92 (d, *J* = 2.0 Hz, 1H), 4.89 (d, *J* = 2.0 Hz, 1H), 4.76 (d, J = 1.5 Hz, 1H), 4.12 (dd, J = 10.0, 3.5 Hz, 1H), 3.96 (m, 3H), 3.92 (dd, J = 10.0, 3.0 Hz, 1H), 3.83 (dq, J = 10.0, 6.5 Hz, 2H), 3.67 (ddd, J = 9.5, 6.5, 3.0 Hz, 1H), 3.43 (ddd, J = 10.0, 6.5, 3.0 Hz, 1H), 2.45 (m, 1H), 2.35 (m, 1H), 2.16 (s, 3H), 2.08 (s, 3H), 2.06 (s, 3H), 2.063H), 2.03 (s, 3H), 1.65 (m, 4H), 1.32 (m, 17H), 1.20 (d, J = 6.0 Hz, 3H), 1.19 (d, J = 6.0 Hz, 3H), 0.88 (br, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 173.4, 170.5, 170.4, 170.2, 170.1, 101.1, 99.4, 79.1, 74.7, 72.6, 71.9, 71.6, 71.55, 71.2, 71.2, 69.7, 68.2, 67.4, 67.3, 66.4, 34.3, 32.0, 31.5, 29.5, 29.4, 26.3, 24.7, 22.9, 22.5, 21.2, 21.1, 21.1,17.6, 17.4, 14.3, 14.1; HRMS-MALDI-TOF (CCA) (m/z): $[M + Na]^+$ calcd for $[C_{40}H_{66}O_{18} + Na]^+$; 857.4141, Found, 857.4164. NMR Data:¹H NMR (600 MHz, C₆D₆) δ 5.57 (dd, J = 10.0, 9.5 Hz, 1H), 5.54 (dd, J = 10.1, 9.7

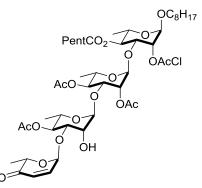
Hz, 1H), 5.51 (dd, J= 9.6, 9.6 Hz, 1H), 5.45 (dd, J= 10.1, 3.2 Hz, 1H), 5.43 (dd, J= 3.5, 1.8 Hz, 1H), 5.19 (d, J= 1.7 Hz, 1H), 4.99 (d, J= 1.8 Hz, 1H), 4.88 (d, J= 1.6 Hz, 1H), 4.50 (dd, J=

10.0, 3.5 Hz, 1H), 4.25 (dq, J= 9.5, 6.3 Hz, 1H), 4.23 (dd, J= 3.2, 1.7 Hz, 1H), 4.22 (dq, J= 9.7, 6.2 Hz, 1H), 4.21 (d, J= 3.3, 1.6 Hz, 1H), 4.17 (dd, J= 9.9, 3.3 Hz, 1H), 4.01 (dq, J= 9.6, 6.2 Hz, 1H), 3.65 (ddd, J= 9.6, 6.8, 6.8 Hz, 1H), 3.45 (ddd, J= 9.6, 6.8, 6.8 Hz, 1H), 2.64 (m, 1H), 2.43 (m, 1H), 1.90 (s, 3H), 1.73 (s, 3H), 1.66 (s, 3H), 1.65 (s, 3H), 1.43 (m, 4H), 1.32 (m, 14H), 1.19 (m, 9H), 0.90 (m, 6H); ¹³C NMR (150 MHz, C₆D₆) δ 173.4, 170.2, 169.8, 169.6, 169.6, 102.2, 101.7, 100.1, 79.8, 76.8 75.3, 72.7, 72.4, 72.2, 71.9, 71.8, 71.8, 71.5, 67.8, 67.8, 66.9, 34.5, 32.2, 31.7, 29.8, 29.7, 29.6, 26.5, 25.0, 23.0, 22.7, 20.5, 20.4, 20.4, 20.2, 17.8, 17.6, 17.4, 14.2, 14.1.

¹H NMR (400 MHz, $C_6D_6 + CD_3OD$) δ 5.77 (dd, J = 10.5, 9.6 Hz, 2H), 5.69 (dd, J = 9.6, 9.6 Hz, 1H), 5.62 (br, 1H), 5.61 (dd, J = 10.4, 3.6 Hz, 1H), 5.41 (s, 1H), 5.24 (s, 1H), 5.17 (s, 1H), 4.56 (d, J = 9.6 Hz, 1H), 4.53 (m, 5H), 4.24 (dq, J = 6.4 Hz, 2H), 3.89 (m, 1H), 2.85 (m, 1H), 2.63 (m, 1H), 2.24 (s, 3H), 2.13 (s, 3H), 2.05 (s, 3H), 1.98 (s, 3H), 1.75 (m, 4H), 1.62-1.47 (m, 23H), 1.21 (m, 6H); ¹³C NMR (100 MHz, $C_6D_6 + CD_3OD$ (4:1)) δ 173.7, 170.7, 170.7, 170.6, 170.6, 102.2, 100.5, 100.1, 79, 74.8, 73.2, 72.7, 72.3, 72.1, 71.5, 71.5, 69.3, 68.1, 67.7, 67.5, 67.1, 34.4, 32.1, 31.6, 30.1, 29.7, 29.7, 29.6, 26.5, 23.0, 22.6, 20.4, 20.3, 20.3, 20.2, 17.6, 17.4, 17.4, 14.2, 14.0.

⁷ Optical rotation for the isolated **Mezzettiaside-3**: $[\alpha]^{20}{}_{D} = -49$ (c = 0.38, CHCl₃) (Ref. 1).

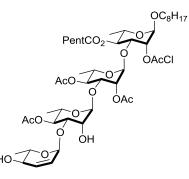
δ-values (ppm) Isolation Paper C ₆ D ₆ +CD ₃ OD (4:1	δ-values (ppm) in C ₆ D ₆ +CD ₃ OD (~ 4:1) l) Ref. C ₆ D ₆ (128 ppm)	Difference (ppm)	δ-values (ppm) Observed Data CDCl ₃ (400 MHz)	δ-values (ppm) Observed Data C ₆ D ₆ (150 MHz NMR)
173.5	173.7	-0.2	173.4	173.4
170.8	170.7	0.1	170.5	170.2
170.8	170.7	0.1	170.4	169.8
170.7	170.6	0.1	170.2	169.6
170.7	170.6	0.1	170.0	169.6
102.1	102.2	-0.1	101.0	102.2
100.4	100.5	-0.1	99.4	101.7
99.8	100.1	-0.3	79.1	100.1
78.9	79.0	-0.1	74.7	79.8
74.7	74.8	-0.1	72.6	76.8
73.1	73.2	-0.1	71.9	75.3
72.6	72.7	-0.1	71.6	72.7
72.2	72.3	-0.1	71.6	72.4
71.7	72.1	-0.4	71.2	72.2
71.4	71.5	-0.1	71.2	71.9
71.1	71.5	-0.4	69.7	71.8
69.2	69.3	-0.1	68.2	71.8
68.0	68.1	-0.1	67.4	71.5
67.6	67.7	-0.1	67.2	67.8
67.4	67.5	-0.1	66.4	67.8
66.9	67.1	-0.2	34.3	66.9
34.3	34.4	-0.1	32.0	34.5
32.0	32.1	-0.1	31.5	32.2
31.8	31.6	0.2	29.9	31.7
29.9	30.1	-0.2	29.6	29.8
29.9	29.7	0.2	29.5	29.7
29.5	29.7	-0.2	29.4	29.6
29.4	29.6	-0.2	26.3	26.5
26.3	26.5	-0.2	24.7	25.0
22.8	23.0	-0.2	22.9	23.0 22.7
22.4	22.6	-0.2	22.5	20.5
20.2	20.4	-0.2	21.2	20.3
20.1	20.3	-0.2	21.1	20.4
20.1	20.3	-0.2	21.1	20.4
20.0	20.2	-0.2	21.0	17.8
17.4	17.6	-0.2	17.6	17.6
17.2	17.4	-0.2	17.6	17.4
17.2	17.4	-0.2	17.4	14.2
14.3	14.2	0.1	14.3	14.1
14.1	14.0	0.1	14.1	* •••


Mezzettiaside-3: Comparison of ¹³C NMR spectra of natural vs synthetic

Note:- If we add + 0.1 ppm to the above difference then everything falls under +/- 0.3 ppm range, we can account this difference to the reference peak, mixed solvent and the exact concentration.

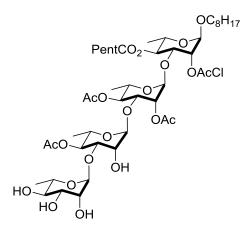
1301ation 1 aper	Synthetic data in C ₆ D ₆ +CD ₃ OD (4:1)	Observed Data δ/J ppm C ₆ D ₆ (600 MHz)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	77 (dd, J = 10.5, 9.6 Hz, 2H) 69 (dd, J = 9.6, 9.6 Hz, 1H) 62 (br, 1H) 61 (dd, J = 10.4, 3.6 Hz, 1H) 41 (s, 1H) 24 (s, 1H) 17 (s, 1H) 56 (d, J = 9.6 Hz, 1H) 53 (m, 5H) 24 (dq, J = 6.4 Hz, 2H) 89 (m, 1H) 85 (m, 1H) 63 (m, 1H) 24 (s, 3H) 13 (s, 3H) 05 (s, 3H) 98 (s, 3H) 75 (m, 4H) 62-1.47 (m, 23H) 21 (m, 6H)	5.57 dd, J = 10.0, 9.5 Hz, 1H) 5.54 (dd, J = 10.1, 9.7 Hz, 1H) 5.5 (dd, J = 9.9, 9.6 Hz, 1H) 5.45 (dd, J = 10.1, 3.2 Hz, 1H) 5.43 (dd, J = 3.5, 1.8 Hz, 1H) 5.19 (d, J = 1.7 Hz, 1H) 4.99 (d, J = 1.8 Hz, 1H) 4.88 (d, J = 1.6 Hz, 1H) 4.50 (dd, J = 10.0, 3.5 Hz, 1H) 4.25 (dq, J = 9.5, 6.3 Hz, 1H) 4.23 (dd, J = 3.2, 1.7 Hz, 1H) 4.22 (dq, J = 9.7, 6.2 Hz, 1H) 4.21 (dd, J = 3.3, 1.6 Hz, 1H) 4.17 (dd, J = 9.9, 3.3 Hz, 1H) 4.01 (dq, J = 9.6, 6.2 Hz, 1H) 1.34 (s, 3H) 1.37 (s, 3H) 1.26 (s, 3H)

Mezzettiaside-3: Comparison of ¹H NMR spectra of natural vs synthetic


1-Octyloxy-2,3-didehydro-5-methyl-oxopyranosyl- $(1\rightarrow 3)$ -4-*O*-acetyl- α -L-rhamnopyranosyl- $(1\rightarrow 3)$ -2,4-*O*-diacetyl- α -L-rhamnopyranosyl- $(1\rightarrow 3)$ -2-*O*-chloroacetyl-4-*O*-hexanoyl- α -L-rhamnopyranoside (24):

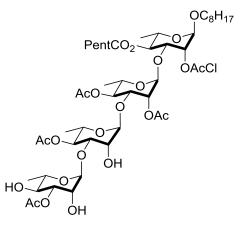
To a stirred solution of trisaccharide diol 23 (35mg, 0.040 mmol) in CH₃CN/THF (1:0.1) (0.8 mL) was added boron catalyst (1.4 mg, 15 mol%) and reaction stirred at 0 °C for 20 min. To it then added Boc-pyranone (10.1 mg, 0.044 mmol) followed by addition of Pd₂(dba)₃•CHCl₃ (1.2 mg, 2.5 mol%) and PPh₃ (1.3 mg, 10 mol%) solution in CH₂Cl₂. The reaction mixture was stirred and warmed to rt, after 2 h, quenched by adding 0.5 mL saturated NaHCO₃ solution, followed by extraction with EtOAc. The organic layers were combined, washed with 2 mL saturated brine, dried over Na₂SO₄ and concentrated under reduced pressure. The crude product was purified using silica gel flash chromatography eluting with 22-25% EtOAc/hexane to give tetrasaccharide enone **24** (30 mg, 0.031 mmol, 76%) as a thick liquid oil: $R_{f}(30\% \text{ EtOAc/hexane}) = 0.60; [\alpha]^{25}_{D}$ = -93.9 (c = 0.22, CH₂Cl₂); IR (thin film, cm⁻¹) 2976, 2360, 1755, 1275, 1260, 764, 750; ¹H NMR (400 MHz, CDCl₃) δ 6.68 (dd, J = 10.4, 3.6 Hz, 1H), 6.08 (d, J = 10.0 Hz, 1H), 5.29 (d, J= 3.2 Hz, 1H), 5.18 (d, J = 1.2 Hz, 1H), 5.08 (dd, J = 9.6, 9.6 Hz, 1H), 5.02 (dd, J = 9.6, 9.6 Hz, 1H), 5.00 (dd, J = 9.6, 9.6 Hz, 1H), 4.98 (d, J = 3.2 Hz, 1H), 4.86 (s, 2H), 4.71 (s, 1H), 4.55 (q, 2H), 4.71 (s, 2H), 4.55 (q, 2H), 4.71 (s, 2H), 4.55 (q, 2H), 4.71 (s, 2H), 4.71 J = 6.8 Hz, 1H), 4.19 (d, J = 6.8 Hz, 2H), 4.10 (dd, J = 10.4, 2.8 Hz, 1H), 3.96 (m, 3H), 3.80-3.71 (dq, J = 9.6, 6.8 Hz, 3H), 3.66 (ddd, J = 9.6, 6.4, 6.4 Hz, 1H), 3.42 (ddd, J = 9.6, 6.8, 6.8 Hz, 1H), 2.42 (m, 1H), 2.33 (m, 1H), 2.13 (s, 3H), 2.07 (s, 6H), 1.63 (m, 4H), 1.37 (d, J = 6.8Hz, 3H), 1.31-1.15 (m, 20H), 1.13 (d, J = 6.0 Hz, 3H), 0.88 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) & 196.4, 173.1, 170.3, 170.2, 170.1, 167.3, 142.5, 127.8, 101.2, 99.3, 96.9, 94.8, 75.5, 75.0, 73.6, 73.6, 72.6, 72.4, 72.1, 71.7, 71.3, 70.9, 68.5, 67.5, 67.3, 66.7, 40.9, 34.2, 32.0, 31.5,

29.5, 29.5, 29.4, 26.2, 24.7, 22.8, 22.4, 21.2, 21.1, 21.1, 17.6, 17.5, 17.4, 15.3, 14.3, 14.1; HRMS (ESI) calcd for $[C_{46}H_{71}O_{20}Cl + H]^+$: 979.4305, Found: 979.4301.


1-Octyloxy-2,3-didehydro- α -L-rhamnopyranosyl-(1 \rightarrow 3)-4-*O*-acetyl- α -L-rhamnopyranosyl-(1 \rightarrow 3)-2,4-*O*-diacetyl- α -L-rhamnopyranosyl-(1 \rightarrow 3)-2-*O*-chloroacetyl-4-*O*-hexanoyl- α -L-rhamnopyranoside (24a):

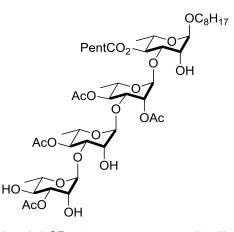
To a solution of enone 24 (25 mg, 0.026 mmol) in CH₂Cl₂ (0.25 mL) at -78 °C was added CeCl₃/MeOH solution (0.4 M in MeOH, 25 µL) and NaBH₄ (1.5 mg, 0.038 mmol). The reaction mixture was stirred at -78 °C for 2 h. The reaction mixture was guenched with 0.5 mL of saturated aqueous NaHCO₃, extracted with Et₂O (2 x 10 mL), dried over Na₂SO₄, and concentrated under reduced pressure. The crude product was purified using silica gel flash chromatography eluting with 40-45% EtOAc/hexane to give desired alcohol 24a (21 mg, 0.021 mmol, 84%) as a gum: $R_f(50\% \text{ EtOAc/hexane}) = 0.2$; $[\alpha]^{25}_D = -27.7$ (c = 0.4, CH₂Cl₂); IR (thin film, cm⁻¹) 3488, 2928, 2856, 2351, 1792, 1748, 1717, 1457, 1375, 1231, 1137, 1089, 1044; ¹H NMR (400 MHz, CDCl₃) δ 5.94 (d, J = 10.4 Hz, 1H), 5.58 (d, J = 10.4 Hz, 1H), 5.19 (d, J = 1.2 Hz, 1H), 5.06 (dd, J = 10.4, 10.4 Hz, 1H), 5.01 (dd, J = 9.6, 9.6 Hz, 1H), 4.99 (m, 2H), 4.94 (dd, J = 9.6, 9.6 Hz, 1H), 4.85 (s, 1H), 4.84 (s, 1H), 4.71 (s, 1H), 4.21 (d, J = 8.8 Hz, 2H), 4.09 (dd, J= 9.6, 2.8 Hz, 1H), 3.94 (dd, J = 10.4, 3.2 Hz, 1H), 3.86 (br, 1H), 3.83 (dd, J = 9.6, 3.2 Hz, 1H), 3.80 (m, 3H), 3.69 (dq, J = 8.8, 6.4 Hz, 2H), 3.64 (ddd, J = 9.6, 6.8, 6.8 Hz, 1H), 3.41 (ddd, J = 9.6, 6.8, 6.8 Hz, 1H)9.6, 6.8, 6.8 Hz, 1H), 2.46 (m, 1H), 2.33 (m, 1H), 2.13 (s, 3H), 2.08 (s, 3H), 2.04 (s, 3H), 1.63 (m, 4H), 1.29 (m, 17H), 1.17 (m, 6H), 1.11 (d, J = 6.4 Hz, 3H), 0.89 (m, 6 H); ¹³C NMR (100 MHz, CDCl₃) & 173.1, 170.5, 170.4, 170.3, 167.4, 134.4, 125.7, 101.3, 99.4, 96.9, 96.1, 76.8, 75.5, 74.9, 73.6, 72.8, 72.3, 72.1, 71.8, 71.6, 69.4, 68.5, 68.5, 67.5, 67.2, 66.7, 41.0, 34.2, 32.0,

31.5, 29.5, 29.5, 29.4, 26.2, 24.7, 22.8, 22.4, 21.2, 21.1, 21.1, 18.1, 17.6, 17.5, 17.3, 14.3, 14.1; ; HRMS–MALDI–TOF (CCA) (m/z): $[M + Na]^+$ calcd for $[C_{46}H_{73}O_{20}Cl + Na]^+$: 1003.4276, Found: 1003.4259.


1-Octyloxy- α -L-rhamnopyranosyl-(1 \rightarrow 3)-4-*O*-acetyl- α -L-rhamnopyranosyl-(1 \rightarrow 3)-2,4-*O*-diacetyl- α -L-rhamnopyranosyl-(1 \rightarrow 3)-2-*O*-chloroacetyl-4-*O*-hexanoyl- α -L-rhamnopyranoside (25):

To a solution of allylic alcohol **24a** (18 mg, 0.018 mmol) in *t*-BuOH/acetone at 0 °C was added a solution of (50% w/v) of *N*-methyl morpholine *N*-oxide/water (9.2 µL). Crystalline OsO₄ (0.3 mg, 5 mol%) was added and the reaction was stirred for 12 h. The reaction mixture was concentrated and was pipetted directly on to a silica gel column. The product was eluted with 3-5% MeOH/CH₂Cl₂ to afford triol **25** (16.2 mg, 0.016 mmol, 87%) as oil: *R* (10% MeOH/CH₂Cl₂) = 0.3; $[\alpha]^{25}_{D} = -31.6$ (*c* = 0.2, CH₂Cl₂); IR (thin film, cm⁻¹) 3465, 2977, 2931, 2862, 1745, 1265, 1228, 1063, 733, 702; ¹H NMR (400 MHz, CDCl₃) δ 5.16 (s, 1H), 5.04 (dd, *J* = 10.0, 10.0 Hz, 1H), 5.01 (dd, *J* = 10.0, 10.0 Hz, 1H), 4.96 (dd, *J* = 10.2, 10.2 Hz, 1H), 4.94 (br, 1H), 4.84 (s, 1H), 4.80 (brs, 2H), 4.71 (s, 1H), 4.25 (d, *J* = 9.2 Hz, 2H), 4.09 (dd, *J* = 10.4, 3.2 Hz, 2H), 3.64 (m, 1H), 3.44 (ddd, *J* = 9.6, 6.4, 6.4 Hz, 1H), 3.40 (m, 1H), 2.44 (m, 1H), 2.32 (m, 1H), 2.13 (s, 3H), 2.07 (s, 6H), 1.62 (m, 4H), 1.28 (m, 17H), 1.17 (m, 6H), 1.09 (d, *J* = 6.0 Hz, 3H), 0.88 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 173.1, 171.5, 170.4, 170.3, 167.4, 102.1, 101.5, 99.5, 97.0, 76.8, 75.4, 74.7, 73.7, 73.0, 72.7, 72.3, 72.2, 71.7, 71.2, 69.1, 68.5, 67.5, 67.2,

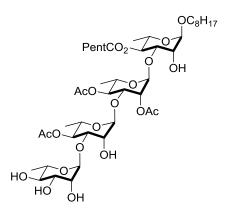
66.7, 41.0, 34.2, 32.0, 31.5, 29.5, 29.4, 26.2, 24.7, 22.8, 22.4, 21.2, 21.2, 21.0, 17.6, 17.4, 17.3, 14.3, 14.1; HRMS–MALDI–TOF (CCA) (m/z): [M + Na]⁺ calcd for [C₄₆H₇₅O₂₂Cl + Na]⁺: 1037.4331, Found: 1037.4302.


1-Octyloxy-3-*O*-acetyl- α -L-rhamnopyranosyl- $(1\rightarrow 3)$ -4-*O*-acetyl- α -L-rhamnopyranosyl- $(1\rightarrow 3)$ -2,4-*O*-diacetyl- α -L-rhamnopyranosyl- $(1\rightarrow 3)$ -2-*O*-chloroacetyl-4-*O*-hexanoyl- α -L-rhamnopyranoside (25a):

To a stirred solution of triol 25 (12 mg, 0.012 mmol) in CH₃CN/THF (1:0.1) (0.22 mL) at 0 °C was added boron catalyst (0.4 mg, 15 mol%), followed by addition of diisopropylethyl amine (DIPEA) (3.8 µL, 0.023 mmol) and acetyl chloride (1.5 µL, 0.023 mmol). Reaction was stirred at 0 °C for 6 h. Monitored by TLC, reaction completed. Diluted with ethylacetate, washed with water, combined organic layers were concentrated under reduced pressure. The crude product was purified using silica gel chromatography, eluting with 55-60% EtOAc/hexane to get the desired product as oil **25a** (8.9 mg, 0.008 mmol, 71%): P_t (100% EtOAc) = 0.65; $[\alpha]_{D}^{25} = -30.8$ $(c = 0.2, CH_2Cl_2)$; IR (thin film, cm⁻¹) 3453, 2927, 2825, 1745, 1379, 1258, 1232, 1137, 1087, 1046, 764, 750; ¹H NMR (400 MHz, CDCl₃) δ 5.18 (d, J = 1.5 Hz, 1H), 5.06 (dd, J = 9.6 Hz, 2H), 5.03 (dd, J = 9.6 Hz, 1H), 4.99 (br, 1H), 4.97 (br, 1H), 4.86 (br, 3H), 4.72 (s, 1H), 4.20 (d, J = 10.0 Hz, 2H, 4.09 (d, J = 9.6 Hz, 1H, 3.95 (d, J = 10.5 Hz, 1H, 3.90 (brs, 1H), 3.84 (m, 2H),3.80 (dq, J = 9.2, 6.0 Hz, 3H), 3.71 (m, 1H), 3.66 (m, 1H), 3.62 (ddd, J = 9.6, 6.8, 6.8 Hz, 1H),3.41 (ddd, J = 8.8, 5.6, 5.6 Hz, 1H), 2.43 (m, 1H), 2.33 (m, 1H), 2.15 (s, 3H), 2.13 (s, 3H), 2.09 (s, 3H), 2.06 (s, 3H), 1.63 (m, 4H), 1.33-1.25 (m, 17H), 1.18 (m, 6H), 1.12 (d, J = 6.0 Hz, 3H), 0.88 (br, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 173.1, 171.8, 170.5, 170.4, 170.3, 167.4, 101.3, 101.0, 99.4, 97.0, 76.7, 75.6, 74.8, 74.7, 73.7, 72.7, 72.4, 72.1, 71.8, 71.4, 71.0, 69.8, 69.7, 68.5,

67.5, 67.3, 66.8, 41.0, 34.2, 32.0, 31.5, 29.5, 29.4, 26.3, 24.7, 22.9, 22.5, 21.3, 21.2, 21.1, 21.1, 17.7, 17.6, 17.5, 17.3, 14.3, 14.1; HRMS (ESI) calcd for $[C_{48}H_{77}O_{23}Cl + H]^+$: 1057.4622, Found:1057. 4635.

Mezzattiaside-5 (5):

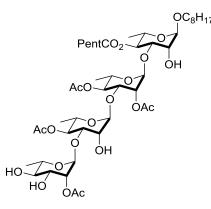


To a solution of tetrasaccharide triol **25a** (8 mg, 0.008 mmol) dissolved in THF (0.1 mL) was added thiourea (3.7 mg, 0.05 mmol), NaHCO₃ (2.4 mg, 0.03 mmol) and TBAI (1.5 mg, 0.004 mmol) and reaction was refluxed for 2 h. After 2 h, the reaction was brought to rt, diluted with ethyl acetate and washed with ammonium chloride solution (3 x 10 mL). Concentrated under reduced pressure and purified using silica gel chromatography, eluting with 65-70% EtOAc/hexane to give the desired product, Mezzattiaside-5 (5) (6.5 mg, 0.007 mmol, 83%): R_f $(100\% \text{ EtOAc}) = 0.5; [\alpha]^{25}_{D} = -69.3 \ (c = 0.35, \text{ CHCl}_3); \text{ IR (thin film, cm}^{-1}) 3455, 3338, 2958,$ 1741, 1264, 1044, 733, 704; ¹H NMR (400 MHz, CDCl₃) δ 5.12 (br, 1H), 5.07 (dd, J = 9.6, 9.6 Hz, 2H), 5.02 (dd, J = 10.4, 10.4 Hz, 1H), 5.01 (dd, J = 9.6, 2.4 Hz, 1H), 5.00 (d, J = 1.5 Hz, 1H), 4.88 (s, 1H), 4.84 (s, 1H), 4.81 (s, 1H), 4.24 (d, J = 9.6, 3.2 Hz, 1H), 3.96 (brm, 3H), 3.90 (m, 3H), 3.86 (dd, J = 9.6, 2.4 Hz, 1H), 3.80 (dq, J = 9.6, 6.4 Hz, 1H), 3.72 (dq, J = 9.6 6.4 Hz, 1H), 3.66 (ddd, J = 9.6, 6.4, 6.4 Hz, 1H), 3.57 (q, J = 9.6 Hz, 1H), 3.43 (ddd, J = 9.6, 6.4, 6.4 Hz, 1H), 3.14 (br, 2H), 2.47 (m, 1H), 2.39 (m, 1H), 2.16 (s, 3H), 2.15 (s, 3H), 2.07 (s, 3H), 2.05 (s, 3H), 1.63 (m, 4H), 1.36 (m, 6H), 1.29 (m, 12H), 1.19 (m, 6H), 1.10 (d, J = 6.0 Hz, 3H), 0.88 (br, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 174.3, 172.0, 170.6, 170.3, 101.8, 100.9, 100.0, 99.4, 79.8, 75.9, 74.4, 72.6, 72.3, 72.2, 72.2, 71.6, 71.2, 71.0, 70.1, 69.6, 68.2, 67.3, 67.2, 66.3, 34.3, 32.0, 31.5, 29.6, 29.54, 29.45, 26.3, 24.7, 22.9, 22.5, 21.4, 21.3, 21.1, 21.0, 17.8, 17.7, 17.6, 17.3, 14.3,

14.1; HRMS–MALDI–TOF (CCA) (m/z): $[M + Na]^+$ calcd for $[C_{46}H_{76}O_{22} + Na]^+$: 1003.4720, Found:1003.4719.

NMR Data: ¹³C NMR (100 MHz, CD₃OD + C₆D₆, (6:1)) δ 173.8, 171.8, 171.0, 170.9, 170.8, 102.8, 102.8, 100.6, 100.1, 78.9, 76.8, 75.3, 74.7, 73.1, 73.1, 72.7, 72.4, 71.3, 71.2, 70.4, 69.7, 69.2, 68.1, 68.0, 67.3, 67.1, 34.2, 32.2, 31.6, 29.7, 29.6, 29.6, 26.6, 24.8, 22.9, 22.6, 20.3, 20.2, 20.1, 17.2, 17.2, 17.0, 17.0, 13.8, 13.8.⁸

Mezzattiaside-7(7):

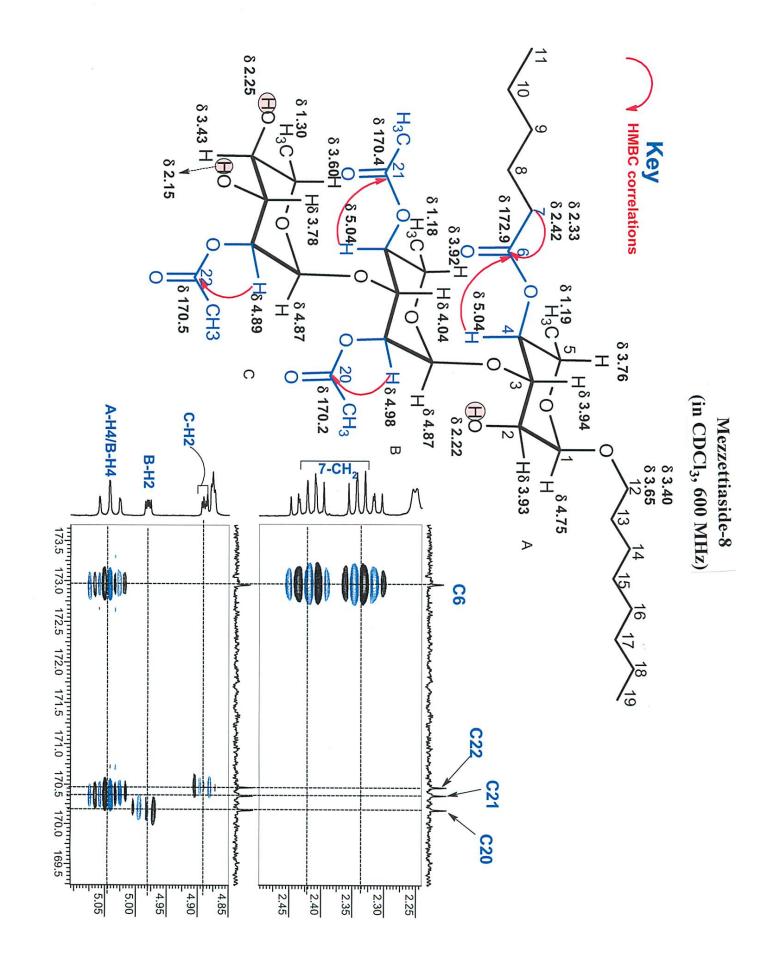


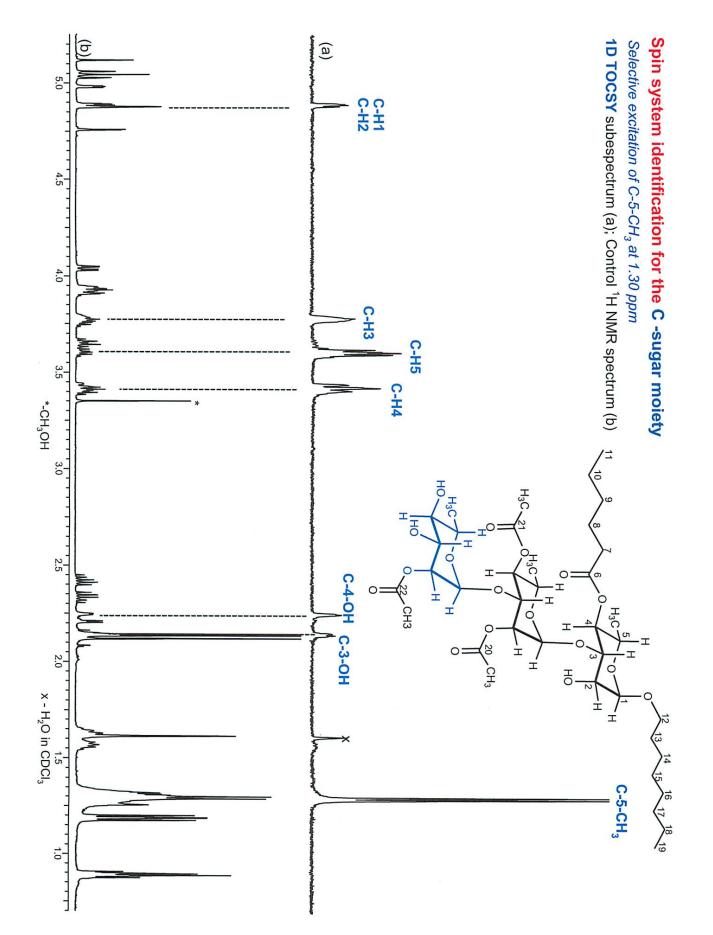
To a stirred solution of tetrasaccharide triol **25** (15 mg, 0.015 mmol) in THF (1 mL) was added thiourea (6.8 mg, 0.09 mmol), NaHCO₃ (4.4 mg, 0.05 mmol) and TBAI (2.7 mg, 0.007 mmol) and reaction refluxed for 3 h. The reaction was brought to room temperature and diluted with ethyl acetate, washed with saturated ammonium chloride solution extracted with EtOAc and concentrated under reduced pressure. The crude product was purified using column chromatography with 5% MeOH /DCM elution to get the desired product Mezzattiaside-**7** (**7**) (11.5 mg, 0.012 mmol, 83%): $R_f(50\%$ EtOAc/hexane) = 0.60; $[\alpha]^{25}_{D} = -55.6$ (c = 0.47, CHCl₃); IR (thin film, cm⁻¹) 3435, 2927, 1741, 1450, 1375, 1264, 1045, 896, 732, 703; ¹H NMR (500 MHz, CD₃OD + C₆D₆ (6:1)) δ 5.33 (dd, J = 9.5, 9.5 Hz, 1H), 5.25 (dd, J = 3.5, 2.0 Hz, 1H), 5.23 (dd, J = 10.5, 9.5 Hz, 1H), 4.99 (s, 1H), 4.98 (d, J = 1.5 Hz, 1H), 4.96 (d, J = 1.0 Hz, 1H), 4.85 (d, J = 1.0 Hz, 1H), 4.44 (dd, J = 9.5, 3.5 Hz, 1H), 3.94-3.91 (m, 4H), 3.90

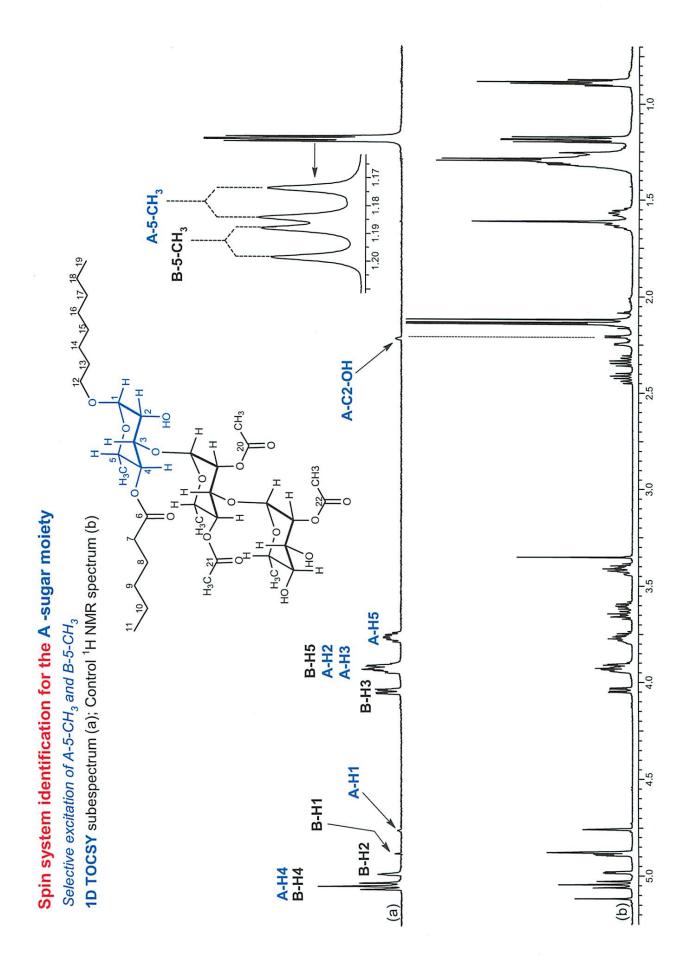
⁸. Optical rotation for the isolated **Mezzettiaside-5**: $[\alpha]_D = -57$ (c = 0.37, CHCl₃) (Ref.1).

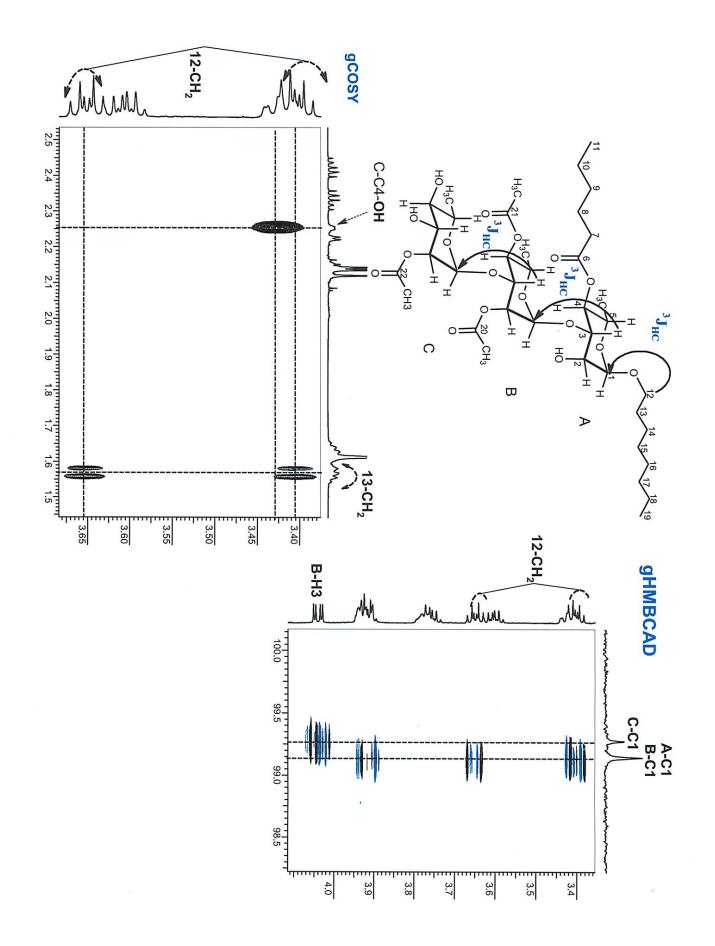
(m, 1H), 3.81 (ddd, J = 9.5, 7.0, 3.0 Hz, 1H), 3.59 (dd, J = 9.5, 9.5 Hz, 1H), 3.53 (ddd, J = 9.5, 6.5, 3.5 Hz, 1H), 2.65 (m, 1H), 2.52 (m, 1H), 2.20 (s, 3H), 2.19 (s, 3H), 2.16 (s, 3H), 1.77 (m, 4H), 1.45 (m, 17H), 1.31 (m, 6H), 1.28 (d, J = 6.0 Hz, 3H), 1.02 (m, 6H); ¹³C NMR (100 MHz, CD₃OD + C₆D₆ (6:1)) δ 173.9, 171.1, 170.9, 170.8, 103.3, 102.8, 100.7, 100.2, 78.9, 76.9, 75.4, 73.2, 73.2, 73.1, 72.8, 72.4, 71.6, 71.4, 71.3, 69.6, 68.1, 68.0, 67.4, 67.2, 34.3, 32.2, 31.7, 29.7, 29.7, 26.6, 24.9, 23.0, 22.7, 20.2, 20.2, 20.2, 17.3, 17.2, 17.1, 17.0, 13.8, 13.7; HRMS–MALDI-TOF (CCA) (m/z): [M + Na]⁺ calcd for [C₄₄H₇₄O₂₁ + Na]⁺: 961.4615, Found: 961.4645.

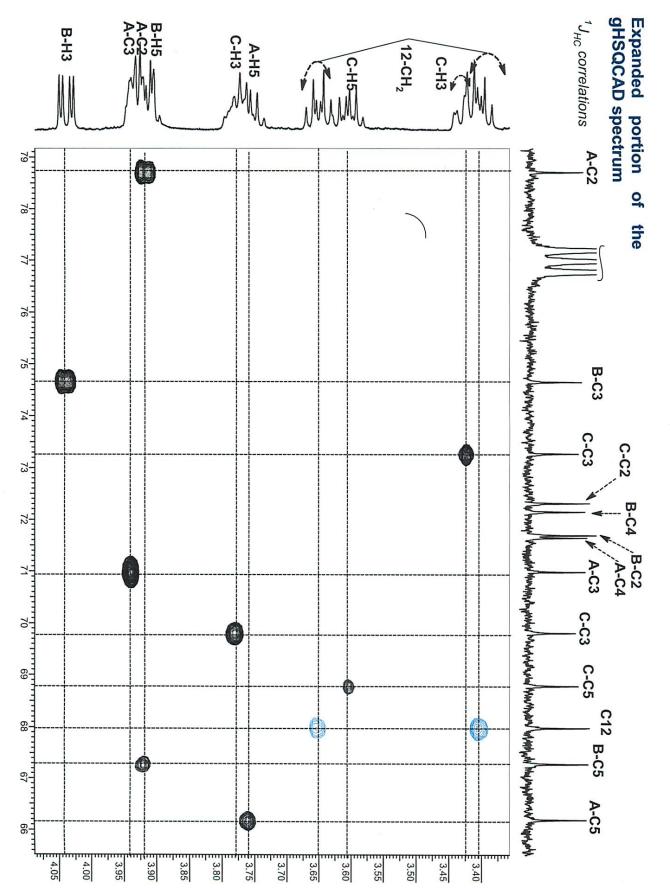
Mezzattiaside-6 (6):

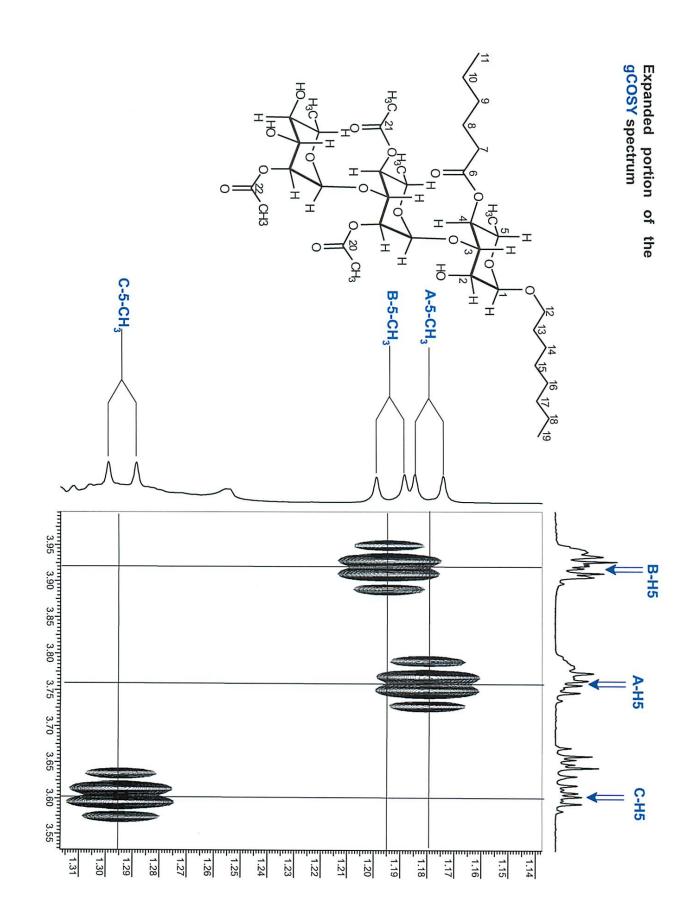

To a solution of triol **25** (11 mg, 0.011 mmol) in 0.2 mL CH₂Cl₂ was added *p*-TsOH·H₂O (2 mg), triethylorthoacetate (19.5 μ L, 0.11 mmol.) at 0 °C. Stirred at 0 °C for 1 h then added 0.1 mL 90% AcOH (*aq*). The reaction mixture was stirred for 30 min at 0 °C and diluted with 5 mL EtOAc and washed with 2 mL saturated NaHCO₃ solution, then washed with 3 mL saturated brine, dried over Na₂SO₄. The organic layers were concentrated under reduced pressure to get the desired product. The crude product (9 mg) was further subjected directly to deprotection using thiourea (7.8 mg, 0.10 mmol), NaHCO₃ (5.0 mg, 0.06 mmol), *n*-Bu₄NI (3.1 mg, 0.01 mmol) in THF (0.1 mL) under reflux condition. Reaction was continued for 2 hr. Monitored by TLC, reaction completed, diluted with ethyl acetate and washed with saturated ammonium chloride solution.

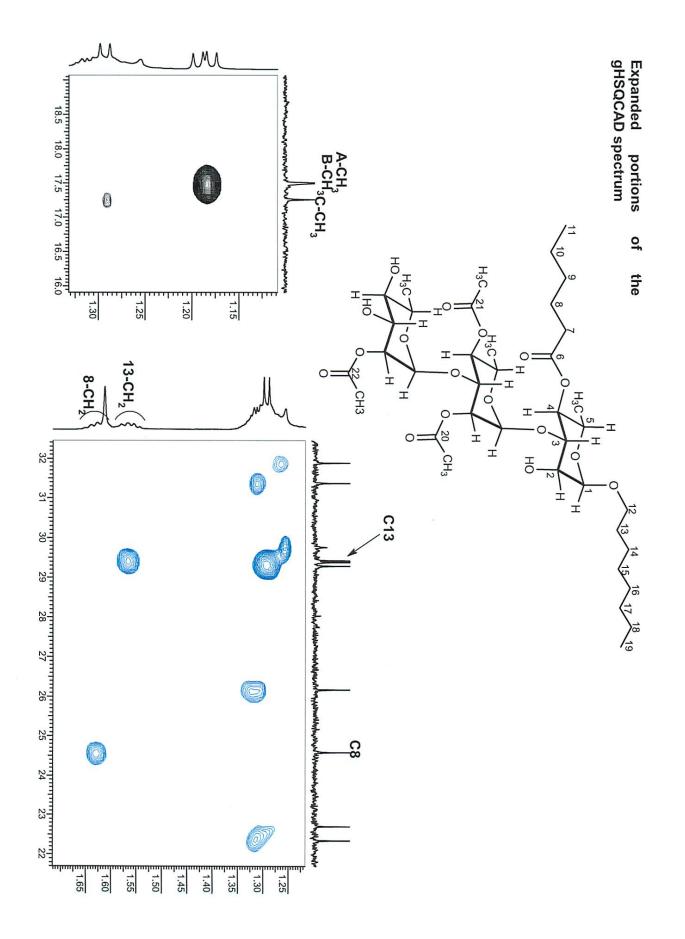

⁹ Optical rotation for the isolated **Mezzettiaside-7**: $[\alpha]_D = -63$ (c = 0.54, CHCl₃) (Ref.1).

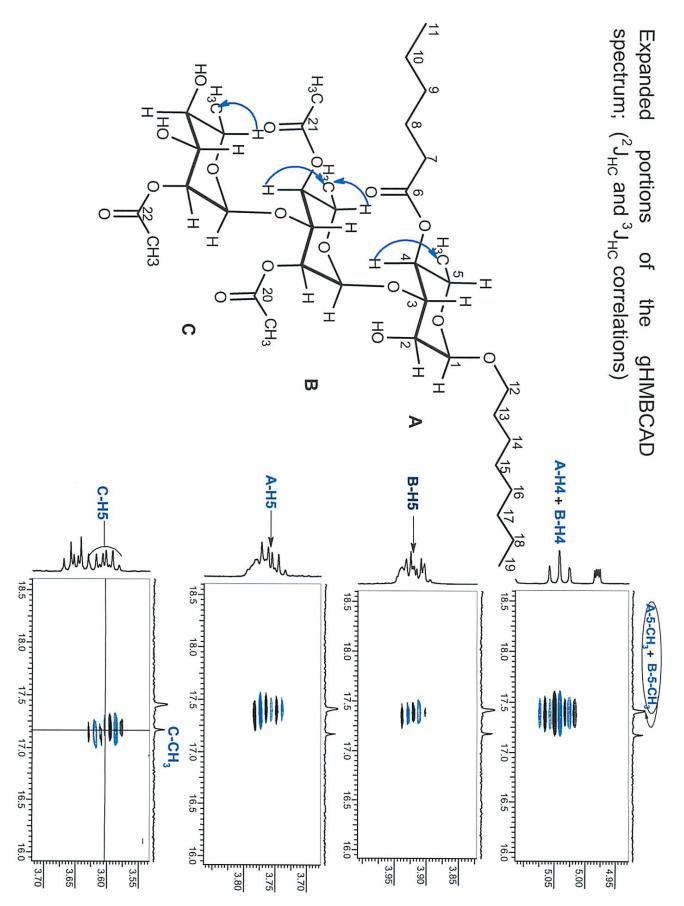

Washed with water and concentrated organic layer under reduced pressure. Finally, performed flash chromatography on silica gel eluting with 5-6% MeOH/ CH_2Cl_2 to give Mezzettiaside-**6** (**6**) (8.8 mg, 0.009 mmol, 83%): P_{f} (5% MeOH/ CH_2Cl_2) = 0.5; $[\alpha]^{25}_{D} = -37.6$ (c = 0.22, CHCl₃); IR (thin film, cm⁻¹) 3435, 2929, 2854, 1740, 1374, 1265, 1230, 1136, 1075, 1045, 733, 703; ¹H NMR (400 MHz, CDCl₃) δ 5.05 (dd, J = 9.6, 9.6 Hz, 1H), 5.03 (dd, J = 9.6, 9.6 Hz, 1H), 4.97 (br, 1H), 4.93 (dd, J = 10.4, 8.8 Hz, 1H), 4.92 (br, 1H), 4.86 (brs, 1H), 4.82 (br, 1H), 4.77 (brs, 2H), 4.18 (d, J = 9.6 Hz, 1H), 4.14 (d, J = 8.8 Hz, 1H), 3.94 (m, 2H), 3.91 (d, J = 10.4 Hz, 1H), 3.77 (m, 3H) 3.69-3.61 (m, 3H), 3.53 (dd, J = 9.6, 8.8 Hz, 1H), 3.42 (ddd, J = 9.6, 6.4, 6.4 Hz, 1H), 2.47 (m, 1H), 2.37 (m, 1H), 2.14 (s, 6H), 2.12 (s, 3H), 2.08 (s, 3H), 1.63 (m, 4H), 1.30 (m,17H), 1.19 (s, 6H), 1.12 (d, J = 6.0 Hz, 3H), 0.89 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 173.7, 171.7, 171.4, 170.6, 170.0, 101.9, 99.85, 99.64, 99.4, 79.2, 78.4, 75.2, 73.2, 72.7, 72.6, 72.3, 72.1, 72.0, 71.3, 71.1, 69.04, 69.0, 68.2, 67.4, 67.3, 66.4, 34.3, 32.0, 31.5, 29.6, 29.5, 29.4, 26.3, 24.7, 22.9, 22.5, 21.4, 21.3, 21.1, 21.0, 17.7, 17.6, 17.5, 17.3, 14.3, 14.1; HRMS–MALDI-TOF (CCA) (m/z): [M + Na]⁺ calcd for [C4₆H₇₆O₂₂ + Na]⁺: 1003.4720, Found: 1003.4716. ¹³C NMR (100 MHz, CD₃OD + C₆D₆ (6:1)) δ 173.9, 171.5, 171.4, 170.9, 170.8, 102.8, 100.6, ¹³C NMR (100 MHz, CD₃OD + C₆D₆ (6:1)) δ 173.9, 171.5, 171.4, 170.8, 102.8, 100.6, ¹³C NMR (100 MHz, CD₃OD + C₆D₆ (6:1)) δ 173.9, 171.5, 171.4, 170.9, 170.8, 102.8, 100.6, ¹³C NMR (100 MHz, CD₃OD + C₆D₆ (6:1)) δ 173.9, 171.5, 171.4, 170.9, 170.8, 102.8, 100.6, ¹³C NMR (100 MHz, CD₃OD + C₆D₆ (6:1)) δ 173.9, 171.5, 171.4, 170.9, 170.8, 102.8, 100.6, ¹³C NMR (100 MHz, CD₃OD + C₆D₆ (6:1)) δ 173.9, 171.5, 171.4, 170.9, 170.8, 102.8, 100.6, ¹³C NMR (100 MHz, CD₃OD + C₆D₆ (6:1)) δ 173.9, 171.5, 17

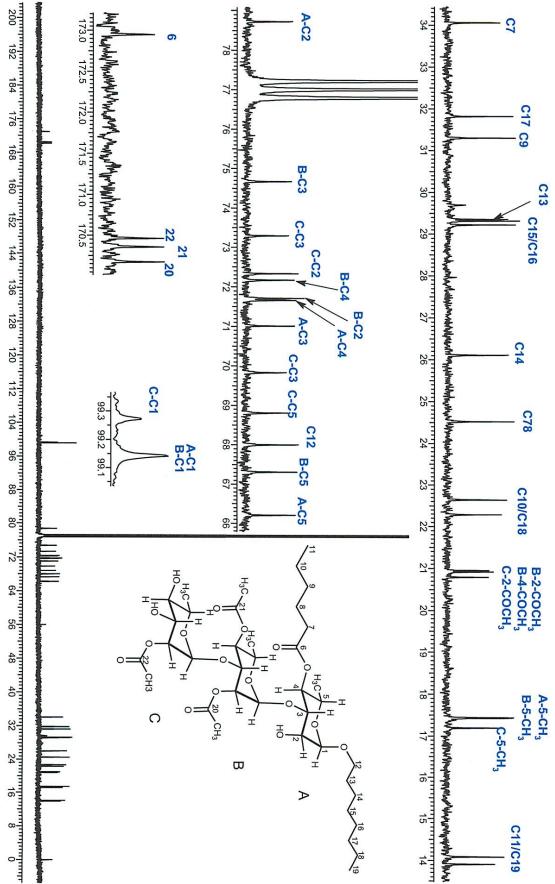

C NMR (100 MH2, CD₃OD + C₆D₆, (6:1)) 8 173.9, 171.5, 171.4, 170.9, 170.8, 102.8, 100.6, 100.1, 100.1, 78.8, 76.9, 75.3, 73.4, 73.3, 73.1, 72.9, 72.7, 72.4, 71.3, 71.3, 69.5, 69.2, 68.1, 68.0, 67.3, 67.1, 34.2, 32.2, 31.6, 29.7, 29.6, 29.6, 26.6, 24.8, 22.9, 22.6, 20.3, 20.2, 20.1, 20.1, 17.2, 17.2, 17.0, 16.9, 13.8, 13.6.

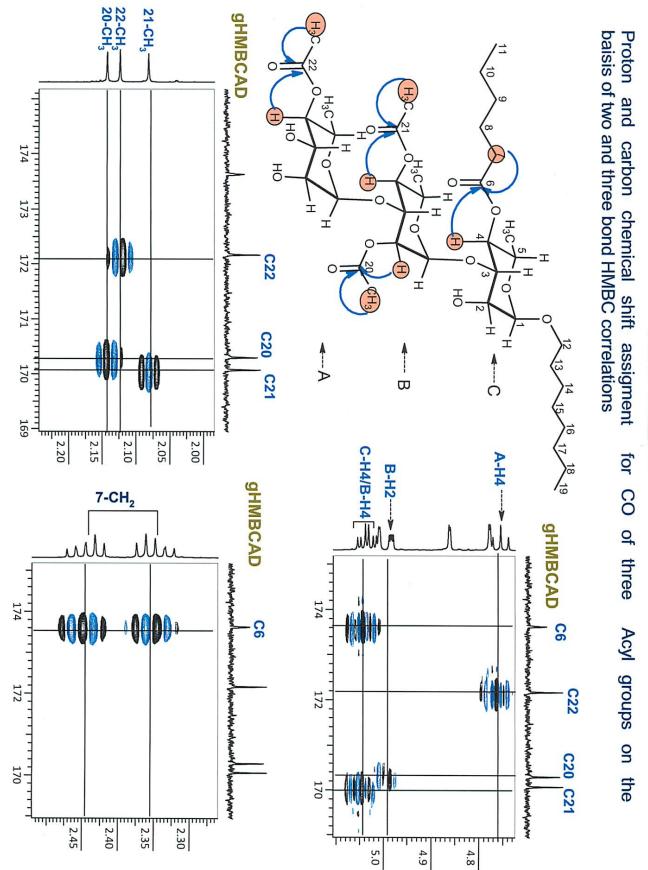

¹⁰ Optical rotation for the isolated **Mezzettiaside-6**: $[\alpha]_D = -35$ (c = 0.23, CHCl₃) (Ref.1).

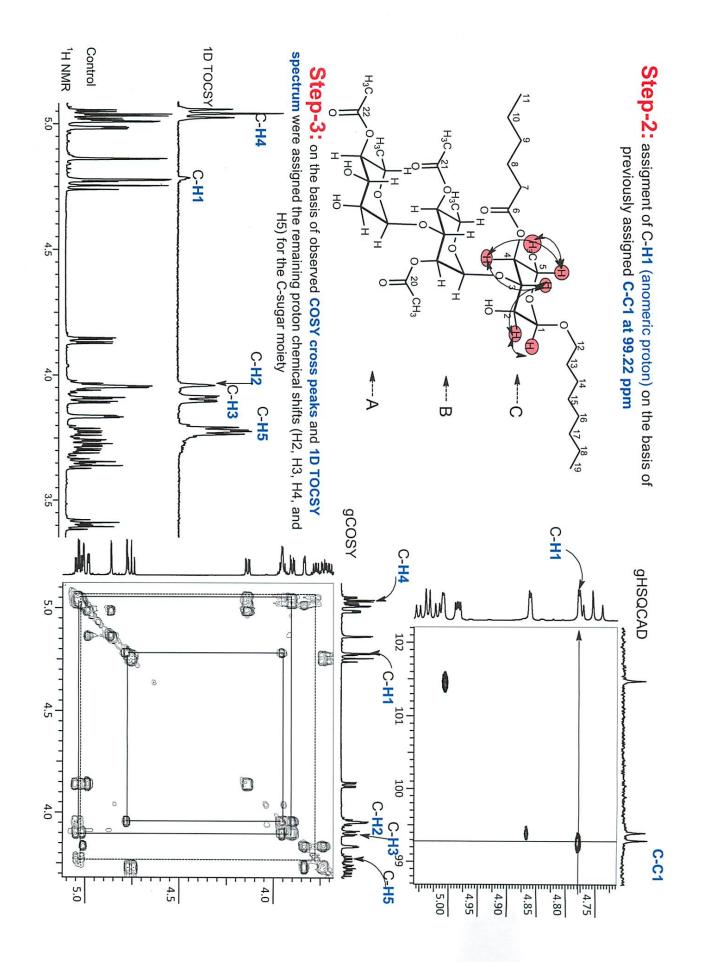


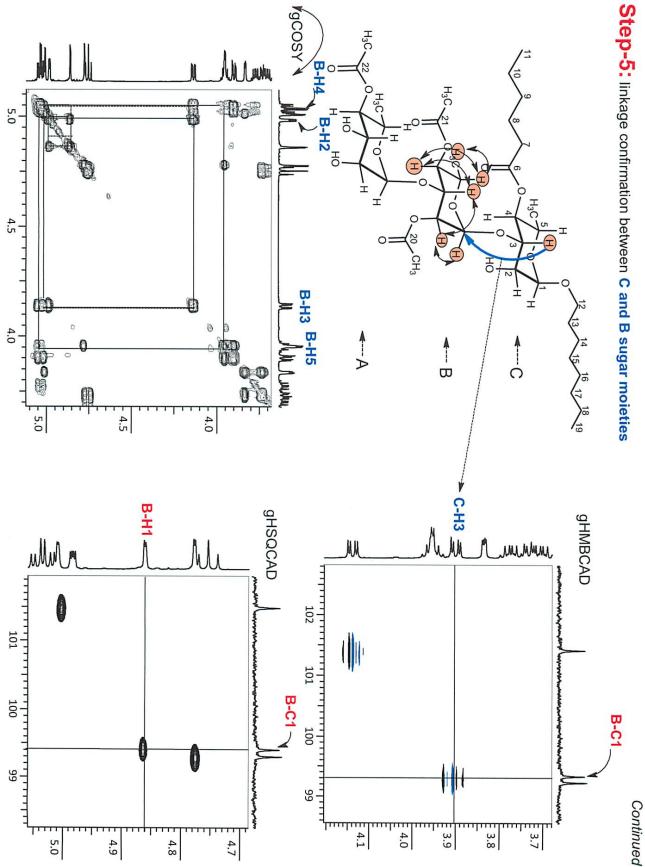


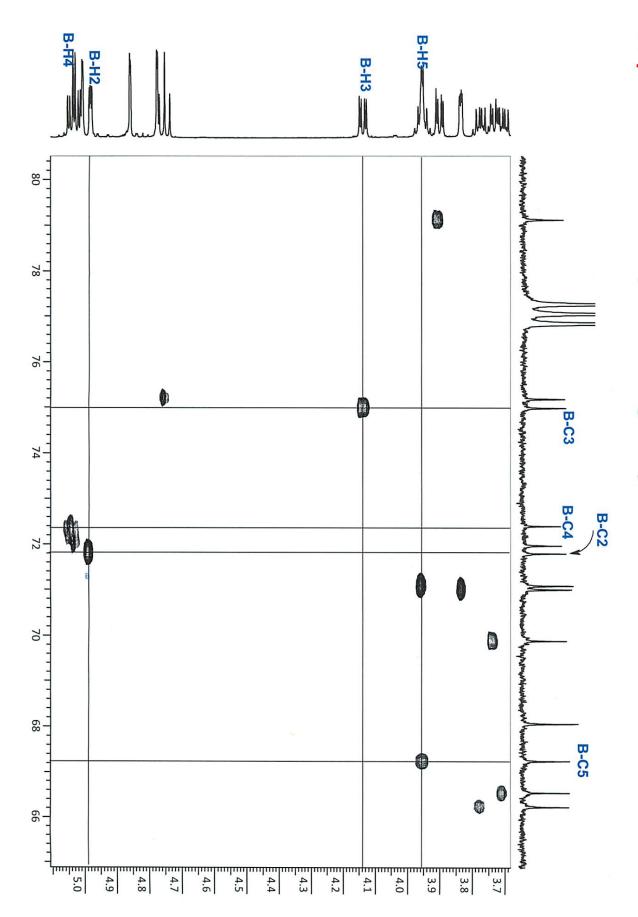


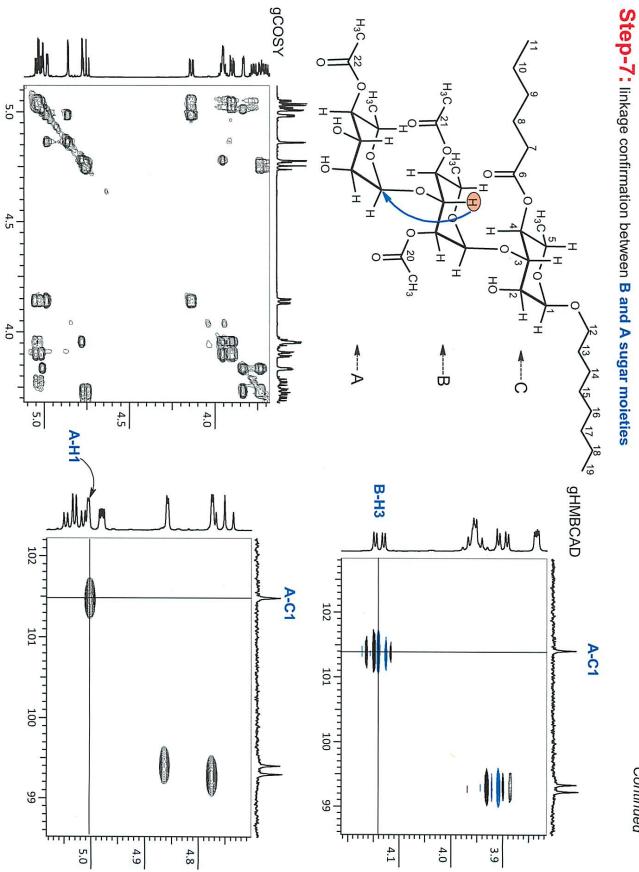


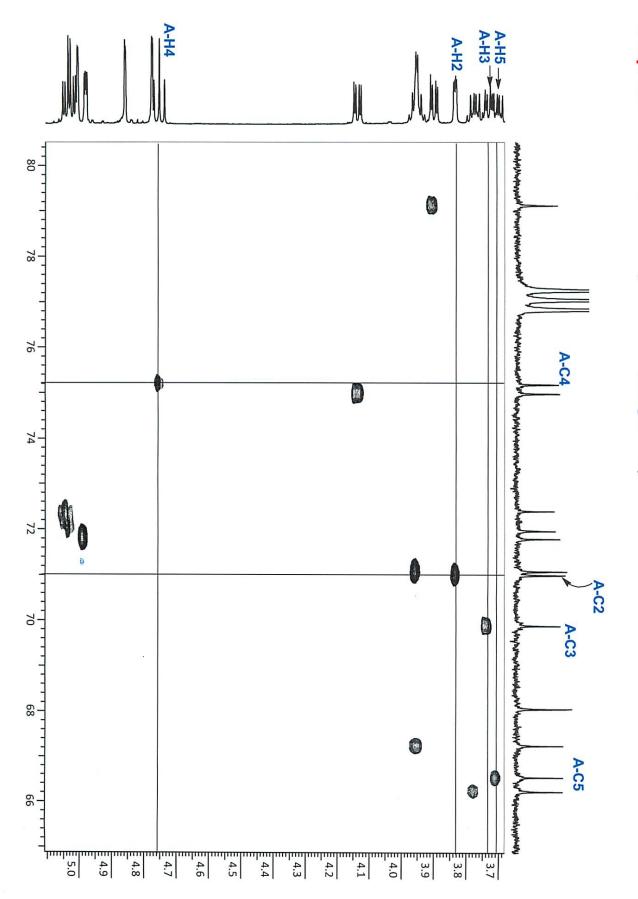


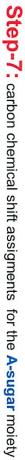


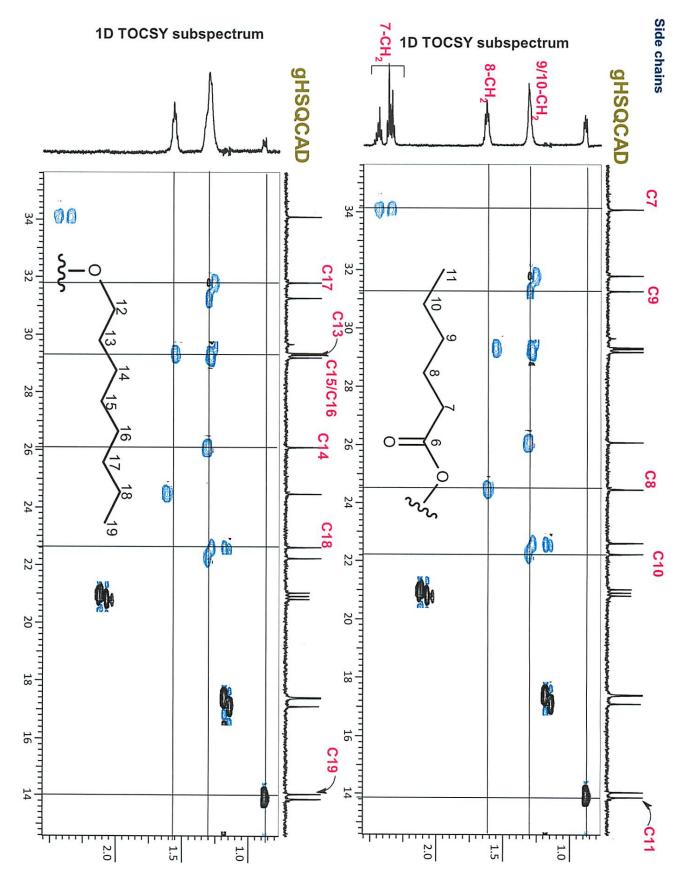

T A

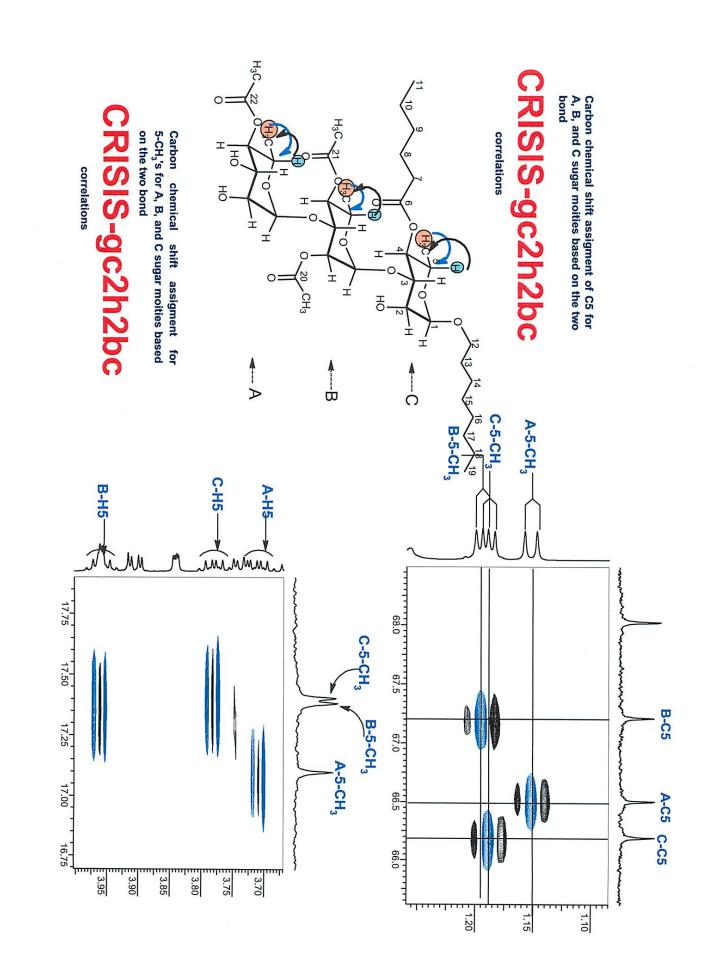

- -

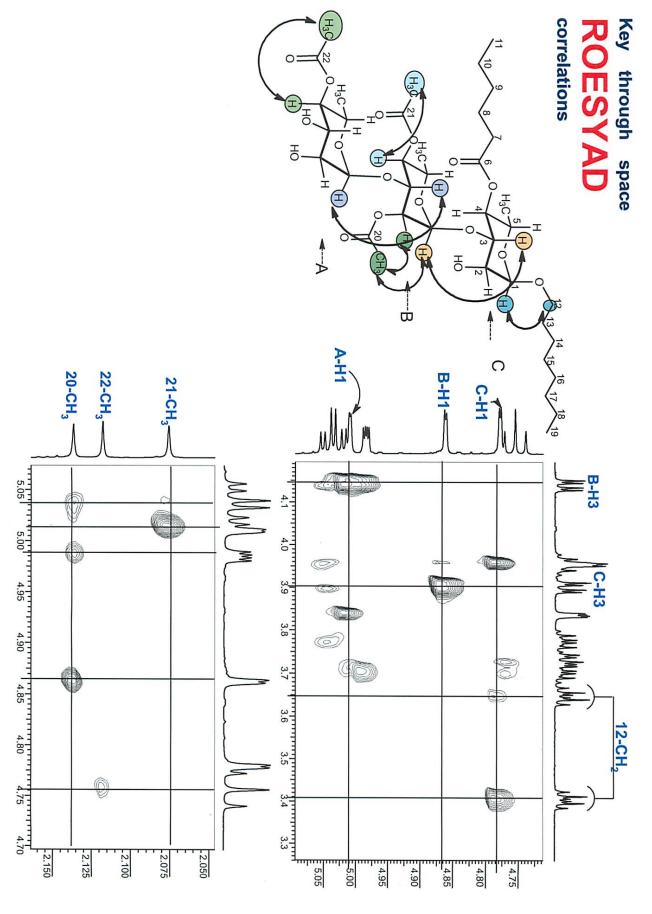

Mezzettiaside-4 (in CDCl₃, 600 MHz)

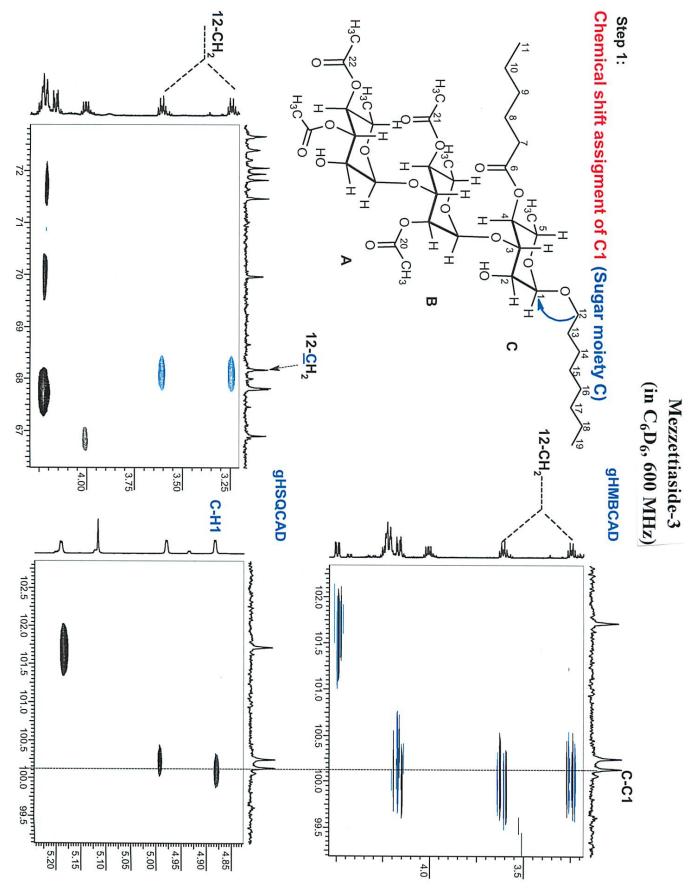


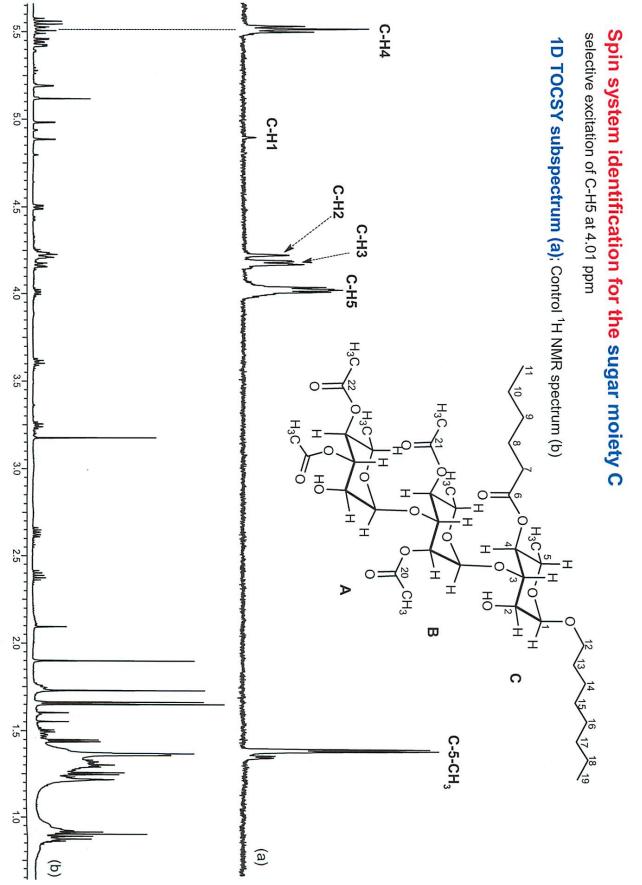


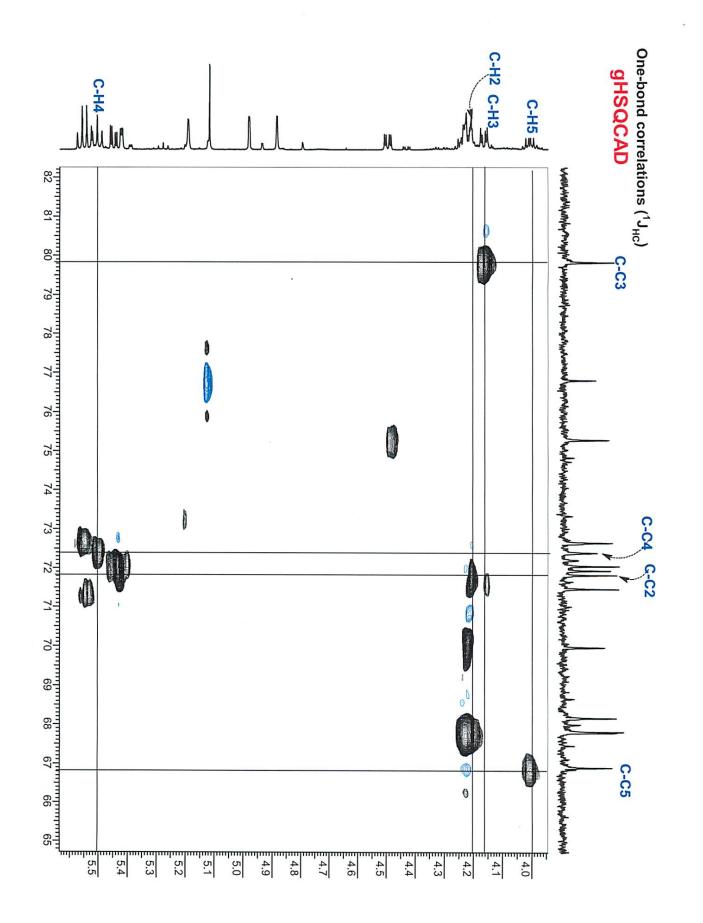


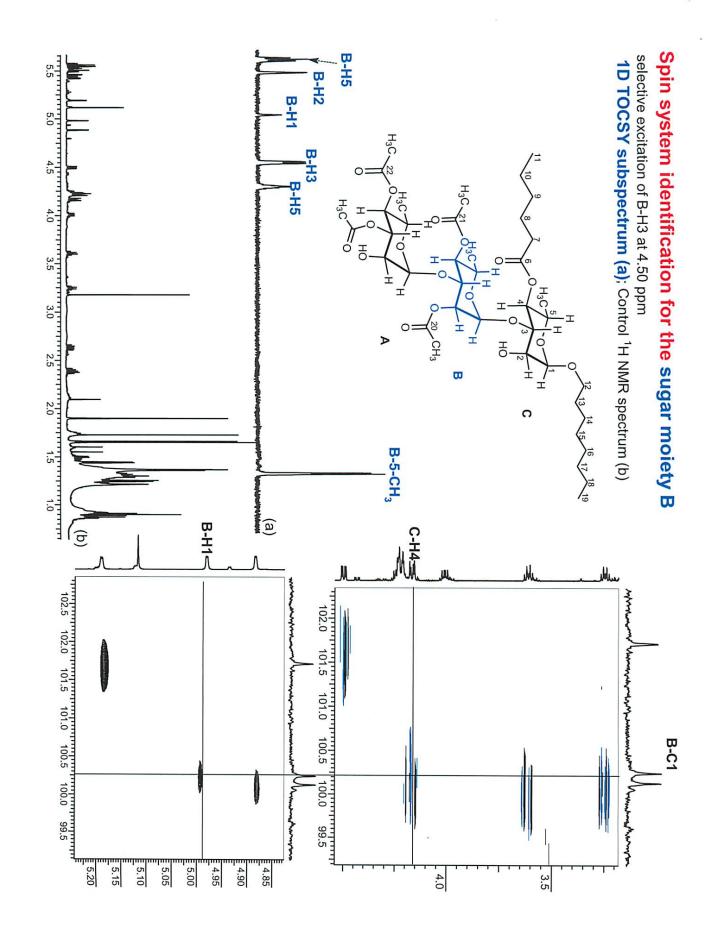


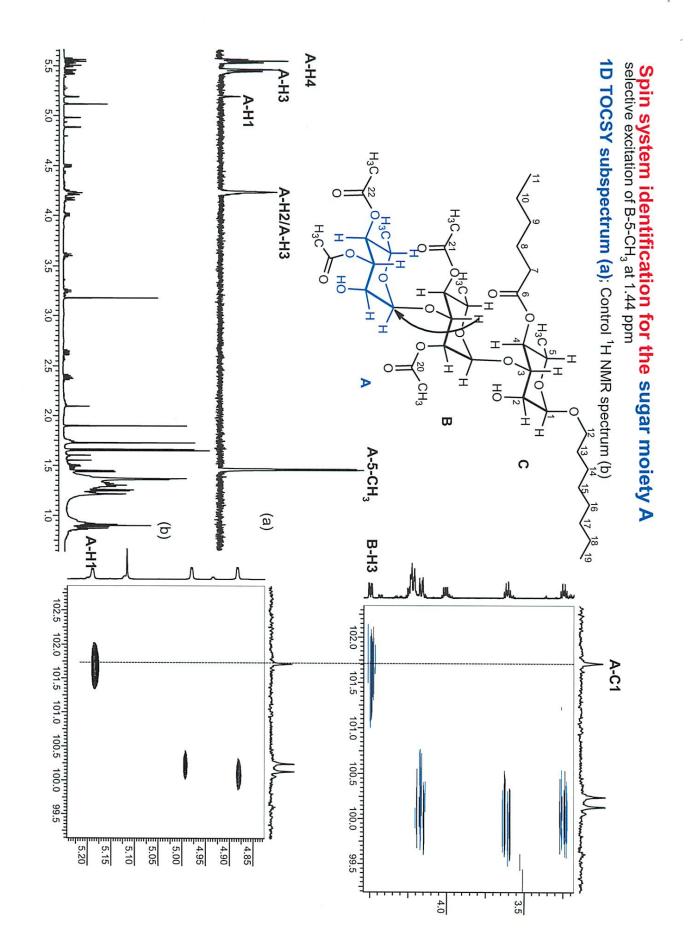

Continued

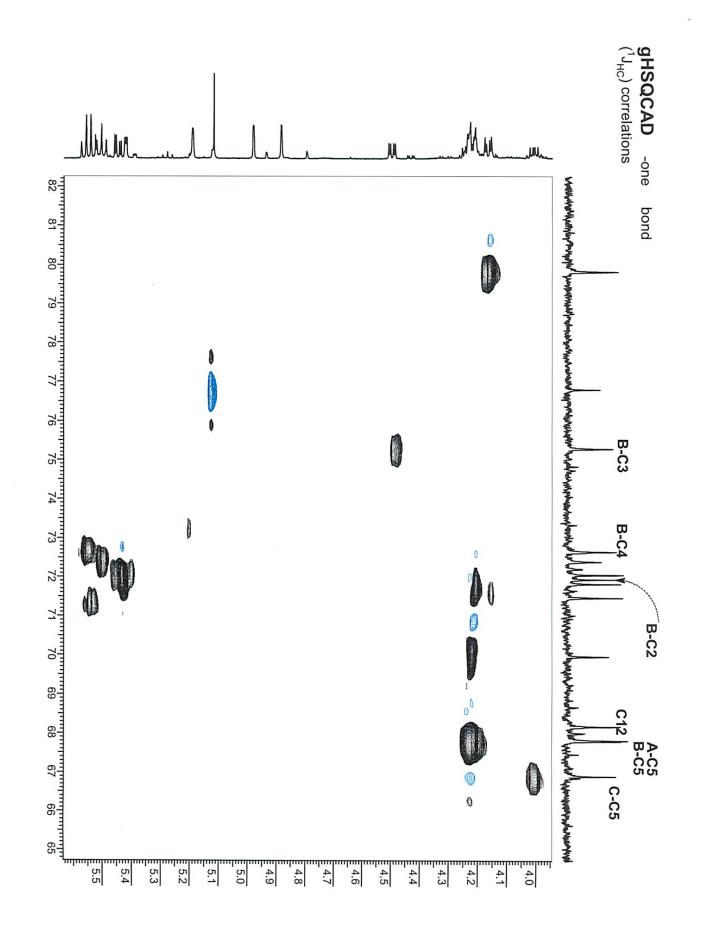


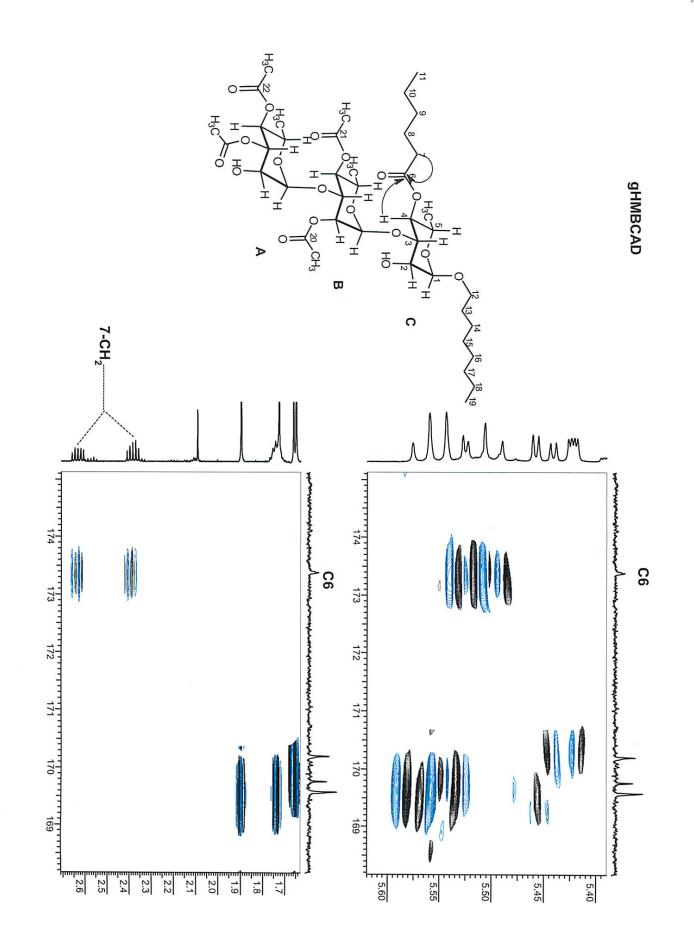


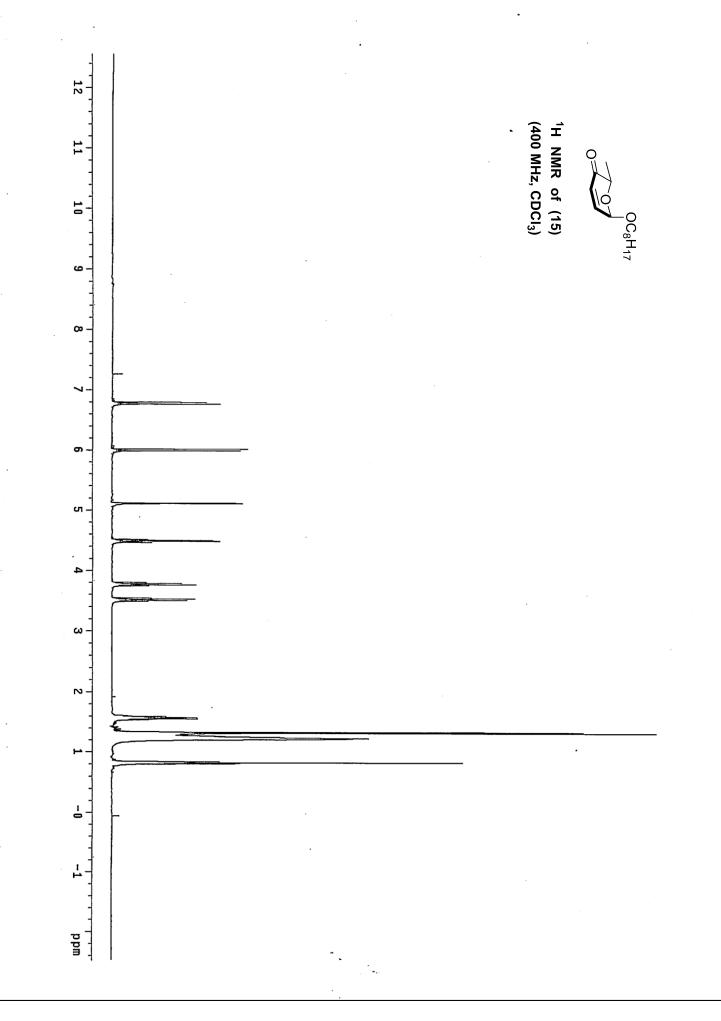


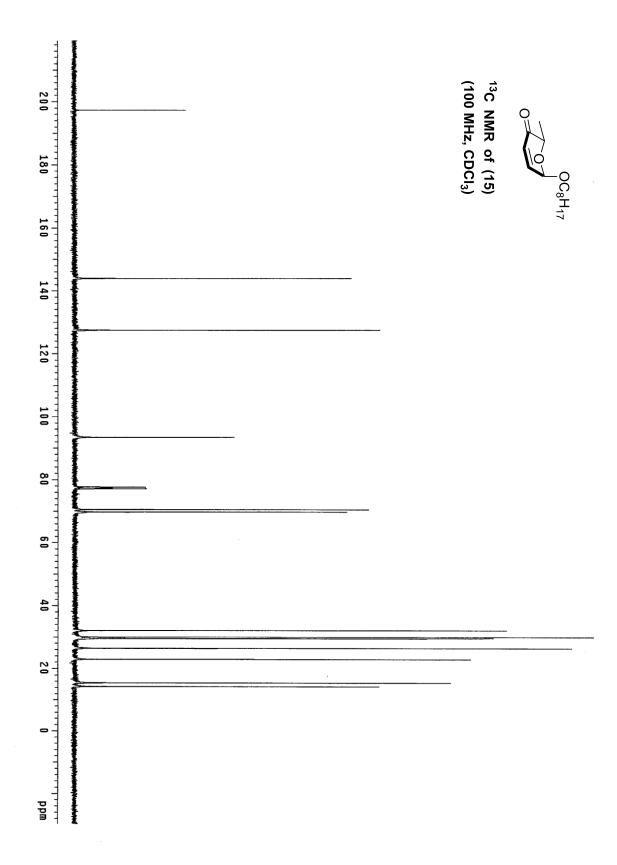


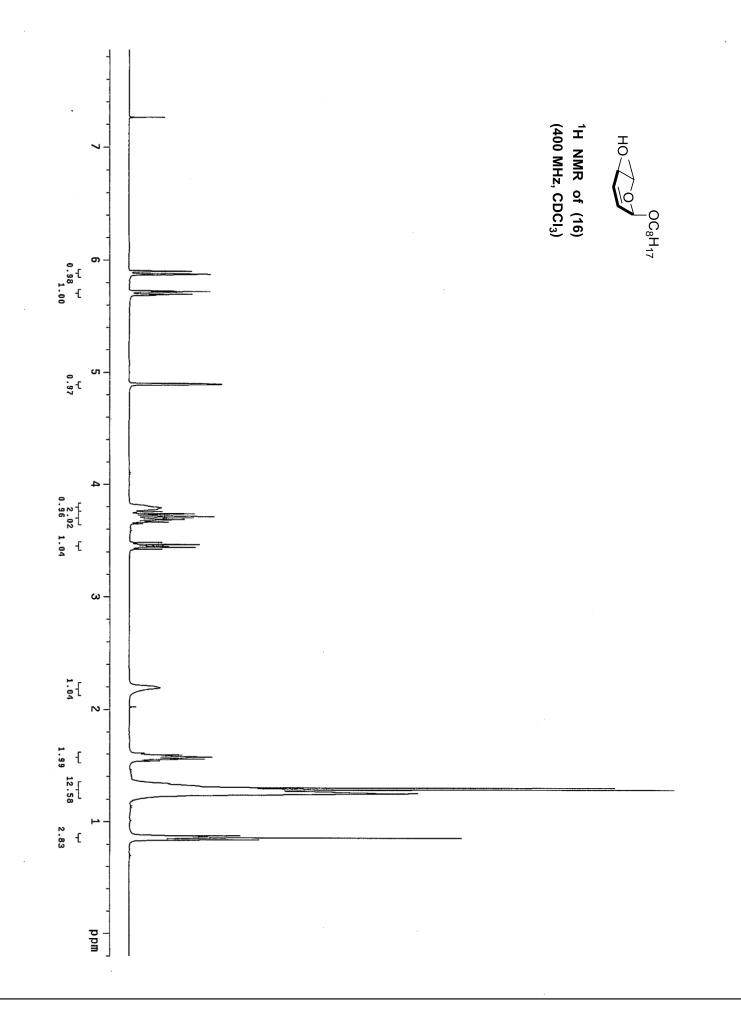


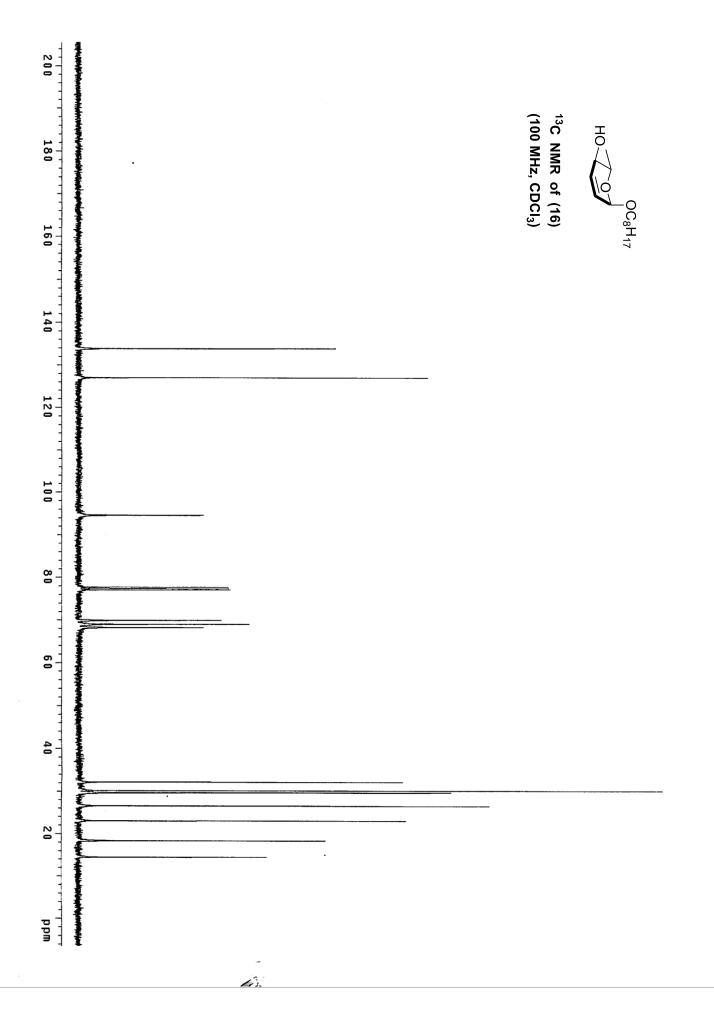


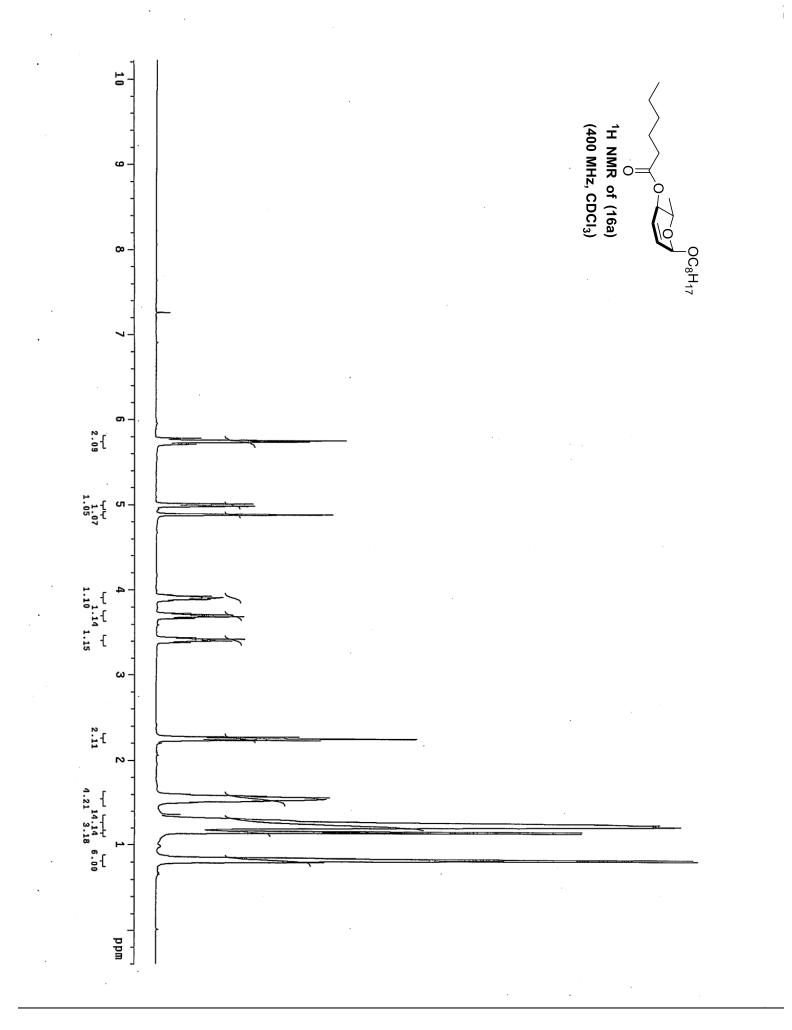


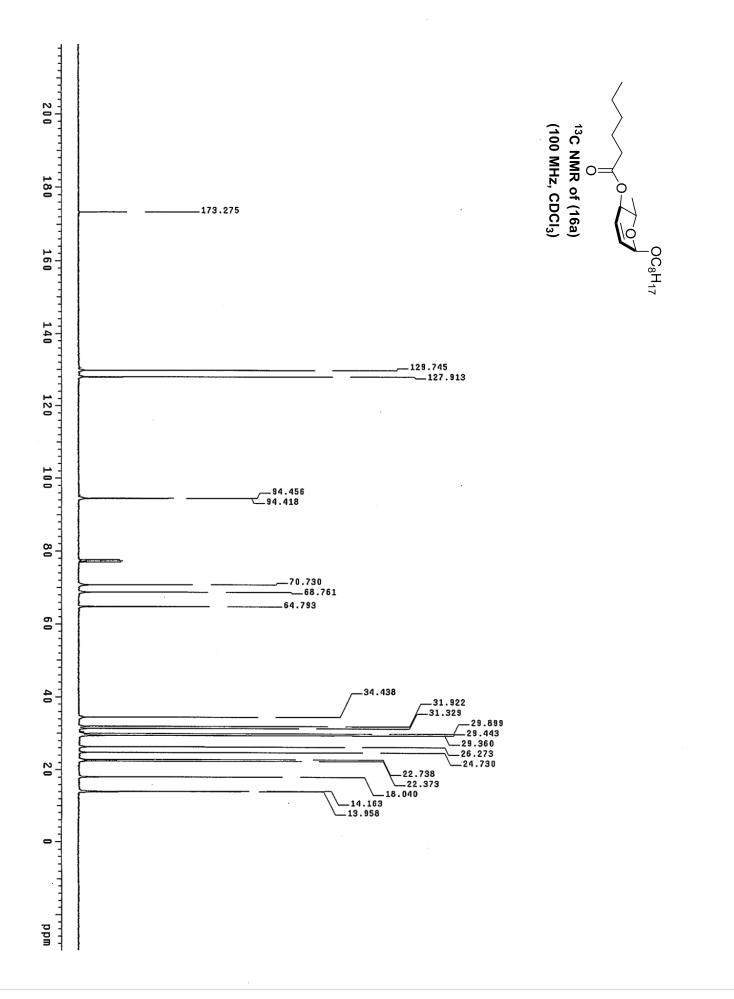


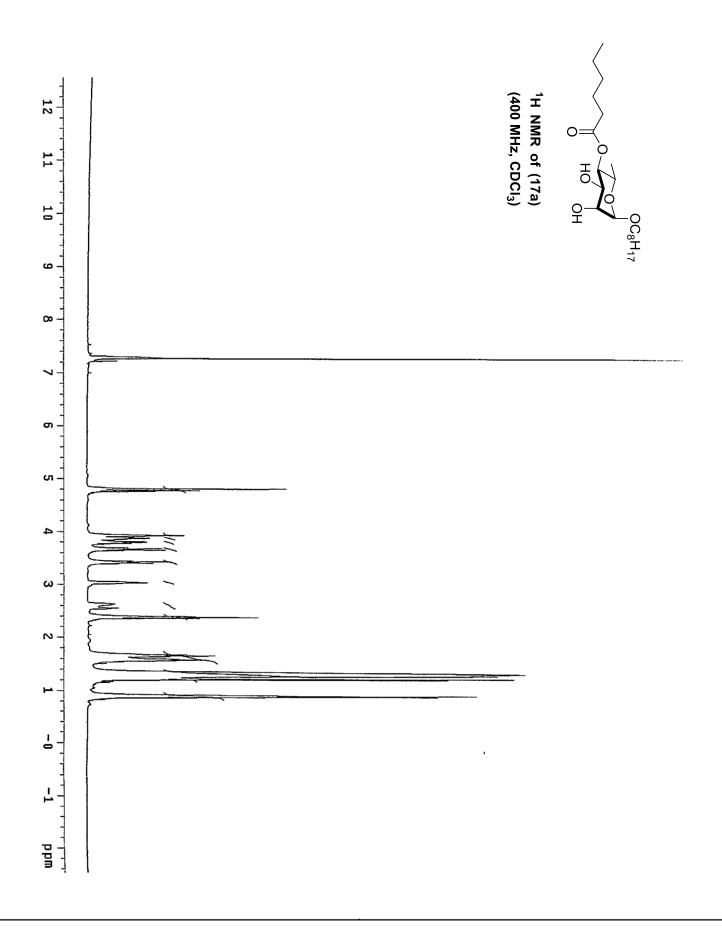


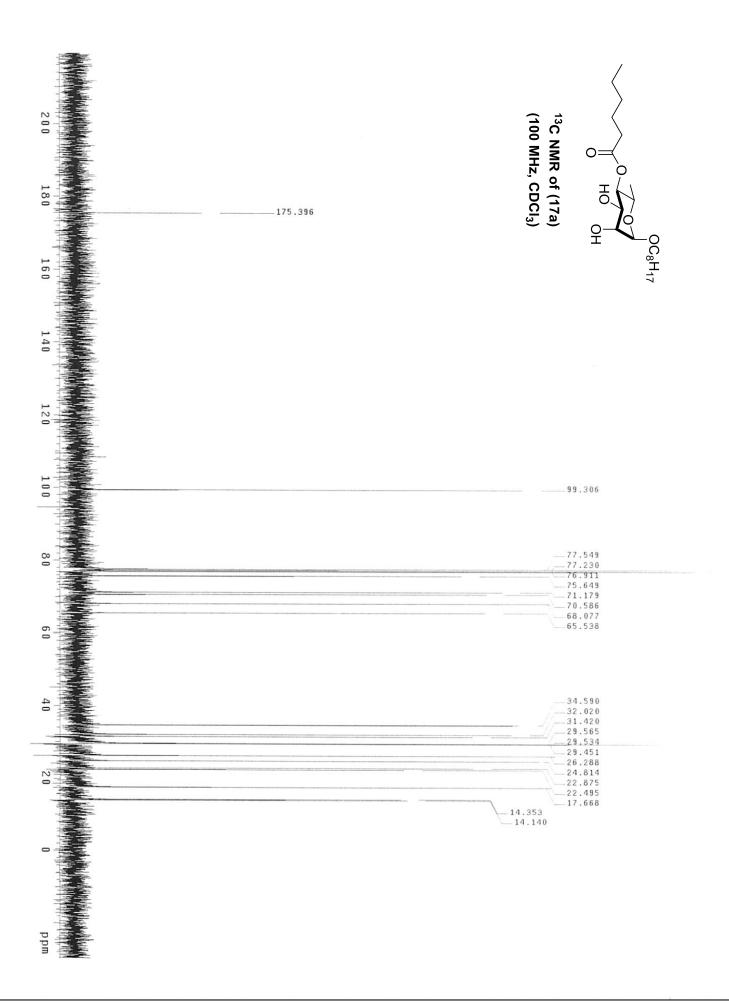


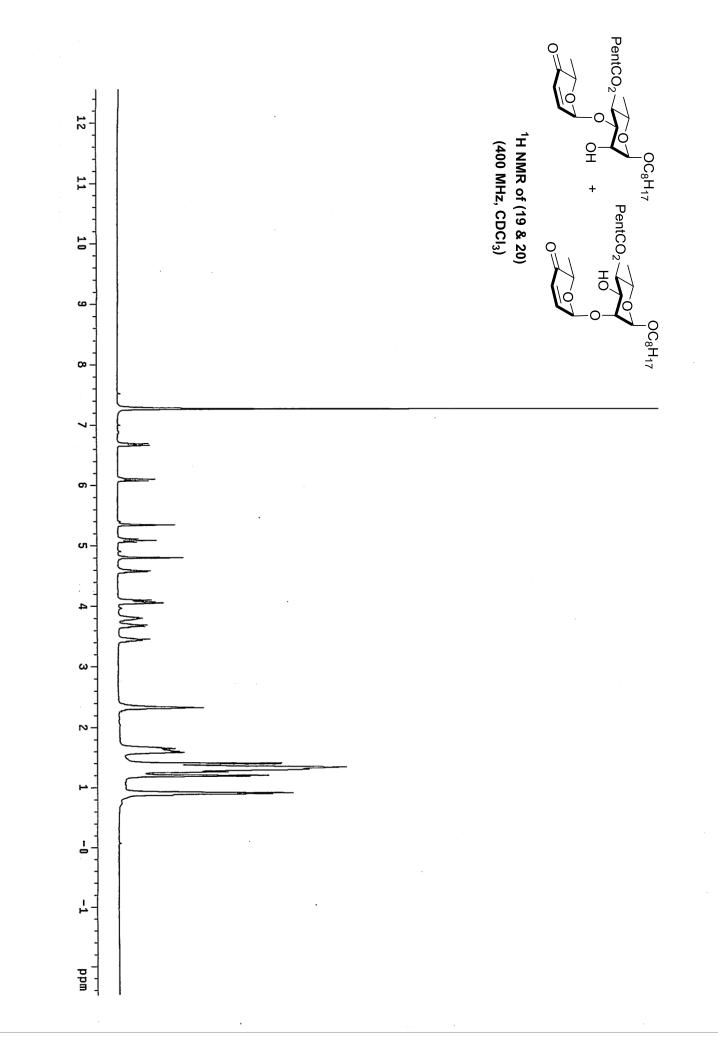


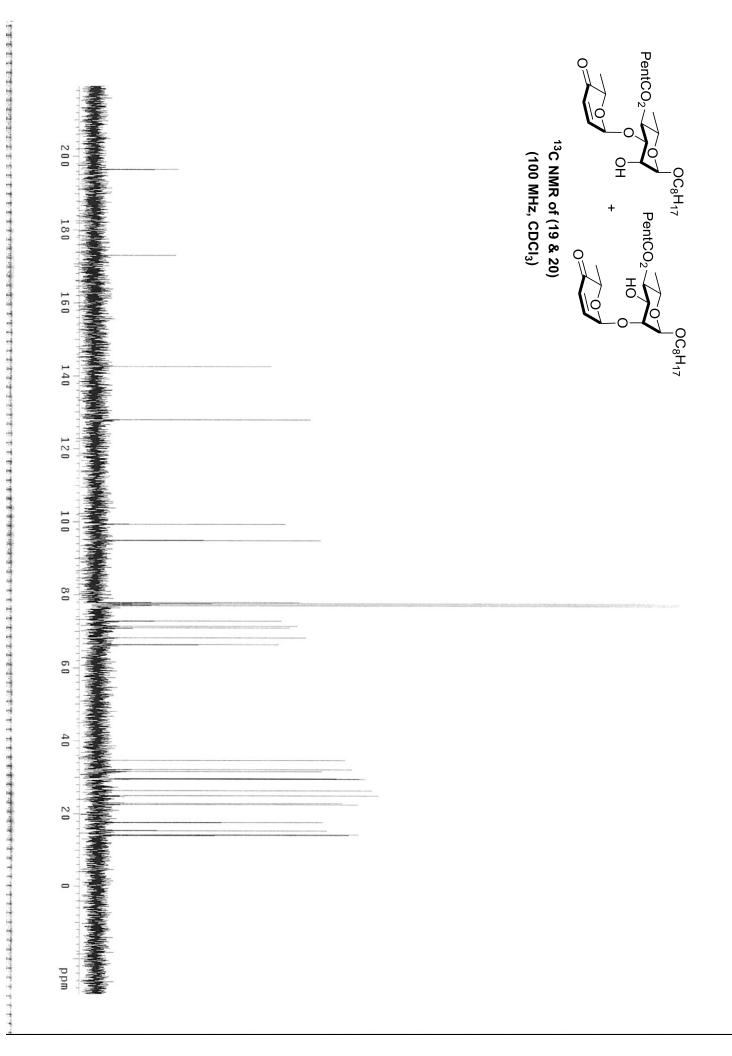


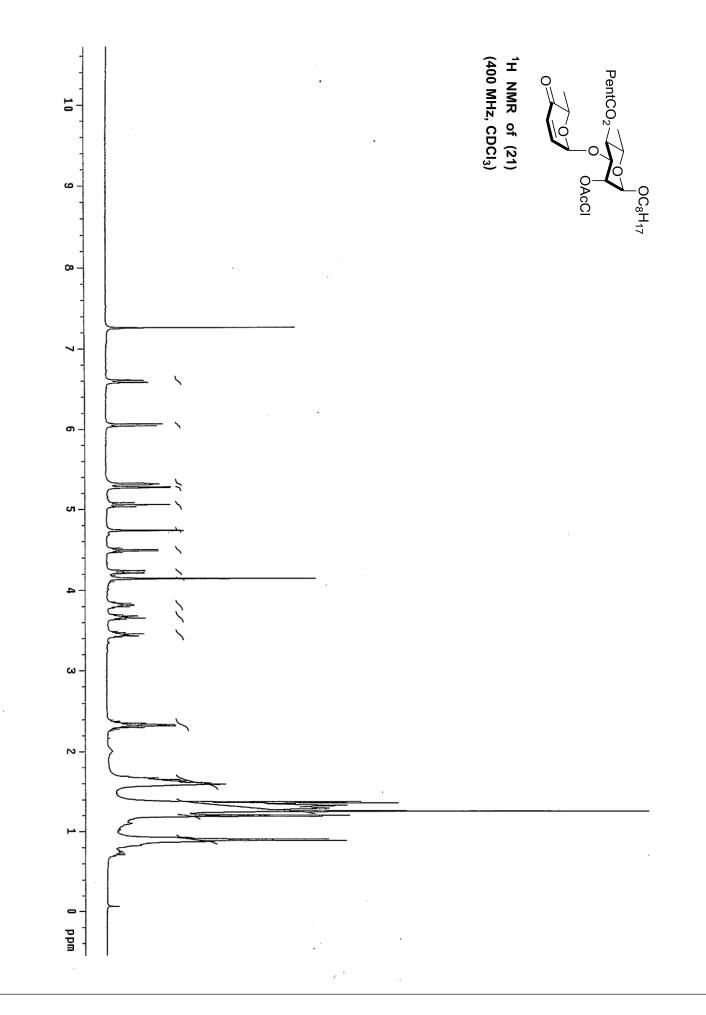


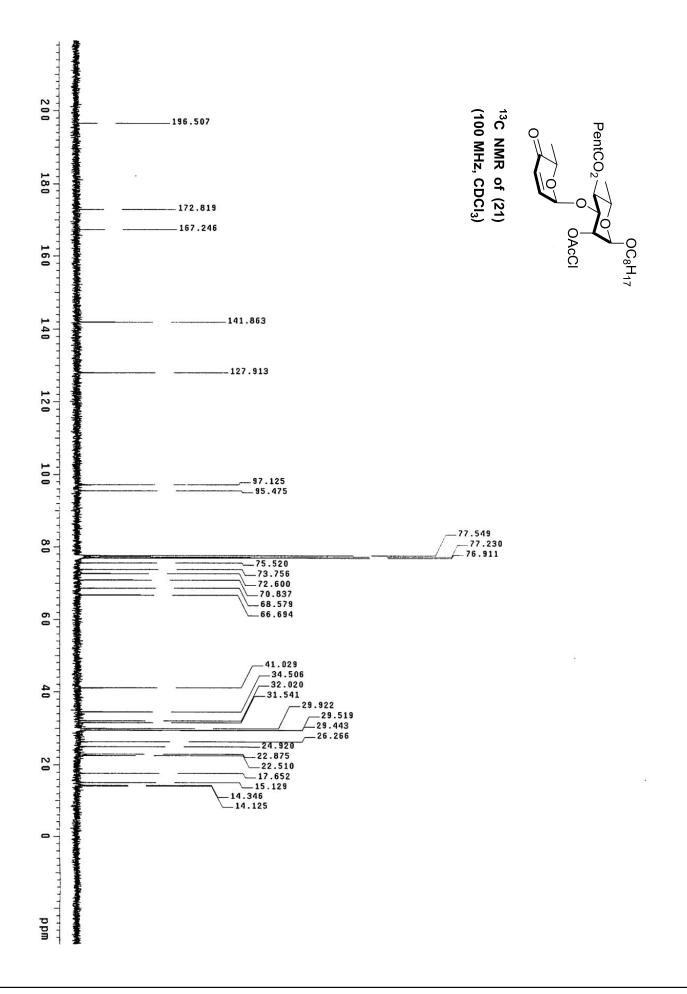


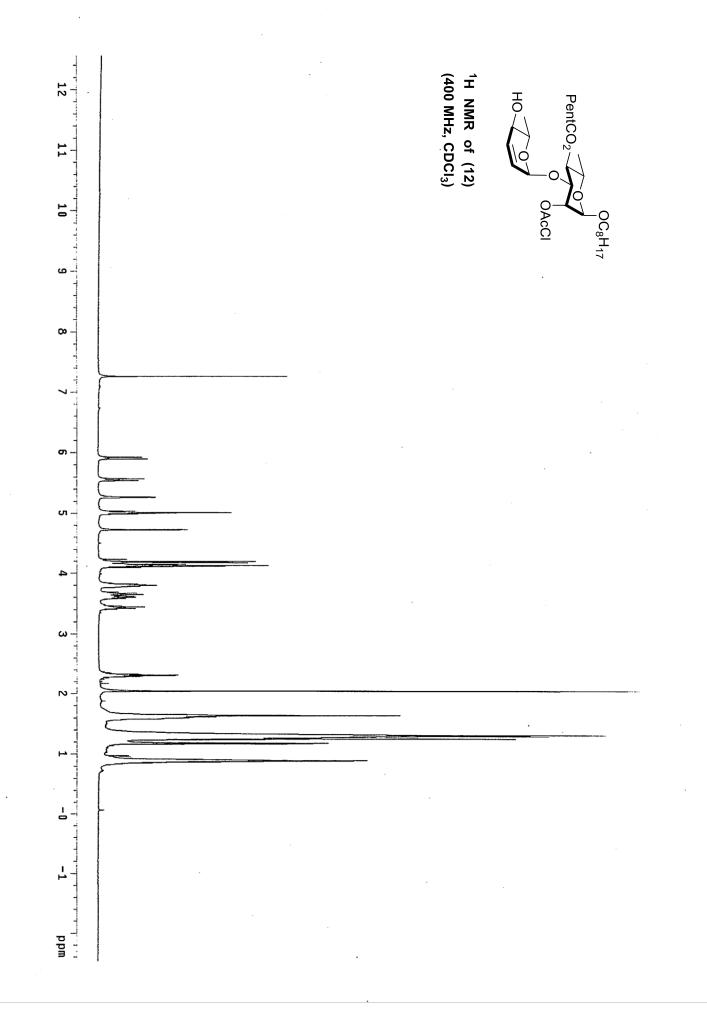


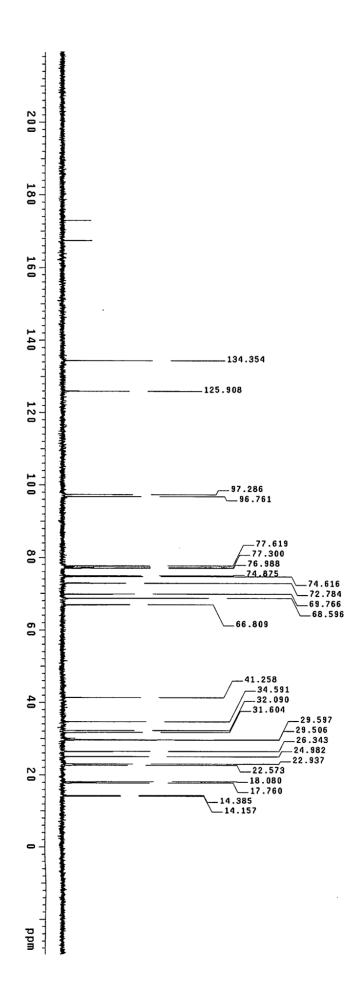






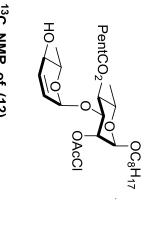






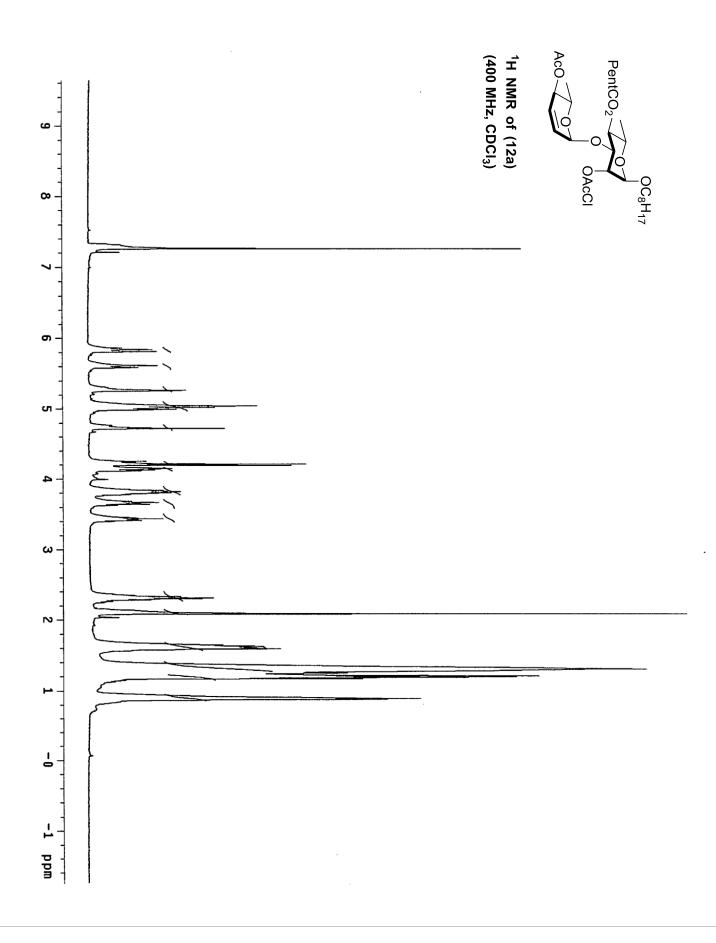
トナトナー おやちやお デデト シャ きょうちゅう

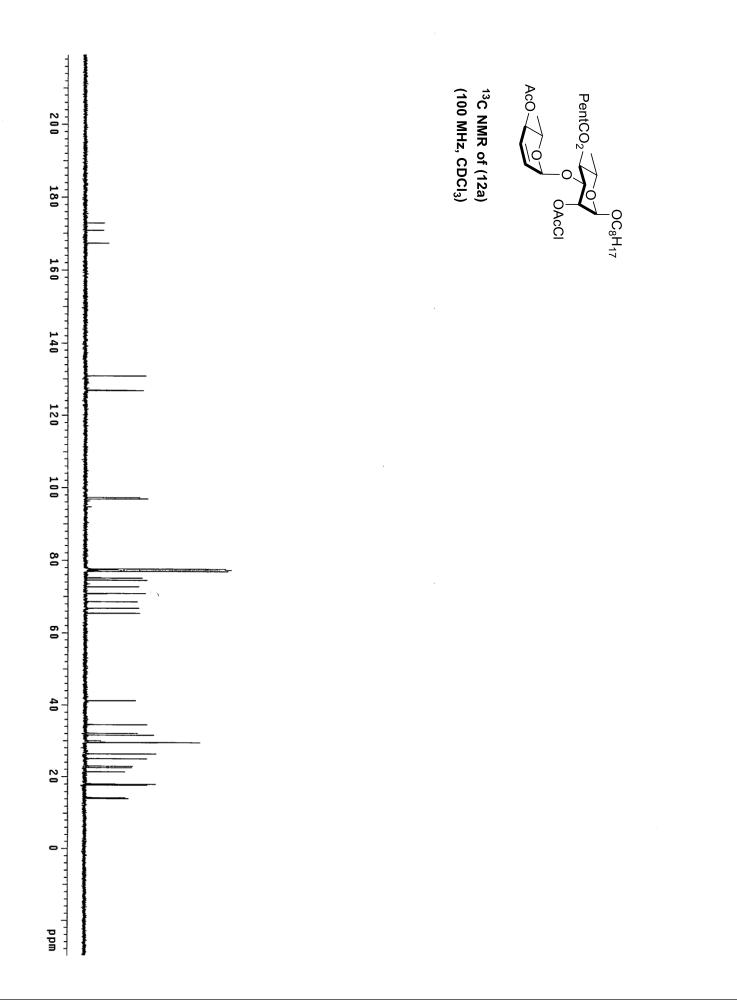
.-- •

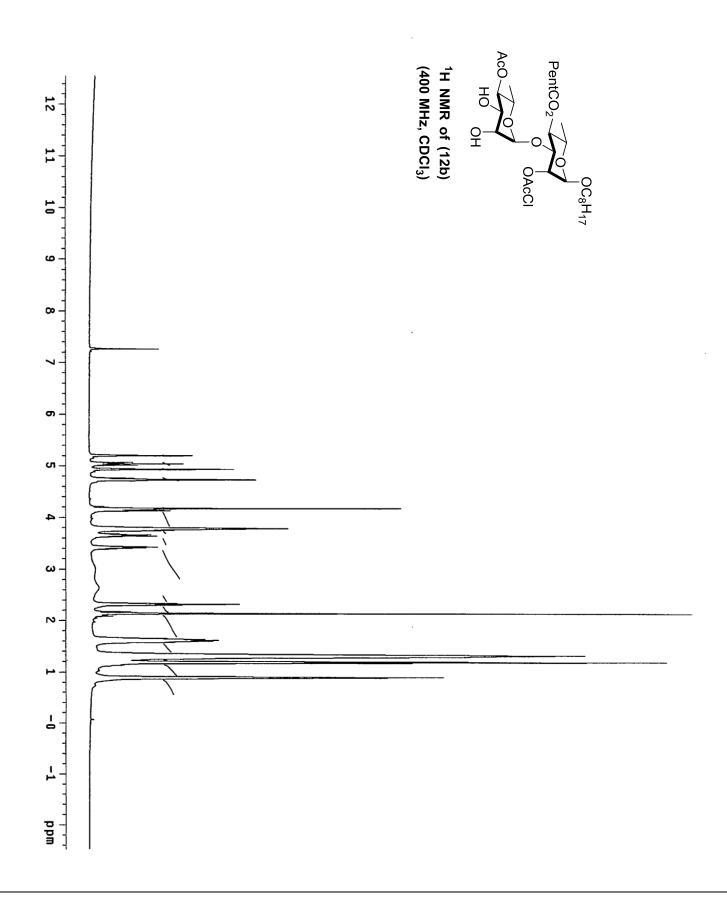

•

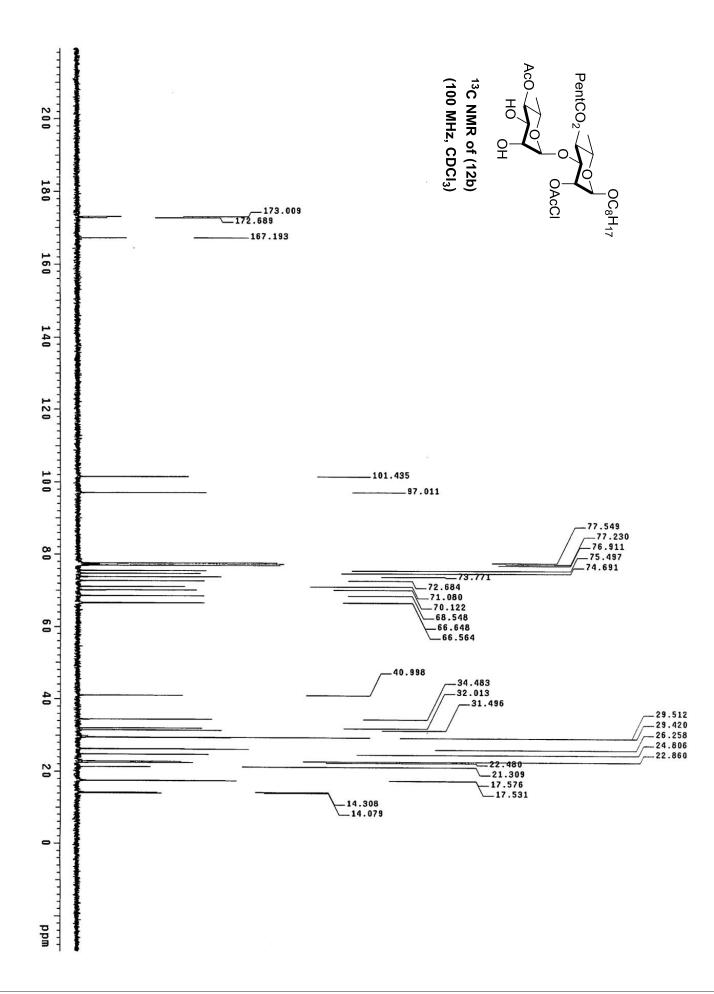
.

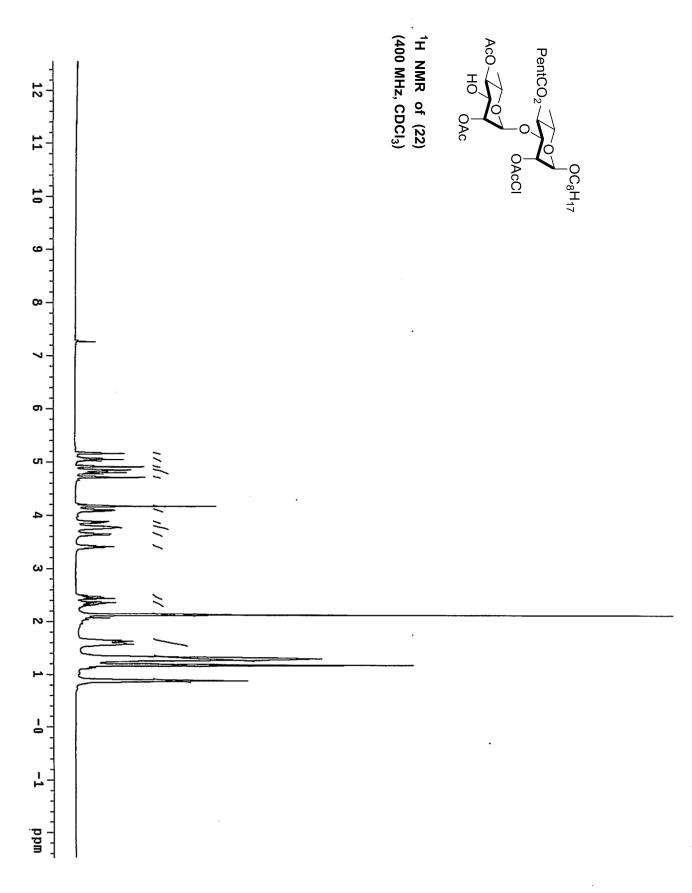
•

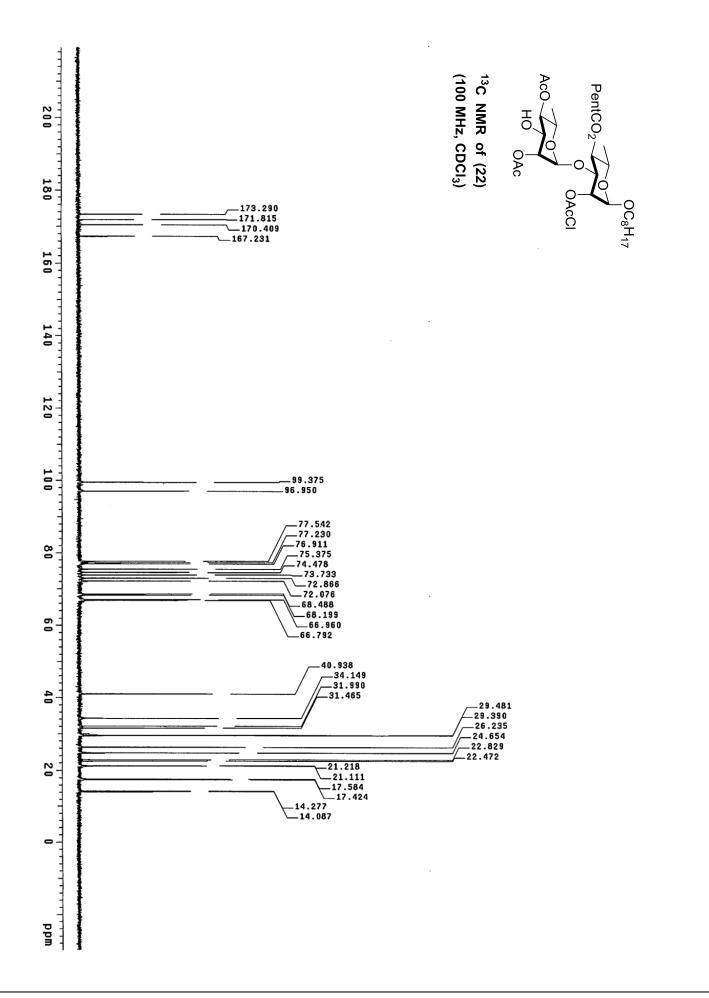

.

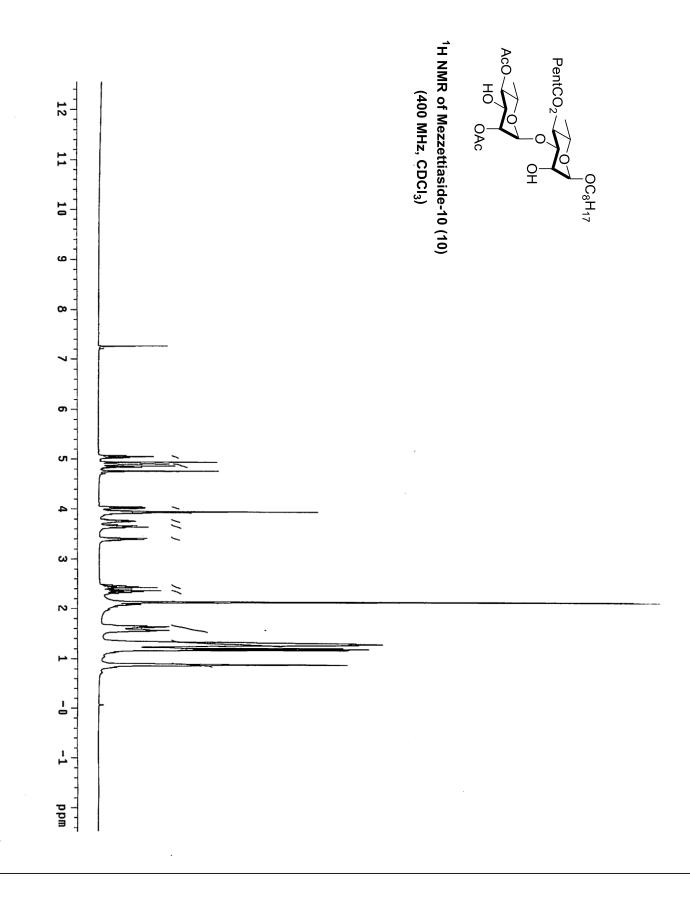

.

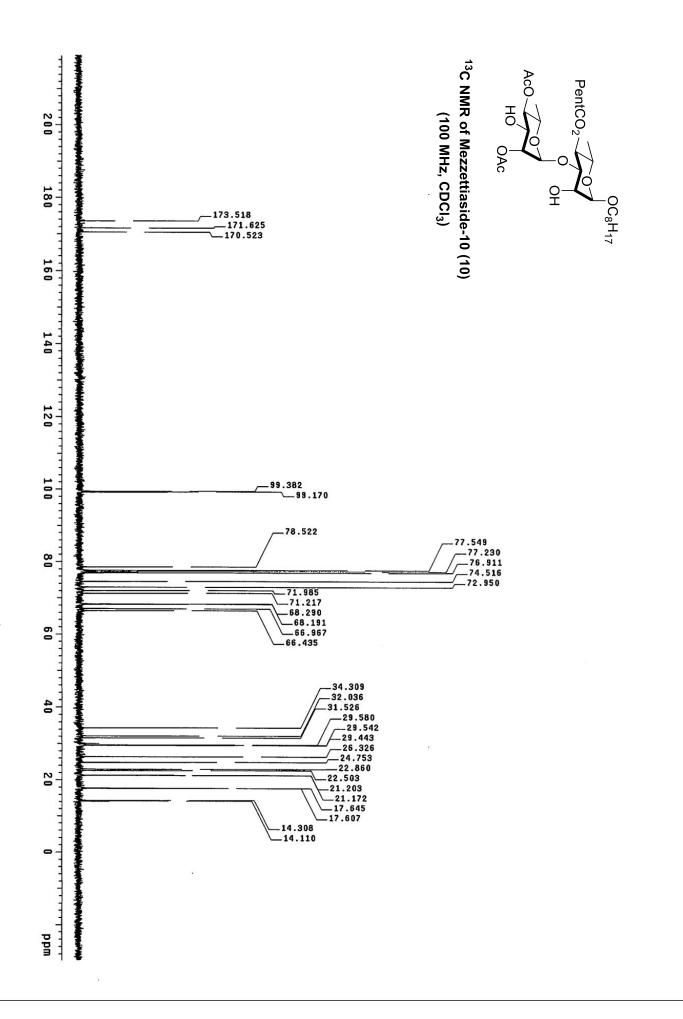


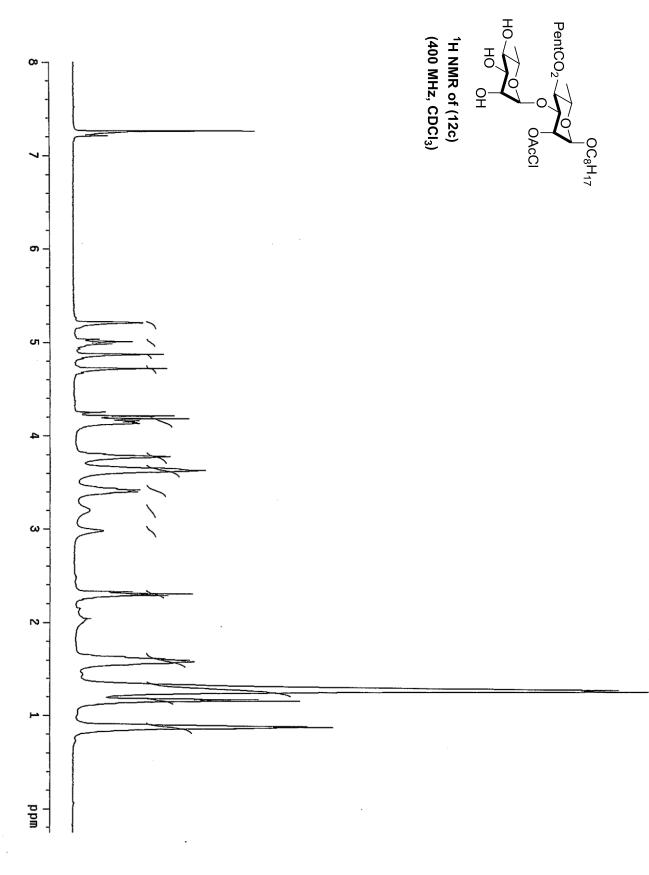

¹³C NMR of (12)

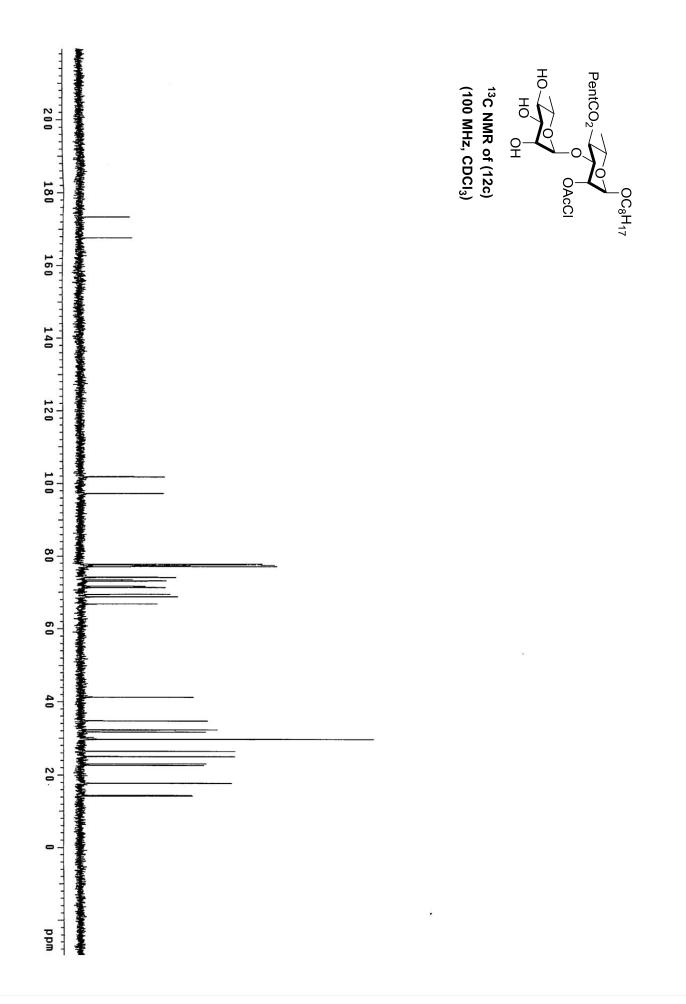

(100 MHz, CDCI₃)

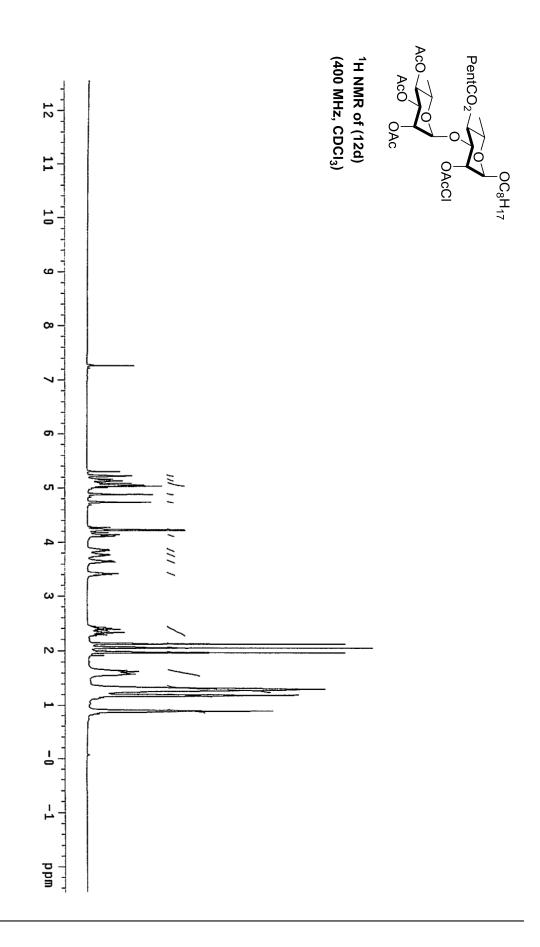


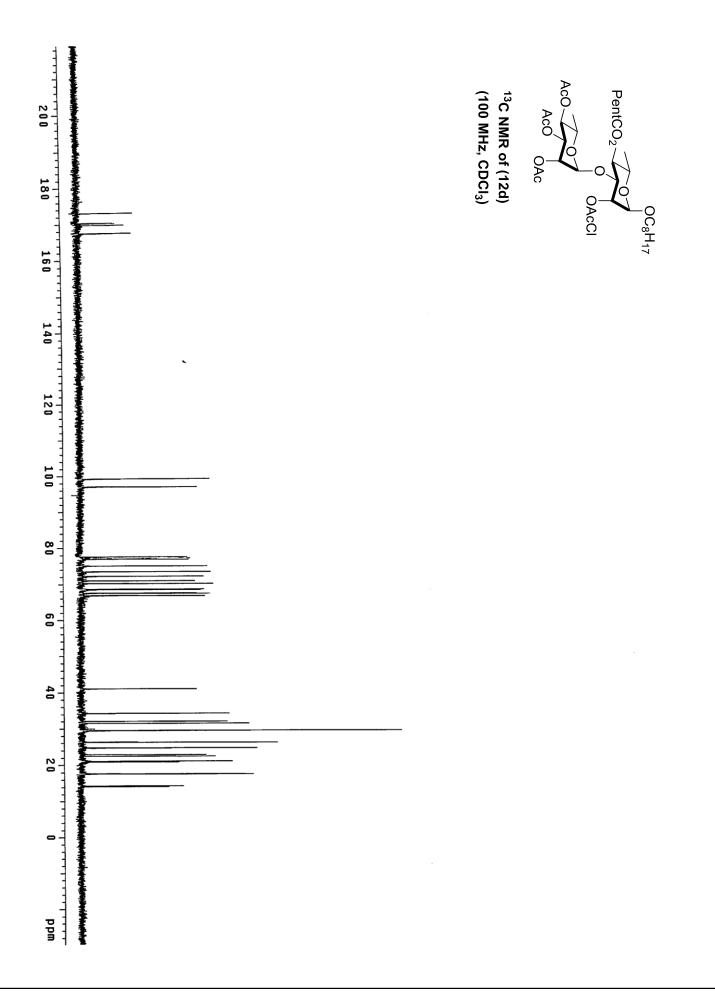


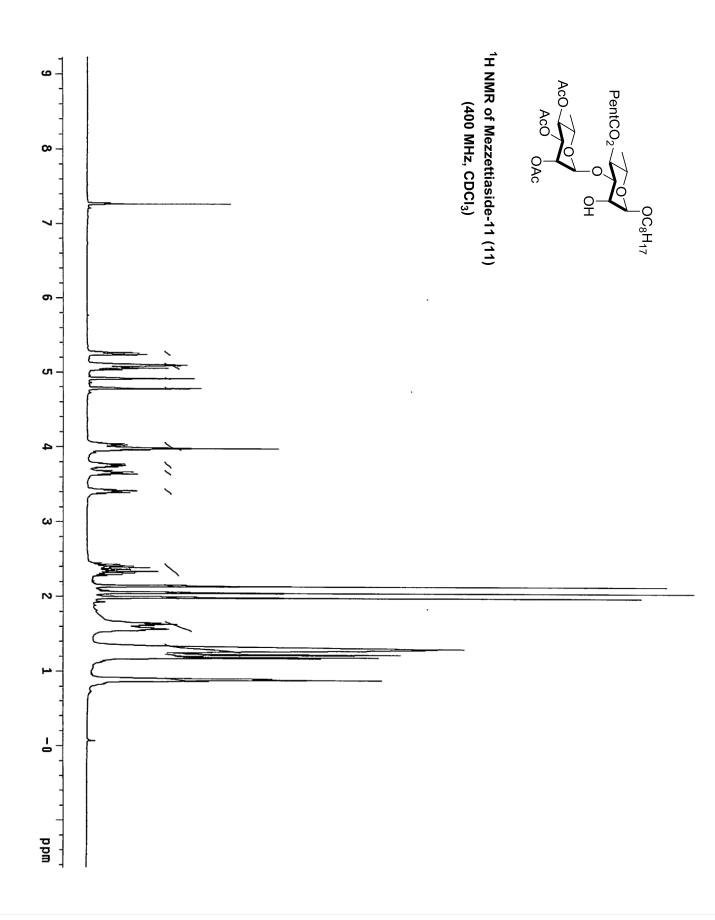


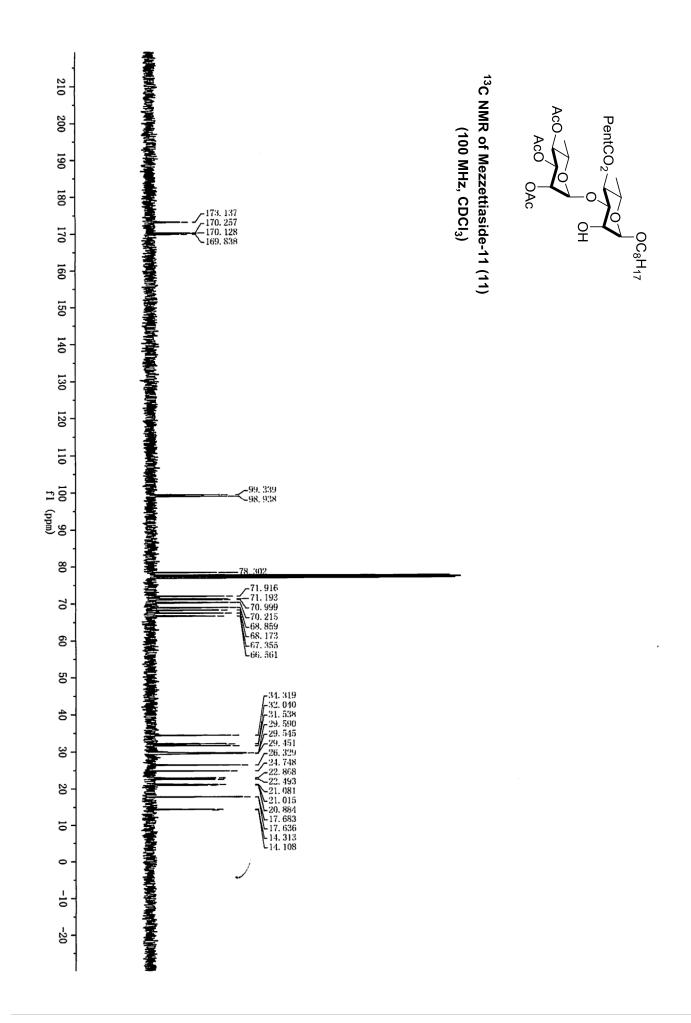


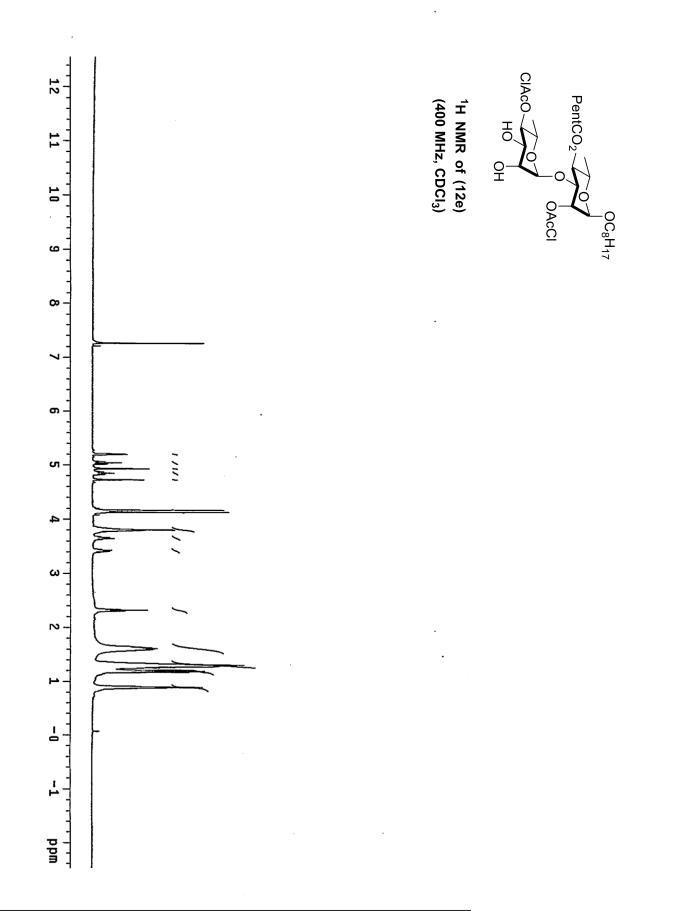


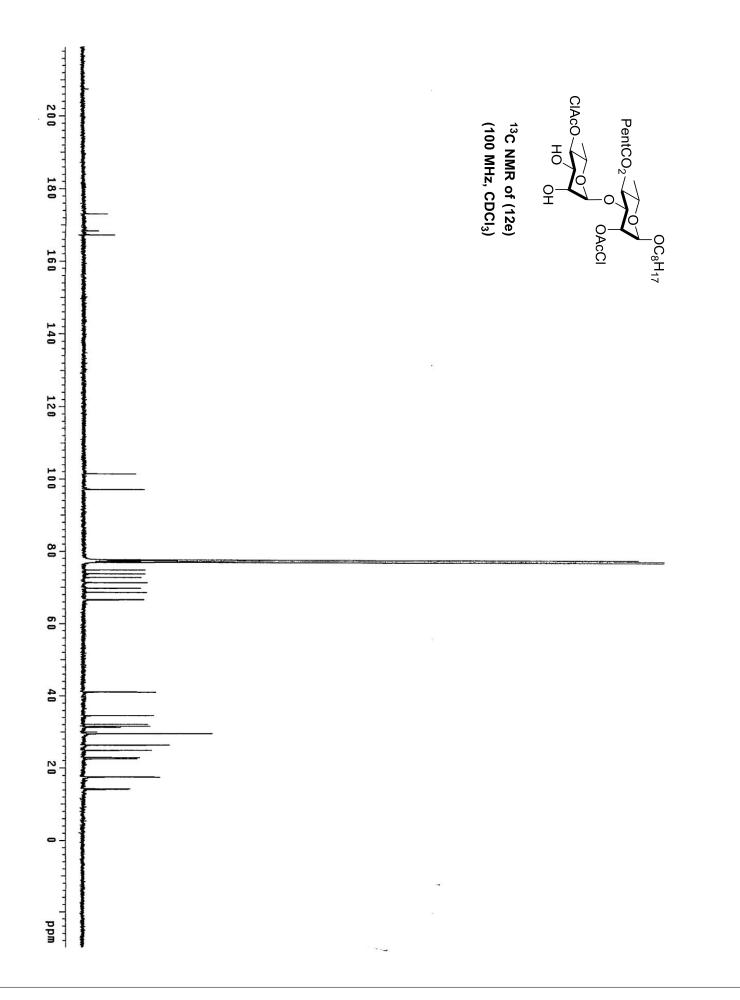


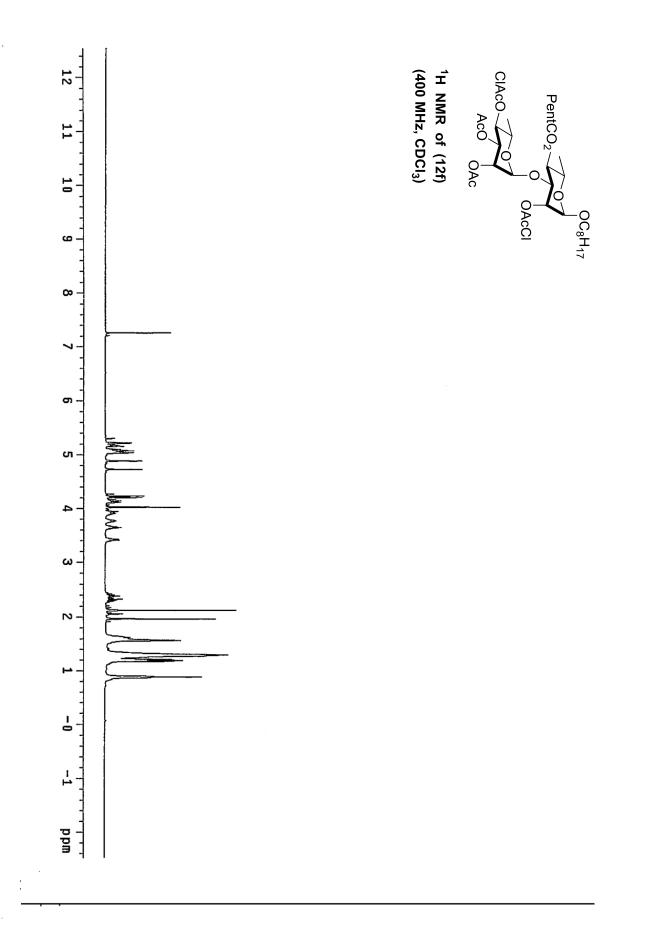


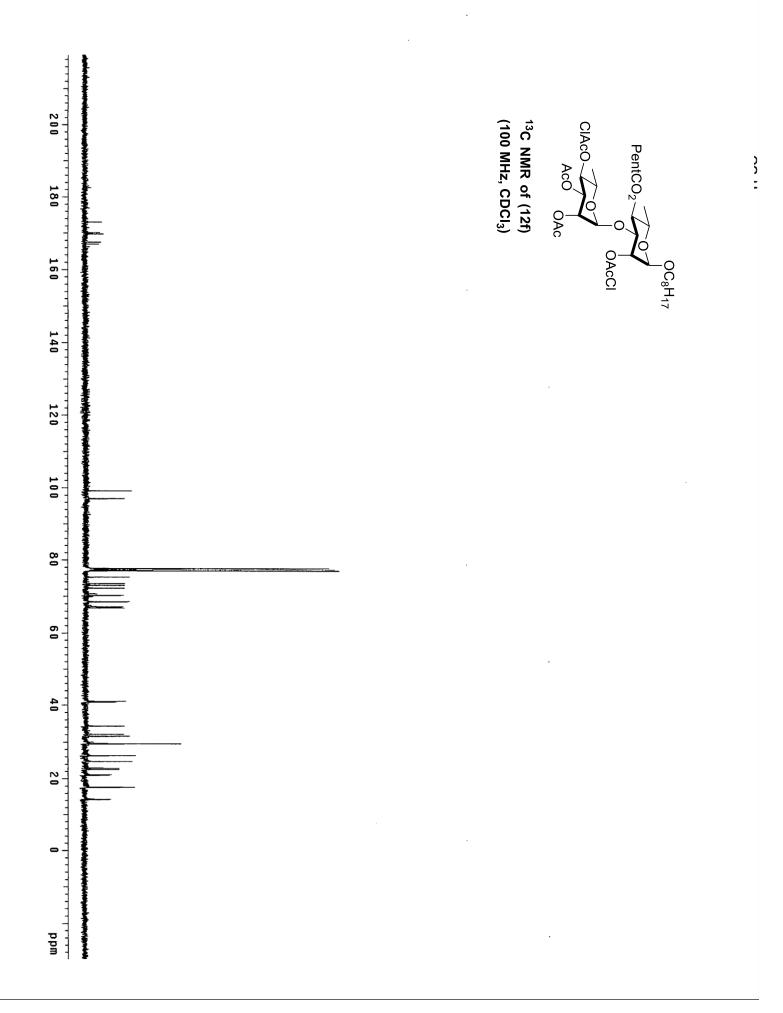


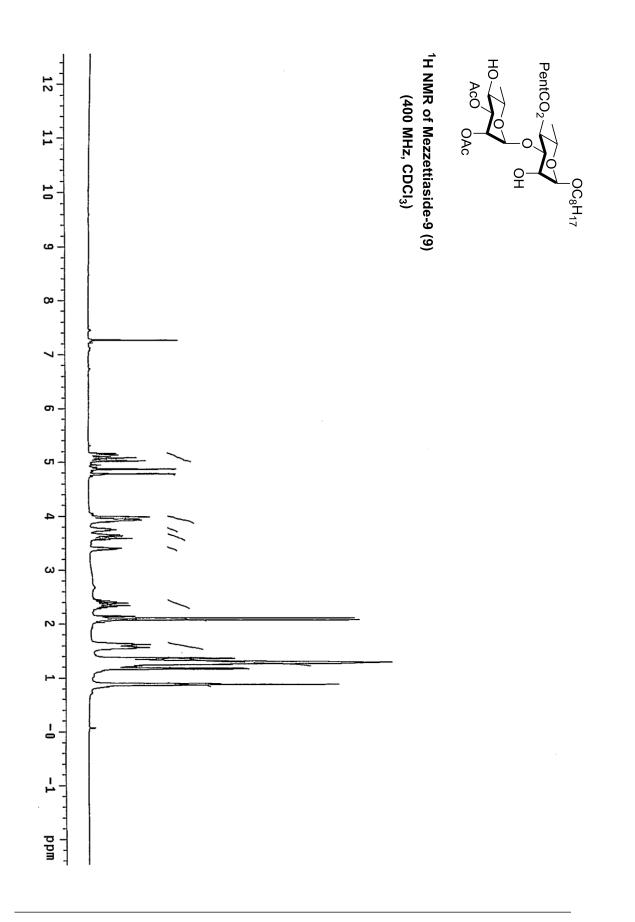

•

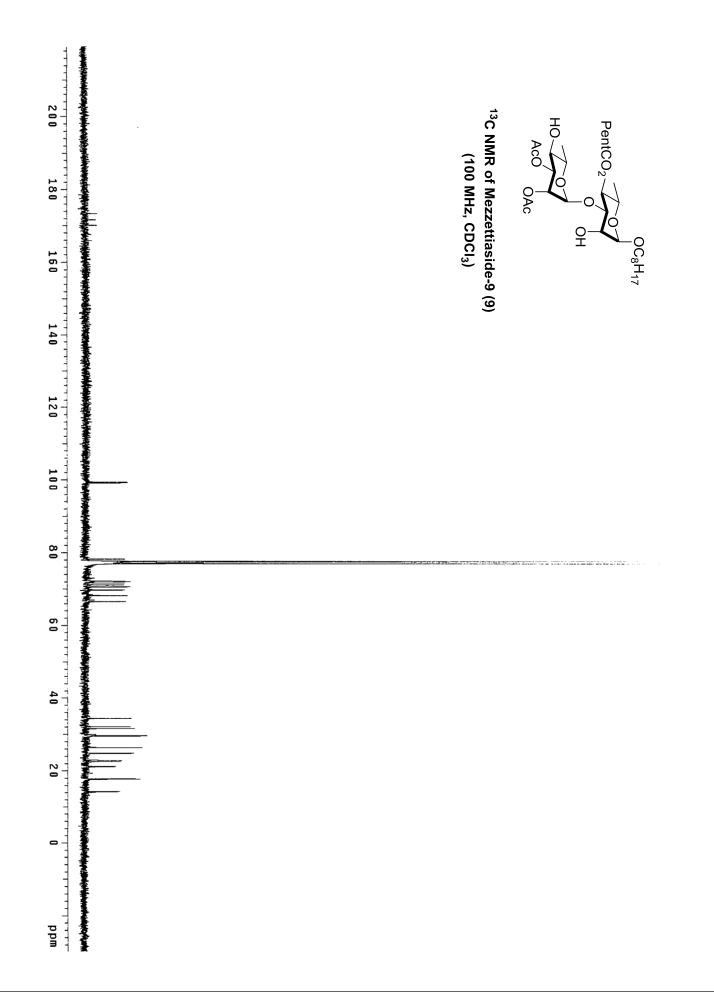


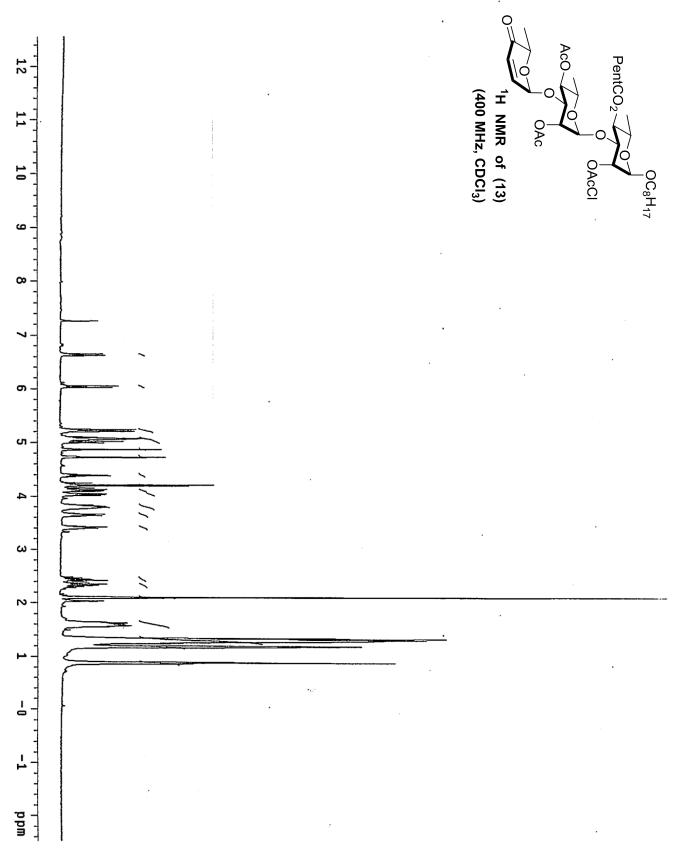


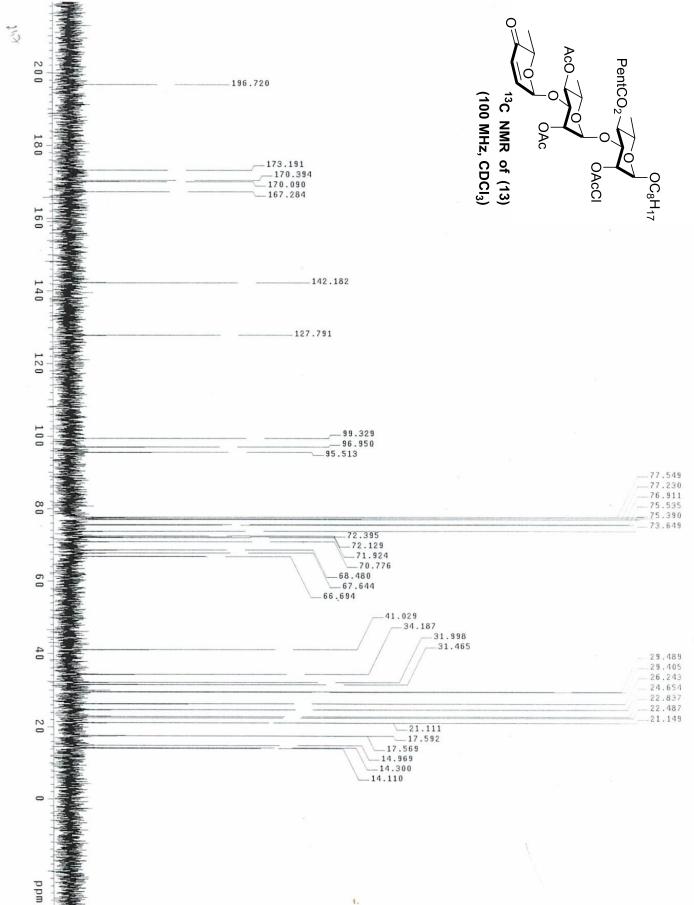


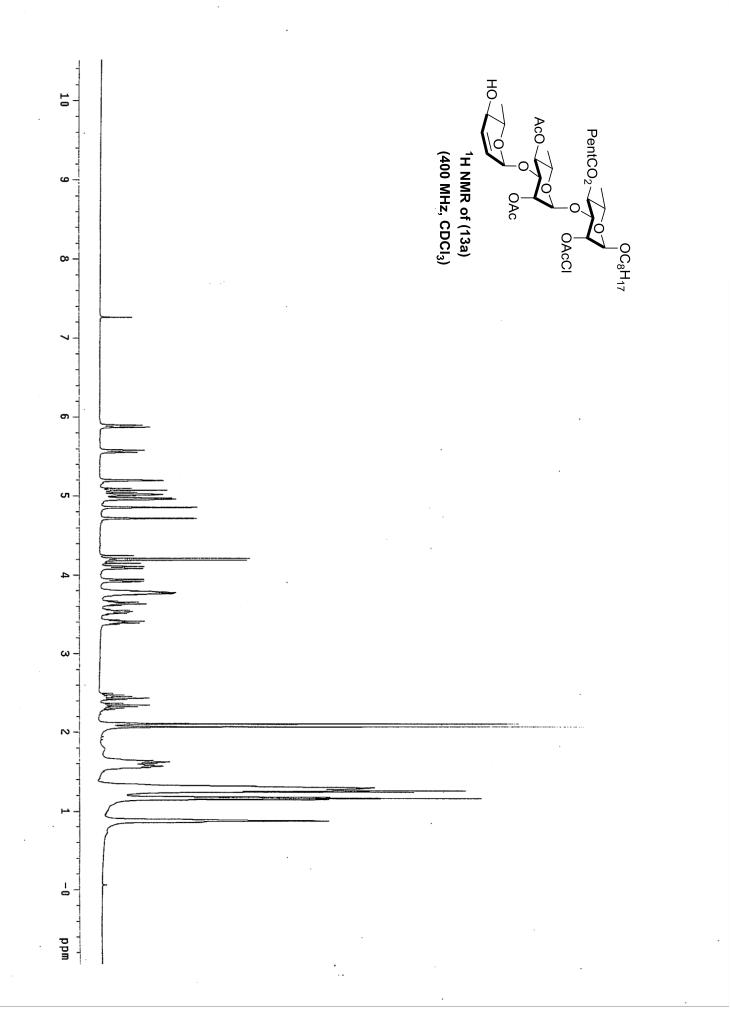


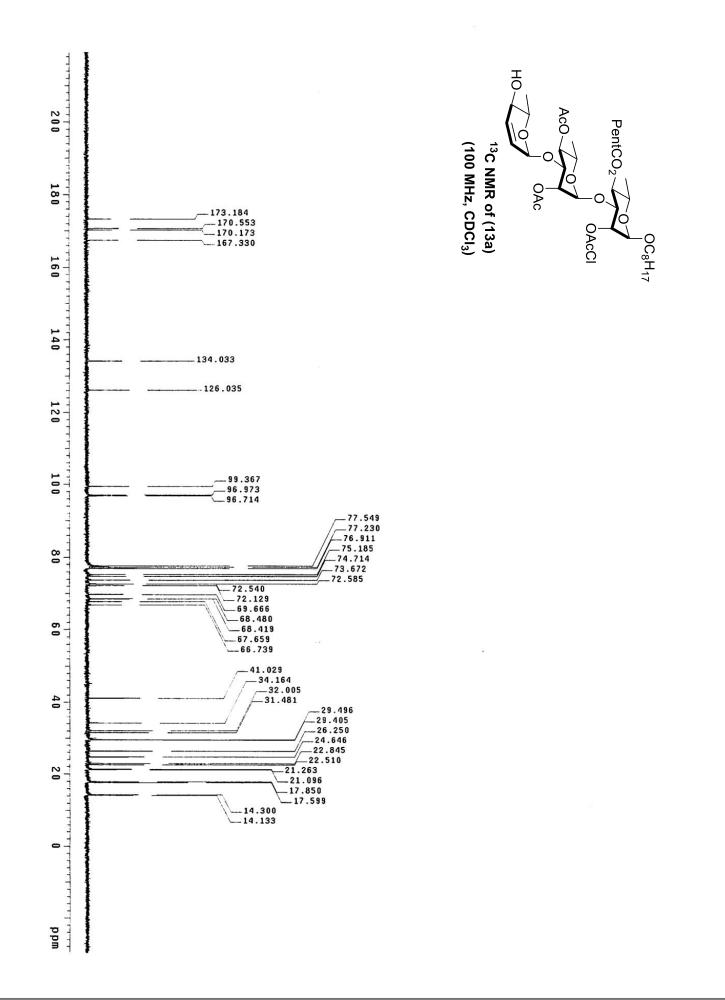


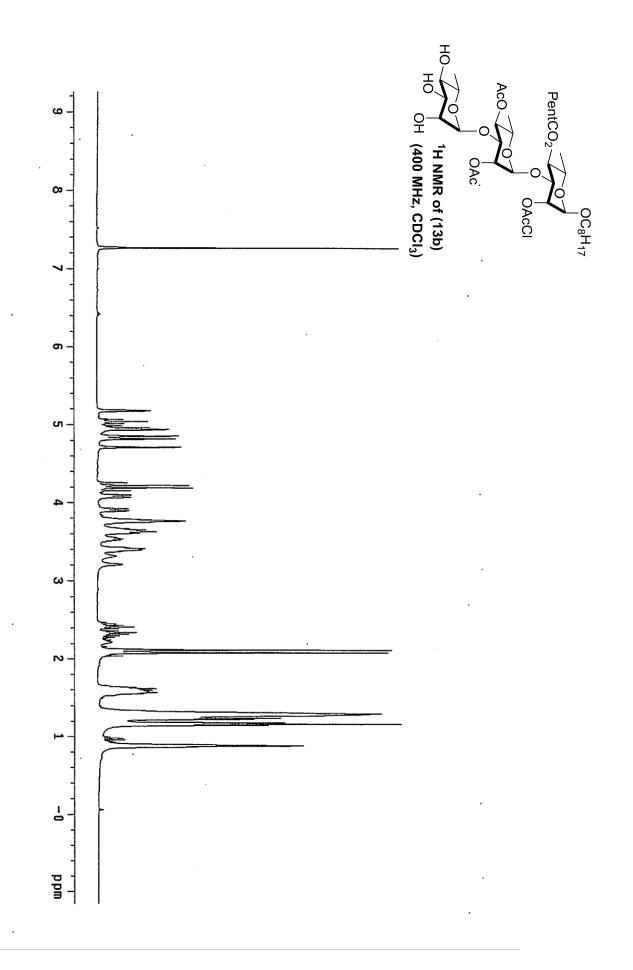


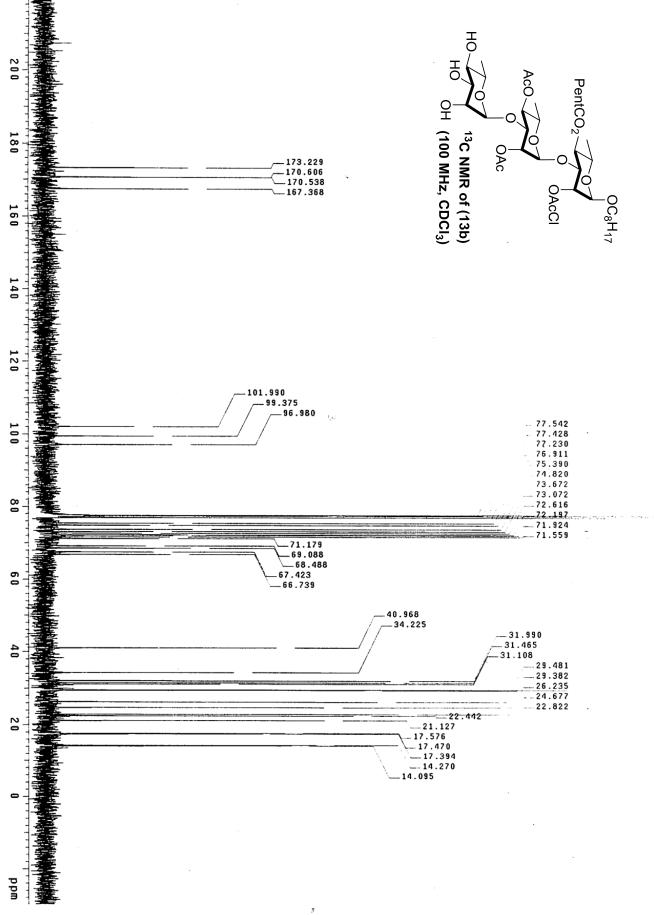


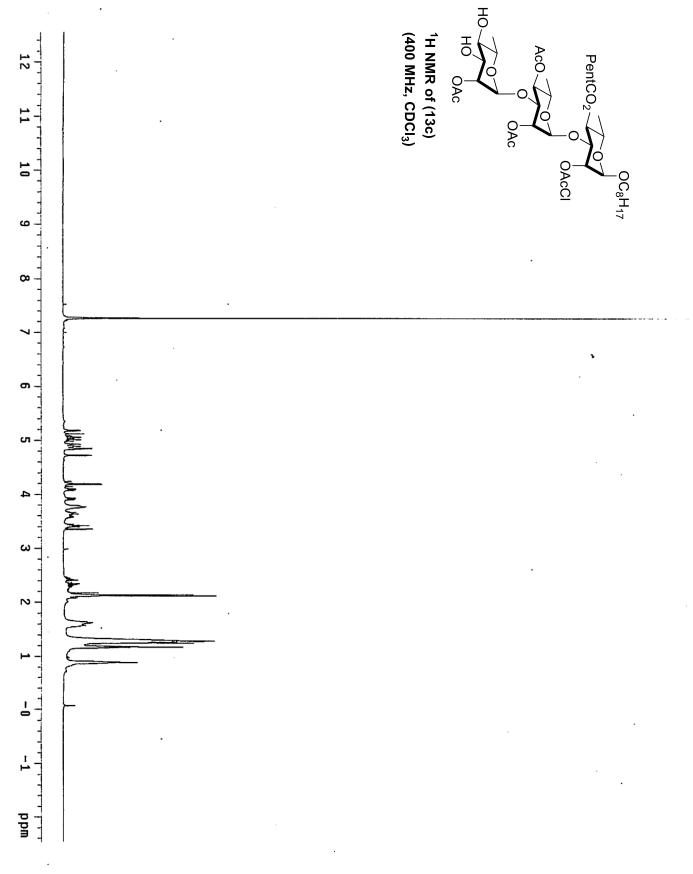


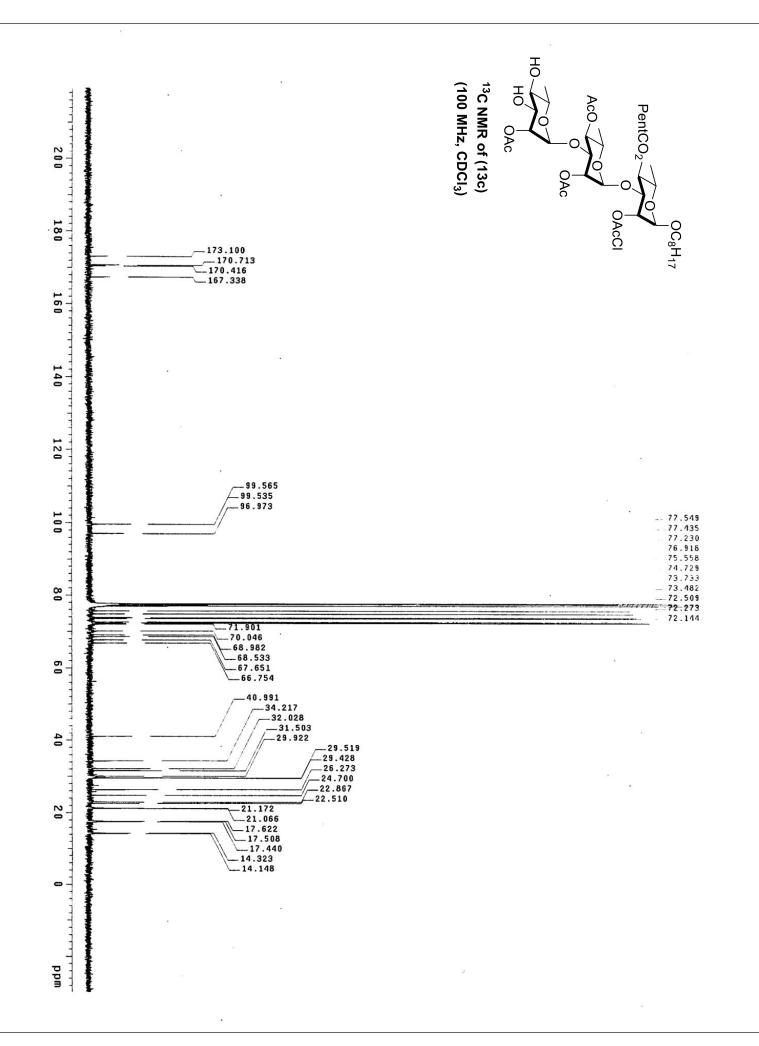


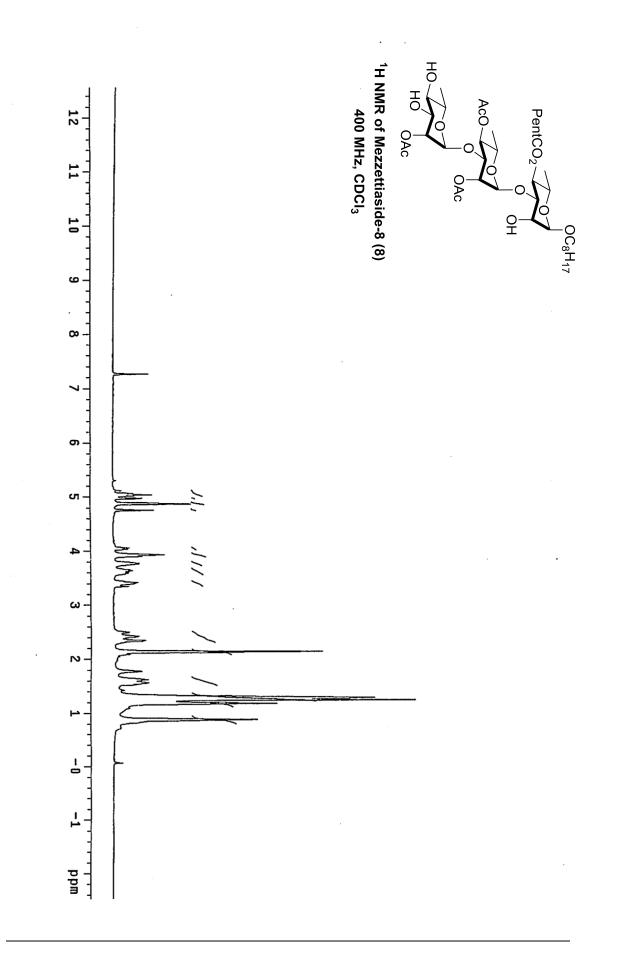


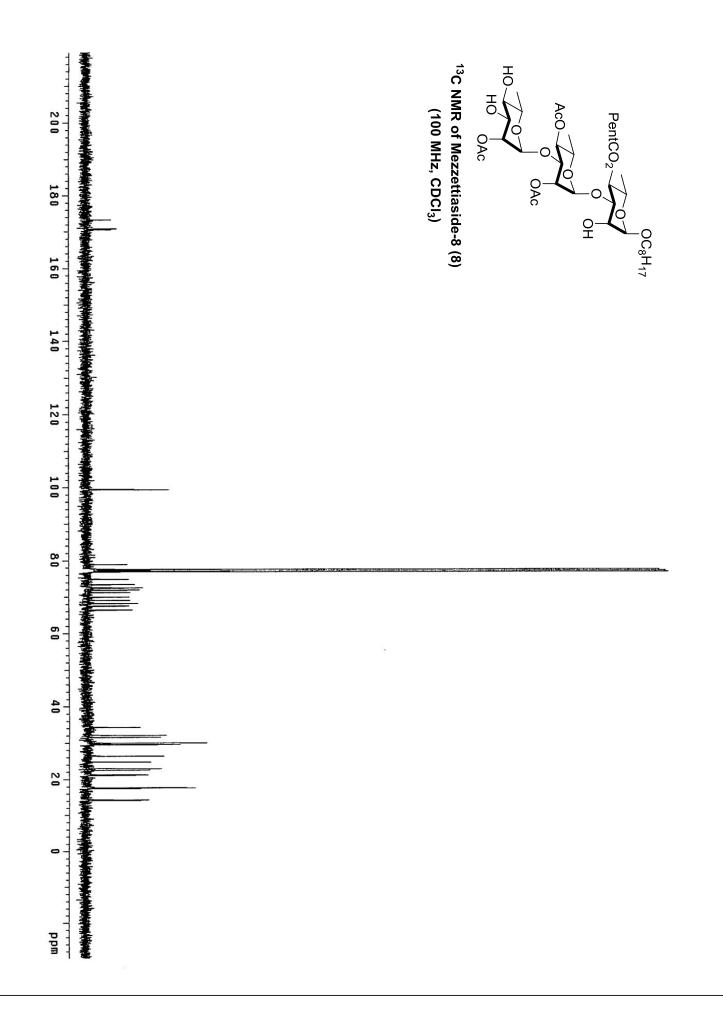


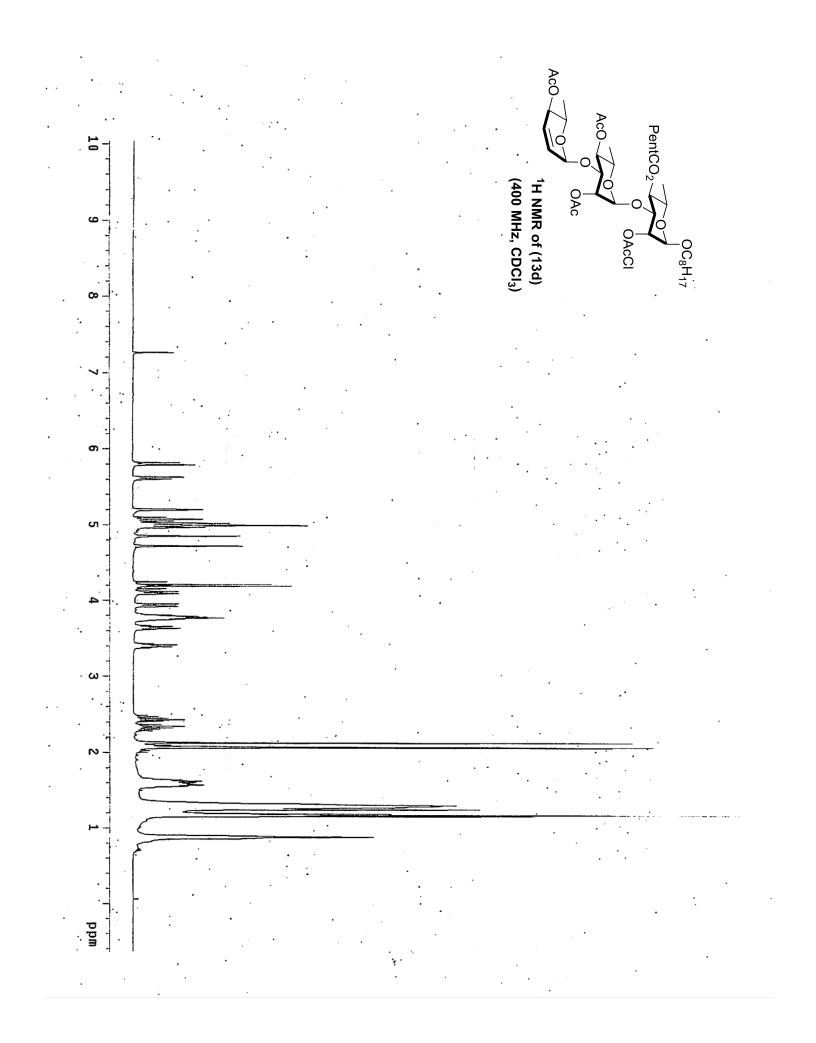


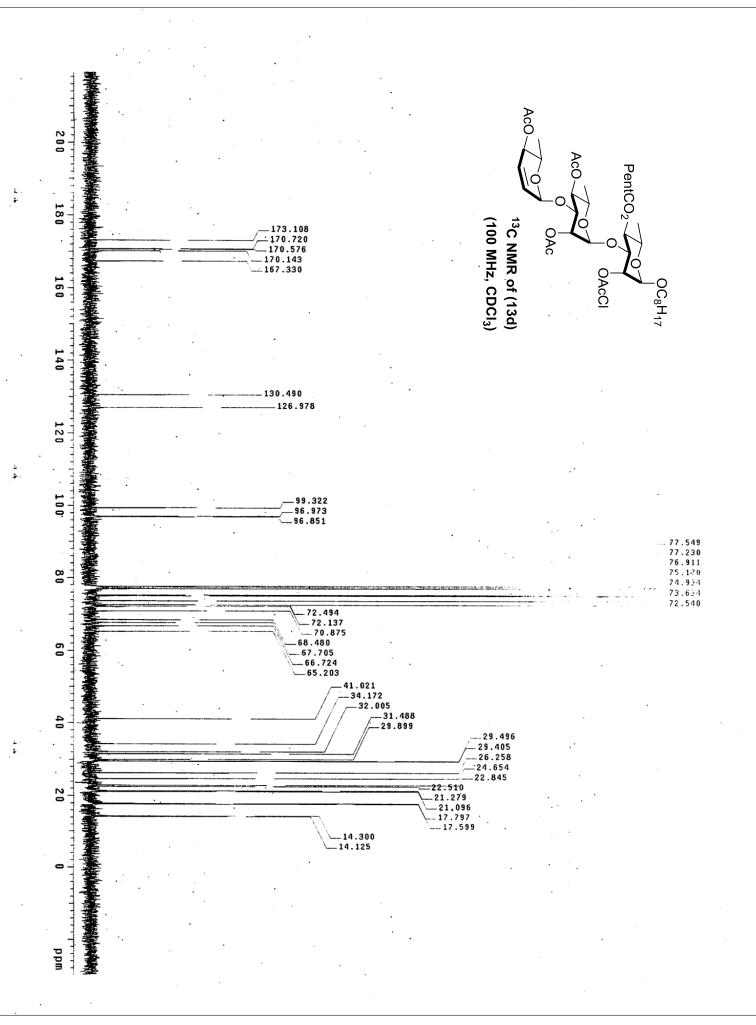

τ.

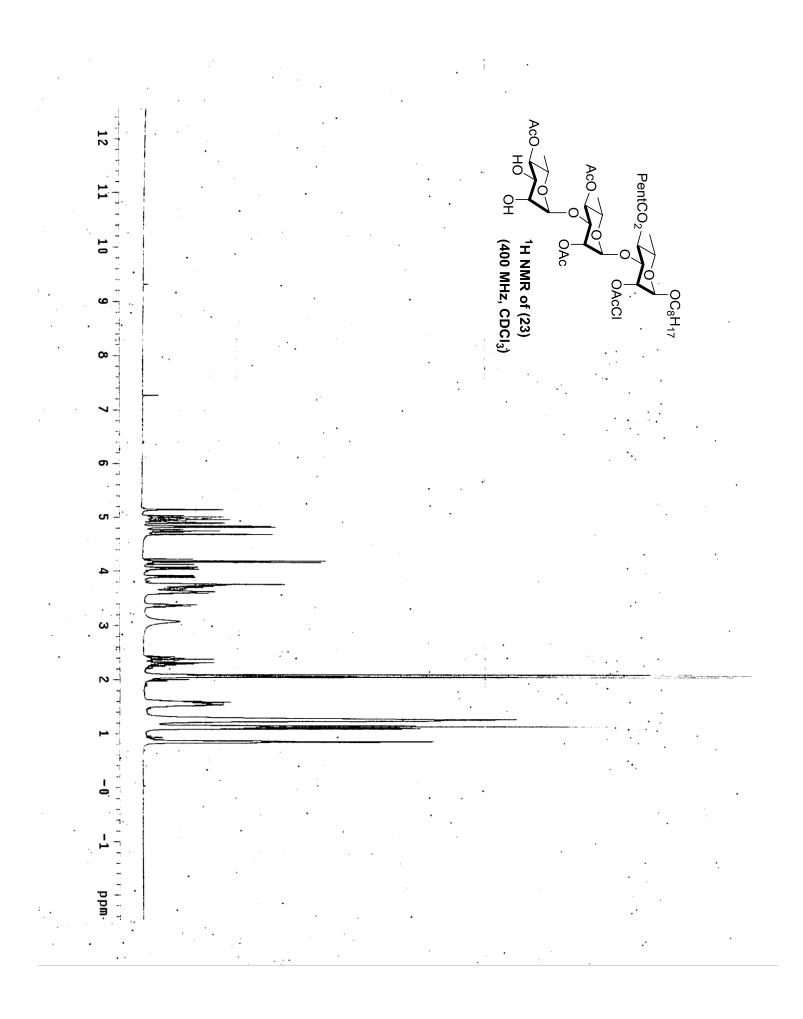


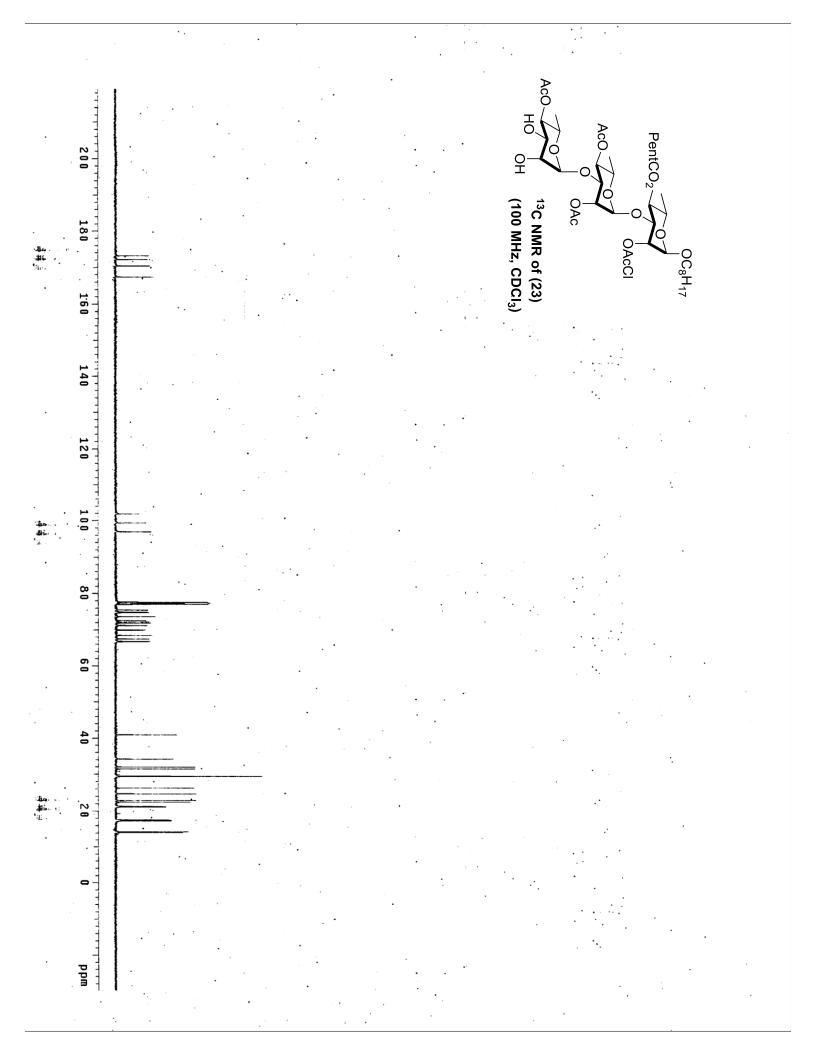


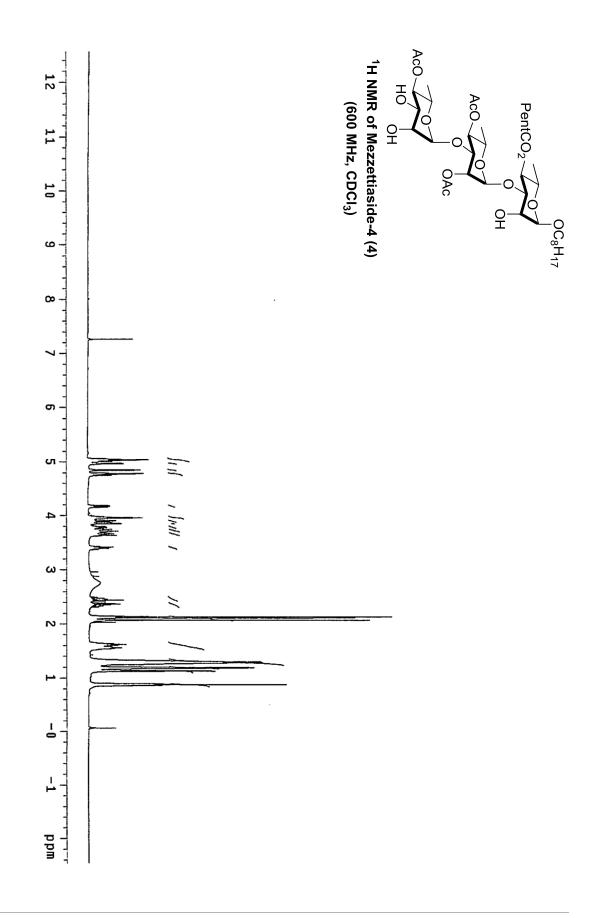


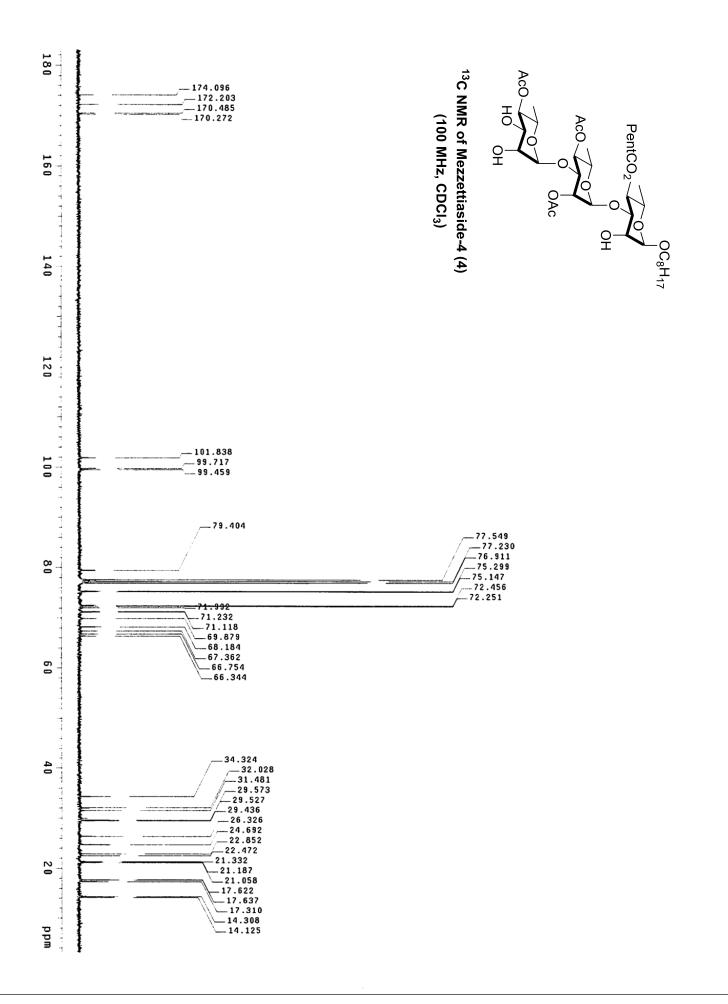

·

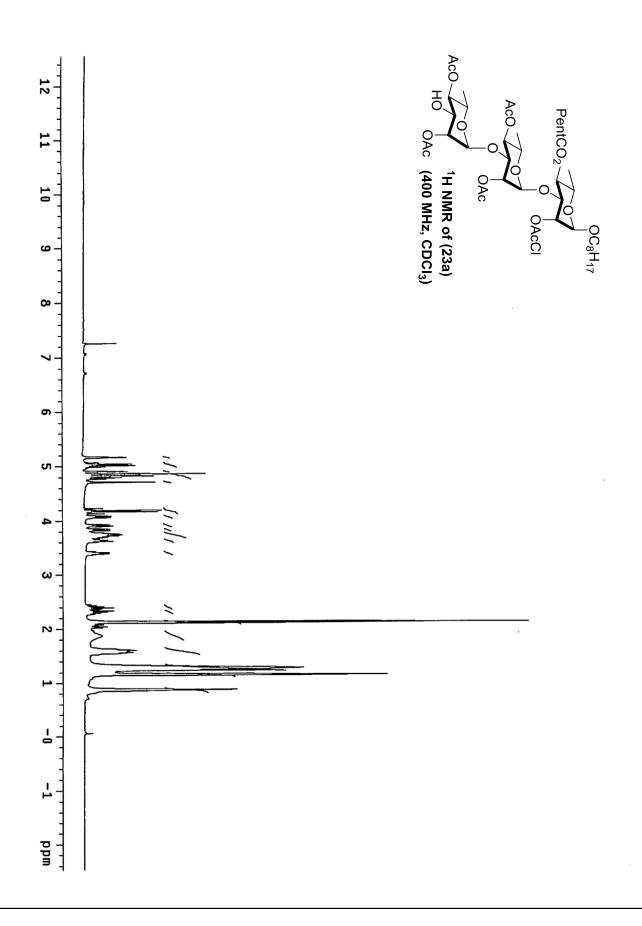

:

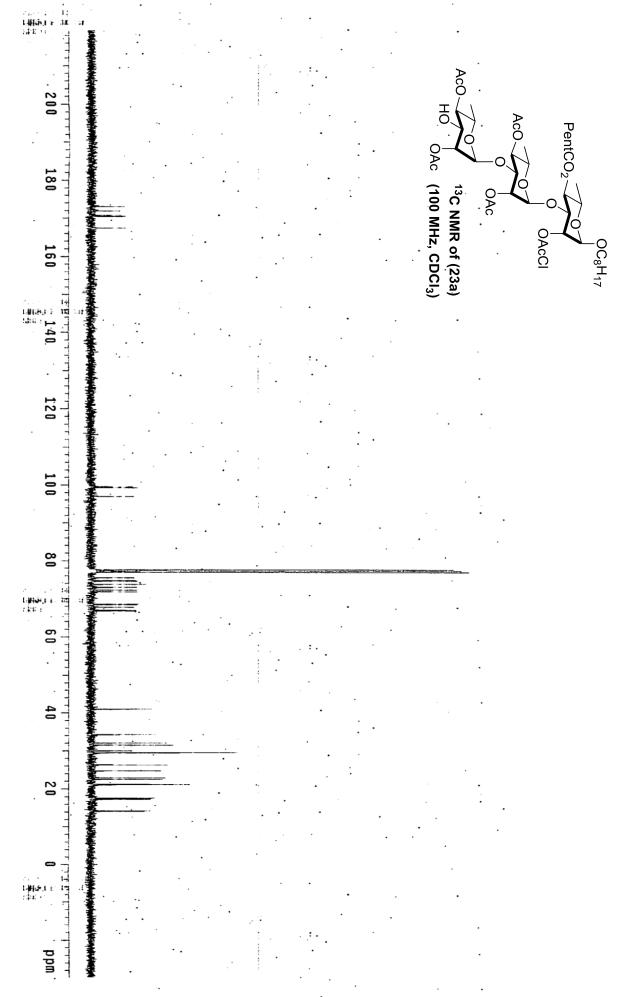


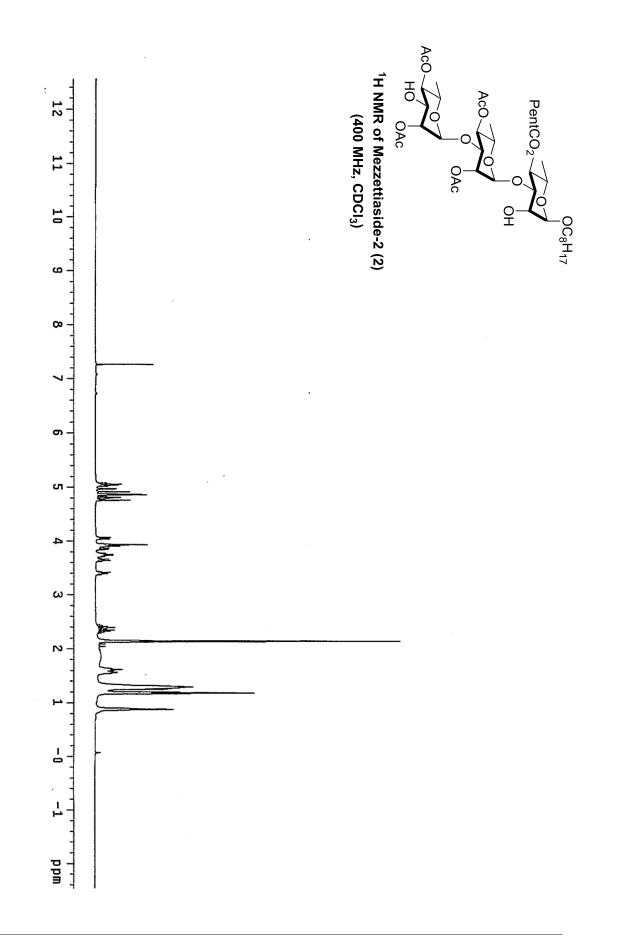


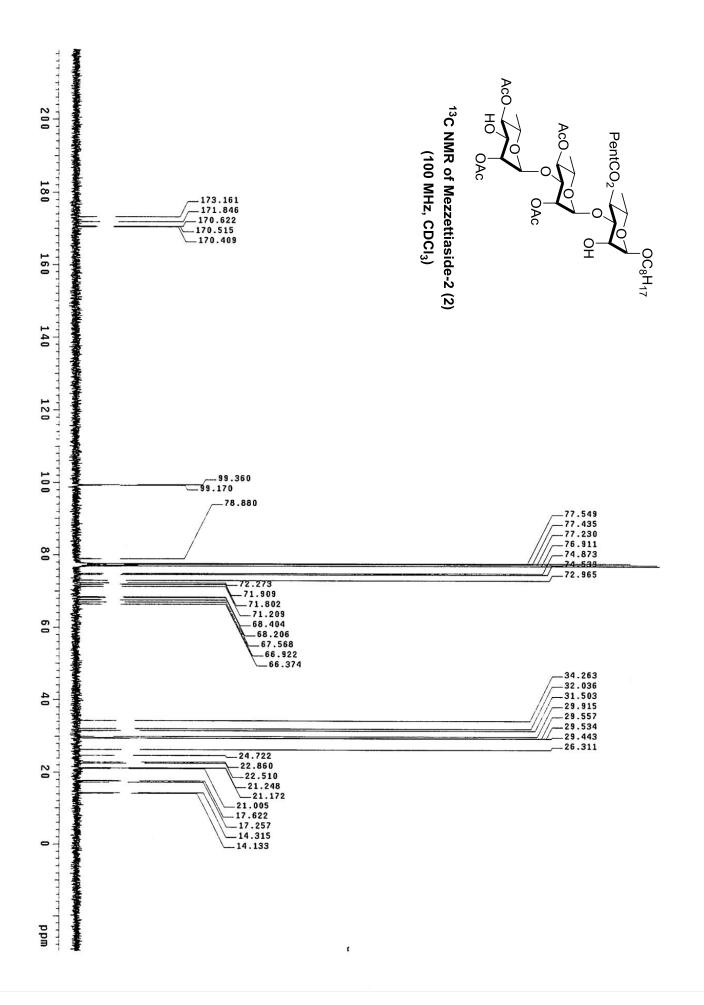


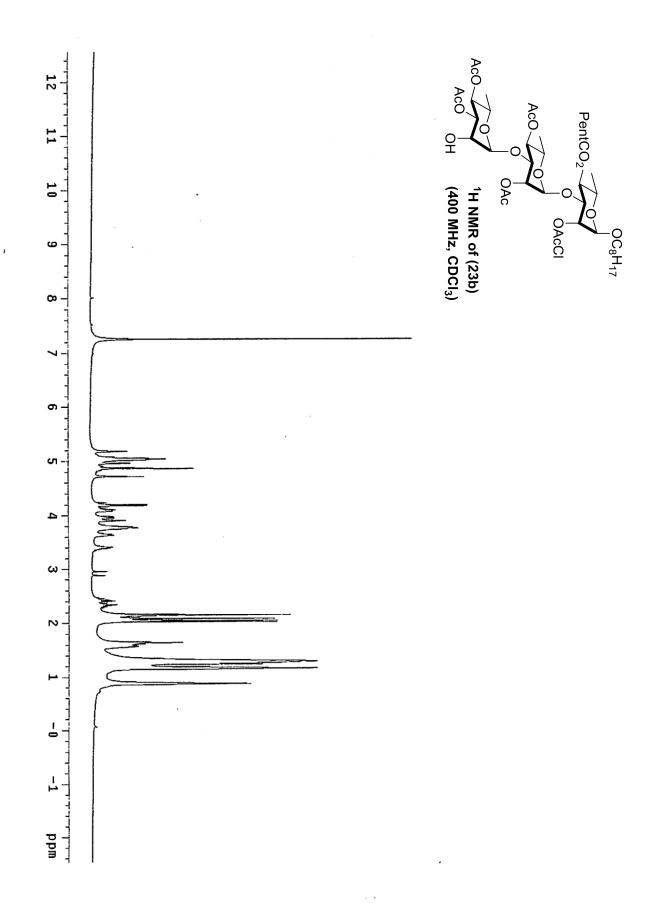


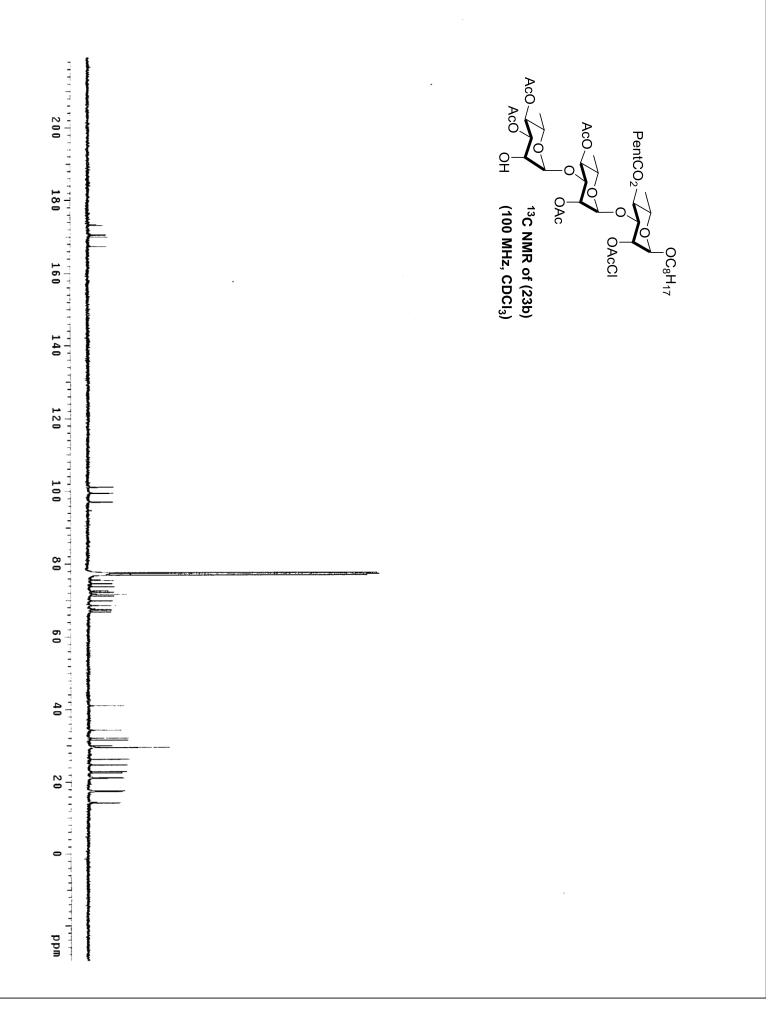


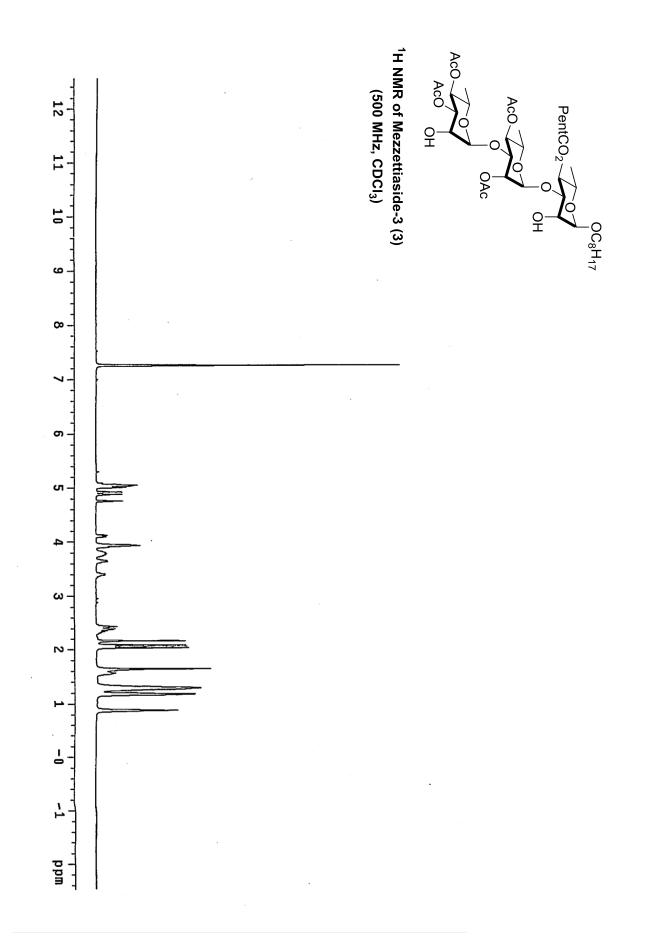


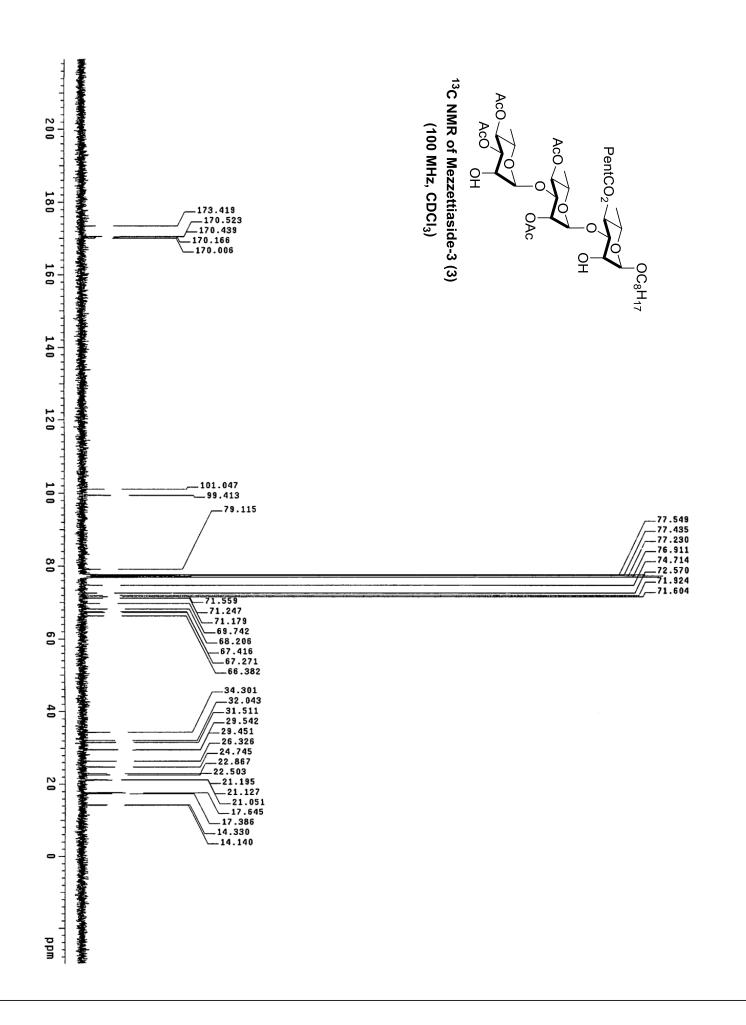


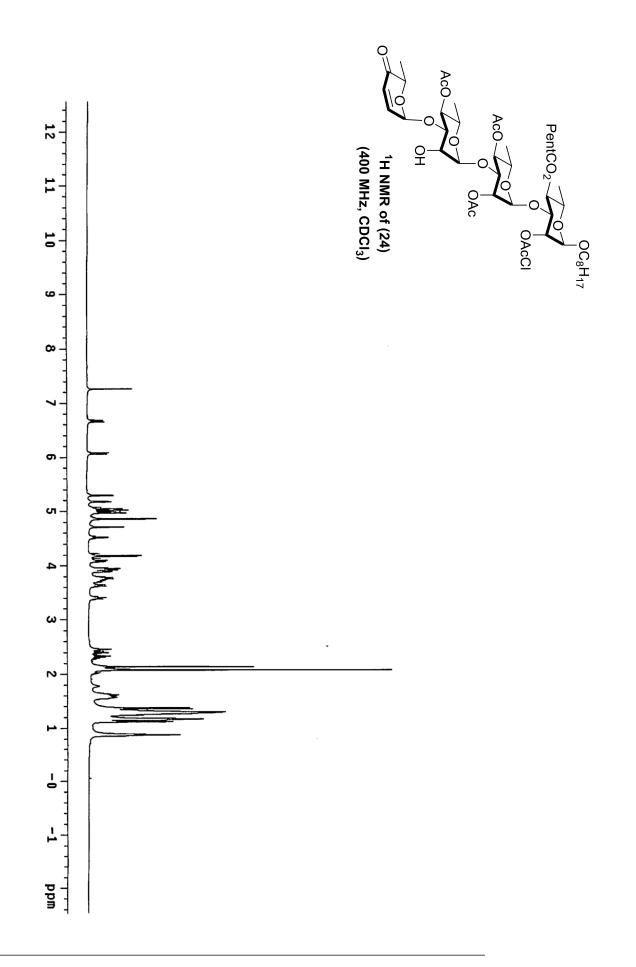


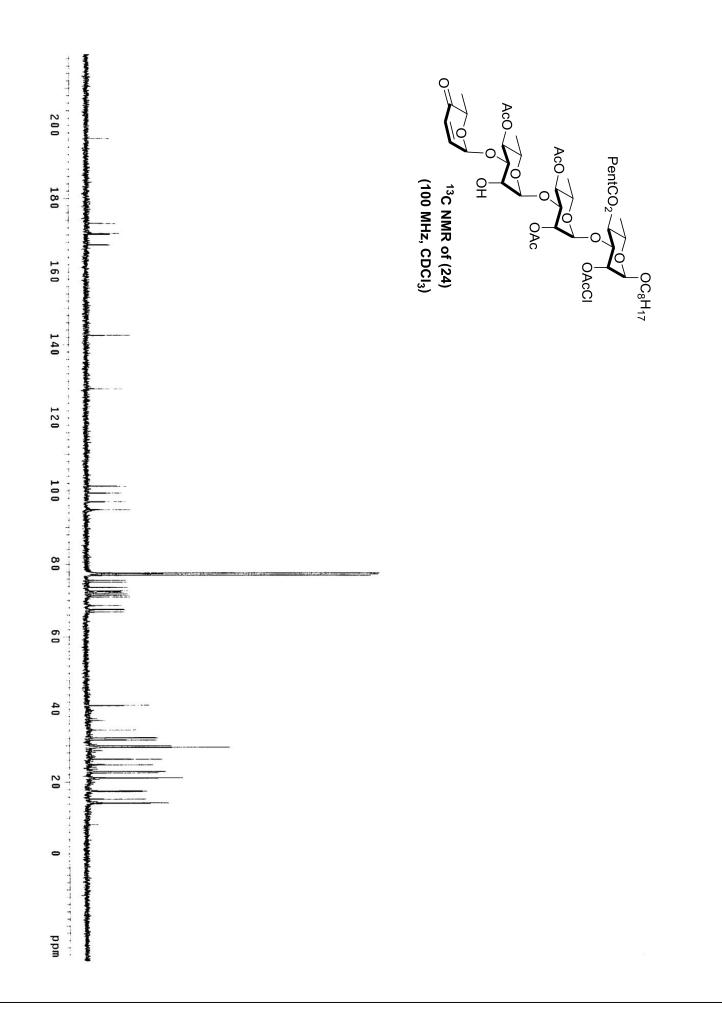


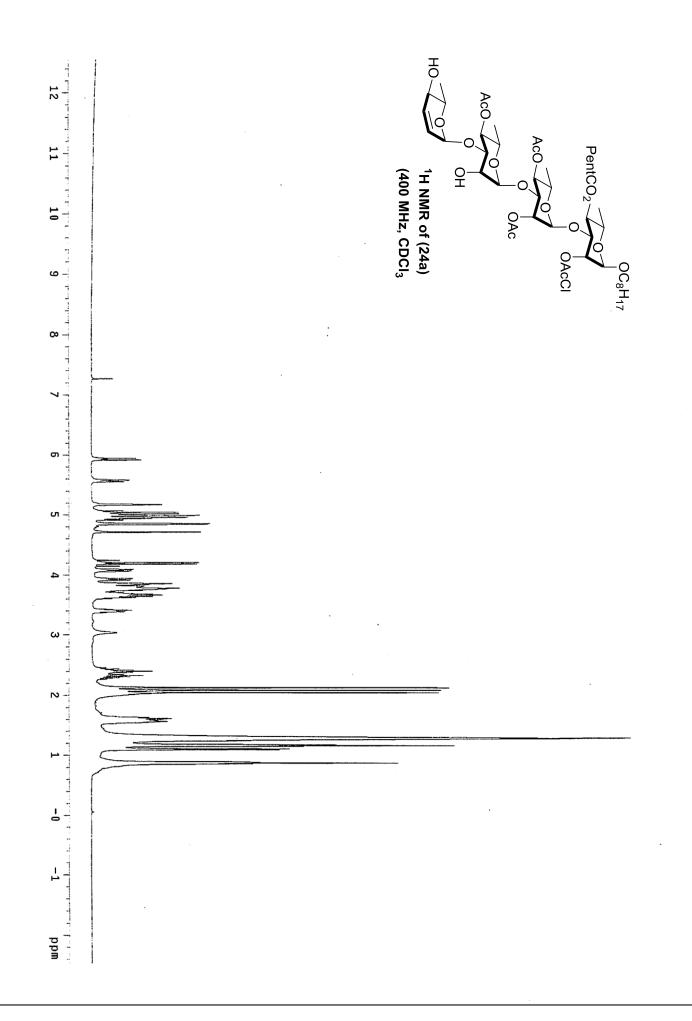


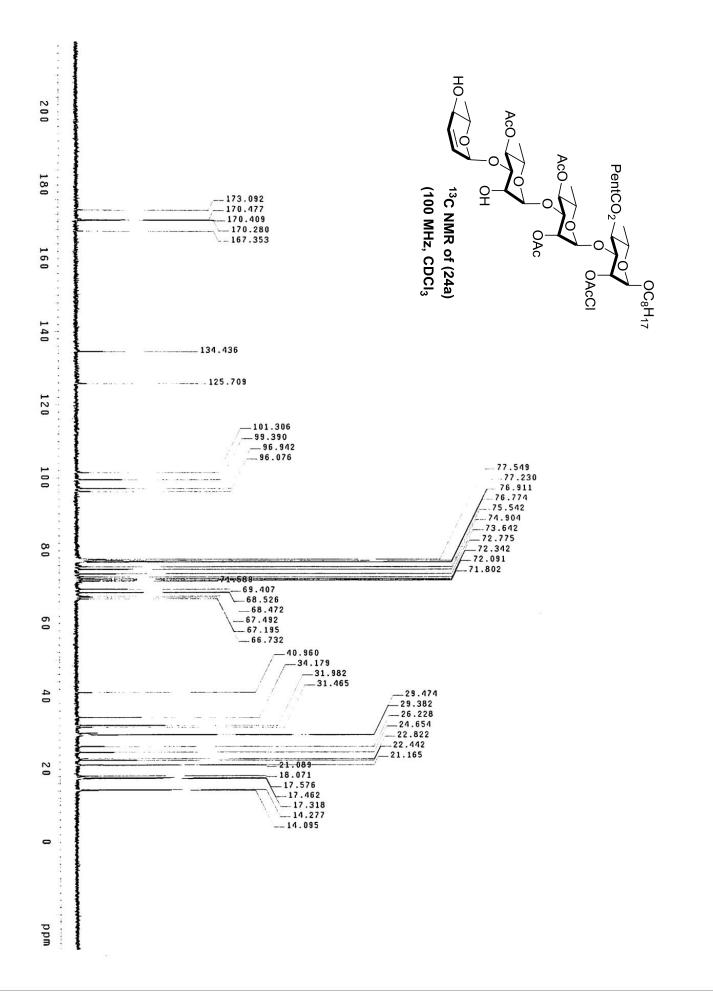


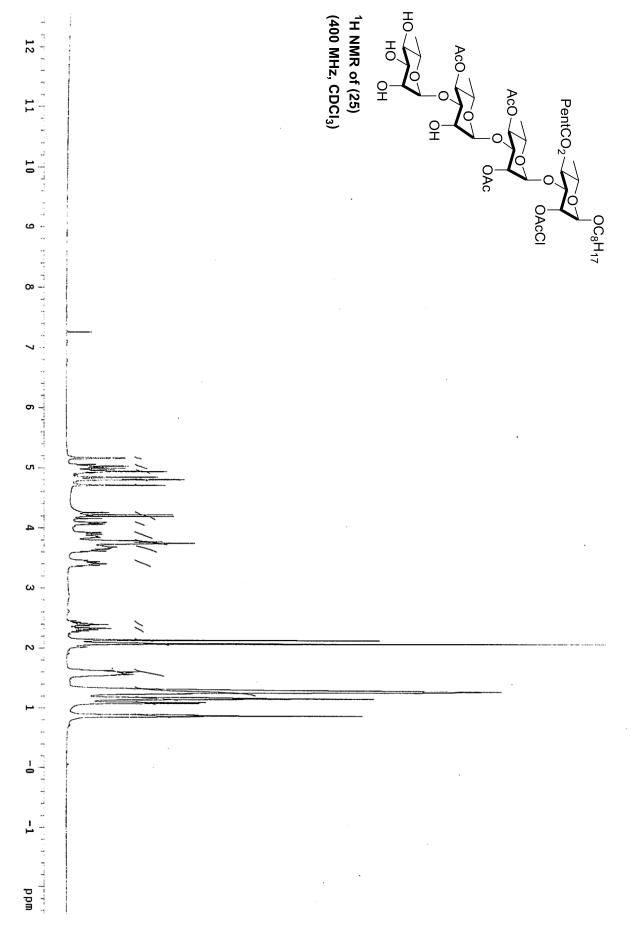


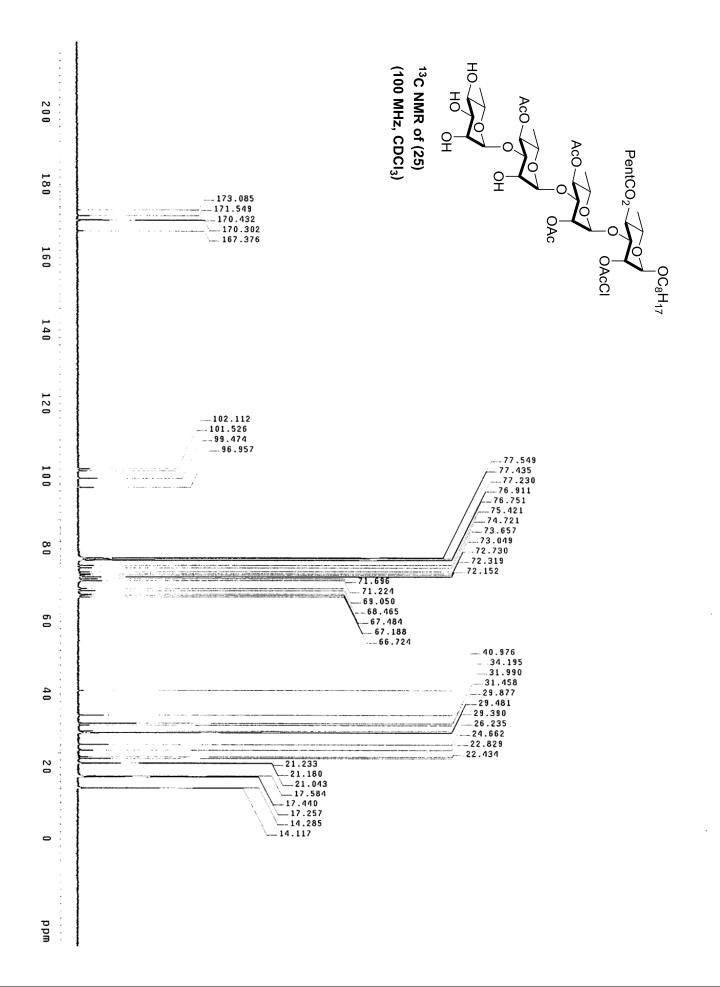


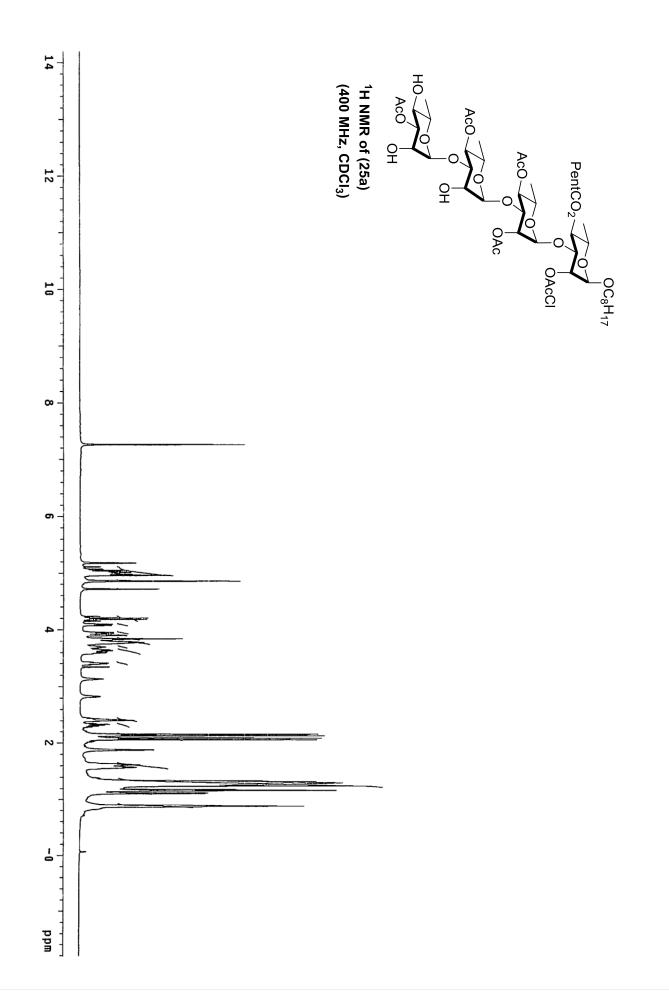


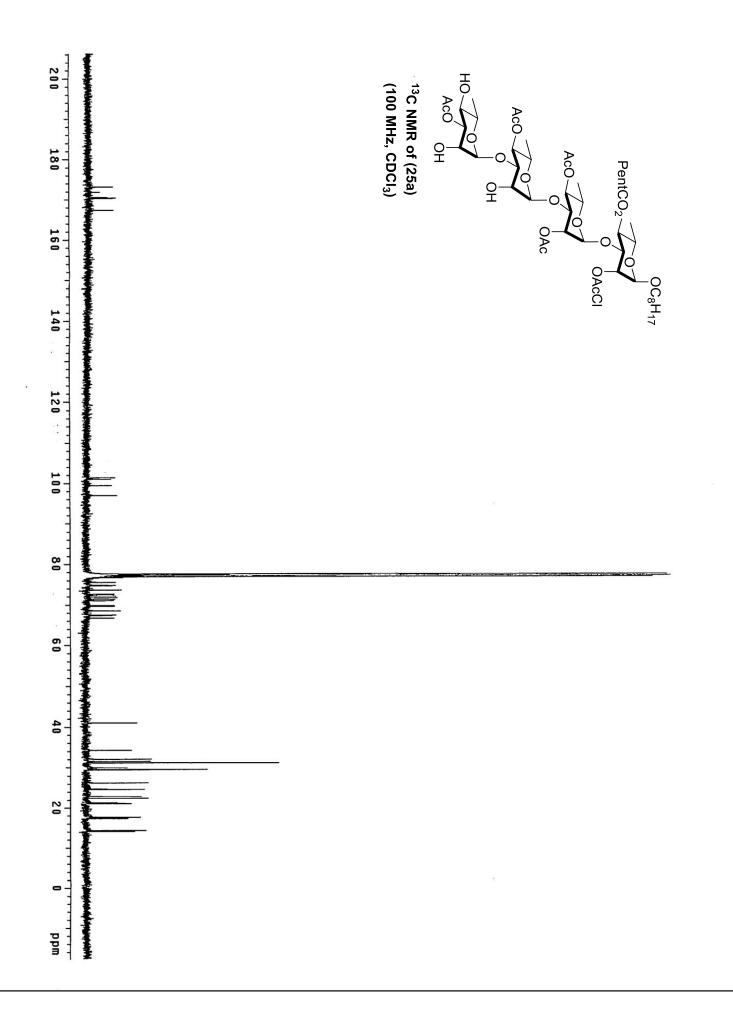


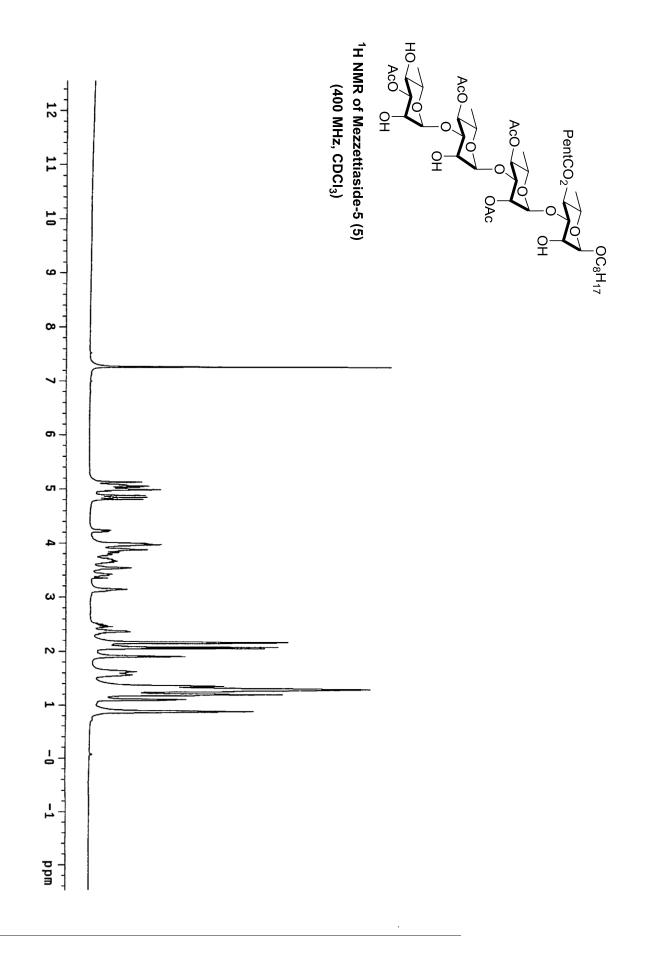


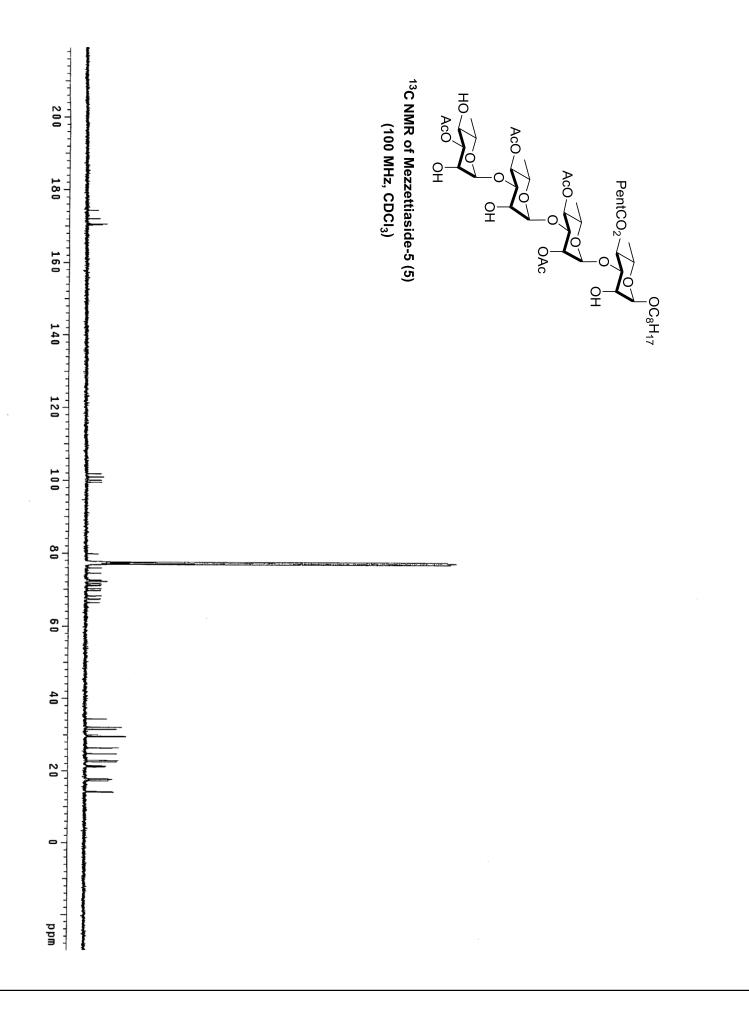











.

