Supplementary Information for

Zn(II)_-Promoted Dramatic Enhancement in the Enantioselective Fluorescent Recognition of Functional Chiral Amines by a Chiral Aldehyde

Zeng Huang,^a Shanshan Yu,^a Kaili Wen,^a Xiaoqi Yu*^a and Lin Pu*^{a,b}

^aKey Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, China 610064. ^bDepartment of Chemistry, University of Virginia, Charlottesville, Virginia 22904,

E-mail: xqyu@scu.edu.cn, lp6n@virginia.edu

Supplementary Fluorescence Spectra, TOF Mass Spectra and NMR Titration Plots

Figure S1. Fluorescent spectra of (*R*)-2 (2.0×10^{-5} M) in the presence of 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, and 8.0 equiv (*S*,*S*)-3 (a) and (*R*,*R*)-3 (b). (Solvent: methanol/1% CH₂Cl₂. $\lambda_{exc} = 338$ nm, slit = 5/5 nm.).

Figure S2. Fluorescent spectra of (*R*)-2 (2.0×10^{-5} M) in the presence of 1equiv Zn(OAc)₂·2H₂O Solvent: methanol/1% CH₂Cl₂. $\lambda_{exc} = 314$ nm or 417nm, slit = 5/5 nm.).

Figure S3. Fluorescent spectra of (*S*)-**2**+Zn²⁺(1equiv) (2.0×10^{-5} M) in the presence of 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0 and 8.0 equiv (*R*,*R*)-**3** (a) and (*S*,*S*)-**3** (b). Fluorescent intensity at 530 nm versus the equiv of the amines (c). (Solvent: methanol/1% CH₂Cl₂. $\lambda_{exc} = 314$ nm, slit = 5/5 nm.).

Figure S4. TOF mass spectra of (R)-**2**+Zn(OAc)₂·2H₂O (1 equiv) +(*S*,*S*)-**3**(2 equiv) (a) and the macrocycle **6**+ Zn(OAc)₂·2H₂O (1 equiv) (b).

(b) $6+Zn(OAc)_2 \cdot 2H_2O$ (1 equiv)

Figure S6. ¹HNMR titration of (*R*)-**2**+ZnBr₂ (1 equiv) (9.1mM) with (*S*,*S*)-**3** in CDCl₃ : CD₃OD (2: 1) in comparison with the macrocycle **6** + ZnBr₂ (1 equiv) (9.1 mM). (The ¹HNMR spectra were taken after the solution was allowed to stand at room temperature for 4 h).

Figure S7. ¹HNMR titration of (*R*)-**2**+ZnBr₂ (1 equiv) (9.1mM) with (*R*,*R*)-**3** in CDCl₃ : CD₃OD (2: 1). (The ¹HNMR spectra were taken after the solution was allowed to stand at room temperature for 4 h).

Figure S8. I_{521}/I_{506} for (*R*)-2+Zn²⁺(1 equiv) (2.0 × 10⁻⁵ M in methanol/1% CH₂Cl₂) versus the concentration of (*S*)- and (*R*)-9. (λ_{exc} = 417nm, slits: 5/5nm).

Figure S9. Fluorescent spectra of (*R*)-**2**+Zn²⁺(1equiv) (2.0×10^{-5} M) in the presence of 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0 and 8.0 equiv (*S*)-**10** (a) and (*R*)-**10** (b). Fluorescent intensity at 532 nm versus the equiv of **10** (c). (Solvent: methanol with 1% CH₂Cl₂. $\lambda_{exc} = 417$ nm, slit = 5/5 nm.).

S6

Figure S10. Fluorescent spectra of (*R*)-2+Zn²⁺(1equiv) (2.0×10^{-5} M) in the presence of 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0 and 8.0 equiv (*S*)-11 (a) and (*R*)-11 (b). Fluorescent intensity at 526 nm versus the equiv of 11 (c). (Solvent: methanol with 1% CH₂Cl₂. $\lambda_{exc} = 417$ nm, slit = 5/5 nm.).

(C)

Figure S11. Fluorescent spectra of (*R*)-2+Zn²⁺(1 equiv) (2.0 x 10⁻⁵ M in methanol/1% CH₂Cl₂ with 10 equiv Bu₄NOH) in the presence of 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 4.0, 5.0, 6.0, 7.0 and 8.0 equiv (*S*)-13 (a) and (*R*)-13 (b). Fluorescent intensity at 520 nm versus the equiv of 13 (c). I_{520}/I_{510} versus the concentration of (*S*)- and (*R*)-13 (d). ($\lambda_{exc} = 417$ nm, slit = 5/5 nm.).

Figure S12. Fluorescent spectra of (*R*)-**2**+Zn²⁺(1 equiv) (2.0 x 10⁻⁵ M in methanol/1% CH₂Cl₂ with 10 equiv Bu₄NOH) in the presence of 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8 and 2.0 quiv(*S*)-**14** (a) and (*R*)-**14** (b). Fluorescent intensity at 523 nm versus the equiv of **14** (c). ($\lambda_{exc} = 417$ nm, slit = 5/5 nm.).

Figure S13. Fluorescent spectra of (R)-**2**+Zn²⁺(1 equiv) (2.0 x 10⁻⁵ M in methanol/1% CH₂Cl₂ with 10 equiv Bu₄NOH) in the presence of 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0 and 8.0 equiv (*S*)-**15** (a) and (*R*)-**15** (b). I₅₀₅/I₅₂₀versus the concentration of **15**(c). ($\lambda_{exc} = 417 \text{ nm}$, slit = 5/5 nm.).

(C)

Figure S14. Fluorescent spectra of (*R*)-**2**+Zn²⁺(1 equiv) (2.0 x 10⁻⁵ M in methanol/1% CH₂Cl₂ with 10 equiv Bu₄NOH) in the presence of 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0 and 8.0 equiv (*S*)-**16** (a) and (*R*)-**16** (b). I₅₂₆/I₅₁₃versus the concentration of **16** (c). ($\lambda_{exc} = 417 \text{ nm}$, slit = 5/5 nm.).

(c)

Figure S15. Fluorescent spectra of (R)-2+Zn²⁺(1 equiv) (2.0 x 10⁻⁵ M in methanol/1% CH₂Cl₂ with 10 equiv Bu₄NOH) in the presence of 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0 and 8.0 equiv (*S*)-17 (a) and (*R*)-17 (b). I₅₁₉/I₅₀₀versus the concentration of 17(c). ($\lambda_{exc} = 417 \text{ nm}$, slit = 5/5 nm.).

Figure S16. Fluorescent spectra of (*R*)-**2**+Zn²⁺(1equiv) (2.0×10^{-5} M) in the presence of 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0 and 8.0 equiv (*S*,*S*)-**3** (a) and (*R*,*R*)-**3** (b). (Solvent: methanol with 1% CH₂Cl₂. $\lambda_{\text{exc}} = 314$ nm, slit = 5/5 nm.).

(b)

Figure S17. Fluorescence spectra of (*R*)-2 +Zn²⁺(1 equiv) (2.0×10^{-5} M) in the presence of the enantiomeric mixture of *trans*-cyclohexane-1,2-diamine [from 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% to 100% (*S*,*S*)-3] at a total concentration of 4x10⁻⁵M. (Solvent: methanol with 1% CH₂Cl₂. λ_{exc} = 314 nm, slit = 5/5 nm.).

Figure S18. Fluorescent spectra of (*R*)-**2**+Zn²⁺(1equiv) (2.0×10^{-5} M) in the presence of 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0 and 8.0 equiv (*S*)-**9** (a) and (*R*)-**9** (b). (Solvent: methanol with 1% CH₂Cl₂. $\lambda_{\text{exc}} = 417$ nm, slit = 5/5 nm.).

Figure S19. Fluorescent spectra of (*R*)-**2**+Zn²⁺(1 equiv) (2.0 x 10⁻⁵ M in methanol/1% CH₂Cl₂ with 10 equiv Bu₄NOH) in the presence of 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0 and 8.0 equiv (*S*)-**12** (a) and (*R*)-**12** (b). ($\lambda_{exc} = 417$ nm, slit = 5/5 nm.).

Figure S20. (*R*)-**2** (50 µL, 2x10⁻³ M in CH₂Cl₂) and Zn²⁺ (50 µL, 2x10⁻³ M in CH₃OH) were placed in a 10 mL test tube, to which was added (*R*,*R*)- or (*S*,*S*)-cyclohexane-1,2-diamine (100 µL, 1x10⁻³ M in CH₃OH). The resulting solutions were allowed to stand at room temperature for 10, 20, 30, 40, 60, 70, 90, and 150 min respectively. Then, each of the solutions was diluted to 5 mL and its fluorescent spectrum was obtained. This figure plots the fluorescent intensities at 530 nm for (*S*,*S*)-cyclohexane-1,2-diamine and at 507 nm for (*R*,*R*)-cyclohexane-1,2-diamine versus the reaction time. It shows the fluorescent intensity reached maximum and became stable after 50-60 min of the reaction. This indicates that the fluorescent response difference for (*R*)-**2** toward (*R*,*R*)- and (*S*,*S*)-cyclohexane-1,2-diamine is due to the thermodynamics of the reactions. (λ_{exc} =314nm, slits: 5nm/5nm).

IV. Preparation and Characterization of the Macrocycle 6

Compound macrocycle **6** was synthesized by modifyingthe reported procedure.[#] Under argon, (*S*,*S*)-**3** (57 mg, 0.5 mmol) and (*R*)-**2** (171 mg, 0.5 mmol) were dissolved in dry methylene chloride (20 mL) and CH₃OH (5 mL). The mixture was stirred at room temperature for 2 d. After evaporation of the solvent, the crude product was dissolved in CH₂Cl₂ (3 mL), and then CH₃OH (10 mL) was added slowly to precipitate out the macrocycle **6**. The yellow solid was collected by filtration and washed with CH₃OH (5 mL). After dried under vacuum, the macrocycle **6** was obtained in 85% yield (178 mg). ¹H NMR (CDCl₃, 400 MHz) δ 142.44 (s, 4H), 8.54(s, 4H), 7.58 (s, 4H), 7.51 (d, *J*=8.8Hz, 4H), 7.18-7.08 (m, 12H), 3.42-3.39 (m, 4H), 2.02-1.98 (m, 4H), 1.88-1.86 (m, 4H), 1.63-1.55 (m, 4H), 1.43-1.38 (m, 4H). ¹³CNMR (CDCl₃, 100 MHz) δ 164.7, 154.6, 135.1, 133.0, 128.8, 127.6, 127.1, 124.6, 122.6, 121.1, 116.1, 70.1, 32.6, 24.7. HR-MS (ES+) calcd for C₅₆H₄₉N₄O₄ (M+H⁺) 841.3748 and C₅₆H₄₈N₄O₄Na⁺(M+Na⁺) 863.3568, found 841.3756 and 863.3608. (#Reference: Li, Z. –B.; Lin, J.; Sabat, M.; Hyacinth, M.; Pu, L. *J. Org. Chem.* **2007**, *72*, 4905-4916.)

¹H-NMR of themacrocycle 6 (CDCl₃, 400 MHz)

537.2286 549.3586

550

575

525

582.5815 610.6142 638.6448 649.2147

625

650

600

ר100 _ר

%

0-500

729.2764 744.2883

750

775

725

700

675

843.3884

850

807.3256 824.3550

825

800

863.3608 864.3656 865.3693

875

882.3420_907.2966

925

950

975

900

____ m/z 1000