Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2014

Novel Hole Transporting Materials Based on Triptycene Core for High Efficiency Mesoscopic Perovskite Solar Cells

Anurag Krishna,^{a,b,c} Hairong Li,^b Sabba Dharani,^{b,c} Jun Yin,^d Pablo. P. Boix,^b Cesare Soci,^d Subodh Mhaisalkar,^{b,c*}Andrew C. Grimsdale^{b,c*}

Supporting Information

Figure S1. ¹H NMR spectrum of 2,6,14-Tri(thien-2-yl)-triptycene.

Figure S2. ¹³C NMR spectrum of 2,6,14-Tri(thien-2-yl)-triptycene.

Figure S3. ¹H NMR spectrum of T101.

Figure S4. ¹³C NMR spectrum of T101.

Figure S5. ¹H NMR spectrum of T102.

Figure S6. ¹³C NMR spectrum of T102.

Figure S7. ¹H NMR spectrum of T103.

Figure S8. ¹³C NMR spectrum of T103.

Figure S9. Natural Transition Orbitals (NTOs) for the dominant transitions of triptycene-based materials at CAM-B3LYP/6-31G(d,p)

level of theory.

Figure S1. ¹H NMR spectrum of 2,6,14-Tri(thien-2-yl)-triptycene.

Figure S2. ¹³C NMR spectrum of 2,6,14-Tri(thien-2-yl)-triptycene.

Figure S3. ¹H NMR spectrum of T101.

Figure S4. ¹³C NMR spectrum of T101.

Figure S5. ¹H NMR spectrum of T102.

Figure S6. ¹³C NMR spectrum of T102.

Figure S7. ¹H NMR spectrum of T103.

Figure S8. ¹³C NMR spectrum of T103.

Figure S9. Natural Transition Orbitals (NTOs) for the dominant transitions of triptycene-based materials at CAM-B3LYP/6-31G(d,p) level of theory.