Supporting Information

TMP (2,2,6,6-Tetramethylpiperidide)-Aluminate Bases: Lithium-Mediated Alumination or Lithiation/Alkylaluminium-Trapping Reagents?

Supporting Information

David R. Armstrong, Elaine Crosbie, Eva Hevia, Robert E. Mulvey,* Donna L. Ramsay* and Stuart D. Robertson^[a]

[a] Dr. D. R. Armstrong, Dr. E. Crosbie, Prof. E. Hevia, Prof. R. E. Mulvey, D. L.
Ramsay, Dr. S. D. Robertson
WestCHEM, Department of Pure and Applied Chemistry
University of Strathclyde, Glasgow, G1 1XL (UK)

Fax: (+44) 141-548-4787 E-mail: <u>r.e.mulvey@strath.ac.uk</u>

Table of contents

- Figure S1. Figure S1. ⁷Li NMR spectra ($[D_8]$ THF, 300 K) of (a) crystalline [{Li(THF)₄}+{Al(TMP)(ⁱBu)₃}-] **1·(THF)**₄ and (b) [{Li(THF)₄}+{Al(TMP)(ⁱBu)₃}-] **1·(THF)**₄ at different concentrations (top = ~1 mg/mL, bottom = ~30 mg/mL) showing the changes in chemical shift of the [Li(THF)₄]+ cation with concentration.
- Figure S2. ¹H NMR spectra ($[D_8]$ THF) of the variable temperature study performed on crystalline [$\{Li(THF)_4\}^+$ {Al(TMP)(ⁱBu)_3}⁻] **1·(THF)**₄.
- Figure S3. ²⁷Al NMR spectrum ($[D_8]$ THF, 300 K) of crystalline [$\{Li(THF)_4\}^+ \{Al(TMP)(^iBu)_3\}^-$] **1**·(**THF**)₄ showing the ²⁷Al resonance at 139.81 ppm. Note that a small amount of [$\{Li(THF)_4\}^+ \{Al(^iBu)_4\}^-$] (**3**) (at 152.65 ppm) was also present in the reaction mixture.
- Figure S4. 27 Al NMR spectrum ([D₈]THF, 300 K) of [{Li(THF)₄}+{Al(ⁱBu)₄}-] (**3**).
- Figure S5. Overlay of ¹H NMR spectra ($[D_8]$ THF) of [{Li(THF)₄}+{Al(TMP)(ⁱBu)₃}-] **1·(THF)**₄ (top) and *in situ* [LiTMP + Al(ⁱBu)₃] (**1**) (bottom) (273 K) showing the remarkable disimilarity between the two mixtures.
- Figure S6. Figure S6. Overlay of ⁷Li NMR spectra ($[D_8]THF$) of $[{Li(THF)_4}^+{Al(TMP)(^iBu)_3}^-]$ **1·(THF)**₄ (top) and *in situ* [LiTMP + Al(ⁱBu)₃] (**1**) (bottom) (273 K) showing the common [Li(THF)₄]⁺ resonance and the additional Li species that are present in the *in situ* mixture.
- Figure S7. ¹H NMR spectrum (C_6D_6 , 300 K) of crystalline [(THF)·Li(μ -TMP)(μ -ⁱBu)Al(ⁱBu)₂] **1·THF** + anisole after 24 hours stirring in THF, showing unreacted anisole.
- Figure S8. ¹H NMR spectrum (C_6D_6 , 300 K) of *in situ* [LiTMP + Al(ⁱBu)₃ + THF] (**1·THF**) + anisole in hexane, showing unreacted anisole. Note that there is a minute amount of metallation observed due to a trace excess of LiTMP present in the mixture.
- Figure S9. Known molecular structure of $[(THF)\cdot Li(\mu-TMP)(\mu-OC_4H_7)Al(^iBu)_2]$ **4**. All hydrogen atoms are omitted for clarity.
- Figure S10. ¹H NMR spectrum ($[D_8]$ THF, 300 K) of pre-prepared Li(anisolyl) + $[{Li(THF)_4}^+{Al(^iBu)_4}^-]$ (**3**) showing the inefficient trapping by the salt.
- Figure S11. ¹H NMR spectrum ([D₈]THF, 300 K) of the reaction between pre-prepared Li(anisolyl) + Al(TMP)(ⁱBu)₂ showing the near-quantitative Al(anisolyl) product
- Figure S12. The aryl region of the ¹³C NMR spectrum ($[D_8]$ THF, 300 K) of the reaction between pre-prepared Li(anisolyl) + Al(TMP)(ⁱBu)₂ showing the Al(anisolyl) product.
- Figure S13. ¹H NMR spectrum (C_6D_6 , 300 K) of the reaction between [LiTMP + Al(TMP)(ⁱBu)₂] (**2**) + anisole in THF, showing the deprotonation of anisole producing Al(anisolyl) complex.
- Figure S14. ¹H NMR spectrum ($[D_8]$ THF, 300 K) of $[LiTMP + AI(TMP)(^iBu)_2]$ (2) after 24 hours stirring in THF, showing small resonances for deprotonated THF.

- Figure S15. ¹H NMR spectrum ([D₈]THF, 300 K) of [(THF)Li(μ -TMP)(μ -OC₄H₇)Al(ⁱBu)₂] (**4**) + anisole in THF after stirring for 24 hours, showing unreacted anisole.
- Figure S16. ¹H-DOSY NMR spectrum of $[LiTMP + AI(TMP)(^{i}Bu)_{2}]$ (2) in bulk THF.
- Figure S17. Overlay of ¹H NMR spectra (C_6D_6 , 300 K) of LiTMP + THF after 30 mins (bottom) and 24 hours (top).
- Figure S18. Part of the aryl region of the ¹H NMR spectrum ($[D_8]$ THF, 300 K) of LiTMP + anisole in THF, showing that lithiation occurs but only to a small extent.
- Figure S19. ¹H NMR spectrum (C_6D_6 , 300 K) of pre-prepared Li(anisolyl) + TMP(H) showing formation of LiTMP.
- Figure S20. ¹H NMR spectrum ($[D_8]$ THF, 300 K) of Al(TMP)(ⁱBu)₂ + ⁱBuLi.
- Figure S21. Overlay of ¹H NMR spectra ($[D_8]$ THF, 300 K) of ⁱBuLi (top), Al(TMP)(ⁱBu)₂ (middle), and the mixture of both (bottom).
- Figure S22. ¹³C dept135 NMR spectrum ($[D_8]$ THF, 300 K) of [$\{Li(THF)_4\}^+$ {Al(ⁱBu)₄}⁻] (**3**). Note that the CH₂ resonance of ⁱBu is not visible.
- Figure S23. ${}^{1}H^{-13}C$ HSQC NMR spectrum ([D₈]THF, 300 K) of [{Li(THF)₄}+{Al(ⁱBu)₄}-] (**3**) showing the broadness of the CH₂-Al resonance.
- Figure S24. "Al-iBu" methylene proton resonance region of the 1D ¹H, ¹H-{²⁷Al} and associated ²⁷Al NMR spectra of a mixture of crystalline [{Li(THF)₄}+{Al(TMP)(iBu)₃}] **1**·(**THF**)₄ and [{Li(THF)₄}+{Al(iBu)₄}] (**3**). (**a**) ¹H NMR spectrum showing broadened resonances for both species; (**b**) as for (**a**) but with continuous wave narrow-band ²⁷Al decoupling by irradiation at δ^{27} Al = 152.72 ppm; (**c**) as for (**a**) but with continuous wave narrowband ²⁷Al decoupling by irradiation at δ^{27} Al = 139.84 ppm. (**d**) labelled ²⁷Al spectrum from S3.
- Figure S25. Correlation data confirming resonance relationships between ²⁷Al and ¹H nuclei. (a) Phase-sensitive gradient selected 2D [¹H, ²⁷Al] HSQC optimized for maximum signal intensity. (b) Phase-sensitive gradient selected 2D [¹H, ²⁷Al] HSQC-TOCSY revealing ²⁷Al-associated ⁱBu proton spin-systems for two independent species. It is particularly notable that the presence of a signal for the ⁱBu methine proton of the more symmetrical species is detected *via* HSQC-TOCSY below the THF signal at 1.78 ppm.

Figure S1. ⁷Li NMR spectra ([D₈]THF, 300 K) of (a) crystalline [{Li(THF)₄}+{Al(TMP)(ⁱBu)₃}] **1·(THF)**₄ and (b) [{Li(THF)₄}+{Al(TMP)(ⁱBu)₃}] **1·(THF)**₄ at different concentrations (top = ~1 mg/mL, bottom = ~30 mg/mL) showing the changes in chemical shift of the [Li(THF)₄]+ cation with concentration.

Figure S2. ¹H NMR spectra ([D₈]THF) of the variable temperature study performed on crystalline $[{Li(THF)_4}^+{Al(TMP)(^iBu)_3}^-]$ **1·(THF)**₄.

Figure S3. ²⁷Al NMR spectrum ([D₈]THF, 300 K) of crystalline [$\{Li(THF)_4\}^+ \{Al(TMP)(^{i}Bu)_3\}^-$] **1·(THF)**₄ showing the ²⁷Al resonance at 139.81 ppm. Note that a small amount of [$\{Li(THF)_4\}^+ \{Al(^{i}Bu)_4\}^-$] (**3**) (at 152.65 ppm) was also present in the reaction mixture.

Figure S4. ²⁷Al NMR spectrum ($[D_8]$ THF, 300 K) of $[{Li}(THF)_4]^+{Al}(^iBu)_4]^-]$ (3).

Figure S5. Overlay of ¹H NMR spectra ($[D_8]$ THF) of [{Li(THF)₄}+{Al(TMP)(ⁱBu)₃}-] **1-(THF)**₄ (top) and *in situ* [LiTMP + Al(ⁱBu)₃] (**1**) (bottom) (273 K) showing the remarkable disimilarity between the two mixtures.

Figure S6. Overlay of ⁷Li NMR spectra ($[D_8]$ THF) of [{Li(THF)₄}+{Al(TMP)(ⁱBu)₃}] **1**·(**THF**)₄ (top) and *in situ* [LiTMP + Al(ⁱBu)₃] (**1**) (bottom) (273 K) showing the common [Li(THF)₄]+ resonance and the additional Li species that are present in the *in situ* mixture.

Figure S7. ¹H NMR spectrum (C_6D_6 , 300 K) of crystalline [(THF)·Li(μ -TMP)(μ -ⁱBu)Al(ⁱBu)₂] **1·THF** + anisole after 24 hours stirring in THF, showing unreacted anisole.

Figure S8. ¹H NMR spectrum (C_6D_6 , 300 K) of *in situ* [LiTMP + Al(ⁱBu)₃ + THF] (**1·THF**) + anisole in hexane, showing unreacted anisole. Note that there is a minute amount of metallation observed due to a trace excess of LiTMP present in the mixture.

Figure S9. Known molecular structure of $[(THF)\cdot Li(\mu-TMP)(\mu-OC_4H_7)Al(^iBu)_2]$ **4**. All hydrogen atoms are omitted for clarity.

Figure S10. ¹H NMR spectrum ($[D_8]$ THF, 300 K) of pre-prepared Li(anisolyl) + [{Li(THF)₄}+{Al(ⁱBu)₄}-] (**3**) showing the inefficient trapping by the salt.

Figure S11. ¹H NMR spectrum ([D_8]THF, 300 K) of the reaction between pre-prepared Li(anisolyl) + Al(TMP)(ⁱBu)₂ showing the near-quantitative Al(anisolyl) product.

Figure S12. The aryl region of the ¹³C NMR spectrum ($[D_8]$ THF, 300 K) of the reaction between preprepared Li(anisolyl) + Al(TMP)(ⁱBu)₂ showing the Al(anisolyl) product.

Figure S13. ¹H NMR spectrum (C_6D_6 , 300 K) of the reaction between [LiTMP + Al(TMP)(ⁱBu)₂] (**2**) + anisole in THF, showing the deprotonation of anisole producing the Al(anisolyl) complex.

e S14. ¹H NMR spectrum ($[D_8]$ THF, 300 K) of [LiTMP + Al(TMP)(ⁱBu)₂] (**2**) after 24 hours stirring in THF, showing small resonances for deprotonated THF.

Figure S15. ¹H NMR spectrum ([D₈]THF, 300 K) of [(THF)·Li(μ -TMP)(μ -OC₄H₇)Al(ⁱBu)₂] (**4**) + anisole in THF after stirring for 24 hours, showing unreacted anisole.

Figure S16. ¹H-DOSY NMR spectrum of [LiTMP + Al(TMP)(ⁱBu)₂] (2) in bulk THF.

Figure S17. Overlay of ¹H NMR spectra (C_6D_6 , 300 K) of LiTMP + THF after 30 mins (bottom) and 24 hours (top).

Figure S18. Part of the aryl region of the ¹H NMR spectrum ($[D_8]$ THF, 300 K) of LiTMP + anisole in THF, showing that lithiation occurs but only to a small extent.

Figure S19. ¹H NMR spectrum (C_6D_6 , 300 K) of pre-prepared Li(anisolyl) + TMP(H) showing formation of LiTMP.

Figure S20. ¹H NMR spectrum ([D₈]THF, 300 K) of Al(TMP)(ⁱBu)₂ + ⁱBuLi.

Figure S21. Overlay of ¹H NMR spectra ($[D_8]$ THF, 300 K) of ⁱBuLi (top), Al(TMP)(ⁱBu)₂ (middle), and the mixture of both (bottom).

Figure S22. ¹³Cdept135 NMR spectrum ($[D_8]$ THF, 300 K) of $[{Li(THF)_4}^+{Al(^iBu)_4}^-]$ (3). Note that the CH₂ resonance of ⁱBu is not visible.

Figure S23. ¹H-¹³C HSQC NMR spectrum ($[D_8]$ THF, 300 K) of [$\{Li(THF)_4\}^+$ {Al(ⁱBu)₄}-] (**3**) showing the broadness of the CH₂-Al resonance.

Figure S24. "Al-ⁱBu" methylene proton resonance region of the 1D ¹H, ¹H-{²⁷Al} and associated ²⁷Al NMR spectra of a mixture of crystalline [{Li(THF)₄}+{Al(TMP)(ⁱBu)₃}-] **1**·(**THF**)₄ and [{Li(THF)₄}+{Al(ⁱBu)₄}-] (**3**). (**a**) ¹H NMR spectrum showing broadened resonances for both species; (**b**) as for (**a**) but with continuous wave narrow-band ²⁷Al decoupling by irradiation at δ^{27} Al = 152.72 ppm; (**c**) as for (**a**) but with continuous wave narrow-band ²⁷Al decoupling by irradiation at δ^{27} Al = 139.84 ppm. (**d**) labelled ²⁷Al spectrum from S3.

Figure S25. Correlation data confirming resonance relationships between ²⁷Al and ¹H nuclei. (a) Phase-sensitive gradient selected 2D [¹H, ²⁷Al] HSQC optimized for maximum signal intensity. (b) Phase-sensitive gradient selected 2D [¹H, ²⁷Al] HSQC-TOCSY revealing ²⁷Al-associated ⁱBu proton spin-systems for two independent species. It is particularly notable that the presence of a signal for the ⁱBu methine proton of the more symmetrical species is detected *via* HSQC-TOCSY below the THF signal at 1.78 ppm.

DFT Calculations on Lithium-Aluminium Compounds

Density Functional Theory Calculations were performed using the Gaussian computational package G03.

In this series of calculations the B3LYP density functionals and the 6-311G(d,p) basis set were used.

After each geometry optimisation, a frequency analysis was performed.

The energy values quoted include the zero point energy contribution.

Aims of the Calculations

To investigate the possible optimised geometries of the compound THF.LiAl(TMP)₂(ⁱBu)₂.

In particular, to focus on the preferred bridging components between Li and Al which could be

- (a) Two TMP anions
- (b) Two ⁱBu anions
- (c) One TMP anion and one ⁱBu anion.

Finally to ascertain the energy of formation from LiTMP and THF.AI(ⁱBu)₂TMP of THF.LiAI(TMP)₂(ⁱBu)₂

Case (a) THF.Li(µ-TMP)₂Al(iBu)₂

Model (i)

THF.Li(μ -TMP)₂Al(iBu)₂

Model (i)

Li-O		1.983 Å	
Li-N		2.082 Å	2.117 Å
Al-N		2.137 Å	2.108 Å
Al-C		2.056 Å	2.054 Å
Li-N-Al	79.5 °	79.4 °	
N-Li-N	101.3	Þ	
N-Al-N	99.8 °		
C-AI-C		104.4 °	

THF.Li(µ-TMP)₂Al(iBu)₂

Model (ii)

THF.Li(μ -TMP)₂Al(iBu)₂

Model (ii)

Li-O	2.049 Å
Li-N	2.060 Å 2.069 Å
Al-N	2.125 Å 2.130 Å
Al-C	2.078 Å 2.070 Å

Li-N-Al 82.6 ° 82.7 ° N-Li-N 99.3 ° N-Al-N 95.4 ° C-Al-C 98.7 °

THF.Li(µ-TMP)₂Al(iBu)₂

Model (iii)

THF.Li(μ -TMP)₂Al(iBu)₂

Model (iii)

1.987 Å
2.078 Å 2.074 Å
2.110 Å 2.147 Å
2.065 Å 2.064 Å

Li-N-Al 80.3 ° 81.3 ° N-Li-N 100.9 ° N-Al-N 97.5 ° C-Al-C 101.0 °

Case (b) THF.Li(µ-TMP)(µ-ⁱBu)Al(ⁱBu)(TMP)

Model (i)

THF.Li(µ-TMP)(µ-iBu) Al(iBu)(TMP)

Model (i)

Li-O	1.957 Å
Li-N	1.998 Å
Li-C	2.298 Å
Al-N _{br}	2.115 Å
Al-N _{ter}	1.961 Å
AI-C _{br}	2.147 Å
Al-C _{ter}	2.049 Å
Li-N-Al	81.3 °
Li-C-Al	74.1°
N-Li-C	92.9 °
N _{br} -AL-C _{br}	94.1 °
N _{br} -AL-C _{br}	101.8°

THF.Li(µ-TMP)(µ-iBu) Al(iBu)(TMP)

Model (ii)

THF.Li(µ-TMP)(µ-iBu) Al(iBu)(TMP)

Model (ii)

Li-O	1.971 Å
Li-N	2.003 Å
Li-C	2.257 Å
Al-N _{br}	2.137 Å
Al-N _{ter}	1.951 Å
AI-C _{br}	2.159 Å
AI-C _{ter}	2.036 Å
Li-N-Al	81.5 °
Li-C-Al	75.5 °
N-Li-C	96.6 °
N _{br} -AL-C _{br}	95.7 °
N _{br} -AL-C _{br}	109.9°

Case (c) THF.Li(μ -ⁱBu)₂Al(TMP)₂

THF.Li(μ -ⁱBu)₂Al(TMP)₂

Li-O	1.966 Å
Li-C	2.167 Å 2.150 Å
AI-C	2.140 Å 2.176 Å
Al-N	1.963 Å 1.955 Å

Li-C-Al	75.2 °	76.3 °
C-Li-C		103.4 °
C-Al-C		103.4 °
N-Al-N	117.2 °	

THF.AI(TMP)(ⁱBu)₂

THF.AI(TMP)(ⁱBu)₂

AI-O 2.059 Å AI-C 2.023 Å 2.017 Å AI-N 1.896 Å C-AI-C 108.0 ° C-AI-N 121.2 ° 121.7 ° C-AI-O 99.4 ° 100.4 ° N-AI-O 100.3 °

E = -1198.850198 a.u.

AI(TMP)(ⁱBu)₂

Al-C 1.993 Å 1.990 Å

Al-N 1.840 Å

C-Al-C 115.3 °

C-Al-N 121.6 ° 123.1 °

E = -966.442464 a.u.

Total Energies/a.u. and Relative Energies/kcal mol⁻¹

THF.Li(µ-TMP) ₂ Al(iBu) ₂ (i)	-1614.80)5526	0.00
THF.Li(μ-TMP) ₂ Al(iBu) ₂ (ii)	-1614.78	36463	11.96
THF.Li(μ-TMP) ₂ Al(iBu) ₂ (iii)	-1614.79	98446	4.44
THF.Li(μ-TMP)(μ-iBu)Al(iBu)(TMP)(i) -1614.	789488	10.06	
THF.Li(μ-TMP)(μ-iBu)Al(iBu)(TMP)(ii)- <mark>1614</mark> .	797795	4.85	
THF.Li(µ-iBu) ₂ Al(TMP) ₂	-1614.78	32013	14.75

Reactions

Energy of the Reactions:

 $\frac{1}{(LiTMP)_4}$ + THF.Al(ⁱBu)₂(TMP) = THF.Li(μ -TMP)₂Al(ⁱBu)₂ ΔE = +14.16 kcal mol⁻¹

 $\frac{1}{2}$ (THF.LiTMP)₂ + THF.Al(ⁱBu)₂(TMP) = THF.Li(μ -TMP)₂Al(ⁱBu)₂ + THF ΔE = +20.60 kcal mol⁻¹

 $\frac{1}{2}$ (THF.LiTMP)₂ + Al(ⁱBu)₂(TMP) = THF.Li(μ -TMP)₂Al(ⁱBu)₂ ΔE = +14.19 kcal mol⁻¹

CIAI(iBu)₂

Cl-Al 2.140 Å

Al-C 1.969 Å 1.969 Å

Cl-Al-C 116.3 ° 116.3 °

C-Al-C127.3 °

E = -1018.315320 a.u.

[CIAI(iBu)₂]₂

- CI-AI 2.356 Å
- Al-C 1.968 Å
- CI-AI-CI 88.3 °
- Al-Cl-Al 91.7 °

E = -2036.660666 a.u.

TMPH

N-H 1.015 Å N-C 1.477 Å 1.477 Å

C-N-C 122.3 °

C-N-H 110.0° 110.0°

E = -409.003998 a.u.

E = -409.003998 a.u.

THF.Li(μ -TMP)(μ -OC₄H₇)Al(iBu₂)

Li-O _{ter}		1.980 Å
Li-O _{br}		1.845 Å
Li-N	2.036 Å	
N-Al	2.063 Å	
O _{br} -C _{br}		1.496 Å
C _{br} -Al		2.086 Å
Al-C _{ter}		2.051 Å 2.052 Å
Li-O _{br} -C _{br}	107.9 °	
O _{br} -C _{br} -Al	112.8 °	
C _{br} -Al-N		99.9 °
Al-N-Li		96.4 °
N-Li-O _{br}		112.8 °
N-Li-O _{ter}	137.1 °	
C _{ter} -Al-C _{ter}	107.8 °	

E = -409.003998 a.u.

Reactions

Energy of the Reactions:

 $\frac{1}{2}$ (THF.LiTMP)₂ + THF.Al(ⁱBu)₂(TMP) = THF.Li(μ -TMP)₂Al(ⁱBu)₂ + THF ΔE = +20.60 kcal mol⁻¹

 $\frac{1}{2}$ (THF.LiTMP)₂ + THF.Al(ⁱBu)₂(TMP) = THF.Li(μ -TMP)(μ -OC₄H₇)Al(iBu₂) +TMPH $\Delta E = -5.30 \text{ kcal mol}^{-1}$

> THF.Li(μ -TMP)₂Al(ⁱBu)₂ + THF = THF.Li(μ -TMP)(μ -OC₄H₇)Al(iBu₂) +TMPH $\Delta E = -25.90 \text{ kcal mol}^{-1}$

Open Dimer of Li (µ-TMP)₂Al(iBu)₂

Model 1 The closed version

E = -1382.384657 a.u. (Rel E. = +5.53 kcal mol⁻¹)

Open Dimer of Li (µ-TMP)₂Al(iBu)₂

Model 2 The open version

E = -1382.393473 a.u. (Rel E. = 0.00 kcal mol⁻¹)

Open Dimer of THF.Li (μ -TMP)₂Al(iBu)₂

The open version

The Energy given by the sum of the two products is -1614.811704 a.u.

Open Dimer of THF.Li (μ -TMP)₂Al(iBu)₂

The closed version

E = -1614.805526 a.u. (Rel. E. = 3.87 kcal mol⁻¹)

AlⁱBu₃

Optimised Geometry

(Put in as C_1 optimises to $\sim C_3$)

E = -715.793662 a.u.

AlⁱBu₃

Principal Bond Lengths/Å and Angles/°

Al-C 1.985, 1.985, 1.985

C-Al-C 120.0, 119.7, 119.6

C-AL-C-C 170.3, 170.3, 170.3

[AlⁱBu₄]⁻

Optimised Geometry

(Put in as C_1 optimises to S_4)

E = -873.623809 a.u.

[AlⁱBu₄]⁻

Principal Bond Lengths/Å and Angles/°

Al-C 2.058

C-Al-C 112.3, 103.9

ⁱBu⁻

Optimised Geometry

E = -157.701762 a.u.

ⁱBu⁻

Principal Bond Lengths/Å and Angles/°

525
542
.562

 $C_1 - C_2 - C_3$ 110.6 $C_1 - C_2 - C_4$ 117.2 $C_3 - C_2 - C_4$ 108.2

[Al[']Bu₃TMP]⁻

Optimised Geometry

E = -1124.255779 a.u.

[AlⁱBu₃TMP]⁻

Principal Bond Lengths/Å and Angles/°

Al-C 2.055, 2.075, 2.076

Al-N 1.980

C-Al-C 109.1, 99.5, 104.4

C-Al-N 111.5, 112.3, 119.0

[AlⁱBu₂TMP₂]⁻

Optimised Geometry

E = -1374.868784 a.u.

[AlⁱBu₂TMP₂]⁻

Principal Bond Lengths/Å and Angles/°

Al-C 2.085, 2.078

Al-N 2.000, 2.024

C-Al-C 102.3

N-Al-N 111.3

C-Al-N 113.2, 112.0,105.8, 111.7

[AlⁱBuTMP₃]⁻

On Optimisation

(Abandoned when N...Al distance was greater than 5 Å)

[TMP]⁻

Optimised Geometry (Put in as C_1 optimises to C_s)

E = -408.380814 a.u.

[TMP]⁻

Principal Bond Lengths/Å and Angles/°

N-C ₁	1.500
C ₁ -C ₂	1.563
C ₂ -C ₃	1.533
C ₁ -C ₆	1.547
C ₁ - C ₇	1.577
C -N-C	119 7
$C_5 - N - C_1$	113.2
$1 - c_1 - c_2$	111.0
$c_1 - c_2 - c_3$	111./
$C_2 - C_3 - C_4$	110.0
C ₆ -C ₁ -C ₇	105.7

[TMPH]

Optimised Geometry

(Put in as C_s)

E = -409.003998 a.u.

[TMPH]

Principal Bond Lengths/Å and Angles/°

N-H	1.015	
N-C ₁		1.477
C ₁ -C ₂		1.543
C ₂ -C ₃		1.532
C ₁ -C ₆		1.539
C ₁ -C ₇		1.550
C ₅ -N-C ₁		122.3
N-C ₁ -C ₂		108.0
C ₁ -C ₂ -C ₃		112.9
C ₂ -C ₃ -C ₄		110.3
C ₆ -C ₁ -C ₇		107.8

Energies

 $Al^{i}Bu_{3} + {}^{i}Bu^{-} = [Al^{i}Bu_{4}]^{-}$ $\Delta E = -80.63 \text{ kcal mol}^{-1}$

AlⁱBu₃ + TMP⁻ = $[AlⁱBu₃TMP]^ \Delta E = -51.02 \text{ kcal mol}^{-1}$

AlⁱBu₂TMP + ⁱBu⁻ = [AlⁱBu₃TMP]⁻ $\Delta E = -70.00 \text{ kcal mol}^{-1}$

Al' $Bu_2TMP + TMP = [Al'Bu_2TMP_2]^{-1}$ $\Delta E = -28.56 \text{ kcal mol}^{-1}$

Energies

AlⁱBu₃ + TMPH = [AlⁱBu₂TMP] +^{"i}BuH" $\Delta E = -12.37 \text{ kcal mol}^{-1}$

 $[Al'Bu_4]^- + TMPH = [Al'Bu_3TMP]^- + "'BuH"$ $\Delta E = -1.81 \text{ kcal mol}^{-1}$

[AlⁱBu₃TMP]⁻ + TMPH = [AlⁱBu₂TMP₂]⁻ +^{"i}BuH" $\Delta E = +10.09 \text{ kcal mol}^{-1}$

Energies

 $[Al'Bu_4]^- + TMP^- = [Al'Bu_3TMP]^- + {}^{\prime}Bu^ \Delta E = +29.54 \text{ kcal mol}^{-1}$

 $[Al'Bu_{3}TMP]^{-} + TMP^{-} = [Al'Bu_{2}TMP_{2}]^{-} + {}^{\prime}Bu^{-}$ $\Delta E = +41.45 \text{ kcal mol}^{-1}$

Li.Anisole-tetramer

Optimised Geometry

E = -1414.802162 a.u.

Li.Anisole-tetramer

Principal Bond Lengths/Å and Angles/°

Li ₁ -O	1.919	Li ₁ -O-C ₁	100.4
Li ₂ -C ₆	2.247	Li ₁ -Li ₂ -Li ₃	63.3
Li ₃ -C ₆	2.205	Li ₂ -Li ₃ -Li ₁	59.5
0-C1	1.407	Li ₃ -Li ₁ -Li ₂	57.3
0-C ₇	1.421	$Li_2-C_6-Li_3$	67.6
C ₁ -C ₂	1.392	C ₅ -C ₆ -Li ₂	110.4
C ₂ -C ₃	1.398	C ₅ -C ₆ -Li ₃	94.5
C ₃ -C ₄	1.386	C ₁ -C ₆ -Li ₂	124.5
C ₄ -C ₅	1.403	C ₁ -C ₆ -Li ₃	138.0
C5-C6	1.408	O-C ₁ -C ₂	121.0
C ₆ -C ₁	1.408	C ₁ - C ₂ - C ₃	118.6
		C ₂ -C ₃ -C ₄	119.8
		C ₃ -C ₄ -C ₅	119.2
		C ₄ -C ₅ -C ₆	124.2
		C ₅ -C ₆ -C ₁	113.1

(THF)₃Li.Anisole

Optimised Geometry

E = -1050.907932 a.u.

(THF)₃Li.Anisole

Principal Bond Lengths/Å and Angles/°

Li-O ₁	2.981	C ₁ -Li-O ₂	113.2
Li-O ₂	2.023	C ₁ -Li-O ₃	118.1
Li-O ₃	2.019	C ₁ -Li-O ₄	115.1
Li-O ₃	2.052	O ₂ -Li-O ₃	106.2
Li-C ₁	2.116	O ₂ -Li-O ₄	103.6
C ₁ -C ₂	1.406	O ₃ -Li-O ₄	98.8
C ₂ -C ₃	1.403	Li-C ₁ -C ₂	130.8
C ₃ -C ₄	1.388	Li-C ₁ -C ₆	116.0
C ₄ -C ₅	1.399	C ₁ -C ₂ -C ₃	124.5
C5-C6	1.398	C ₂ -C ₃ -C ₄	119.1
C ₆ -C ₁	1.406	C ₃ -C ₄ -C ₅	119.6
C ₆ -O ₁	1.411	C ₄ -C ₅ -C ₆	118.8
0 ₁ -C ₇	1.412	C5-C6-C1	124.8
		C ₆ -C ₁ -C ₂	113.2
		C ₁ -C ₆ -O ₁	114.4
		C ₆ -O ₁ -C ₇	118.4

THF.Li(μ-TMP)(μ-Anisole)Al(ⁱBu)₂

Optimised Geometry

E = -1552.570337 a.u.

THF.Li(μ-TMP)(μ-Anisole)Al(ⁱBu)₂

Principal Bond Lengths/Å and Angles/°

O ₂ -Li 1.976	O ₂ -Li-N	134.7	
Li-N	2.029	O ₂ -Li-O ₁	103.5
N-AI	2.050	O ₁ -Li-N	120.7
Al-C ₈ 2.041	Li-N-Al	87.2	
Al-C ₉ 2.043	N-AI-C ₁	101.3	
Al-C ₁ 2.101	N-AI-C ₈	115.9	
C ₁ -C ₆ 1.404	N-AI-C ₉	113.4	
C ₆ -O ₁ 1.403	C ₈ -AI-C ₉	104.6	
O ₁ -Li 2.021	Al-C ₁ -C ₆	125.9	
C ₁ -C ₂ 1.396	Al-C ₁ -C ₂	119.0	
C ₂ -C ₃ 1.395	$C_1 - C_6 - O_1$	113.9	
C ₃ -C ₄ 1.391	C6-O1-C2	119.4	
C4-C5 1.397	C ₆ -O ₁ -Li	89.5	
C5-C6 1.407	$C_1 - C_2 - C_3$	123.4	
O ₁ -C ₇ 1.423	$C_2 - C_3 - C_4$	119.6	
		C3-C4-C2	119.8
		C4-C2-C6	118.6
		$C_5 - C_6 - C_1$	124.5
		C ₆ -C ₁ -C ₂	114.2

Energies of the Reactions

 $\frac{1}{4}$ [Li.Anisole]₄+^{*i*}Bu₂AITMP + THF = THF.Li(μ -Anisole)(μ -TMP)Al^{*i*}Bu₂

ΔE = -18.71 kcal mol⁻¹

THF.Li.Anisole + 'Bu₂AITMP = THF.Li(µ-Anisole)(µ-TMP)Al'Bu₂

ΔE = -28.45 kcal mol⁻¹

(THF)₃Li.Anisole + ⁱBu₂AITMP = THF.Li(μ-Anisole)(μ-TMP)AlⁱBu₂ + 2 THF

ΔE = -9.39 kcal mol⁻¹

Anisole

Principal Bond Lengths/Å and Angles/°

C ₁ -C ₂	1.397
C ₂ -C ₃	1.397
C ₃ -C ₄	1.390
C ₄ -C ₅	1.397
C ₅ -C ₆	1.387
C ₆ - C ₁	1.401
C1-O	1.365
0-C ₇	1.420
C ₁ -C ₂ -C ₃	119.5
C ₂ -C ₃ -C ₄	121.0
C ₃ -C ₄ -C ₅	119.2
C ₄ -C ₅ -C ₆	120.6
C5-C6-C1	120.1
C ₆ -C ₁ -C ₂	119.7
C ₆ -C ₁ -O	115.7
C ₁ -O-C ₇	118.5

E = -346.729407 a.u.

Li.Anisole

Principal Bond Lengths/Å and Angles/°

C1-C2 1.390)
C2-C3 1.399)
C3-C4 1.391	L
C4-C5 1.401	L
C5-C6 1.400)
C ₆ -C ₁ 1.396	5
C1-O	1.444
0-C7	1.419
Li-O	1.903
Li-C ₆ 1.964	
C ₁ -C ₂ -C ₃	117.0
C ₂ -C ₃ -C ₄	120.0
C3-C4-C2	120.0
C4-C5-C6	122.7
C5-C6-C1	114.0
C ₆ -C ₁ -C ₂	126.3
C ₆ -C ₁ -O	111.8
C1-O-C7	119.4
C ₁ -O-Li	87.2
O-Li-C ₆	74.9
C ₅ -C ₆ -Li	159.9

E = -353.654719 a.u.

THF.Li.Anisole

Principal Bond Lengths/Å and Angles/°

C1-C2	1.390
C2-C3	1.399
C3-C4	1.391
C4-C5	1.401
C5-C6	1.400
C6-C1	1.396
C1-O1	1.444
O1-C2	1.419
Li-O1	1.903
Li-C ₆	1.964
Li-O ₂	1.903
C1-C2-C3	117.2
C ₂ -C ₃ -C ₄	119.9
C3-C4-C5	119.9
C4-C2-C6	123.0
C5-C6-C1	113.7
C6-C1-C2	126.3
C6-C1-O1	111.9
C1-O1-C2	119.2
C1-O1-Li	88.1
C5-C6-Li	158.7
O1-Li-C6	72.3
O ₂ -Li-C ₆	151.5
02-Li-01	135.2

E = -586.083026 a.u.

Energies of the Reactions

Anisole + ¼[LiTMP]₄ = Li.Anisole + TMPH

ΔE = +30.48 kcal mol⁻¹

Anisole + $\frac{1}{4}$ [LiTMP]₄ = $\frac{1}{4}$ [Li.Anisole]₄ + TMPH

ΔE = +1.73 kcal mol⁻¹

Anisole + 1/2 [THF.LiTMP]2 = THF.Li.Anisole + TMPH

ΔE = +17.6 kcal mol⁻¹

Anisole + ¹/₂[THF.LiTMP]₂ + 2THF = (THF)₃Li.Anisole + TMPH

ΔE = -1.18 kcal mol⁻¹