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I. STOCHASTIC DYNAMICS AND FOKKER-PLANCK EQUATION

The stochastic dynamics for the dynamical systems can be quantified in continuous spaces

by the Langevin equations (in Ito’s form):

ẋµ = Fµ(~x) +
∑

a

Ba
µ(~x)ξa(t) (1)

where Fµ(~x) is the driving force, ξa(t) represents the Gaussian distributed white noise unit

fluctuations and Ba
µ(~x) represents the strength or magnitude of the variable dependent fluc-

tuations: 〈ξa(t)ξb(t′)〉 = δabδ(t−t′). Rather than each individual trajectory, we should focus

on the underlying probability evolution to quantify the stochastic dynamics. The corre-

sponding probability evolution P (~x, t) obeys the Fokker-Planck equation: with the diffusion

coefficient εµν(~x) =
∑

a,b Ba
µ(~x)Bb

µ(~x)δab.

dP

dt
=

∑

µ

∂µ(−FµP ) +
∑

µ,ν

1

2
∂µ∂ν(εµνP ) (2)

II. QUASISTATIONARY DENSITY AND ESCAPING RATE

For general stochastic processes, when the fluctuations εµν(~x) are small, the escaping rate

is determined by the quasistationary density, i.e., the principal eigenfunction φ0 of operator

L: Lφ0 = λ0φ0, φ0 (L is the Fokker-Planck operator dP
dt

= −LP represents the slowest

decaying eigenmode [1–3]. The escaping rate (inverse of the Mean First Passage Time

(MFPT)) is proportional to the principal eigenvalue λ0: rnoneq
K = (Eτ)−1 ∼ λ0. Therefore,

near the bottleneck region connecting the two destinies (one stable state to another) with

absorbing boundary condition, we obtain
∫

Ω

(Lφ0)dx =

∫

Ω

∂ · J0dx =

∫

Ω

λ0φ0dx

=⇒
∫

∂Ω

∑

µ

J0
µ(~x)nµ(~x)dx = λ0

∫

Ω

φ0(~x)dx (3)

where J0
i is the current or the flux of φ0: J0

µ = Fµφ0 − ∑

ν
1
2
∂ν(εµνφ

0) and nµ(~x) is the

outward unit vector normal to the absorbing boundary ∂Ω at ~x. Then, the escaping rate

from a stable basin state to a bottleneck with absorbing boundary condition ∂Ω (“saddle”

point included) can be evaluated as

rnoneq
K = (Eτǫ)

−1 ∼ λ0
ǫ =

∫

∂Ω

∑

µ J0
µ(~x)nµ(~x)dx

∫

Ω
φ0(~x)dx

(4)
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FIG. 1: 2D illustration of non-equilibrium landscape with the irreversible dominant transition

paths between basins S and S′ (green lines with arrows) and the gradient path (white line). Here,

Ŝ is the saddle point and Ŝ′ is “the global maximum along the dominant path”.

where
∫

Ω
φ0(~x)dx in the denominator gives the correct normalization factor for connecting

solutions of φ0 in different regions and numerator of the rate formula is determined by the

flux through the bottleneck area at the boundary on the way to the destiny (another stable

state).

Furthermore, we can approximate φ0 as a solution of

Lφ0 =
∑

µ

∂µ[Fµφ
0] −

∑

µν

1

2
∂µ∂ν [εµνφ

0] = 0 (5)

because when εµν(~x) → 0, λ0 → 0 exponentially fast. Therefore, up to exponential small

errors, the solution Lφ0 gives lowest order approximation for the solution Lφ0 = λ0φ0 [3].

In equ. (4), since we only integrate the flux J0
µ(~x) on the bottleneck boundary ∂Ω near “the

saddle point ” Ŝ ′, the numerator will not be zero even we use the solution Lφ0 = λ0φ0 = 0

for obtaining the J0
µ(~x) at the bottleneck boundary.

Here, instead of choosing the saddle point of the force or the associated non-equilibrium
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potential landscape as the absorbing boundary ∂Ω [1–3], we choose “the global maximum

along the dominant path” as the bottleneck region with the absorbing boundary condition

∂Ω, as shown in Fig. 1. Given this boundary, we can use the method of matching asymptotic

expansions to approximate φ0 for the small fluctuations in three asymptotic regions:

1. φ0
S at the local stable region centered around the stable state S;

2. φ0
Ŝ′

at the boundary region ∂Ω centered on “the global maximum along the dominant

path” Ŝ ′;

3. φ0
Ω′ at the rest of the region of Ω: Ω′ between the stable basin S and “the global

maximum along the dominant path” Ŝ ′.

In the equ. (4), we will substitute φ0
S to the denominator because φ0

S is the solution in the

neighbor of the stable state S and contributes the most to the integral
∫

Ω
φ0(~x)dx. However,

the contribution of φ0
S on the bottleneck boundary ∂Ω near “saddle point” Ŝ ′ can be ignored

because it is the solution away from Ŝ ′. Therefore, we will substitute φ0
Ŝ′

to the numerator,

since φ0
Ŝ′

dominates near the “saddle point” Ŝ ′ and gives the major contribution of the

integral
∫

∂Ω

∑

µ J0
µ(~x)nµ(~x)dx. In addition, the φ0

Ω′ between S and Ŝ ′ will contribute and

give the right normalization for φ0
Ŝ′

and φ0
S matching the solution of φ0 in different regions.

We propose an analytical approximation of the escaping rate for general non-equilibrium

systems with small but finite fluctuations as

rnoneq
K = κe−S (6)

In the next section, we will review the WKB approximation of φ0 in the region of Ω′,

which leads to the exponential term e−S in the rate of equ. (6) in the zero noise limit. After

that, in the following sections, we will quantify φ0 using the path integral formalism, which

gives new transition state theory for general nonequilibrium systems.

III. TRANSITION STATE RATE OF ZERO NOISE LIMIT

In the weak-noise (ǫ → 0), the existing problem is also determined by the quasistationary

density as given by equation (4). However, it is assumed that transition path always go

through the original saddle of the force Ŝ. φ0
Ω′ at the rest of the region of Ω: Ω′ between

the stable point S and the saddle Ŝ is calculated by WKB formalism. Assuming v0
ǫ =
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K(x)e−M(x)/ǫ, we have equation:

H(xµ, ∂µM) = 0 (7)

H(x, p) =
1

2
εµν(x)pµpν + Fµ(x)pµ (8)

[∂H

∂pµ

(xµ, ∂µM)
]

∂µK = −
[ ∂2H

∂pµ∂xµ

(xµ, ∂µM) +
1

2

∂2M

∂xµ∂xν

(x)
∂2H

∂pµ∂pµ

(xµ, ∂µM)
]

K (9)

The solution of above equations are given as

M(x) =

∫ x

pµdxµ (10)

dMµν(x)

dt
=

∂2H

∂pξ∂pξ′
MµξMνξ′ −

∂2H

∂xν∂pξ
Mµξ −

∂2H

∂xµ∂pξ
Mνξ −

∂2H

∂xµ∂xν
(11)

dK

dt
= −

[

∑

µ

∂2H

∂xµ∂pµ
+

∑

µν

1

2

∂2S

∂xµxν

∂2H

∂pµ∂pν

]

K (12)

with x and p following dynamics equations

ẋµ = εµνpν + Fµ (13)

ṗµ = (∂µενν′)pνpν′ + (∂µFν)pν (14)

On the stable state S(S ′) or the saddle point Ŝ, momentum pµ → 0, we have the station-

ary solution from equation (11).

∑

ξχ

εξχM,µξM,νχ +
∑

ξ

M,µξFν,ξ +
∑

ξ

M,νξFµ,ξ = 0 (15)

Near the stable basin state S , we do a linear expansion of the force for quantifying the

fluctuations around that state in addition to the mean: Fµ(X1, X2) = Fµ,ν(Xν − Sν) ≡
∂Fµ

∂xν
(Xν − Sν) and the equation Lφ0 = 0 can be written as

0 =
∑

µν

∂µ[−Fµ,ν(S)(xν − Sν)φ
0] +

∑

µν

1

2
εµν(S)∂µ∂νφ

0 (16)

The solution is in the form of steady state solution of Ornstein-Uhlenbeck process [3, 9],

which is a Gaussian function:

φ0
S ∼ exp[−

∑

µν

(xµ − Sµ)M,µν(xν − Sν)] (17)
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with the matrix M satisfying equation (15). ε is the diffusion matrix and F is the driving

force. Then, the integral in the denominator of equ. (4) near stable state gives

∫

Ω

φ0(x)dx = [detM(S)]−1/2 (18)

Here,
√

detM(S) in equ. (17) above measures the degree or strength of the second order

fluctuations around stable basin S, which is the product of stable frequencies at stable state

S.

While, near the saddle point Ŝ, with the linear expansion of the force Fµ(X1, X2) =

Fµ +
∑

ν Fµ,ν(Xν − Ŝν) and the boundary condition φ0(∂Ω) = 0, the equation Lφ0 = 0 has

the approximation solution [3],

φ0
Ŝ
(X1, X2) ∼ K(S, Ŝ)e−M(S,Ŝ)/ǫe−

P

µν(xµ−Ŝµ)M,µν(xν−Ŝν)/2ǫ

×erf [λu(Ŝ)1/2
∑

µν

nµǫµν(xν − Ŝν)/ǫ
1/2] (19)

where λu(Ŝ) is the positive eigenvalue of matrix Fµ,ν(Ŝ) at the saddle point Ŝ and the erf

function erf(z) is defined as

erf(z) =
2√
π

∫ z

s=0

e−s2

ds (20)

Here, the normalization factor K(S, Ŝ)e−M(S,Ŝ)/ǫ is included to match the solution in the

region Ω′: φ0
Ω′(xf ) ∼ K(S, Ŝ)e−M(S,Ŝ)/ǫ, as in equation. (11) and (12), from the point S to

Ŝ. In the neighborhood of the stable point S, however, because the weight action from S

to S for the dominant path is zero: SHJ(S, S) =
∫ S

S
p · dx = 0, the normalization factor for

the solution φ0
S near stable point S is K(S, S)e−M(S,S)/ǫ = 1.

Together, the transition state rate in the zero noise limit can be written as [1–3]

rnoneq
K = (Eτ)−1 =

λu(Ŝ)

2π

√

detM(S)

|detM(Ŝ)|
K(Ŝ)e−

R Ŝ

S

P

µ pµdxµ (21)

Here, matrix M satisfies the equation (15) and the frequency factor K(Ŝ) multiplies the

frequency of excursions to the vicinity of Ŝ, which satisfies equation (12).
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IV. EXPONENTIAL FACTOR AND PATH INTEGRAL WITH INTRINSIC

NOISE

When the diffusion coefficients are constants, which do not depend on the location ~x, the

weight action in the path integral formalism can be written as [4, 5]:

S =

∫ tf

ti

dtL (22)

with the Lagrangian

L =
∑

µν

ε−1
µν

2
(ẋµ − Fµ)(ẋν − Fν) +

∑

µ

1

2
∂µFµ (23)

However, the general weight action when the diffusion coefficients εµν(~x) do depend on the

location ~x is still challenging. Here, we will derive this path integral weight action and the

corresponding equation of motion for the dominant path for general stochastic dynamics

under inhomogeneous location dependent diffusion.

By defining the momentum operator: ∂µ = ip̂µ, as in general Quantum Mechanics, the

general Fokker-Planck equation (2) can be rewritten in a form of the operators:

dP

dt
= −iĤP (24)

In Ito’s formalism, we keep all operators p̂µ on the left side and it gives

− iĤ = −(
∑

µ

ip̂µ)Fµ −
∑

µν

1

2
p̂µp̂νεµν (25)

Therefore, the transition probability from initial state ~xi at t0 to the final state ~xf at time

t is expressed as [5]:

P (~xf , t|~xi, t0) =

∫

xf=xn

n−1
∏

j=1

d~xj

n
∏

j=1

〈~xj |1 − iĤδt|~xj−1〉 (26)

Following the path integral formalism, for a small time interval δt, we can insert the identity

I =
∫

d~p|~p〉〈~p| and obtain

〈~xj |1 − iĤδt|~xj−1〉 =

∫

d~p〈~xj |~p〉〈~p|1 − iĤδt|~xj−1〉

=

∫

d~p

2π
exp[i~p · (~xj − ~xj−1)

−
∑

µν

δt

2
pµpνεµν(~xj−1) − i

∑

µ

δtpµFµ(~xj−1)] (27)
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Gaussian integrating out the pµ’s gives the weight action in the coordinate space:

P (~xf , t|~xi, t0) =

∫

xf =xn

n−1
∏

j=1

d~xj

n
∏

j=1

1
√

2πδt[detε(~xj−1)]

×exp
(

δt

n
∑

j=1

{

− [
~xj − ~xj−1

δt
− ~F (~xj−1)]

ε−1(~xj−1)

2

[
~xj − ~xj−1

δt
− ~F (~xj−1)]

}

)

(28)

In the continuous limit of δt → 0, we have

P (~xf , t|~xi, t0) =

∫ tf

ti

D[~x(t)]
√

detε(~x(t))
e−S (29)

with the weight action

S = −1

2

∫

dt
[

∑

µν

ẋµε
−1
µν ẋν +

∑

µν

Fµε
−1
µν Fν

]

+(I)

∫

∑

µν

Fνε
−1
µν dxµ (30)

where (I) indicates the Ito’s integral. If we define F̂µ(~x) =
∑

ν Fν(~x)ε−1
µν (~x), according to

Ito’s calculus, we have

(I)

∫

∑

µν

Fνε
−1
µν dxµ = lim

n→∞

n
∑

j=1

[
∑

µ

F̂µ(~xj−1)(x
µ
j − xµ

j−1)]

= lim
n→∞

n
∑

j=1

∑

µ

[
F̂µ(~xj−1) + F̂µ(~xj)

2

−
∑

χ

∂χF̂µ(~xj−1)

2
(xχ

j − xχ
j−1)][(x

µ
j − xµ

j−1)]

=

∫

∑

µ

F̂µ(~x)dxµ −
∑

µχ

1

2

∫

d[F̂µ(~x)]

dxχ
εµχ(~x)dt (31)

Here, in the first step, we did the Taylor expansion: F̂µ(~xj) = F̂µ(~xj−1)+
∑

χ ∂χF̂µ(~xj−1)(x
χ
j −

xχ
j−1). In the second step, limn→∞

∑n
j=1

∑

µ
F̂µ(~xj−1)+F̂µ(~xj)

2
[(xµ

j − xµ
j−1)] is the Stratonovich

integral which holds the same fundamental theorem of Newtonian calculus and can be written

as the first term:
∫

F̂µ(~x)dxµ. In addition, we apply Ito’s calculus: dxµ(t)dxν(t) = εµν(~x)dt

to obtain the second term.
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According to Ito’s lemma in Ito’s calculus and Langevin equations in Equ. (1), for a

function of ~x: H(~x), we have

dH =
∂H

∂xµ

dxµ +
1

2

∂2H

∂xµ∂xν

dxµdxν

=
∂H

∂xµ
dxµ +

1

2

∂2H

∂xµ∂xν
εµνdt (32)

Integrating on both sides from xi to xf along any particular path l, we have

∫

l

dH = H(~xf) − H(~xi)

= (I)

∫

l

∂H

∂xν
dxν +

∫

l

1

2

∂2H

∂xν∂xχ
ενχdt (33)

In general, F̂µ(~x) = Fν(~x)ε−1
µν (~x) can not necessary be written the gradient of the a general

potential H(~x). However, along any particular path l, which is a 1 dimensional line, we

can always define a function H as the inverse derivative of the component of F̂µ along the

l: ∂lH(~x)
∂lxµ

= F̂ l
µ(~x). Then, substitute the H into equ. (33), we found that the Ito’s integral

along any path l in the second term of equ. (30) becomes

(I)

∫

l

F̂ l(~x)dl = (I)

∫

l

Fµ(~x)ε−1
µν (~x)dxν (34)

=

∫

l

Fµ(~x)ε−1
µν (~x)dxν −

1

2

∫

l

d[Fµ(~x)ε−1
µν (~x)]

dxχ
ενχ(~x)dt

Therefore, the whole weight action is

S =

∫ tf

ti

dtL (35)

with the Lagrangian

L =
∑

µν

ε−1
µν

2
(ẋµ − Fµ)(ẋν − Fν) +

∑

µνχ

1

2
εµχ∂χ(Fνε

−1
µν ) (36)

A new effective contribution to the potential can be introduced: V =
∑

µνχ
1
2
ενχ∂χ(Fµε

−1
µν ).

If diffusion coefficients εµν are constants and independent on the location ~x, we get V =
∑

µ
1
2
∂µFµ, which agrees with the previous results for constant noise condition, as shown in

equ. (22).

Here, we derived the path integral weight action for general non-equilibrium stochastic

processes with location dependent fluctuations (diffusion). Taking functional variations
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of the weight action S with respect to xµ(t)’s, we obtain the equation of motion for the

dominant path which satisfies the Euler-Lagrangian equation d
dt

∂L
∂ẋα

= ∂L
∂xα

as:

∑

ν

ε−1
µν (ẍν −

∑

χ

∂Fν

∂xχ
ẋχ) +

∑

νχ

∂ε−1
µν

∂xχ
(ẋν − Fν)ẋχ

=
∑

νχ

1

2

∂ε−1
νχ

∂xµ
(ẋν − Fν)(ẋχ − Fχ)

−
∑

νχ

ε−1
νχ(ẋχ − Fχ)

∂Fν

∂xµ
+

∂V

∂xµ
(37)

The dominant path approach gives the lowest order approximation of the full path integral

weight action. When the fluctuation level is relatively small, it provides a practical way

to quantify the process in the large dynamical systems, since the dominant path equations

reduces the computational task significantly from the original exponential complexity to the

polynomials complexity [6].

V. HAMILTONIAN-JACOBI APPROACH TO DOMINANT PATHS

Instead of solving the equation of motion as in equ. (37) directly, we can evaluate the

dominant kinetic path by minimizing the weight action S in path integral formalism. Define

canonical momentum

pµ =
∂L
∂ẋµ

=
∑

ν

ε−1
µν (ẋν − Fν), (38)

the total energy should be expressed as

−E = −H = L− pµẋµ

=
∑

µν

−1

2
ε−1

µν (ẋν − Fν)(ẋµ + Fµ) + V (39)

which will conserve along the dominant path. For a symmetric εµν and ε−1
µν , we have

E =
∑

µν

1

2
ε−1

µν (ẋµẋν − FµFν) − V (40)

By defining an effective potential Veff = −∑

µν
1
2
ε−1

µν FµFν − V , we obtain

∑

µν

1

2
ε−1

µν ẋµẋν = E − Veff

⇒ dt =

√

1
2

∑

µν ε−1
µν dxµdxν

E − Veff
= dl

√

1

2(E − Veff)
(41)
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where dl =
√

∑

µν ε−1
µν dxµdxν is the length in a curved space with distance measure ε−1

µν . So

the dynamics becomes effectively one dimensional along the length l.

For fixed energy, the HJ weight action, which should be minimized to find the dominant

path, can be written as [7]:

SHJ(xi, xf ) =

∫ xf

xi

p · dx =
∑

µν

ε−1
µν (ẋν − Fν)dxµ

=

∫ xf

xi

∑

µν

ε−1
µν dxµdxν/dt −

∫ xf

xi

∑

µν

ε−1
µν Fνdxµ

=

∫ xf

xi

2(E − Veff)dt −
∫ xf

xi

∑

µν

ε−1
µν Fνdxµ

=

∫ xf

xi

√

2(E − Veff)dl −
∫ xf

xi

∑

µν

ε−1
µν Fνdxµ (42)

which is further simplified to a line integral along a particular one dimensional path l. In

this Hamilton-Jacobian (HJ) approach, we switch from the time-dependent to the effective

Hamiltonian-dependent description (in length space).

Minimizing the the HJ weight action SHJ(xi, xf ), we can obtain the dominant transition

path and the associated weight action SDOM
HJ (xi, xf). This HJ weight action gives the φ0 in

the the region of Ω′ between the stable basin of attraction and saddle on the dominant path:

φ0
Ω′(xf ) ∼ e−SDOM

HJ (xi,xf ) (43)

exponential term of the escaping rate for general non-equilibrium systems with finite intrinsic

noise as in equ. (6): e−SDOM
HJ . In the next section, we are going to derive the pre-factor κ. As

we will see, it will give the contribution for the exponential part (factor) in the expression

of the escape rate.

Numerically, the optimal path and its weight action can be obtained by minimizing the

discretized target function (HJ weight action):

SHJ =
N−1
∑

n=0

[

√

2(E − Veff(xn))∆ln,n+1 (44)

−
∑

µν

ε−1
µν (x(n))Fν(x(n))∆xµ(n)

]

+ λP

with P =
∑N−1

n=0 (∆dn,n+1 − 〈∆d〉)2 and Veff(x(n)) = −∑

µν
1
2
ε−1

µν (x(n)Fµ(x(n))Fν(x(n)) −
V (x(n)). ∆dn,n+1 =

∑

µ[xµ(n + 1) − xµ(n)][xµ(n + 1) − xµ(n)] is the Euclidean measure of
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the nth elementary step on the path and P is a penalty function which numerically keeps

all the length elements close to their average and becomes irrelevant in the continuum limit

∆dn,n+1 → 0. In addition, (∆l)2
n,n+1 =

∑

µν ε−1
µν (n)[xµ(n+1)−xµ(n)][xν(n+1)−xν(n)] is the

measure of the nth elementary path step in the curved space determined by concentration

dependent diffusion (fluctuations) with distance measure ε−1
µν .

VI. PRE-FACTOR

For the pre-factor, we follow the similar solution as the case of zero noise limit [3], as

reviewed in section III. Near the stable state S, we have the same stationary solution as

equation (17)

φ0
S ∼ exp[−

∑

µν

(xµ − Sµ)M,µν(xν − Sν)] (45)

with the matrix M satisfying equation (15).

Near “the global maximum along the dominant path” Ŝ ′, we have similar solution as

equation (19)

φ0
Ŝ′

(X1, X2) ∼ e−SDOM
HJ (S,Ŝ′)e−

P

µν(xµ−Ŝ′

µ)M,µν(xν−Ŝ′

ν)/2ǫ

×erf [λu(Ŝ
′)1/2

∑

µν

nµǫµν(xν − Ŝ ′

ν)/ǫ
1/2] (46)

Here, since “the global maximum along the dominant path” Ŝ ′ is not a fixed point with

force F = 0, equation (46) is not a stationary solution and matrix M satisfies the dynamic

equation (11).

Again, the normalization factor e−SDOM
HJ (S,Ŝ′) is included to match the solution in the region

Ω′: φ0
Ω′(xf) ∼ e−SDOM

HJ (xi,xf ), as in equ. (43), from the point S to Ŝ ′. In the neighborhood of

the stable point S, however, because the weight action from S to S for the dominant path

is zero: SHJ(S, S) =
∫ S

S
p · dx = 0, the normalization factor for the solution φ0

S near stable

point S is e−SDOM
HJ (S,S) = 1.

12



FIG. 2: Network diagram of canonical gene regulatory circuit of two mutually opposing proteins

that positively self-regulate themselves.

VII. NEW TRANSITION STATE OR KRAMERS’ RATE FOR NON-

EQUILIBRIUM SYSTEMS

In the equ. (4), we substitute φ0
S in equ. (17) to the denominator and φ0

Ŝ′
in equ. (19) to

the numerator, we can write the escaping rate for the general non-equilibrium systems as:

rnoneq
K = (Eτ)−1 =

1

2π
[detM(S)]1/2

√

F̂1,1

|F̂2,2|
e−SDOM

HJ (47)

After transforming back to an arbitrary coordinate system, we have the final analytical

expression for our kinetic rate formula (theory) for non-equilibrium systems as

rnoneq
K = (Eτ)−1 =

λu(Ŝ
′)

2π

√

detM(S)

|detM(Ŝ ′)|
e−SDOM

HJ (48)

which is given in the main text. Here, λu(Ŝ ′) is the positive eigenvalue of matrix Fµ,ν(Ŝ ′) at

“the global maximum along the dominant path” Ŝ ′, and the matrix M(S) and M(Ŝ ′) satisfy

the stationary equation (15) and dynamic equation (11) at the basin S and Ŝ ′, respectively.

VIII. MASTER EQUATIONS

In the gene regulatory circuit, as shown in Fig. 2, there are two types of genes, A and

B, to be translated into proteins A and B respectively. This gene circuit with two genes

mutually repress each other while self-activate themselves. The proteins A(B) can bind

to the promoter of the same gene A(B) to self activate the synthesis rate of A(B), which

13



makes a self-activation feedback loop. Protein A(B) can bind to the gene B(A) to repress

the synthesis rate of B(A), which makes a mutual repression loop. Here, both protein A and

protein B bind to promoters as a tetrameter with the binding rate hA = hx4
1 and hB = hx4

2,

disassociate rate fA and fB, respectively. Therefore, each gene has 4 states (self activated

or not combined with mutually repressed or not) and the whole circuit with two genes has

4 × 4 = 16 gene states in total. Chemical reactions are as following:

O11
α + 4A

hA−⇀↽−
fA

O01
α , O10

α + 4A
hA−⇀↽−
fA

O00
α (49)

O11
α + 4B

hB−⇀↽−
fB

O10
α , O01

α + 4B
hB−⇀↽−
fB

O00
α (50)

Oij
A

gA
ij−→ A, Oij

B

gB
ij−→ B, A

kA−→ ∅ B
kB−→ ∅ (51)

with α = A or B representing gene A or B. For the gene state index ij of gene Oα, the

first index i = 1(0) stands for the activator protein unbound(bound) to the promoter α; the

second index j = 1(0) stands for the repressor protein unbound(bound) to the promoter α.

gij
A (gij

B) is the synthesis rate of the protein A (B) when the gene A (B) is in state ij. The

probability distribution of the microstate is indicated as Pijkl(x1, x2) (x1 = nA/V, x2 = nB/V

are concentrations of the protein A and B, V is the cell volume). The index i(j) represents

the gene A occupation state by the protein A(B) and the index k(l) represents the gene

B occupation state by the protein A(B). Corresponding 16 Master equations for this gene

regulatory circuit are given as following:

dP1111(x1, x2)

dt
=

−hx4
1P1111(x1, x2) + fP0111(x1, x2) − hx4

2P1111(x1, x2) + fP1011(x1, x2)

−hx4
1P1111(x1, x2) + fP1101(x1, x2) − hx4

1P1111(x1, x2) + fP1110(x1, x2)

+kA[(x1 +
1

V
)P1111(x1 +

1

V
, x2) − x1P1111(x1, x2)] + gA

11[P1111(x1 −
1

V
, x2) − P1111(x1, x2)]

+kB[(x2 +
1

V
)P1111(x1, x2 +

1

V
) − x2P1111(x1, x2)] + gB

11[P1111(x1, x2 −
1

V
) − P1111(x1, x2)]

(52)

14



dP1011(x1, x2)

dt
=

−hx4
1P1011(x1, x2) + fP0011(x1, x2) + hx4

2P1111(x1, x2) − fP1011(x1, x2)

−hx4
1P1011(x1, x2) + fP1001(x1, x2) − hx4

2P1011(x1, x2) + fP1010(x1, x2)

+kA[(x1 +
1

V
)P1011(x1 +

1

V
, x2) − x1P1011(x1, x2)] + gA

10[P1011(x1 −
1

V
, x2) − P1011(x1, x2)]

+kB[(x2 +
1

V
)P1011(x1, x2 +

1

V
) − x2P1011(x1, x2)] + gB

11[P1011(x1, x2 −
1

V
) − P1011(x1, x2)]

(53)

dP0111(x1, x2)

dt
=

+hx4
1P1111(x1, x2) − fP0111(x1, x2) − hx4

2P0111(x1, x2) + fP0011(x1, x2)

−hx4
1P0111(x1, x2) + fP0101(x1, x2) − hx4

2P0111(x1, x2) + fP0110(x1, x2)

+kA[(x1 +
1

V
)P0111(x1 +

1

V
, x2) − x1P0111(x1, x2)] + gA

01[P0111(x1 −
1

V
, x2) − P0111(x1, x2)]

+kB[(x2 +
1

V
)P0111(x1, x2 +

1

V
) − x2P0111(x1, x2)] + gB

11[P0111(x1, x2 −
1

V
) − P0111(x1, x2)]

(54)

dP0011(x1, x2)

dt
=

+hx4
1P1011(x1, x2) − fP0011(x1, x2) + hx4

2P0111(x1, x2) − fP0011(x1, x2)

−hx4
1P0011(x1, x2) + fP0001(x1, x2) − hx4

2P0011(x1, x2) + fP0010(x1, x2)

+kA[(x1 +
1

V
)P0011(x1 +

1

V
, x2) − x1P0011(x1, x2)] + gA

00[P0011(x1 −
1

V
, x2) − P0011(x1, x2)]

+kB[(x2 +
1

V
)P0011(x1, x2 +

1

V
) − x2P0011(x1, x2)] + gB

11[P0011(x1, x2 −
1

V
) − P0011(x1, x2)]

(55)
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dP1110(x1, x2)

dt
=

−hx4
1P1110(x1, x2) + fP0110(x1, x2) − hx4

2P1110(x1, x2) + fP1010(x1, x2)

−hx4
1P1110(x1, x2) + fP1100(x1, x2) + hx4

2P1111(x1, x2) − fP1110(x1, x2)

+kA[(x1 +
1

V
)P1110(x1 +

1

V
, x2) − x1P1110(x1, x2)] + gA

11[P1110(x1 −
1

V
, x2) − P1110(x1, x2)]

+kB[(x2 +
1

V
)P1110(x1, x2 +

1

V
) − x2P1110(x1, x2)] + gB

10[P1110(x1, x2 −
1

V
) − P1110(x1, x2)]

(56)

dP1010(x1, x2)

dt
=

−hx4
1P1010(x1, x2) + fP0010(x1, x2) + hx4

2P1110(x1, x2) − fP1010(x1, x2)

−hx4
1P1010(x1, x2) + fP1000(x1, x2) + hx4

2P1011(x1, x2) − fP1010(x1, x2)

+kA[(x1 +
1

V
)P1010(x1 +

1

V
, x2) − x1P1010(x1, x2)] + gA

10[P1010(x1 −
1

V
, x2) − P1010(x1, x2)]

+kB[(x2 +
1

V
)P1010(x1, x2 +

1

V
) − x2P1010(x1, x2)] + gB

10[P1010(x1, x2 −
1

V
) − P1010(x1, x2)]

(57)

dP0110(x1, x2)

dt
=

+hx4
1P1110(x1, x2) − fP0110(x1, x2) − hx4

2P0110(x1, x2) + fP0010(x1, x2)

−hx4
1P0110(x1, x2) + fP0100(x1, x2) + hx4

2P0111(x1, x2) − fP0110(x1, x2)

+kA[(x1 +
1

V
)P0110(x1 +

1

V
, x2) − x1P0110(x1, x2)] + gA

01[P0110(x1 −
1

V
, x2) − P0110(x1, x2)]

+kB[(x2 +
1

V
)P0110(x1, x2 +

1

V
) − x2P0110(x1, x2)] + gB

10[P0110(x1, x2 −
1

V
) − P0110(x1, x2)]

(58)
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dP0010(x1, x2)

dt
=

+hx4
1P1010(x1, x2) − fP0010(x1, x2) + hx4

2P0110(x1, x2) − fP0010(x1, x2)

−hx4
1P0010(x1, x2) + fP0000(x1, x2) + hx4

2P0011(x1, x2) − fP0010(x1, x2)

+kA[(x1 +
1

V
)P0010(x1 +

1

V
, x2) − x1P0010(x1, x2)] + gA

00[P0010(x1 −
1

V
, x2) − P0010(x1, x2)]

+kB[(x2 +
1

V
)P0010(x1, x2 +

1

V
) − x2P0010(x1, x2)] + gB

10[P0010(x1, x2 −
1

V
) − P0010(x1, x2)]

(59)

dP1101(x1, x2)

dt
=

−hx4
1P1101(x1, x2) + fP0101(x1, x2) − hx4

2P1101(x1, x2) + fP1001(x1, x2)

+hx4
1P1111(x1, x2) − fP1101(x1, x2) − hx4

2P1101(x1, x2) + fP1100(x1, x2)

+kA[(x1 +
1

V
)P1101(x1 +

1

V
, x2) − x1P1101(x1, x2)] + gA

11[P1101(x1 −
1

V
, x2) − P1101(x1, x2)]

+kB[(x2 +
1

V
)P1101(x1, x2 +

1

V
) − x2P1101(x1, x2)] + gB

01[P1101(x1, x2 −
1

V
) − P1101(x1, x2)]

(60)

dP1001(x1, x2)

dt
=

−hx4
1P1001(x1, x2) + fP0001(x1, x2) + hx4

2P1101(x1, x2) − fP1001(x1, x2)

+hx4
1P1011(x1, x2) − fP1001(x1, x2) − hx4

2P1001(x1, x2) + fP1000(x1, x2)

+kA[(x1 +
1

V
)P1001(x1 +

1

V
, x2) − x1P1001(x1, x2)] + gA

10[P1001(x1 −
1

V
, x2) − P1001(x1, x2)]

+kB[(x2 +
1

V
)P1001(x1, x2 +

1

V
) − x2P1001(x1, x2)] + gB

01[P1001(x1, x2 −
1

V
) − P1001(x1, x2)]

(61)
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dP0101(x1, x2)

dt
=

+hx4
1P1101(x1, x2) − fP0101(x1, x2) − hx4

2P0101(x1, x2) + fP0001(x1, x2)

+hx4
1P0111(x1, x2) − fP0101(x1, x2) − hx4

2P0101(x1, x2) + fP0100(x1, x2)

+kA[(x1 +
1

V
)P0101(x1 +

1

V
, x2) − x1P0101(x1, x2)] + gA

01[P0101(x1 −
1

V
, x2) − P0101(x1, x2)]

+kB[(x2 +
1

V
)P0101(x1, x2 +

1

V
) − x2P0101(x1, x2)] + gB

01[P0101(x1, x2 −
1

V
) − P0101(x1, x2)]

(62)

dP0001(x1, x2)

dt
=

+hx4
1P1001(x1, x2) − fP0001(x1, x2) + hx4

2P0101(x1, x2) − fP0001(x1, x2)

+hx4
1P0011(x1, x2) − fP0001(x1, x2) − hx4

2P0001(x1, x2) + fP0000(x1, x2)

+kA[(x1 +
1

V
)P0001(x1 +

1

V
, x2) − x1P0001(x1, x2)] + gA

00[P0001(x1 −
1

V
, x2) − P0001(x1, x2)]

+kB[(x2 +
1

V
)P0001(x1, x2 +

1

V
) − x2P0001(x1, x2)] + gB

01[P0001(x1, x2 −
1

V
) − P0001(x1, x2)]

(63)

dP1100(x1, x2)

dt
=

−hx4
1P1100(x1, x2) + fP0100(x1, x2) − hx4

2P1100(x1, x2) + fP1000(x1, x2)

+hx4
1P1110(x1, x2) − fP1100(x1, x2) + hx4

2P1101(x1, x2) − fP1100(x1, x2)

+kA[(x1 +
1

V
)P1100(x1 +

1

V
, x2) − x1P1100(x1, x2)] + gA

11[P1100(x1 −
1

V
, x2) − P1100(x1, x2)]

+kB[(x2 +
1

V
)P1100(x1, x2 +

1

V
) − x2P1100(x1, x2)] + gB

00[P1100(x1, x2 −
1

V
) − P1100(x1, x2)]

(64)
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dP1000(x1, x2)

dt
=

−hx4
1P1000(x1, x2) + fP0000(x1, x2) + hx4

2P1100(x1, x2) − fP1000(x1, x2)

+hx4
1P1010(x1, x2) − fP1000(x1, x2) + hx4

2P1001(x1, x2) − fP1000(x1, x2)

+kA[(x1 +
1

V
)P1000(x1 +

1

V
, x2) − x1P1000(x1, x2)] + gA

10[P1000(x1 −
1

V
, x2) − P1000(x1, x2)]

+kB[(x2 +
1

V
)P1000(x1, x2 +

1

V
) − x2P1000(x1, x2)] + gB

00[P1000(x1, x2 −
1

V
) − P1000(x1, x2)]

(65)

dP0100(x1, x2)

dt
=

+hx4
1P1100(x1, x2) − fP0100(x1, x2) − hx4

2P0100(x1, x2) + fP0000(x1, x2)

+hx4
1P0110(x1, x2) − fP0100(x1, x2) + hx4

2P0101(x1, x2) − fP0100(x1, x2)

+kA[(x1 +
1

V
)P0100(x1 +

1

V
, x2) − x1P0100(x1, x2)] + gA

01[P0100(x1 −
1

V
, x2) − P0100(x1, x2)]

+kB[(x2 +
1

V
)P0100(x1, x2 +

1

V
) − x2P0100(x1, x2)] + gB

00[P0100(x1, x2 −
1

V
) − P0100(x1, x2)]

(66)

dP0000(x1, x2)

dt
=

+hx4
1P1000(x1, x2) − fP0000(x1, x2) + hx4

2P0100(x1, x2) − fP0000(x1, x2)

+hx4
1P0010(x1, x2) − fP0000(x1, x2) + hx4

2P0001(x1, x2) − fP0000(x1, x2)

+kA[(x1 +
1

V
)P0000(x1 +

1

V
, x2) − x1P0000(x1, x2)] + gA

00[P0000(x1 −
1

V
, x2) − P0000(x1, x2)]

+kB[(x2 +
1

V
)P0000(x1, x2 +

1

V
) − x2P0000(x1, x2)] + gB

00[P0000(x1, x2 −
1

V
) − P0000(x1, x2)]

(67)

In the adiabatic limit, the binding/unbinding processes are much faster than the synthe-

sis/degradation. Therefore, the binding/unbinding processes reach equilibrium faster than

the other processes and the probability of the gene state P A
ij is determined as the function
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of the concentrations x1 and x2: hx4
1P

A
1j = fP A

0j, hx4
2P

A
i1 = fP A

i0 , which lead to

P A
00 =

1

1 +
x4

1

S4 +
x4

2

S4 +
x4

1

S4

x4

2

S4

(68)

P A
01 =

x4

2

S4

1 +
x4

1

S4 +
x4

2

S4 +
x4

1

S4

x4

2

S4

(69)

P A
10 =

x4

1

S4

1 +
x4

1

S4 +
x4

2

S4 +
x4

1

S4

x4

2

S4

(70)

P A
11 =

x4

1

S4

x4

2

S4

1 +
x4

1

S4 +
x4

2

S4 +
x4

1

S4

x4

2

S4

(71)

with S4 = f/h. If gA
00 = gA

0 + b1, gA
01 = gA

0 , gA
10 = gA

0 + a1 + b1, gA
11 = gA

0 + a1, the total

effective synthesis rate of protein A from these 4 gene states is: with

gA(x1, x2) = gA
0 +

a1x
4
1

S4 + x4
1

+
b1S

4

S4 + x4
2

(72)

Similarly, we can have effective synthesis rate of protein B as:

gB(x1, x2) = gB
0 +

a2x
4
2

S4 + x4
2

+
b2S

4

S4 + x4
1

(73)

Then, in the adiabatic limit, we can finally reach an effective chemical master equation in

concentration space as (as compared to the general 16 chemical master equations without

the adiabaticity assumption of faster binding/unbinding of regulatory proteins to the genes):

dP (x1, x2)

dt
= gA(x1, x2)[P (x1 −

1

V
, x2) − P (x1, x2)] (74)

+kA[(x1 +
1

V
)P (x1 +

1

V
, x1) − x1P (x1, x2)]

+gB(x1, x2)[P (x1, x2 −
1

V
) − P (x1, x2)]

+kB[(x2 +
1

V
)P (x1, x2 +

1

V
) − x2P (x1, x2)]

Here a1, a2 are self-activation coefficients, b1 and b2 are mutual repression coefficients, gA
0

and gB
0 are basel synthesis rates of A and B.

When the number of the molecules become large, one can do large volume expansion for

the master equation (74). The Taylor expansion of chemical master equations equ. (74) up

to the second order will lead to the Fokker-Planck equation as

dP

dt
=

∑

µ

∂µ(−FµP ) +
∑

µ,ν

1

2
∂µ∂ν(εµνP ) (75)
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with the driving force ~F = 1
V

(gA −kAx1, g
B −kBx2) and diffusion coefficients ε11 = 1

V 2 (g
A +

kAx1), ε22 = 1
V 2 (g

B + kBx2), ε12 = ε21 = 0. It represents a stochastic process with intrinsic

noise where the diffusion coefficients depend on the location (x1, x2) [8].

IX. TABLE OF MFPT RESULTS

The numerical values of MFPT = 1/rnoneq
K from our theory (Nonequilibrium TST),

Langevin dynamics simulations, the zero fluctuation approximations, and equilibrium tran-

sition state or Kramers’ theory for differentiation and reprogramming are given in following

tables.

TABLE I: Differential rate

V Nonequilibrium TST Simulation zero noise approximation Equilibrium

25 6127.6 6675.0 2385.4 509.62

30 13502.5 13590.4 5541.6 1208.0

35 31923.0 24375.6 12952.6 2716.1

40 67216.2 46081.2 25663.3 6000.3

45 1.3571e5 93247.0 55385.3 12942.0

50 2.7072e5 1.8806e5 1.1725e5 27496.3

TABLE II: Reprogramming rate

V Nonequilibrium TST Simulation zero noise approximation Equilibrium

25 2390.8 3142.1 1261.2 452.10

30 4603.1 5345.6 2025.8 875.19

35 8532.4 9215.8 4183.8 1599.2

40 15893.1 15873.6 7134.3 2898.4

45 28330.6 24914.9 12587.5 5098.0

50 49218.9 44115.7 21126.2 8840.1

∗ Corresponding author:jin.wang.1@stonybrook.edu
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